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Functional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex responses to
stimuli, yet such experiments are by nature constructed based on a priori hypotheses, limited to the set of images
presented to the individual while they are in the scanner, are subject to noise in the observed brain responses,
and may vary widely across individuals. In this work, we propose a novel computational strategy, which we call
NeuroGen, to overcome these limitations and develop a powerful tool for human vision neuroscience discovery.
NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to
synthesize images predicted to achieve a target pattern of macro-scale brain activation. We demonstrate that the
reduction of noise that the encoding model provides, coupled with the generative network’s ability to produce
images of high fidelity, results in a robust discovery architecture for visual neuroscience. By using only a small
number of synthetic images created by NeuroGen, we demonstrate that we can detect and amplify differences in
regional and individual human brain response patterns to visual stimuli. We then verify that these discoveries
are reflected in the several thousand observed image responses measured with fMRI. We further demonstrate
that NeuroGen can create synthetic images predicted to achieve regional response patterns not achievable by the
best-matching natural images. The NeuroGen framework extends the utility of brain encoding models and opens

up a new avenue for exploring, and possibly precisely controlling, the human visual system.

1. Introduction

Light rays reaching the retina are converted into bioelectrical signals
and carried through the ophthalmic projections to the brain, where in-
coming signals are represented by corresponding neural activation pat-
terns in the visual cortex (Wandell et al., 2007). The specific patterns
of neural activation in response to visual stimuli are determined in part
by the texture, color, orientation and content of the visual stimuli. The
visual system has provided a rich model for understanding how brains
receive, represent, process and interpret external stimuli, and has led to
advances in understanding how the human brain experiences the world
(Thorpe et al., 1996; Van Essen et al., 1992).

Much is known about how regions in the visual cortex activate
in response to different image features or content. Our knowledge of
stimulus-response maps has mostly been derived from identifying fea-
tures that maximally activate various neurons or populations of neurons
(Hubel and Wiesel, 1962; 1968). Non-invasive techniques such as func-
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tional MRI (fMRI), are now one of the most utilized approaches for mea-
suring human brain responses to visual (and other) stimuli (Allen, 2021;
Van Essen, 2013). The responses of early visual areas such as primary
visual cortex (V1) have been studied using population receptive field
(pRF) experiments wherein a participant fixates on a central dot while
patterned stimuli continuously moved in the visual field (Wandell et al.,
2007). Neurons in early visual areas have been found to be selective for
stimulus location, but also other low-level stimulus properties such as
orientation, direction of motion, spatial and temporal frequency (De Val-
ois and De Valois, 1980; DeAngelis et al., 1995; Hubel and Wiesel, 2020;
Movshon et al., 1978). Recently, intermediate visual areas, like V2 or
V4, were found to be responsive to textures, curved contours or shapes
(Nandy et al., 2013; Ziemba et al., 2016). Late visual area activations
have typically been explored by contrasting response patterns to images
with varied content, e.g. to faces, bodies, text, and places. For exam-
ple, the fusiform face area (FFA) (Kanwisher et al., 1997) involved in
face perception, the extrastriate body area (EBA) (Downing et al., 2001)
involved in human body and body part perception, and the parahip-
pocampal place area (PPA) (Epstein and Kanwisher, 1998) involved in
perception of indoor and outdoor scenes, have been defined by con-
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trasting patterns of brain activity evoked by images with different con-
tent. However, this approach has several limitations: the contrasts 1)
are constructed based on a priori hypotheses about stimulus-response
mappings, 2) are by nature limited to the set of images presented to the
individual while they are in the scanner, 3) are subject to noise in the
observed brain responses, and 4) may vary widely across individuals
(Benson and Winawer, 2018; Seymour et al., 2018).

The recent explosion of machine learning literature has centered
largely around Artificial Neural Networks (ANNs). These networks, orig-
inally inspired by how the human brain processes visual information
(Rosenblatt, 1958), have proved remarkably useful for classification or
regression problems of many types (Belagiannis et al., 2015; He et al.,
2016; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Toshev
and Szegedy, 2014). Common applications of ANNs are in the field of
computer vision, including image segmentation (Girshick et al., 2014),
feature extraction (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014) and object recognition (Sermanet, 2013). Meanwhile, in the field
of neuroscience, researchers have incorporated ANNs into “encoding
models” that predict neural responses to visual stimuli and, furthermore,
have been shown to reflect structure and function of the visual process-
ing pathway (Cichy et al., 2016; Khaligh-Razavi and Kriegeskorte, 2014;
Khosla et al., 2020; St-Yves and Naselaris, 2018a). Encoding models are
an important tool in sensory neuroscience, as they can perform “offline”
mapping of stimuli to brain responses, providing a computational stand-
in for a human brain that also smooths measurement noise in the stimuli-
response maps. ANNs’ internal “representations” of visual stimuli have
also been shown to mirror biological brain representations of the same
stimuli, a finding replicated in early, mid and high-level visual regions
(Cadena, 2019; Yamins, 2014). This observation has led to speculation
that primate ventral visual stream may have evolved to be an optimal
system for object recognition/detection in the same way that ANNs are
identifying optimal computational architectures.

An alternative approach to understanding and interpreting neural
activation patterns is decoding, in which the stimulus is reconstructed
based on its corresponding neural activity response pattern. The pres-
ence of distinct semantic content in natural movies, e.g. object and ac-
tion categories, has previously been decoded from fMRI responses with
high accuracy using a hierarchical logistic regression graphical model
(Huth, 2016). Beyond semantic content, natural scenes and even human
faces can be reliably reconstructed from fMRI using generative adver-
sarial network (GAN) approaches (Mozafari et al., 2020; Shen et al.,
2019; St-Yves and Naselaris, 2018b; VanRullen and Reddy, 2019). En-
coding and decoding models, in conjunction with state-of-the-art gen-
erative networks, may also allow single neuron or neural population
control. Recent work in macaques used an ANN-based model of visual
encoding and closed-loop physiological experiments recording neurons
to generate images specifically designed to achieve maximal activation
in neurons of V4; the resulting synthetic images achieved higher firing
rates beyond what was achieveable by natural images (Bashivan et al.,
2019). Moreover, by adopting a pretrained deep generative network and
combining it with a genetic algorithm, realistic images were evolved to
maximally activate target neurons in monkey’s inferotemporal cortex
(Ponce, 2019). Both studies’ results suggested the synthetic images un-
covered some encoded information in the observed neurons that was
consistent with previous literature, and, furthermore, that they evoked
higher responses than any of the natural images presented. One recent
study applied generative networks to synthesize preferred images for
functionally-defined regions of interest in the human brain, specifically
FFA, EBA and PPA, and were able to replicate regional category selec-
tivity (Ratan Murty et al., 2021). However, generative networks have
not yet been applied to investigate 1) inter-individual and inter-regional
differences in image features that maximize activation in single regions
of the human visual cortex or 2) image features that are designed to
achieve more complex optimizations of activation patterns over multi-
ple regions of the human visual cortex.

