
NeuroImage 247 (2022) 118812 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

NeuroGen: Activation optimized image synthesis for discovery 

neuroscience 

Zijin Gu 
a , Keith Wakefield Jamison b , Meenakshi Khosla a , Emily J. Allen c , d , Yihan Wu 

c , 

Ghislain St-Yves c , d , Thomas Naselaris c , d , Kendrick Kay c , Mert R. Sabuncu 
a , Amy Kuceyeski b , ∗ 

a School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA 
b Department of Radiology, Weill Cornell Medicine, New York, New York, USA 
c Center for Magnetic Resonance Research(CMRR), Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA 
d Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA 

a r t i c l e i n f o 

Keywords: 

Function MRI 

Neural encoding 

Image synthesis 

Deep learning 

a b s t r a c t 

Functional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex responses to 

stimuli, yet such experiments are by nature constructed based on a priori hypotheses, limited to the set of images 

presented to the individual while they are in the scanner, are subject to noise in the observed brain responses, 

and may vary widely across individuals. In this work, we propose a novel computational strategy, which we call 

NeuroGen, to overcome these limitations and develop a powerful tool for human vision neuroscience discovery. 

NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to 

synthesize images predicted to achieve a target pattern of macro-scale brain activation. We demonstrate that the 

reduction of noise that the encoding model provides, coupled with the generative network’s ability to produce 

images of high fidelity, results in a robust discovery architecture for visual neuroscience. By using only a small 

number of synthetic images created by NeuroGen, we demonstrate that we can detect and amplify differences in 

regional and individual human brain response patterns to visual stimuli. We then verify that these discoveries 

are reflected in the several thousand observed image responses measured with fMRI. We further demonstrate 

that NeuroGen can create synthetic images predicted to achieve regional response patterns not achievable by the 

best-matching natural images. The NeuroGen framework extends the utility of brain encoding models and opens 

up a new avenue for exploring, and possibly precisely controlling, the human visual system. 
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. Introduction 

Light rays reaching the retina are converted into bioelectrical signals

nd carried through the ophthalmic projections to the brain, where in-

oming signals are represented by corresponding neural activation pat-

erns in the visual cortex ( Wandell et al., 2007 ). The specific patterns

f neural activation in response to visual stimuli are determined in part

y the texture, color, orientation and content of the visual stimuli. The

isual system has provided a rich model for understanding how brains

eceive, represent, process and interpret external stimuli, and has led to

dvances in understanding how the human brain experiences the world

 Thorpe et al., 1996; Van Essen et al., 1992 ). 

Much is known about how regions in the visual cortex activate

n response to different image features or content. Our knowledge of

timulus-response maps has mostly been derived from identifying fea-

ures that maximally activate various neurons or populations of neurons

 Hubel and Wiesel, 1962; 1968 ). Non-invasive techniques such as func-
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ional MRI (fMRI), are now one of the most utilized approaches for mea-

uring human brain responses to visual (and other) stimuli ( Allen, 2021;

an Essen, 2013 ). The responses of early visual areas such as primary

isual cortex (V1) have been studied using population receptive field

pRF) experiments wherein a participant fixates on a central dot while

atterned stimuli continuously moved in the visual field ( Wandell et al.,

007 ). Neurons in early visual areas have been found to be selective for

timulus location, but also other low-level stimulus properties such as

rientation, direction of motion, spatial and temporal frequency ( De Val-

is and De Valois, 1980; DeAngelis et al., 1995; Hubel and Wiesel, 2020;

ovshon et al., 1978 ). Recently, intermediate visual areas, like V2 or

4, were found to be responsive to textures, curved contours or shapes

 Nandy et al., 2013; Ziemba et al., 2016 ). Late visual area activations

ave typically been explored by contrasting response patterns to images

ith varied content, e.g. to faces, bodies, text, and places. For exam-

le, the fusiform face area (FFA) ( Kanwisher et al., 1997 ) involved in

ace perception, the extrastriate body area (EBA) ( Downing et al., 2001 )

nvolved in human body and body part perception, and the parahip-

ocampal place area (PPA) ( Epstein and Kanwisher, 1998 ) involved in

erception of indoor and outdoor scenes, have been defined by con-
mber 2021 
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rasting patterns of brain activity evoked by images with different con-

ent. However, this approach has several limitations: the contrasts 1)

re constructed based on a priori hypotheses about stimulus-response

appings, 2) are by nature limited to the set of images presented to the

ndividual while they are in the scanner, 3) are subject to noise in the

bserved brain responses, and 4) may vary widely across individuals

 Benson and Winawer, 2018; Seymour et al., 2018 ). 

The recent explosion of machine learning literature has centered

argely around Artificial Neural Networks (ANNs). These networks, orig-

nally inspired by how the human brain processes visual information

 Rosenblatt, 1958 ), have proved remarkably useful for classification or

egression problems of many types ( Belagiannis et al., 2015; He et al.,

016; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Toshev

nd Szegedy, 2014 ). Common applications of ANNs are in the field of

omputer vision, including image segmentation ( Girshick et al., 2014 ),

eature extraction ( Krizhevsky et al., 2012; Simonyan and Zisserman,

014 ) and object recognition ( Sermanet, 2013 ). Meanwhile, in the field

f neuroscience, researchers have incorporated ANNs into “encoding

odels ” that predict neural responses to visual stimuli and, furthermore,

ave been shown to reflect structure and function of the visual process-

ng pathway ( Cichy et al., 2016; Khaligh-Razavi and Kriegeskorte, 2014;

hosla et al., 2020; St-Yves and Naselaris, 2018a ). Encoding models are

n important tool in sensory neuroscience, as they can perform “offline ”

apping of stimuli to brain responses, providing a computational stand-

n for a human brain that also smooths measurement noise in the stimuli-

esponse maps. ANNs’ internal “representations ” of visual stimuli have

lso been shown to mirror biological brain representations of the same

timuli, a finding replicated in early, mid and high-level visual regions

 Cadena, 2019; Yamins, 2014 ). This observation has led to speculation

hat primate ventral visual stream may have evolved to be an optimal

ystem for object recognition/detection in the same way that ANNs are

dentifying optimal computational architectures. 