In this work, we build upon three recent advances in the literature.
The first is the existence of the Natural Scenes Dataset (NSD), which
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consists of densely-sampled fMRI in eight individuals who each partic-
ipated in 30-40 fMRI scanning sessions in which responses to 9,000-
10,000 natural images were measured (Allen, 2021). The second is in
an interpretable and scalable encoding model, based on the NSD data,
that performs accurate individual-level mapping from natural images to
brain responses (St-Yves and Naselaris, 2018a). The third is in the de-
velopment of generative networks which are able to synthesize images
with high fidelity and variety (Brock et al., 2018; Nguyen et al., 2016).
Here, we propose a state-of-the-art generative framework, called Neu-
roGen, which allows synthesis of images that are optimized to achieve
specific, predetermined brain activation responses in the human brain.
We then apply this framework as a discovery architecture to amplify
differences in regional and individual brain response patterns to visual
stimuli.

2. Materials and methods
2.1. Natural scenes data set

We used the Natural Scenes Dataset (NSD;
http://naturalscenesdataset.org (Allen, 2021) to train the encoding
model. In short, the NSD dataset contains densely-sampled functional
MRI (fMRI) data from 8 participants collected over approximately
a year. Over the course of 30-40 MRI scans, each subject viewed
9,000-10,000 distinct color natural scenes (22,000-30,000 trials with
repeats) while undergoing fMRI. Scanning was conducted at 7T using
whole-brain gradient-echo EPI at 1.8-mm iso-voxel resolution and
1.6s TR. Images were sourced from the Microsoft Common Objects in
Context (COCO) database (Lin, 2014), square cropped, and presented
at a size of 8.4° x 8.4°. A set of 1000 images were shared across
all subjects; the remaining images for each individual were mutually
exclusive across subjects. Images were presented for 3s on and 1s
off. Subjects fixated centrally and performed a long-term continuous
recognition task on the images in order to encourage maintenance
of attention. The fMRI data were pre-processed by performing one
temporal interpolation (to correct for slice time differences) and one
spatial interpolation (to correct for head motion). A general linear
model (GLM) was used to estimate single-trial beta weights, repre-
senting the voxel-wise activation in response to the image presented.
Specifically, there are three components in the GLM: first, a library
of hemodynamic response functions (HRFs) derived from an initial
analysis of the dataset was used as an efficient and well-regularized
method for estimating voxel-specific HRFs; second, the GLMdenoise
technique (Charest et al., 2018; Kay et al., 2013) was adapted to the
single-trial GLM framework, thereby enabling the use of data-driven
nuisance regressors; third, an efficient ridge regression (Rokem and
Kay, 2020) was used to regularize and improve the accuracy of the
betas. Cortical surface reconstructions were generated using FreeSurfer,
and both volume- and surface-based versions of the response maps were
created.

In addition to viewing the COCO images, individuals all underwent
the same image functional localizer (floc) task to define the visual re-
gion boundaries (Stigliani et al., 2015). In short, regions of interest were
defined by contrasting activation maps for different types of localizer im-
ages (floc-bodies, floc-faces, floc-places, floc-words). Several regions ex-
hibiting preference for the associated category were defined (e.g., floc-
faces was based on t-values for the contrast of faces>non-faces). Regions
were defined by drawing a polygon around a given patch of cortex and
then restricting the region to vertices within the polygon that satisfy t>0.
See Supplementary Figure S10-18 for the 8 individuals’ early and late
visual region maps, along with quantification of the regions’ overlaps
using Dice coefficient.
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2.2. Deepnet feature-weighted receptive field encoding model

We trained a Deepnet feature-weighted receptive (fwRF) encoding
model (St-Yves and Naselaris, 2018a) using the paired NSD images and
fMRI response maps described above. Here, instead of the voxel-wise
model previously created, we trained a model for each of the 24 early
and late visual regions for each of the 8 individuals in the NSD dataset
that predicts a single number - the average response over the voxels
in that region for that individual. There are three components in the
Deepnet-fwRF model: K feature maps, a vector of feature weights wy,
and a feature pooling field. The output of each fitted encoding model
is the predicted activation 7 for a given region for a given individual in
response to an image S:

K D/2 D/2 .
MS)y= ) w / / 8(X, Y3 My Hys 6 i1, (S)dxd y
; “J_pp J-pp 0o My O] iy

where w), is the feature weight for kth feature map f k, g is the feature
pooling field (described below), D is the total visual angle sustained by
the image, i(x) = |(2x + D)/2A]| (likewise for j(y)) is the discretization
depending on A = D/n;, which is the visual angle sustained by one pixel
of a feature map with resolution, and n, x n, is the resolution of kth
feature map.

The feature maps f* were obtained from Alexnet (Krizhevsky et al.,
2012), a deep convolutional neural network containing 5 convolutional
layers (interleaved with max-pool layers) and 3 fully-connected layers.
AlexNet was originally trained for classification of images in ImageNet
(Russakovsky, 2015), and is often used to extract salient features from
images. The exact structure and trained network can be downloaded
as part of the Pytorch library, and is also available at https://github.
com/pytorch/vision/blob/master/torchvision/models/alexnet.py. The
feature maps can be drawn from all convolutional layers and fully-
connected layers in Alexnet. To limit the total number of feature maps,
we first set the maximum feature maps for each layer to 512. For those
layers whose dimension exceeded 512, we calculated the variance of
the layer values across the image set and retained those 512 feature
maps with the highest variance. We then concatenated the selected fea-
ture maps having the same spatial resolution, which resulted in three
feature maps of size (256,27,27), (896, 13, 13) and (1536, 1, 1).

The fwRF model was designed based on the hypothesis that the closer
the feature map pixel is to the center of the voxel’s feature pooling field,
the more it contributes to the voxel’s response. We also assume this is
the case for clusters of voxels (regions in our case). The feature pooling
field was modeled as an isotropic 2D Gaussian blob:

=+ — )’
2
20'g

8(X, Y3 s My 0g) = exp |-

1
where u,, u, are the feature pooling field center, and o, is the feature
pooling field radius. The feature pooling field center and radius were
considered hyperparameters and learned during training of the encod-
ing model. By definition, when the radius of the feature pooling field
is very large (e.g. o, > A), the predicted activation from a single layer
reduces to a weighted sum of all pixels within the field; otherwise, it
reduces to just one single spatial unit. In experiments, the grid of candi-
date receptive fields included 8 log-spaced receptive field sizes between
0.04 and 0.4 relative to 1/n;, and the candidate feature pooling field
centers were spaced 1.4 degrees apart (regardless of size), resulting in a
total of 875 candidate feature pooling fields. We searched the regular-
ization parameter over 9 log-spaced values between 10> ~ 107 and chose
the one that had the best performance on the held-out validation set of
3000 images.

Each of the 2688 image feature maps has an associated feature
weight, w,, indicating how important the kth feature map was for pre-
dicting that region’s activity. Once the feature pooling hyperparameters
were determined, a set of feature weights were then learned via ridge
regression for each visual region in each of the 8 individuals. Since the
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images that each individual viewed were different and the individuals
had a slightly different number of image-activation pairs, we used the
individual-specific images for training and validating the ridge models
and tested the ridge models on the shared 1000 images where we calcu-
lated the predicted accuracy. During training, 3000 randomly selected
image-activation pairs were held-out and used as a validation set with
which to identify the optimal hyperparameters, namely those that max-
imized the prediction accuracy within this validation set.

2.3. The BigGAN-deep image generator network

We used the generator from BigGAN-deep, a pretrained deep gen-
erative adversarial network (GAN), utilizing the ImageNet image set,
whose goal is to synthesize images of a given category that look nat-
ural enough to fool an automated fake/real classifier (Brock et al.,
2018). The BigGAN-deep was built upon the self-attention GAN (SA-
GAN) (Zhang et al., 2019) with some differences: i) a shared class em-
bedding was used for the conditional BatchNorm layers to provide class
information, ii) the entire noise vector z was concatenated with the
conditional vector to allow the generator G to use the latent space to
directly influence features at different resolutions and levels of hier-
archy, iii) the noise vector z was truncated by resampling the values
with magnitude above a chosen threshold to fall inside that range in-
stead of using a Normal or Uniform distribution and iv) orthogonal reg-
ularization was used to enforce the models’ amenability to truncation.
BigGAN-deep’s truncation threshold controls the balance of fidelity and
variety of the synthetic images: larger thresholds lead to higher variety
but lower fidelity images while lower thresholds lead to higher fidelity
images of lower variety. In our experiments, the truncation parameter
was set to 0.4 to achieve a balance of both fidelity and variety. The Py-
Torch version of the pretrained model can be publicly downloaded at
https://github.com/huggingface/pytorch-pretrained-BigGAN.

2.4. Synthesizing images to optimize regional predicted activation

We aimed to synthesize images using our generator network G that
either maximized the activation in single or pairs of regions or maxi-
mized activation in one region while minimizing activation in another
region, depending on the experiment. For the sake of simplicity, we will
describe the optimization procedure using the example goal of max-
imizing activation in a single region. Because our generator network
(BigGAN-deep) is a conditional GAN, it requires identification of an im-
age class via a one-hot encoded class vector ¢, then uses a noise vector z
to generate an image of that class. We performed the optimization in two
steps; first, we identified the 10 most optimal classes, then, for each class
we optimized over the noise vector space. To identify optimal classes,
we generated 100 images from each of the 1000 classes in the ImageNet
database using 100 different random noise vectors. We input the re-
sulting images into the encoding model to obtain associated predicted
regional activation, which was averaged over the 100 images per class.
The 10 classes that gave the highest average predicted activation for the
region of interest were identified and encoded in¢; (i = 1, ... 10), and cor-
responding image generator noise vectors z; 5 (i=1,...10, j=1,...10)
were further optimized via backpropagation with 10 random initializa-
tion seeds per class. The result of this optimization is a set of 100 images
G(c;, z;;) that yielded maximal predicted activation of the target region.
Formally, and including a regularization term, we posed the optimiza-
tion problem as finding the codes Z;; such that:

2,‘](5,‘) = arg rr;gx(f*,(G(c,, Zij)) - /leij 1D
ij

where 4 =0.001 was the regularization parameter. For the maximiza-
tion/minimization of region pairs, the cost function aimed to maxi-
mize/minimize the sum of the two regions’ activations together, with
both regions considered equally. For the maximization of one region
and the minimization of the other, the cost function was the sum of the
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Fig. 1. Deepnet-fwRF encoding model and
NeuroGen framework for synthetic image gen-
eration. A The deepnet-fwRF encoding model
begins by passing an image through the Alexnet
feature extractor, then applying a 2D Gaussian
pooling receptive field to obtain multi-scale
feature maps. Finally, ridge regression is ap-
plied to the multi-scale features to predict brain
region-specific responses to the image. B The
deepnet-fwRF encoding model is concatenated
with a pretrained conditional generative net-
work (BigGAN-deep) to synthesize images that
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max and min, with both regions considered equally. Once this optimiza-
tion was performed, we selected the top 10 images by taking the most
optimal image from each of the 10 distinct classes.

3. Results

3.1. Encoding models accurately map images to brain responses and
remove noise present in fMRI activation maps

First, subject and region-specific encoding models were built using
the Deepnet-fwRF framework (St-Yves and Naselaris, 2018a) and the
NSD data, which contained between 20k to 30k paired images and fMRI-
based brain response patterns for each of eight individuals (Fig. 1A)
(Allen, 2021). Other than a shared set of 1000, the images were mutu-
ally exclusive across subjects. The encoding models first extract image
features using AlexNet, a pre-trained deep neural network for image
classification (Krizhevsky et al., 2012). The encoding model then ap-
plies a 2D Gaussian pooling field to the image features to obtain a set
of multi-scale feature maps. Ridge regression is used in the final step to
predict individual regional activations (which is the average activation
over all voxels within that region) from the multi-scale feature maps.
For each of the eight subjects, we trained a separate model for each
early/late visual region, of which there were at most 24. Regions were
defined using functional localizer tasks (Allen, 2021) and some were
missing in certain individuals.

To objectively evaluate the regional encoding models’ predictive
abilities, we compared their prediction accuracies against the reliabil-
ity of repeated fMRI measurements of responses to the same image as
a noise ceiling estimate. A region’s observed and predicted activations
are the mean of those quantities over all voxels in that region. We first
selected the images in the held-out shared image set that were viewed
twice by each subject, totalling between 700-1000 images per person

|j—> —» |Deepnet-fwRF| —> x4

are predicted to optimally match a desired re-
sponse pattern (e.g. maximizing predicted ac-
tivation in the fusiform face area). The opti-
mized synthetic images are created in three
steps. First, a single image for each of the 1000
classes in the conditional GAN is created from
an initial truncated Gaussian noise vector; the
resulting images are provided to the encoding
model to obtain their predicted activation re-
sponses. Second, the 10 classes that give the
predicted activation best matching the target
activation are identified (e.g. those that give
maximal predicted activation in the fusiform
face area). Third, fine tuning of the noise vec-
tors for each of the 10 synthetic images via gra-
dient descent is performed; gradients flow from
the encoding model’s predicted response back
to the synthetic image and to the noise vector
that initializes the conditional GAN.

=> &

ROI response

(see Supplementary Figure S1 for the prediction accuracy for all im-
ages, including repeats, in the held-out shared image set). Model pre-
diction accuracy was calculated as the Pearson correlation between the
predicted activation for images that viewed twice with their measured
fMRI responses, where the two repeated responses/predictions per im-
age were concatenated. Note that the measured responses are different
for the two repeats of the same image, but the predictions are the same.
The noise ceiling was calculated by correlating the two measured fMRI
responses for the same set of images (see Fig. 2A). Distributions of the
prediction accuracies and noise ceilings for each subject and each re-
gion’s encoding models are shown in Fig. 2B-F; the prediction accuracy
and noise ceiling for the same subject are connected by a dashed line.
Generally, regions with higher noise ceilings had higher accuracies. In
all cases, prediction accuracies were greater than noise ceilings, reflect-
ing the noise in fMRI measurements as well as the good predictive per-
formance of the encoding models.