An alternative approach to understanding and interpreting neural

ctivation patterns is decoding, in which the stimulus is reconstructed

ased on its corresponding neural activity response pattern. The pres-

nce of distinct semantic content in natural movies, e.g. object and ac-

ion categories, has previously been decoded from fMRI responses with

igh accuracy using a hierarchical logistic regression graphical model

 Huth, 2016 ). Beyond semantic content, natural scenes and even human

aces can be reliably reconstructed from fMRI using generative adver-

arial network (GAN) approaches ( Mozafari et al., 2020; Shen et al.,

019; St-Yves and Naselaris, 2018b; VanRullen and Reddy, 2019 ). En-

oding and decoding models, in conjunction with state-of-the-art gen-

rative networks, may also allow single neuron or neural population

ontrol. Recent work in macaques used an ANN-based model of visual

ncoding and closed-loop physiological experiments recording neurons

o generate images specifically designed to achieve maximal activation

n neurons of V4; the resulting synthetic images achieved higher firing

ates beyond what was achieveable by natural images ( Bashivan et al.,

019 ). Moreover, by adopting a pretrained deep generative network and

ombining it with a genetic algorithm, realistic images were evolved to

aximally activate target neurons in monkey’s inferotemporal cortex

 Ponce, 2019 ). Both studies’ results suggested the synthetic images un-

overed some encoded information in the observed neurons that was

onsistent with previous literature, and, furthermore, that they evoked

igher responses than any of the natural images presented. One recent

tudy applied generative networks to synthesize preferred images for

unctionally-defined regions of interest in the human brain, specifically

FA, EBA and PPA, and were able to replicate regional category selec-

ivity ( Ratan Murty et al., 2021 ). However, generative networks have

ot yet been applied to investigate 1) inter-individual and inter-regional

ifferences in image features that maximize activation in single regions

f the human visual cortex or 2) image features that are designed to

chieve more complex optimizations of activation patterns over multi-

le regions of the human visual cortex. 

In this work, we build upon three recent advances in the literature.

he first is the existence of the Natural Scenes Dataset (NSD), which
2 
onsists of densely-sampled fMRI in eight individuals who each partic-

pated in 30–40 fMRI scanning sessions in which responses to 9,000–

0,000 natural images were measured ( Allen, 2021 ). The second is in

n interpretable and scalable encoding model, based on the NSD data,

hat performs accurate individual-level mapping from natural images to

rain responses ( St-Yves and Naselaris, 2018a ). The third is in the de-

elopment of generative networks which are able to synthesize images

ith high fidelity and variety ( Brock et al., 2018; Nguyen et al., 2016 ).

ere, we propose a state-of-the-art generative framework, called Neu-

oGen, which allows synthesis of images that are optimized to achieve

pecific, predetermined brain activation responses in the human brain.

e then apply this framework as a discovery architecture to amplify

ifferences in regional and individual brain response patterns to visual

timuli. 

. Materials and methods 

.1. Natural scenes data set 

We used the Natural Scenes Dataset (NSD;

ttp://naturalscenesdataset.org ( Allen, 2021 ) to train the encoding

odel. In short, the NSD dataset contains densely-sampled functional

RI (fMRI) data from 8 participants collected over approximately

 year. Over the course of 30–40 MRI scans, each subject viewed

,000–10,000 distinct color natural scenes (22,000–30,000 trials with

epeats) while undergoing fMRI. Scanning was conducted at 7T using

hole-brain gradient-echo EPI at 1.8-mm iso–voxel resolution and

.6s TR. Images were sourced from the Microsoft Common Objects in

ontext (COCO) database ( Lin, 2014 ), square cropped, and presented

t a size of 8.4 ◦ × 8.4 ◦. A set of 1000 images were shared across

ll subjects; the remaining images for each individual were mutually

xclusive across subjects. Images were presented for 3s on and 1s

ff. Subjects fixated centrally and performed a long-term continuous

ecognition task on the images in order to encourage maintenance

f attention. The fMRI data were pre-processed by performing one

emporal interpolation (to correct for slice time differences) and one

patial interpolation (to correct for head motion). A general linear

odel (GLM) was used to estimate single-trial beta weights, repre-

enting the voxel-wise activation in response to the image presented.

pecifically, there are three components in the GLM: first, a library

f hemodynamic response functions (HRFs) derived from an initial

nalysis of the dataset was used as an efficient and well-regularized

ethod for estimating voxel-specific HRFs; second, the GLMdenoise

echnique ( Charest et al., 2018; Kay et al., 2013 ) was adapted to the

ingle-trial GLM framework, thereby enabling the use of data-driven

uisance regressors; third, an efficient ridge regression ( Rokem and

ay, 2020 ) was used to regularize and improve the accuracy of the

etas. Cortical surface reconstructions were generated using FreeSurfer,

nd both volume- and surface-based versions of the response maps were

reated. 

In addition to viewing the COCO images, individuals all underwent

he same image functional localizer (floc) task to define the visual re-

ion boundaries ( Stigliani et al., 2015 ). In short, regions of interest were

efined by contrasting activation maps for different types of localizer im-

ges (floc-bodies, floc-faces, floc-places, floc-words). Several regions ex-

ibiting preference for the associated category were defined (e.g., floc-

aces was based on t-values for the contrast of faces > non-faces). Regions

ere defined by drawing a polygon around a given patch of cortex and

hen restricting the region to vertices within the polygon that satisfy t > 0.

ee Supplementary Figure S10-18 for the 8 individuals’ early and late

isual region maps, along with quantification of the regions’ overlaps

sing Dice coefficient. 

http://naturalscenesdataset.org
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.2. Deepnet feature-weighted receptive field encoding model 

We trained a Deepnet feature-weighted receptive (fwRF) encoding

odel ( St-Yves and Naselaris, 2018a ) using the paired NSD images and

MRI response maps described above. Here, instead of the voxel-wise

odel previously created, we trained a model for each of the 24 early

nd late visual regions for each of the 8 individuals in the NSD dataset

hat predicts a single number - the average response over the voxels

n that region for that individual. There are three components in the

eepnet-fwRF model: 𝐾 feature maps, a vector of feature weights 𝑤 𝑘 ,

nd a feature pooling field. The output of each fitted encoding model

s the predicted activation 𝑟̂ for a given region for a given individual in

esponse to an image 𝑆: 