One approach we explore here is to assume that images with sim-
ilar predicted responses can be treated as repeated measurements un-
der similar conditions. Thus, we first rank-order the images in the
held-out shared image set by their predicted activations, then apply
non-overlapping windows of fixed size to group the images. We then
average the predicted and measured responses within these windows
and calculate the Pearson correlation of the two resulting averages
across all windows, see Fig. 3A. As the window size in the smoothed
accuracy calculation increases, the correlation also increases (see in
Fig. 3B-F), thus validating the noise-smoothing ability and relatively
high accuracy of the encoding model. It is clear from this analysis
that the encoding model accuracy estimates are limited by the noise
present in the fMRI measurements. For comparison in the null case
of no correlation between predicted and measured responses, we cal-
culated the smoothed accuracy when the measurement-response pairs
were uncoupled (see Supplementary Figure S2 for the smoothed ac-
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Fig. 2. The Deepnet-fwRF encoding model accurately predicts brain response to visual stimuli. A Accuracy and noise ceiling calculation. For comparison, we selected
those images in the held-out shared image set that were viewed twice by each subject to quantify the reliability of repeated measurements as a noise ceiling for
our model predictions. The noise ceiling thus was calculated as the Pearson correlation between the two fMRI measurements, while the prediction accuracy was
calculated as the Pearson correlation between the predicted activation and the concatenated fMRI measurements. Note the measured responses are different for
the two repeats of the same image, but the predictions are the same. B, C, D, E and F Distribution of the individuals’ prediction accuracies and noise ceilings for
faces, body, place, word and early visual ROIs, respectively. Each point in the violin plot represents an individual; accuracy and noise ceiling of the same subject are
connected by dashed line. Face ROIs: OFA - occipital face area; FFA - fusiform face area; mTLfaces - medial temporal lobe face area; aTLfaces - anterior temporal lobe
face area. Body ROIs: EBA - extrastriate body area; FBA - fusiform body area; mTLbodies - medial temporal lobe body area. Place ROIs: OPA - occipital place area;
PPA - parahippocampal place area; RSC - retrosplenial cortex. Word ROIs: OWFA - occipital word form area; VWFA - visual word form area; mfswords - mid-fusiform
sulcus word area; mTLwords - medial temporal lobe word area. Early visual ROIs: v - ventral; d - dorsal.

curacy calculations when the predicted activation vector is randomly
permuted).

3.2. Optimized synthetic images more consistently align with expectations
of regional feature selectivity than natural images.

After validating the encoding model, we sought to generate images
whose predicted activation optimally achieved certain criteria, e.g. had
a maximal predicted activation in OFA (as quantified by the average
activation over all voxels in the OFA). A conditional deep generative
network (BigGAN-deep), based on the diverse set of natural images in
ImageNet, was adopted as NeuroGen'’s synthetic image generator. By
constructing the activation maximization scheme (Fig. 1B), which con-
nects the encoding model and the image generator, gradients flowed
from the regional predicted activation back to the noise vector to allow
optimization. Because BigGan-deep is conditional, the class of the image
is identified prior to synthesis which allows generation of more realistic
synthetic images. We began optimization by first identifying the top 10
classes that gave the best match to our desired activation pattern. Once

the top 10 classes were identified, the noise vector was then fine-tuned
as previously described. We began by using this NeuroGen framework
to generate images that give maximal predicted activation for a single
region in turn. Fig. 4A-E, shows the i) 10 natural images that had high-
est measured fMRI activation (top row) ii) 10 natural images that had
the highest predicted activation from the encoding model (middle row)
and iii) the 10 synthetic images optimized to achieve maximal predicted
activation from the encoding model (bottom row) for a subject whose
encoding model prediction accuracy was closest to the median accuracy.
Word clouds representing the semantic content of all the top 10 images
from the three sources are also provided by collecting the labels from
the natural images and obtaining labels for the synthetic images using
an automated image classifier (Ren et al., 2015). The images and word
clouds largely show alignment with expected image content and agree-
ment across the three sources; however, when looking at the individual
images, the content and features of both the natural and synthetic im-
ages with highest predicted activations are more aligned with a priori
expectations than the content and features of images with highest mea-
sured activations. For example, the images with the highest observed
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Fig. 3. The Deepnet-fwRF encoding model can smooth noise present in fMRI-based individual image response maps. A An example illustrating the relationship be-
tween predicted/measured activation for single images and, averaged predicted activation within non-overlapping windows of size 20, averaged measured activation
within non-overlapping windows of size 20, with the rank of the images ordered by predicted activation. Smoothed accuracy is calculated by first ranking order the
held-out images by their predicted activation, and then applying non-overlapping windows and correlating the averaged predicted activations within that window
with the averaged measured activations within those windows. B, C, D, E and F The smoothed accuracy increases as the window size increases for face, body, place,
word and early visual ROIs respectively. The “smoothed accuracy” all show the trend of approximating 1 when increasing the window size.

activation include a giraffe for the face area, a zebra for the body area
and many of the word area top images do not contain text. We posit that
this is due to the encoding model predictions being less noisy than fMRI
measurements.

We do see a general agreement in the content/features of the syn-
thetic images with what is expected from how the regions are defined.
For FFA1 (face), the top 10 classes varied across individuals but were
generally those that produced optimized images with human faces (Im-
ageNet categories are terms like groom, mortarboard, shower cap, ice
lolly, bow tie etc.) or dog faces (ImageNet categories were Pembroke,
Basenji, Yorkshire terrier, etc.); the wordcloud reflects this as “person”
is the dominant term. One interesting thing to note when comparing the
natural and synthetic images for FFAL1 is that the synthetic images tend
to contain more than one person’s face. Most of the top ImageNet classes
for EBA (body) were sports-related (rugby ball, basket ball, volleyball,
etc.) and the resulting images’ most prominent features were active hu-
man bodies; the wordcloud again prominently features “person” but also
sport-related terms. Typical indoor and outdoor place scenes emerged
for place area PPA (wordcloud contained “dining table”, “chair”, “bed”,

etc.) and images with objects and/or places containing text were gen-
erated for word area mfs-words (wordcloud contained “book”, “bottle”
and “truck”). Synthetic images with high spatial frequency and color
variety were produced when maximizing V1v (early visual), which gen-
erally responds to low-level image features such high frequency textures.
In addition to the good agreement of the content and features of the op-
timized synthetic images with expectations, they are also predicted by
the encoding model to achieve significantly higher activation than the
top natural images (see Supplementary Figure S7). In fact, for all single
region optimizations (over all 8 subjects and 24 regions), the synthetic
images had significantly higher predicted activations than the top nat-
ural images. Supplementary Video S1 shows a video of the sets of top
natural and synthetic images for all 8 individuals, for all 24 regions; Sup-
plementary Figures S3-6 for wordclouds for all regions. Looking across
all single region optimizations, there were some obvious differences in
image content/features that emerged across individuals within the same
region and within the same individual across regions in the same per-
ception category, some of which we investigate further below. These
results provide evidence that the NeuroGen framework can produce im-
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Fig. 4. Synthetic images generated to maximize predicted activation in five example visual regions in different individuals. In each panel, the top row contains the
10 natural images that had highest measured fMRI responses for that region, the second row contains the 10 natural images that had the highest encoding model
predictions for that region, and the third row contains the 10 optimized synthetic images from NeuroGen for that region. Five example regions are shown, i.e. FFA1
(face), EBA (body), mfs-words (word), PPA (place) and V1v (early visual), each for a different individual that had median encoding model accuracy. The top encoding
model images and NeuroGen images appear more consistent in their reflection of expected features/content compared to the top natural images with highest observed
activation (e.g. fMRI top images include a giraffe for FFA1, a zebra for EBA and many lack text in the mfs-words area). The corresponding wordcloud plots show the
image labels. A Subject 3’s FFA1 region. B Subject 7’s EBA region. C Subject 4’s PPA region. D Subject 8’s mfs-words region. E Subject 6’s V1v region.

ages that generally agree in content and features with a priori knowledge
of neural representations of visual stimuli, and may be able to amplify
differences in response patterns across individuals or brain regions.

3.3. Optimized synthetic images reflect and amplify features important in
evoking individual-specific and region-specific brain responses

One deviation in the content of the synthetic images from what was
generally expected was the prevalence of dogs in all the five of face
regions we modeled; 96 of the 350 top images (10 top images x 8 in-
dividuals x 5 face areas - 10 x 5 missing subjects’ face areas) were of
dog faces and 219 were of human faces. We observed some individuals’
top 10 synthetic images all contained dogs while others had none. This
imbalance also varied by brain region, one individual could have all syn-
thetic images containing dogs for one face region while they would have
fewer in another face region (see Supplementary Video S1). This appar-
ent region- or individual-specific dog versus human preference was not
apparent from the content of either the top 10 natural images giving
highest observed or predicted activations. Figure 5A-C, show all eight
subjects’ 10 natural images with the highest measured activation, 10
natural images with the highest predicted activation and 10 synthetic

images, respectively, for an example face area (FFA1). For subject 3,
nine out of ten synthetic images contain human faces, with only one
dog. On the other hand, subject 4 had eight dog images, one human and
one lion. Frequency based wordcloud plots of the top 10 synthetic im-
ages’ labels for all individuals for each of the five face areas are shown in
the third row of Fig. 6. The wordclouds confirm the regionally-varying
prevalence of dogs in NeuroGen’s synthetic images, which is not obvi-
ous from looking at either of the natural image wordclouds. We hypoth-
esized that this individually and regionally varying dog/human prefer-
ence in the synthetic images may be reflecting the actual underlying
preferences in the data. To test this hypothesis, we calculated 1) the t-
statistic of the measured fMRI activation from dog images (images in
the NSD dataset that had a single label “dog”) and the measured fMRI
activation from images of humans (images in the NSD dataset that had
a label “person” and any of the following: “accessory”, “sports”) and 2)
the top 10 and top 100 synthetic images’ dog vs human image ratios, cal-
culated as ((number of dog images - number of person images)/(number
of dog images + number of person images)). We calculated these two
measures (dog vs. person t-stat and synthetic image ratio) for all eight in-
dividuals and all five face ROIs (see Fig. 5D). We found a significant cor-
relation between the t statistic and image ratios for NeuroGen’s top 10
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Fig. 5. Individual-specific and region-specific
differences in face region responses are re-
flected in and amplified by the NeuroGen
framework. A, B and C Sets of images that had
the highest activation in FFA1 (fusiform face
area 1) for all individuals, one per row, de-
rived from three different sources. A Natural
images that have the highest observed activa-
tion measured directly via fMRI. B Natural im-
ages that have the highest predicted activations
from the encoding model. C Synthetic images
that were created using NeuroGen. D The x-
axis displays the dog vs. person preference from
the observed fMRI data, quantified by the t-
statistic of observed fMRI activations from all
natural dog images compared to the observed
activations from all natural people images. The
quantities were calculated for each of the five
face areas in each of the eight individuals. The
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Fig. 6. Face area preferences in semantic image content are reflected in the wordclouds illustrating image content for the top 10 natural and synthetic images. Each
row represents the source of the top 10 images: natural images that have the highest observed activation measured directly via fMRI, natural images that have the
highest predicted activations from the encoding model, and synthetic images that were created using NeuroGen. Each column represents one of the five face regions.
The presence of the “dog” label (as well as, unsurprisingly, “person” label) can be appreciated most prominently in NeuroGen’s synthetic images.

synthetic images (Spearman rank r = 0.6681, p = 1.157¢ — 5); this corre-
lation was even higher when considering NeuroGen’s top 100 synthetic
images (Spearman rank r = 0.7513, p = 1.987¢ — 7), see Supplementary
Figure S8. Correlations with the top 10 natural images from the en-
coding model and fMRI measurements were also significant, but not
as strong as the top 10 synthetic images correlation (Spearman rank
r=0.4468, p = 7.126e — 3 and r = 0.2948, p = 0.086), respectively. These

results show that previously identified “face” regions in the human vi-
sual cortex also respond robustly to dog faces, and, furthermore, that the
dog/human balance in response patterns varies across individuals and
brain regions. These results highlight NeuroGen’s potential as a discov-
ery architecture, which can be used to amplify and concisely summarize
(even with only 10 images) region-specific and individual-specific dif-
ferences in neural representations of visual stimuli.
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Fig. 7. Individual-specific and region-specific
differences in word area responses are reflected
in and amplified by only 10 images from the
NeuroGen framework. Sets of images that had
the highest activation in A OWFA (occipital
word form area), B ventral word form area 1
(VWFAL1) and C mfs-words, for all eight indi-
viduals (one per row). D The x-axis displays
the activation contrast for six categories of nat-
ural images (human, dog, bird, other animal,
food and clock) from the observed fMRI data,
quantified by the t-statistic of observed fMRI
activations from natural images of the category
in question compared to the observed activa-
tions from all other natural images (not con-
taining that item). The y-axis represents the
proportion of top 10 synthetic images that con-
tain that item. Points outside the grey area
have t-statistics that are significant after FDR
correction. A significant correlation exists be-
tween the observed image category contrasts
from the entire fMRI dataset and the propor-
tions of that image category in the top 10 syn-
thetic images from NeuroGen (Spearman rank
r=0.557, p=2e—15).