̂ ( 𝑆) = 

𝐾 ∑
𝑘 

𝑤 𝑘 ∫
𝐷∕2 

− 𝐷∕2 ∫
𝐷∕2 

− 𝐷∕2 
𝑔( 𝑥, 𝑦 ; 𝜇𝑥 , 𝜇𝑦 , 𝜎𝑔 ) 𝑓 𝑘 𝑖 ( 𝑥 ) 𝑗( 𝑦 ) ( 𝑆) 𝑑 𝑥𝑑 𝑦 

here 𝑤 𝑘 is the feature weight for 𝑘 th feature map 𝑓 
𝑘 , 𝑔 is the feature

ooling field (described below), 𝐷 is the total visual angle sustained by

he image, 𝑖 ( 𝑥 ) = ⌊(2 𝑥 + 𝐷)∕2Δ⌋ (likewise for 𝑗( 𝑦 ) ) is the discretization
epending on Δ = 𝐷∕ 𝑛 𝑘 which is the visual angle sustained by one pixel
f a feature map with resolution, and 𝑛 𝑘 × 𝑛 𝑘 is the resolution of 𝑘 th

eature map. 

The feature maps 𝑓 𝑘 were obtained from Alexnet ( Krizhevsky et al.,

012 ), a deep convolutional neural network containing 5 convolutional

ayers (interleaved with max-pool layers) and 3 fully-connected layers.

lexNet was originally trained for classification of images in ImageNet

 Russakovsky, 2015 ), and is often used to extract salient features from

mages. The exact structure and trained network can be downloaded

s part of the Pytorch library, and is also available at https://github.

om/pytorch/vision/blob/master/torchvision/models/alexnet.py . The

eature maps can be drawn from all convolutional layers and fully-

onnected layers in Alexnet. To limit the total number of feature maps,

e first set the maximum feature maps for each layer to 512. For those

ayers whose dimension exceeded 512, we calculated the variance of

he layer values across the image set and retained those 512 feature

aps with the highest variance. We then concatenated the selected fea-

ure maps having the same spatial resolution, which resulted in three

eature maps of size (256 , 27 , 27) , (896 , 13 , 13) and (1536 , 1 , 1) . 
The fwRF model was designed based on the hypothesis that the closer

he feature map pixel is to the center of the voxel’s feature pooling field,

he more it contributes to the voxel’s response. We also assume this is

he case for clusters of voxels (regions in our case). The feature pooling

eld was modeled as an isotropic 2D Gaussian blob: 

( 𝑥, 𝑦 ; 𝜇𝑥 , 𝜇𝑦 , 𝜎𝑔 ) = 

1 √
2 𝜋𝜎𝑔 

exp 

[ 

− 

( 𝑥 − 𝜇𝑥 ) 2 + ( 𝑦 − 𝜇𝑦 ) 2 

2 𝜎2 
𝑔 

] 

here 𝜇𝑥 , 𝜇𝑦 are the feature pooling field center, and 𝜎𝑔 is the feature

ooling field radius. The feature pooling field center and radius were

onsidered hyperparameters and learned during training of the encod-

ng model. By definition, when the radius of the feature pooling field

s very large (e.g. 𝜎𝑔 ≫ Δ), the predicted activation from a single layer

educes to a weighted sum of all pixels within the field; otherwise, it

educes to just one single spatial unit. In experiments, the grid of candi-

ate receptive fields included 8 log-spaced receptive field sizes between

.04 and 0.4 relative to 1∕ 𝑛 𝑘 , and the candidate feature pooling field
enters were spaced 1.4 degrees apart (regardless of size), resulting in a

otal of 875 candidate feature pooling fields. We searched the regular-

zation parameter over 9 log-spaced values between 10 3 ∼ 10 7 and chose
he one that had the best performance on the held-out validation set of

000 images. 

Each of the 2688 image feature maps has an associated feature

eight, 𝑤 𝑘 , indicating how important the 𝑘 th feature map was for pre-

icting that region’s activity. Once the feature pooling hyperparameters

ere determined, a set of feature weights were then learned via ridge

egression for each visual region in each of the 8 individuals. Since the
3 
mages that each individual viewed were different and the individuals

ad a slightly different number of image-activation pairs, we used the

ndividual-specific images for training and validating the ridge models

nd tested the ridge models on the shared 1000 images where we calcu-

ated the predicted accuracy. During training, 3000 randomly selected

mage-activation pairs were held-out and used as a validation set with

hich to identify the optimal hyperparameters, namely those that max-

mized the prediction accuracy within this validation set. 

.3. The BigGAN-deep image generator network 

We used the generator from BigGAN-deep, a pretrained deep gen-

rative adversarial network (GAN), utilizing the ImageNet image set,

hose goal is to synthesize images of a given category that look nat-

ral enough to fool an automated fake/real classifier ( Brock et al.,

018 ). The BigGAN-deep was built upon the self-attention GAN (SA-

AN) ( Zhang et al., 2019 ) with some differences: i) a shared class em-

edding was used for the conditional BatchNorm layers to provide class

nformation, ii) the entire noise vector 𝑧 was concatenated with the

onditional vector to allow the generator 𝐺 to use the latent space to

irectly influence features at different resolutions and levels of hier-

rchy, iii) the noise vector 𝑧 was truncated by resampling the values

ith magnitude above a chosen threshold to fall inside that range in-

tead of using a Normal or Uniform distribution and iv) orthogonal reg-

larization was used to enforce the models’ amenability to truncation.

igGAN-deep’s truncation threshold controls the balance of fidelity and

ariety of the synthetic images: larger thresholds lead to higher variety

ut lower fidelity images while lower thresholds lead to higher fidelity

mages of lower variety. In our experiments, the truncation parameter

as set to 0.4 to achieve a balance of both fidelity and variety. The Py-

orch version of the pretrained model can be publicly downloaded at

ttps://github.com/huggingface/pytorch- pretrained- BigGAN . 