A Top 10 synthetic images (NeuroGen) - OWFA

B Top 10 synthet|c images (NeuroGen) - VWFA1

mfs-words  mTL-words

1078 oa o a
target ratio 5 A

r=0555 |o
p:23_15 ®0ao0o @
5 voo
0.5qco¢ m

¢ 4o aa v v

Another unexpected observation of individual and regional variabil-
ity was found in the word areas. Because the images in NSD are natu-
ral, they do not solely contain text; therefore many of the top natural
and synthetic images for the word-preferred regions contained objects
or scenes with integrated text (scoreboard, packet, cinema, bottle cap,
sign, etc.), see Fig. 7. However, images with integrated text were only
a portion of the word form area top images; many also contained hu-
mans, dogs, cats, birds, other animals, food and clocks. We aimed to test
if the content of the synthetic images from NeuroGen could accurately
reflect underlying patterns in the measured activation data, even when
considering several categories of images. Therefore, we calculated the
proportion of each individual’s top 10 images that contained objects in
each of the six categories of interest (humans, dogs, birds, other animals,
food and clocks) for each of the top 5 word areas. These six categories
of interest were selected based on the most common categories in the
top 10 synthetic images across all 5 word form areas. We then corre-
lated each individual’s synthetic image proportions with their t-statistic
of measured activation for images containing that target object (and
not any objects in the other 5 categories) contrasted against the mea-
sured activation for all images not containing that object. Categories
were included for a given word form area’s analysis if there existed at
least 10 images of that category out of the 240 total top natural or syn-
thetic images for that region (8 individuals x 10 images x 3 sources).
Figure 7D shows the scatter plot of the image proportions versus the
t-statistic giving the activation contrast for synthetic images of a given
category (indicated by color) for the various word form regions (indi-
cated by shape), which were significantly correlated (Spearman rank
r=0.557, p=2e—15). The proportion of the 10 natural images with
highest encoding model predicted activation and highest measured ac-
tivation via fMRI had a somewhat weaker but still significant corre-
lation (Spearman rank r = 0.4545, p = 3.781e¢ — 10 and Spearman rank
r=0.1897, p = 0.0127, respectively). These results again highlight the
utility of NeuroGen as a discovery architecture that can concisely un-
cover, even across several categories of images at once, neural repre-

gev oo
oo oo |[manv vO
n*mtuv
I b T T 1 T 1
=30 20 10 0 10 20 30

fMRI t statistic (target - others)

sentation variability across individuals and brain regions within an in-
dividual.

3.4. Optimized synthetic images have more extreme predicted co-activation
of region-pairs than natural images

The NeuroGen framework is flexible and can be used to synthe-
size images predicted to achieve an arbitrary target activation level
for any or all of the 24 regions for which we have encoding models.
We now provide examples of two-region and three-region optimization;
specifically, we aimed to create synthetic images that jointly maximize
and/or minimize predicted activation in the target regions together. For
example, two region optimization could either be joint maximization
(+ROI1 +ROI2), or joint maximization of one region and minimization
of the other, or maximizing (+ROI1-ROI2 or -ROI1 +ROI2). Figure 8
shows the results of three example two region optimizations for subject
8’s A) FFA1 (face) and V1v (early visual) regions, B) PPA (place) and
V1v (early visual) regions, C) FFA1 (face) and PPA (place) regions, and
one example of three region optimization (FFA1, PPA and V1v). When
jointly maximizing FFA1 or PPA with V1v, NeuroGen’s synthetic images
are of places or faces with an abundance of texture (e.g. comic book,
steel drum and kimono labels for FFA1 and toy shop, bookstore, slot la-
bels for PPA). Alternatively, when jointly maximizing FFA1 or PPA and
minimizing V1v, we see human/dog faces or places/indoor scenes with
flat, non-textured colors in both the foreground and background (e.g.
neck brace, ice lolly and bikini for FFA1 and beacon, pier, container ship
labels for PPA). Natural images show a similar pattern, although they
are not as obvious and appear less consistent (see Supplementary Fig-
ure S9). In addition, we see that the top 10 optimized synthetic images
generally had significantly more extreme predicted activation values in
the desired direction than the top 10 natural images for most cases (see
Fig. 8 and Supplementary Figure S9). Both the two- and three- region
optimizations demonstrate the synthetic images push the predicted ac-
tivations past the boundaries of the natural image activations; there is a
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Fig. 8. Multiple-region optimization creates
synthetic images with generally more extreme
predicted activation when compared to natu-
ral images. Scatter plots show the predicted re-
sponse from top 10 natural and synthetic im-
ages that either jointly maximize the sum of the
two regions (+ROI1 +ROI2) or jointly max-

imize one and minimize the other (+ROI1-
ROI2) and (-ROI1+ROI2), for the following
region-pairs A FFA1 and V1v, B PPA and V1v
and C FFA1 and PPA. D shows all sets of three-
region optimization combinations for FFAI,
PPA and V1v together. Typical synthetic image
examples are shown for each dual and triple op-
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clear separation of the orange and blue points representing these values.
These results demonstrate that the NeuroGen framework can be applied
to create synthetic images predicted to achieve optimized activation in
more than one region at the same time; the example synthetic images
provided align with expectations from prior knowledge. Furthermore,
they suggest that the benefit of NeuroGen’s synthetic images over natu-
ral ones in terms of pushing the predicted activation levels to those not
achievable by natural images.

4. Discussion

Here, we introduce NeuroGen, a novel architecture designed to syn-
thesize realistic images predicted to maximize or minimize activation
in pre-selected regions of the human visual cortex. NeuroGen lever-
ages three recent scientific advances: 1) the development of encoding
models that can accurately predict brain responses to visual stimuli (St-
Yves and Naselaris, 2018a), 2) in deep generative networks’ abilities to
synthesize high-fidelity and variety images (Brock et al., 2018) and 3)
in the recent curation of the Natural Scenes Dataset (NSD), which con-
sists of tens of thousands of paired images and human brain responses
(Allen, 2021). We showed that encoding models trained on the NSD data
could accurately maps images to their neural representations in individ-
ual subjects, and, importantly, that the encoding model smooths noisy
measured fMRI response maps. Once the encoding model was validated,
we used the NeuroGen framework to concisely amplify and reveal in-
dividual and regional preferences for certain image types. We began
by using NeuroGen to create synthetic images that were predicted to
maximize a single region’s activation response. The resulting synthetic
images agreed with expectations from previous knowledge of regional
neural representations of visual stimuli and, furthermore, the predicted
activations from synthetic images were significantly higher than from
natural images. Once NeuroGen was validated, it was used as a discov-
ery architecture to uncover region-specific and individual-specific visual
cortex response patterns. Our main discovery was a remarkable, previ-
ously not well-described balance of dog-human preferences in face areas
that both varied across face regions and individuals. The synthetic image
human/dog preference ratios were validated by showing strong, signif-
icant correlations with dog/human preference ratios calculated by con-
trasting measured fMRI activations in response to thousands of dog and
human images. Secondly, we used the NeuroGen framework to show

10

timization; the optimization specifics are listed
below each synthetic image (green = that re-
gion’s minimization, red = that region’s maxi-
mization).