.4. Synthesizing images to optimize regional predicted activation 

We aimed to synthesize images using our generator network 𝐺 that

ither maximized the activation in single or pairs of regions or maxi-

ized activation in one region while minimizing activation in another

egion, depending on the experiment. For the sake of simplicity, we will

escribe the optimization procedure using the example goal of max-

mizing activation in a single region. Because our generator network

BigGAN-deep) is a conditional GAN, it requires identification of an im-

ge class via a one-hot encoded class vector 𝑐, then uses a noise vector 𝑧

o generate an image of that class. We performed the optimization in two

teps; first, we identified the 10 most optimal classes, then, for each class

e optimized over the noise vector space. To identify optimal classes,

e generated 100 images from each of the 1000 classes in the ImageNet

atabase using 100 different random noise vectors. We input the re-

ulting images into the encoding model to obtain associated predicted

egional activation, which was averaged over the 100 images per class.

he 10 classes that gave the highest average predicted activation for the

egion of interest were identified and encoded in 𝑐 𝑖 ( 𝑖 = 1 , …10 ), and cor-
esponding image generator noise vectors 𝑧 𝑖𝑗 ( 𝑖 = 1 , …10 , 𝑗 = 1 , …10 )
ere further optimized via backpropagation with 10 random initializa-

ion seeds per class. The result of this optimization is a set of 100 images

( 𝑐 𝑖 , 𝑧 𝑖𝑗 ) that yielded maximal predicted activation of the target region.
ormally, and including a regularization term, we posed the optimiza-

ion problem as finding the codes 𝑧̂ 𝑖𝑗 such that: 

̂ 𝑖𝑗 ( 𝑐 𝑖 ) = arg max 
𝑧 𝑖𝑗 

( ̂𝑟 𝑡 ( 𝐺( 𝑐 𝑖 , 𝑧 𝑖𝑗 )) − 𝜆‖𝑧 𝑖𝑗 ‖) 
here 𝜆 = 0 . 001 was the regularization parameter. For the maximiza-
ion/minimization of region pairs, the cost function aimed to maxi-

ize/minimize the sum of the two regions’ activations together, with

oth regions considered equally. For the maximization of one region

nd the minimization of the other, the cost function was the sum of the

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
https://github.com/huggingface/pytorch-pretrained-BigGAN
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Fig. 1. Deepnet-fwRF encoding model and 

NeuroGen framework for synthetic image gen- 

eration. A The deepnet-fwRF encoding model 

begins by passing an image through the Alexnet 

feature extractor, then applying a 2D Gaussian 

pooling receptive field to obtain multi-scale 

feature maps. Finally, ridge regression is ap- 

plied to the multi-scale features to predict brain 

region-specific responses to the image. B The 

deepnet-fwRF encoding model is concatenated 

with a pretrained conditional generative net- 

work (BigGAN-deep) to synthesize images that 

are predicted to optimally match a desired re- 

sponse pattern (e.g. maximizing predicted ac- 

tivation in the fusiform face area). The opti- 

mized synthetic images are created in three 

steps. First, a single image for each of the 1000 

classes in the conditional GAN is created from 

an initial truncated Gaussian noise vector; the 

resulting images are provided to the encoding 

model to obtain their predicted activation re- 

sponses. Second, the 10 classes that give the 

predicted activation best matching the target 

activation are identified (e.g. those that give 

maximal predicted activation in the fusiform 

face area). Third, fine tuning of the noise vec- 

tors for each of the 10 synthetic images via gra- 

dient descent is performed; gradients flow from 

the encoding model’s predicted response back 

to the synthetic image and to the noise vector 

that initializes the conditional GAN. 
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ax and min, with both regions considered equally. Once this optimiza-

ion was performed, we selected the top 10 images by taking the most

ptimal image from each of the 10 distinct classes. 

. Results 

.1. Encoding models accurately map images to brain responses and 

emove noise present in fMRI activation maps 

First, subject and region-specific encoding models were built using

he Deepnet-fwRF framework ( St-Yves and Naselaris, 2018a ) and the

SD data, which contained between 20k to 30k paired images and fMRI-

ased brain response patterns for each of eight individuals ( Fig. 1 A)

 Allen, 2021 ). Other than a shared set of 1000, the images were mutu-

lly exclusive across subjects. The encoding models first extract image

eatures using AlexNet, a pre-trained deep neural network for image

lassification ( Krizhevsky et al., 2012 ). The encoding model then ap-

lies a 2D Gaussian pooling field to the image features to obtain a set

f multi-scale feature maps. Ridge regression is used in the final step to

redict individual regional activations (which is the average activation

ver all voxels within that region) from the multi-scale feature maps.

or each of the eight subjects, we trained a separate model for each

arly/late visual region, of which there were at most 24. Regions were

efined using functional localizer tasks ( Allen, 2021 ) and some were

issing in certain individuals. 

To objectively evaluate the regional encoding models’ predictive

bilities, we compared their prediction accuracies against the reliabil-

ty of repeated fMRI measurements of responses to the same image as

 noise ceiling estimate. A region’s observed and predicted activations

re the mean of those quantities over all voxels in that region. We first

elected the images in the held-out shared image set that were viewed

wice by each subject, totalling between 700–1000 images per person
4 
see Supplementary Figure S1 for the prediction accuracy for all im-

ges, including repeats, in the held-out shared image set). Model pre-

iction accuracy was calculated as the Pearson correlation between the

redicted activation for images that viewed twice with their measured

MRI responses, where the two repeated responses/predictions per im-

ge were concatenated. Note that the measured responses are different

or the two repeats of the same image, but the predictions are the same.

he noise ceiling was calculated by correlating the two measured fMRI

esponses for the same set of images (see Fig. 2 A). Distributions of the

rediction accuracies and noise ceilings for each subject and each re-

ion’s encoding models are shown in Fig. 2 B–F; the prediction accuracy

nd noise ceiling for the same subject are connected by a dashed line.

enerally, regions with higher noise ceilings had higher accuracies. In

ll cases, prediction accuracies were greater than noise ceilings, reflect-

ng the noise in fMRI measurements as well as the good predictive per-

ormance of the encoding models. 

One approach we explore here is to assume that images with sim-

lar predicted responses can be treated as repeated measurements un-

er similar conditions. Thus, we first rank-order the images in the

eld-out shared image set by their predicted activations, then apply

on-overlapping windows of fixed size to group the images. We then

verage the predicted and measured responses within these windows

nd calculate the Pearson correlation of the two resulting averages

cross all windows, see Fig. 3 A. As the window size in the smoothed

ccuracy calculation increases, the correlation also increases (see in

ig. 3 B–F), thus validating the noise-smoothing ability and relatively

igh accuracy of the encoding model. It is clear from this analysis

hat the encoding model accuracy estimates are limited by the noise

resent in the fMRI measurements. For comparison in the null case

f no correlation between predicted and measured responses, we cal-

ulated the smoothed accuracy when the measurement-response pairs

ere uncoupled (see Supplementary Figure S2 for the smoothed ac-
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Fig. 2. The Deepnet-fwRF encoding model accurately predicts brain response to visual stimuli. A Accuracy and noise ceiling calculation. For comparison, we selected 

those images in the held-out shared image set that were viewed twice by each subject to quantify the reliability of repeated measurements as a noise ceiling for 

our model predictions. The noise ceiling thus was calculated as the Pearson correlation between the two fMRI measurements, while the prediction accuracy was 

calculated as the Pearson correlation between the predicted activation and the concatenated fMRI measurements. Note the measured responses are different for 

the two repeats of the same image, but the predictions are the same. B, C, D, E and F Distribution of the individuals’ prediction accuracies and noise ceilings for 

faces, body, place, word and early visual ROIs, respectively. Each point in the violin plot represents an individual; accuracy and noise ceiling of the same subject are 

connected by dashed line. Face ROIs: OFA - occipital face area; FFA - fusiform face area; mTLfaces - medial temporal lobe face area; aTLfaces - anterior temporal lobe 

face area. Body ROIs: EBA - extrastriate body area; FBA - fusiform body area; mTLbodies - medial temporal lobe body area. Place ROIs: OPA - occipital place area; 

PPA - parahippocampal place area; RSC - retrosplenial cortex. Word ROIs: OWFA - occipital word form area; VWFA - visual word form area; mfswords - mid-fusiform 

sulcus word area; mTLwords - medial temporal lobe word area. Early visual ROIs: v - ventral; d - dorsal. 
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uracy calculations when the predicted activation vector is randomly

ermuted). 

.2. Optimized synthetic images more consistently align with expectations 

f regional feature selectivity than natural images. 

After validating the encoding model, we sought to generate images

hose predicted activation optimally achieved certain criteria, e.g. had

 maximal predicted activation in OFA (as quantified by the average

ctivation over all voxels in the OFA). A conditional deep generative

etwork (BigGAN-deep), based on the diverse set of natural images in

mageNet, was adopted as NeuroGen’s synthetic image generator. By

onstructing the activation maximization scheme ( Fig. 1 B), which con-

ects the encoding model and the image generator, gradients flowed

rom the regional predicted activation back to the noise vector to allow

ptimization. Because BigGan-deep is conditional, the class of the image

s identified prior to synthesis which allows generation of more realistic

ynthetic images. We began optimization by first identifying the top 10

lasses that gave the best match to our desired activation pattern. Once
5 
he top 10 classes were identified, the noise vector was then fine-tuned

s previously described. We began by using this NeuroGen framework

o generate images that give maximal predicted activation for a single

egion in turn. Fig. 4 A–E, shows the i) 10 natural images that had high-

st measured fMRI activation (top row) ii) 10 natural images that had

he highest predicted activation from the encoding model (middle row)

nd iii) the 10 synthetic images optimized to achieve maximal predicted

ctivation from the encoding model (bottom row) for a subject whose

ncoding model prediction accuracy was closest to the median accuracy.

ord clouds representing the semantic content of all the top 10 images

rom the three sources are also provided by collecting the labels from

he natural images and obtaining labels for the synthetic images using

n automated image classifier ( Ren et al., 2015 ). The images and word

louds largely show alignment with expected image content and agree-

ent across the three sources; however, when looking at the individual

mages, the content and features of both the natural and synthetic im-

ges with highest predicted activations are more aligned with a priori

xpectations than the content and features of images with highest mea-

ured activations. For example, the images with the highest observed
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Fig. 3. The Deepnet-fwRF encoding model can smooth noise present in fMRI-based individual image response maps. A An example illustrating the relationship be- 

tween predicted/measured activation for single images and, averaged predicted activation within non-overlapping windows of size 20, averaged measured activation 

within non-overlapping windows of size 20, with the rank of the images ordered by predicted activation. Smoothed accuracy is calculated by first ranking order the 

held-out images by their predicted activation, and then applying non-overlapping windows and correlating the averaged predicted activations within that window 

with the averaged measured activations within those windows. B, C, D, E and F The smoothed accuracy increases as the window size increases for face, body, place, 

word and early visual ROIs respectively. The “smoothed accuracy ” all show the trend of approximating 1 when increasing the window size. 
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ctivation include a giraffe for the face area, a zebra for the body area

nd many of the word area top images do not contain text. We posit that

his is due to the encoding model predictions being less noisy than fMRI

easurements. 