that the content of images preferentially activating word form areas
were of a wide variety, including humans, dogs, birds, other animals,
clocks, food and more. Despite the fact that several categories of images
were represented in the word form areas, we again validated the top 10
synthetic image ratios by showing significant correlations with under-
lying preferences extracted by contrasting measured fMRI activations
in response to hundreds of images. Finally, we extended the single re-
gion analysis to demonstrate the capacity of the NeuroGen framework
in optimizing activation for two or three regions at a time. We found
that these two- and three-region optimizations not only produced im-
ages that agreed with expectations, but also provided significantly more
extreme predicted activations than natural images, above and beyond
the activation levels observed in response to the best-matching natural
images. Taken together, these results validate and demonstrate that the
NeuroGen framework can create new hypotheses for neuroscience and
thus facilitate a tight loop between modeling and experiments, and thus
is a robust and flexible discovery architecture for vision neuroscience.
The visual system provides an excellent model with which to under-
stand how organisms experience the environment. Mapping the visual
system’s neural representations of external stimuli has often centered
around identifying features that maximally activate various neurons or
populations of neurons (Hubel and Wiesel, 1962; 1968). This “activation
maximization” approach, more commonly called the tuning curve ap-
proach, has lead to discoveries of visual regions that selectively respond
to specific patterns (Kobatake and Tanaka, 1994; Wandell et al., 2007)
or images with a certain content, most prominently, faces (Kanwisher
et al., 1997; Tsao et al., 2006), places (Epstein and Kanwisher, 1998),
bodies (Downing et al., 2001; Popivanov et al., 2014) and visual words
(Baker, 2007). This “activation maximization” approach using in vivo
measurements is by nature limited to the stimuli presented while ob-
serving responses, which is in turn biased by a priori hypotheses. There
may be more complex, obscure stimuli-response maps that exist (for ex-
ample, perhaps, to images of a dog riding a bicycle) but are not tested
due to our limited imaginations or the lack of representation of that type
of image in natural image sets. In addition, fMRI can be very noisy, and
response maps to a handful of images (or even hundreds of them) are
quite noisy even within an individual, let alone across the population.
Encoding models that can perform “offline” mapping of stimuli to brain
responses can provide a computational stand-in for a human brain that
also smooths measurement noise in the stimuli-response maps. Neuro-
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Gen’s framework that couples the benefits of encoding models with re-
cent advances in generative networks in creating naturalistic-looking
images, may prove to be an advance in discovery neuroscience that is
more than the sum of its parts.

Only a few previous studies have used generative networks to cre-
ate synthetic images made to achieve activation maximization of sin-
gle neurons or populations of neurons in non-human primates. Both
used closed-loop physiological experimental designs to record and opti-
mize neuronal responses, e.g. maximize firing rates, to synthetic images
(Bashivan et al., 2019; Ponce, 2019). One synthesized images by directly
optimizing in image space using an ANN model for the brain’s ventral
visual stream (Bashivan et al., 2019), and the other synthesized images
in code space via a genetic algorithm to maximize neuronal firing in real
time (Ponce, 2019). Both of these studies successfully demonstrated that
single neurons or neuronal populations in monkeys can be controlled
via optimization of synthetic images using generative networks. One
difference in our framework, other than the species in question, is the
use of a conditional generator network that requires the identification
of an image class before synthesis. We wanted our framework to syn-
thesize images that were as natural-looking as possible for two reasons:
because our encoding model was trained on natural images and because
future work will include presentation of these synthetic images to hu-
mans while they are undergoing fMRI to test if they achieve activation
above and beyond the best natural images. One recently published work
in humans used a similar approach to NeuroGen to synthesize images
designed to achieve maximal activation in one of three late visual re-
gions (FFA, EBA and PPA) to validate category selectivity of these re-
gions (Ratan Murty et al., 2021). Our approach is different from theirs in
many ways, most importantly that our focus is on individual-level and
region-level differences in category preference (with which we make
some interesting observations that reflect underlying data) and, further,
our interest in creating synthetic images designed to achieve optimal
activity (either maximized or minimized) in multiple regions at once.

Our main discovery using the NeuroGen architecture was a previ-
ously not well-described balance of dog-person preference in face areas,
which varied over individuals within the population and regions within
an individual. After inspecting the content of the top 10 images from
NeuroGen, we noted an abundance of dog faces in addition to human
faces that was not obvious in the top 10 natural images with the highest
measured or predicted activation; this was also apparent from looking
at the face regions’ wordclouds. We showed that the dog-human prefer-
ence ratio observed in NeuroGen’s synthetic images was reflected in the
underlying data by observing a strong, significant correlation with the
t-statistic of the measured activation (via fMRI response) from dog im-
ages versus human images. One idiosyncrasy of the ImageNet data used
to train our generative network is its prevalence of dogs; 120 out of the
approximately 1000 ImageNet classes are dog breeds and, furthermore,
dog images in ImageNet generally feature close-ups of dog’s faces. This
over-representation of dogs in the ImageNet database could have biased
NeuroGen to more easily identify and amplify any existing dog-human
preferences in the underlying data. In addition, measured contrasts for
some regions in some individuals showed a clear preference for dog faces
over human faces (t-statistic > 4), which we conjecture could be due to
either differences in visual attention between the two categories or the
fact that the NSD “person” images used to calculate the contrast are not
all close-ups of human faces while the dog images do tend to be close up
dog faces. As the face ROIs were derived based on the ¢ values of acti-
vation contrast for face>non-face images, it may alter our dog v human
findings when the threshold for ¢ varies and/or when a more restrictive
contrast is applied (e.g. face>objects). However, one can imagine if the
ROI definition for face selectivity became less restrictive, you would see
a drop in the number of human faces and an increase of non-face images.
The fact that we are specifically observing dog images indicates that it
is not an effect of reduced selectivity of the face ROI, unless that reduc-
tion happened to encompass regions that were dog-face selective. There
have been a few previous works investigating humans’ face-processing

11

Neurolmage 247 (2022) 118812

areas’ responses to images of human versus animal faces (Downing et al.,
2006; Whyte et al., 2016). One of the first studies showed that human
face areas respond to mammals, although at a population level, the ac-
tivation in response to mammals was not stronger than responses to
humans (Downing et al., 2006). Another study found that face areas in
adolescents with high functioning autism had a weaker response to un-
familiar human, but not animal, faces and greater activation in affective
face regions in response to animal, but not human, faces compared to
typically developing adolescents (Whyte et al., 2016). One of the few
studies comparing humans’ neural representations of dog faces and hu-
man faces showed very similar response maps to both species, with lin-
gual/medial fusiform gyri being the only region having higher activa-
tions for dog over human faces (Blonder, 2004). We conjecture that dif-
ferences in our findings may be due to their population-level approach
to identifying differences in neural representations, as they used coreg-
istered contrast maps to identify group-level, voxel-wise significance.
We see that NeuroGen’s dog-human balance in response patterns varies
widely over individuals and brain regions, indicating that population-
level approaches may not be adequate for creating stimulus-response
maps.