We do see a general agreement in the content/features of the syn-

hetic images with what is expected from how the regions are defined.

or FFA1 (face), the top 10 classes varied across individuals but were

enerally those that produced optimized images with human faces (Im-

geNet categories are terms like groom, mortarboard, shower cap, ice

olly, bow tie etc.) or dog faces (ImageNet categories were Pembroke,

asenji, Yorkshire terrier, etc.); the wordcloud reflects this as “person ”

s the dominant term. One interesting thing to note when comparing the

atural and synthetic images for FFA1 is that the synthetic images tend

o contain more than one person’s face. Most of the top ImageNet classes

or EBA (body) were sports-related (rugby ball, basket ball, volleyball,

tc.) and the resulting images’ most prominent features were active hu-

an bodies; the wordcloud again prominently features “person ” but also

port-related terms. Typical indoor and outdoor place scenes emerged

or place area PPA (wordcloud contained “dining table ”, “chair ”, “bed ”,
6 
tc.) and images with objects and/or places containing text were gen-

rated for word area mfs-words (wordcloud contained “book ”, “bottle ”

nd “truck ”). Synthetic images with high spatial frequency and color

ariety were produced when maximizing V1v (early visual), which gen-

rally responds to low-level image features such high frequency textures.

n addition to the good agreement of the content and features of the op-

imized synthetic images with expectations, they are also predicted by

he encoding model to achieve significantly higher activation than the

op natural images (see Supplementary Figure S7). In fact, for all single

egion optimizations (over all 8 subjects and 24 regions), the synthetic

mages had significantly higher predicted activations than the top nat-

ral images. Supplementary Video S1 shows a video of the sets of top

atural and synthetic images for all 8 individuals, for all 24 regions; Sup-

lementary Figures S3-6 for wordclouds for all regions. Looking across

ll single region optimizations, there were some obvious differences in

mage content/features that emerged across individuals within the same

egion and within the same individual across regions in the same per-

eption category, some of which we investigate further below. These

esults provide evidence that the NeuroGen framework can produce im-
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Fig. 4. Synthetic images generated to maximize predicted activation in five example visual regions in different individuals. In each panel, the top row contains the 

10 natural images that had highest measured fMRI responses for that region, the second row contains the 10 natural images that had the highest encoding model 

predictions for that region, and the third row contains the 10 optimized synthetic images from NeuroGen for that region. Five example regions are shown, i.e. FFA1 

(face), EBA (body), mfs-words (word), PPA (place) and V1v (early visual), each for a different individual that had median encoding model accuracy. The top encoding 

model images and NeuroGen images appear more consistent in their reflection of expected features/content compared to the top natural images with highest observed 

activation (e.g. fMRI top images include a giraffe for FFA1, a zebra for EBA and many lack text in the mfs-words area). The corresponding wordcloud plots show the 

image labels. A Subject 3’s FFA1 region. B Subject 7’s EBA region. C Subject 4’s PPA region. D Subject 8’s mfs-words region. E Subject 6’s V1v region. 
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ges that generally agree in content and features with a priori knowledge

f neural representations of visual stimuli, and may be able to amplify

ifferences in response patterns across individuals or brain regions. 

.3. Optimized synthetic images reflect and amplify features important in 

voking individual-specific and region-specific brain responses 

One deviation in the content of the synthetic images from what was

enerally expected was the prevalence of dogs in all the five of face

egions we modeled; 96 of the 350 top images (10 top images × 8 in-

ividuals × 5 face areas - 10 × 5 missing subjects’ face areas) were of

og faces and 219 were of human faces. We observed some individuals’

op 10 synthetic images all contained dogs while others had none. This

mbalance also varied by brain region, one individual could have all syn-

hetic images containing dogs for one face region while they would have

ewer in another face region (see Supplementary Video S1). This appar-

nt region- or individual-specific dog versus human preference was not

pparent from the content of either the top 10 natural images giving

ighest observed or predicted activations. Figure 5 A–C, show all eight

ubjects’ 10 natural images with the highest measured activation, 10

atural images with the highest predicted activation and 10 synthetic
7 
mages, respectively, for an example face area (FFA1). For subject 3,

ine out of ten synthetic images contain human faces, with only one

og. On the other hand, subject 4 had eight dog images, one human and

ne lion. Frequency based wordcloud plots of the top 10 synthetic im-

ges’ labels for all individuals for each of the five face areas are shown in

he third row of Fig. 6 . The wordclouds confirm the regionally-varying

revalence of dogs in NeuroGen’s synthetic images, which is not obvi-

us from looking at either of the natural image wordclouds. We hypoth-

sized that this individually and regionally varying dog/human prefer-

nce in the synthetic images may be reflecting the actual underlying

references in the data. To test this hypothesis, we calculated 1) the t-

tatistic of the measured fMRI activation from dog images (images in

he NSD dataset that had a single label “dog ”) and the measured fMRI

ctivation from images of humans (images in the NSD dataset that had

 label “person ” and any of the following: “accessory ”, “sports ”) and 2)

he top 10 and top 100 synthetic images’ dog vs human image ratios, cal-

ulated as ((number of dog images - number of person images)/(number

f dog images + number of person images)). We calculated these two

easures (dog vs. person t-stat and synthetic image ratio) for all eight in-

ividuals and all five face ROIs (see Fig. 5 D). We found a significant cor-

elation between the t statistic and image ratios for NeuroGen’s top 10
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Fig. 5. Individual-specific and region-specific 

differences in face region responses are re- 

flected in and amplified by the NeuroGen 

framework. A, B and C Sets of images that had 

the highest activation in FFA1 (fusiform face 

area 1) for all individuals, one per row, de- 

rived from three different sources. A Natural 

images that have the highest observed activa- 

tion measured directly via fMRI. B Natural im- 

ages that have the highest predicted activations 

from the encoding model. C Synthetic images 

that were created using NeuroGen. D The x- 

axis displays the dog vs. person preference from 

the observed fMRI data, quantified by the t- 

statistic of observed fMRI activations from all 

natural dog images compared to the observed 

activations from all natural people images. The 

quantities were calculated for each of the five 

face areas in each of the eight individuals. The 

y-axes represent the dog vs person preference 

present in the top 10 synthetic images, calcu- 

lated by taking the difference in the count of 

dog images minus the count of person images, 

divided by the total count of dog and person 

images. Values close to -1 indicate strong per- 

son preference and values close to 1 indicate 

strong dog preference. Points outside the grey 

area have t-statistics that are significant after 

FDR correction. A significant correlation ex- 

ists between the observed dog-person prefer- 

ence from the entire fMRI dataset and the dog- 

person preference in the top 10 synthetic images from NeuroGen (Spearman 𝑟 = 0 . 6681 , 𝑝 = 1 . 157 𝑒 − 5 ). 

Fig. 6. Face area preferences in semantic image content are reflected in the wordclouds illustrating image content for the top 10 natural and synthetic images. Each 

row represents the source of the top 10 images: natural images that have the highest observed activation measured directly via fMRI, natural images that have the 

highest predicted activations from the encoding model, and synthetic images that were created using NeuroGen. Each column represents one of the five face regions. 

The presence of the “dog ” label (as well as, unsurprisingly, “person ” label) can be appreciated most prominently in NeuroGen’s synthetic images. 

s  

l  

i  

F  

c  

a  

𝑟  

r  

s  

d  

b  

e  

(  

f

ynthetic images (Spearman rank 𝑟 = 0 . 6681 , 𝑝 = 1 . 157 𝑒 − 5 ); this corre-
ation was even higher when considering NeuroGen’s top 100 synthetic

mages (Spearman rank 𝑟 = 0 . 7513 , 𝑝 = 1 . 987 𝑒 − 7 ), see Supplementary
igure S8. Correlations with the top 10 natural images from the en-

oding model and fMRI measurements were also significant, but not

s strong as the top 10 synthetic images correlation (Spearman rank

 = 0 . 4468 , 𝑝 = 7 . 126 𝑒 − 3 and 𝑟 = 0 . 2948 , 𝑝 = 0 . 086 ), respectively. These
8 
esults show that previously identified “face ” regions in the human vi-

ual cortex also respond robustly to dog faces, and, furthermore, that the

og/human balance in response patterns varies across individuals and

rain regions. These results highlight NeuroGen’s potential as a discov-

ry architecture, which can be used to amplify and concisely summarize

even with only 10 images) region-specific and individual-specific dif-

erences in neural representations of visual stimuli. 



Z. Gu, K.W. Jamison, M. Khosla et al. NeuroImage 247 (2022) 118812 

Fig. 7. Individual-specific and region-specific 

differences in word area responses are reflected 

in and amplified by only 10 images from the 

NeuroGen framework. Sets of images that had 

the highest activation in A OWFA (occipital 

word form area), B ventral word form area 1 

(VWFA1) and C mfs-words, for all eight indi- 

viduals (one per row). D The x-axis displays 

the activation contrast for six categories of nat- 

ural images (human, dog, bird, other animal, 

food and clock) from the observed fMRI data, 

quantified by the t-statistic of observed fMRI 

activations from natural images of the category 

in question compared to the observed activa- 

tions from all other natural images (not con- 

taining that item). The y-axis represents the 

proportion of top 10 synthetic images that con- 

tain that item. Points outside the grey area 

have t-statistics that are significant after FDR 

correction. A significant correlation exists be- 

tween the observed image category contrasts 

from the entire fMRI dataset and the propor- 

tions of that image category in the top 10 syn- 

thetic images from NeuroGen (Spearman rank 

𝑟 = 0 . 557 , 𝑝 = 2 𝑒 − 15 ). 
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Another unexpected observation of individual and regional variabil-

ty was found in the word areas. Because the images in NSD are natu-

al, they do not solely contain text; therefore many of the top natural

nd synthetic images for the word-preferred regions contained objects

r scenes with integrated text (scoreboard, packet, cinema, bottle cap,

ign, etc.), see Fig. 7 . However, images with integrated text were only

 portion of the word form area top images; many also contained hu-

ans, dogs, cats, birds, other animals, food and clocks. We aimed to test

f the content of the synthetic images from NeuroGen could accurately

eflect underlying patterns in the measured activation data, even when

onsidering several categories of images. Therefore, we calculated the

roportion of each individual’s top 10 images that contained objects in

ach of the six categories of interest (humans, dogs, birds, other animals,

ood and clocks) for each of the top 5 word areas. These six categories

f interest were selected based on the most common categories in the

op 10 synthetic images across all 5 word form areas. We then corre-

ated each individual’s synthetic image proportions with their t-statistic

f measured activation for images containing that target object (and

ot any objects in the other 5 categories) contrasted against the mea-

ured activation for all images not containing that object. Categories

ere included for a given word form area’s analysis if there existed at

east 10 images of that category out of the 240 total top natural or syn-

hetic images for that region (8 individuals x 10 images x 3 sources).

igure 7 D shows the scatter plot of the image proportions versus the

-statistic giving the activation contrast for synthetic images of a given

ategory (indicated by color) for the various word form regions (indi-

ated by shape), which were significantly correlated (Spearman rank

 = 0 . 557 , 𝑝 = 2 𝑒 − 15 ). The proportion of the 10 natural images with
ighest encoding model predicted activation and highest measured ac-

ivation via fMRI had a somewhat weaker but still significant corre-

ation (Spearman rank 𝑟 = 0 . 4545 , 𝑝 = 3 . 781 𝑒 − 10 and Spearman rank
 = 0 . 1897 , 𝑝 = 0 . 0127 , respectively). These results again highlight the
tility of NeuroGen as a discovery architecture that can concisely un-

over, even across several categories of images at once, neural repre-
9 
entation variability across individuals and brain regions within an in-

ividual. 

.4. Optimized synthetic images have more extreme predicted co-activation 

f region-pairs than natural images 

The NeuroGen framework is flexible and can be used to synthe-

ize images predicted to achieve an arbitrary target activation level

or any or all of the 24 regions for which we have encoding models.

e now provide examples of two-region and three-region optimization;

pecifically, we aimed to create synthetic images that jointly maximize

nd/or minimize predicted activation in the target regions together. For

xample, two region optimization could either be joint maximization

+ROI1+ROI2), or joint maximization of one region and minimization

f the other, or maximizing (+ROI1-ROI2 or -ROI1+ROI2). Figure 8

hows the results of three example two region optimizations for subject

’s A) FFA1 (face) and V1v (early visual) regions, B) PPA (place) and

1v (early visual) regions, C) FFA1 (face) and PPA (place) regions, and

ne example of three region optimization (FFA1, PPA and V1v). When

ointly maximizing FFA1 or PPA with V1v, NeuroGen’s synthetic images

re of places or faces with an abundance of texture (e.g. comic book,

teel drum and kimono labels for FFA1 and toy shop, bookstore, slot la-

els for PPA). Alternatively, when jointly maximizing FFA1 or PPA and

inimizing V1v, we see human/dog faces or places/indoor scenes with

at, non-textured colors in both the foreground and background (e.g.