While humans’ neural representations of faces, places and bodies are
generally robust across the population, it has been shown that word
form responses can vary based on an individual’s experience (Baker,
2007; Kanwisher, 2010). Our findings generally revealed more diver-
gence in the word form area preferred content across individuals than
other categories of visual regions. This large individual-level variabil-
ity in preferred image content, including images of several very differ-
ent categories (humans, dogs, cats, birds, food, clocks), could be due
to the effect of individual experience in forming the neural represen-
tations in these word form areas. On the other hand, these areas do
tend to be quite small and more susceptible to noise in the measured
activation patterns which were used to define the regions leading to
more population-level divergence (Brett et al., 2002). The natural im-
ages in the NSD dataset used to create the encoding model also did not
contain isolated text, which could further contribute to noise in apply-
ing the NeuroGen framework to word form areas. However, many of
the synthetic images were derived from categories that contain items
with text, including “odometer”, “comic book”, “book jacket”, “street
sign”, “scoreboard”, “packet” and “pill bottle”. The word form regions
did also overlap regions in other categories (see Supplementary Figure
$10-18), including face and place areas. This overlap could explain the
presence of dogs and humans (and possibly other mammals) but it does
not explain, for example, the strong presence of food images in many of
the individuals’ top images (see Fig. 5B). Despite these potential short-
comings, using only 10 images, NeuroGen was able to reflect measured,
underlying preferences across several categories for these complex and
widely varying word form regions.

One of the advantages of the NeuroGen framework is its flexibility
and capacity - one can provide an arbitrary target response map contain-
ing desired activation levels for any (or all) of the 24 brain regions that
have encoding models and produce synthetic images that achieve that
vector as closely as possible. As a simple example, we performed joint
optimization of two or three regions, where we maximized and/or min-
imized their activations together. We chose to use V1v as one of the re-
gions as this is known to activate in response to high-frequency patterns
and results could be readily validated visually. Indeed we do see that
when maximizing V1v and face/place areas, we get faces/places with
an abundance of texture and when minimizing V1v we get places/faces
with flat features. From looking at the scatter plots representing the syn-
thetic and natural images’ predicted activations in Fig. 8, there is a clear
separation of the two, where the synthetic images clearly push the pre-
dicted brain activations to levels not achievable by the best-matching
natural images. This example application of NeuroGen highlights an-
other advantage of this framework in that one could synthesize stimuli
predicted to evoke response patterns not generally observed in response
to natural images.
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There are a few limitations in this work. First, the range of the syn-
thetic images is constrained by the images on which the generative net-
work is trained, in this case ImageNet. Any preferences that exist for
image content or features in the encoding model that do not exist in
the ImageNet database may remain obscured in NeuroGen. Second, the
deep generative network has a parameter that controls the balance be-
tween fidelity and variety of the synthetic images produced. It could
be that varying this parameter would provide more realistic images,
but it may also result in images that do not have as extreme predicted
activation and/or have less variety and thus contain less information
about the underlying stimuli-response landscape. Third, the optimiza-
tion of the synthetic images is done in two steps, by first selecting the
top 10 image classes and then optimizing the noise vector in that image
class space. The classes identified in the first step could be constraining
the synthesizer so that it is not identifying a global optimum; however,
this trade-off was deemed an acceptable sacrifice for the more natural-
looking images provided by a conditional generator. Lastly, this study
employed AlexNet but more recent studies have found that other re-
cent state-of-the-art methods like ResNet (He et al., 2016) and VGG19
(Simonyan and Zisserman, 2014) can perform better in terms of neural
predictivity. Exploring these architectures can also be useful in subse-
quent studies.

The NSD data on which the encoding model was trained is unsur-
passed in its quality and quantity, consisting of densely-sampled fMRI
in 8 individuals with several thousand image-response pairs per sub-
ject. Still, the natural images sourced from the COCO dataset used in
the NSD experiments are inevitably limited in their content and fea-
tures, which can mean possibly inaccurate brain-response mappings for
images not used to train the encoding model. Additionally, when cal-
culating preference ratios in the measured NSD data, it was at times
difficult to choose the combination of image labels that produced the
desired image content or features (e.g. only a person’s face). Relat-
edly, it is not always straightforward to classify the natural or syn-
thetic images into the appropriate category; the word form areas were
particularly challenging. In addition, fMRI has many known sources of
noise/confounds such as system-related instabilities, subject motion and
possibly non-neuronal physiological effects from breathing and blood
oxygenation patterns (Liu, 2016). Careful design of the acquisition and
post-processing pipeline for the NSD data mitigated these effects. Fi-
nally, the localizer task, while previously validated, may have some
variability due to the contrast threshold applied. Using a more or less
liberal threshold for the region boundary definition may result in dif-
ferent results than what is presented here. Different visual regions used
in this work did have some overlap within certain individuals, which
could have contributed to similarities in synthetic image content for re-
gions of different categories. Supplementary Figure S10-18 show each
individual’s regional definitions and a heatmap of the Dice overlap of
regions from different categories for each individual.

To validate and demonstrate the capability of our novel NeuroGen
framework, we present here as a proof-of-concept optimization of pre-
dicted responses in one, two or three regions. However, this optimiza-
tion can be performed on an arbitrary desired activation pattern over
any regions (or voxels) that have existing encoding models. Generative
networks for creating synthetic images are an highly active area of re-
search; specialized generators for faces or natural scenes could be inte-
grated into the NeuroGen framework to further improve the range and
fidelity of the synthetic images. Furthermore, the work presented here
does not investigate the measured responses in humans to NeuroGen’s
synthetic images. However, we believe that the current paper introduc-
ing and validating the NeuroGen framework and demonstrating its use
in a discovery neuroscience context represents an important technical
and conceptual contribution to the field. The idea that this type of syn-
thetic generator coupled with an encoding model can be used to make
discoveries about regional or individual-level selectivity to stimuli is it-
self a novel conceptual contribution, and the NeuroGen framework is
a novel technical contribution whose utility is demonstrated here with
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examples. Future work will involve presentation of these synthetic im-
ages to individuals while undergoing fMRI to test if their responses are
indeed more extreme than the best natural images. One hypothesis is
that the synthetic images may command more attention, as it is clear
they are not perfectly natural and thus may produce a more extreme
response than natural images, as found in studies of single or neuronal
population responses (Bashivan et al., 2019; Ponce, 2019). The other
is that there may be some confusion about what the image contains or
additional processing that an individual will undergo when interpret-
ing the image that will result in an unpredictable pattern of response.
If it can be demonstrated that synthetic images indeed produce activa-
tions matching a pre-selected target pattern, the NeuroGen framework
could be used to perform macro-scale neuronal population control in
humans. Such a novel, noninvasive neuromodulatory tool would not
only be powerful in the hands of neuroscientists, but could also open up
possible avenues for therapeutic applications.

5. Conclusions

The NeuroGen framework presented here represents a robust and
flexible framework that can synthesize images predicted to achieve a
target pattern of regional activation responses in the human visual cor-
tex that exceeds that of predicted responses to natural images. We posit
that NeuroGen can be used for discovery neuroscience to uncover novel
stimuli-response relationships. If it can be shown with future work that
the synthetic images actually produce the desired target responses, this
approach could be used to perform macro-scale, non-invasive neuronal
population control in humans.
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