eck brace, ice lolly and bikini for FFA1 and beacon, pier, container ship

abels for PPA). Natural images show a similar pattern, although they

re not as obvious and appear less consistent (see Supplementary Fig-

re S9). In addition, we see that the top 10 optimized synthetic images

enerally had significantly more extreme predicted activation values in

he desired direction than the top 10 natural images for most cases (see

ig. 8 and Supplementary Figure S9). Both the two- and three- region

ptimizations demonstrate the synthetic images push the predicted ac-

ivations past the boundaries of the natural image activations; there is a
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Fig. 8. Multiple-region optimization creates 

synthetic images with generally more extreme 

predicted activation when compared to natu- 

ral images. Scatter plots show the predicted re- 

sponse from top 10 natural and synthetic im- 

ages that either jointly maximize the sum of the 

two regions (+ROI1+ROI2) or jointly max- 

imize one and minimize the other (+ROI1- 

ROI2) and (-ROI1+ROI2), for the following 

region-pairs A FFA1 and V1v, B PPA and V1v 

and C FFA1 and PPA. D shows all sets of three- 

region optimization combinations for FFA1, 

PPA and V1v together. Typical synthetic image 

examples are shown for each dual and triple op- 

timization; the optimization specifics are listed 

below each synthetic image (green = that re- 
gion’s minimization, red = that region’s maxi- 
mization). 
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lear separation of the orange and blue points representing these values.

hese results demonstrate that the NeuroGen framework can be applied

o create synthetic images predicted to achieve optimized activation in

ore than one region at the same time; the example synthetic images

rovided align with expectations from prior knowledge. Furthermore,

hey suggest that the benefit of NeuroGen’s synthetic images over natu-

al ones in terms of pushing the predicted activation levels to those not

chievable by natural images. 

. Discussion 

Here, we introduce NeuroGen, a novel architecture designed to syn-

hesize realistic images predicted to maximize or minimize activation

n pre-selected regions of the human visual cortex. NeuroGen lever-

ges three recent scientific advances: 1) the development of encoding

odels that can accurately predict brain responses to visual stimuli ( St-

ves and Naselaris, 2018a ), 2) in deep generative networks’ abilities to

ynthesize high-fidelity and variety images ( Brock et al., 2018 ) and 3)

n the recent curation of the Natural Scenes Dataset (NSD), which con-

ists of tens of thousands of paired images and human brain responses

 Allen, 2021 ). We showed that encoding models trained on the NSD data

ould accurately maps images to their neural representations in individ-

al subjects, and, importantly, that the encoding model smooths noisy

easured fMRI response maps. Once the encoding model was validated,

e used the NeuroGen framework to concisely amplify and reveal in-

ividual and regional preferences for certain image types. We began

y using NeuroGen to create synthetic images that were predicted to

aximize a single region’s activation response. The resulting synthetic

mages agreed with expectations from previous knowledge of regional

eural representations of visual stimuli and, furthermore, the predicted

ctivations from synthetic images were significantly higher than from

atural images. Once NeuroGen was validated, it was used as a discov-

ry architecture to uncover region-specific and individual-specific visual

ortex response patterns. Our main discovery was a remarkable, previ-

usly not well-described balance of dog-human preferences in face areas

hat both varied across face regions and individuals. The synthetic image

uman/dog preference ratios were validated by showing strong, signif-

cant correlations with dog/human preference ratios calculated by con-

rasting measured fMRI activations in response to thousands of dog and

uman images. Secondly, we used the NeuroGen framework to show
 a  

10 
hat the content of images preferentially activating word form areas

ere of a wide variety, including humans, dogs, birds, other animals,

locks, food and more. Despite the fact that several categories of images

ere represented in the word form areas, we again validated the top 10

ynthetic image ratios by showing significant correlations with under-

ying preferences extracted by contrasting measured fMRI activations

n response to hundreds of images. Finally, we extended the single re-

ion analysis to demonstrate the capacity of the NeuroGen framework

n optimizing activation for two or three regions at a time. We found

hat these two- and three-region optimizations not only produced im-

ges that agreed with expectations, but also provided significantly more

xtreme predicted activations than natural images, above and beyond

he activation levels observed in response to the best-matching natural

mages. Taken together, these results validate and demonstrate that the

euroGen framework can create new hypotheses for neuroscience and

hus facilitate a tight loop between modeling and experiments, and thus

s a robust and flexible discovery architecture for vision neuroscience. 

The visual system provides an excellent model with which to under-

tand how organisms experience the environment. Mapping the visual

ystem’s neural representations of external stimuli has often centered

round identifying features that maximally activate various neurons or

opulations of neurons ( Hubel and Wiesel, 1962; 1968 ). This “activation

aximization ” approach, more commonly called the tuning curve ap-

roach, has lead to discoveries of visual regions that selectively respond

o specific patterns ( Kobatake and Tanaka, 1994; Wandell et al., 2007 )

r images with a certain content, most prominently, faces ( Kanwisher

t al., 1997; Tsao et al., 2006 ), places ( Epstein and Kanwisher, 1998 ),

odies ( Downing et al., 2001; Popivanov et al., 2014 ) and visual words

 Baker, 2007 ). This “activation maximization ” approach using in vivo

easurements is by nature limited to the stimuli presented while ob-

erving responses, which is in turn biased by a priori hypotheses. There

ay be more complex, obscure stimuli-response maps that exist (for ex-

mple, perhaps, to images of a dog riding a bicycle) but are not tested

ue to our limited imaginations or the lack of representation of that type

f image in natural image sets. In addition, fMRI can be very noisy, and

esponse maps to a handful of images (or even hundreds of them) are

uite noisy even within an individual, let alone across the population.

ncoding models that can perform “offline ” mapping of stimuli to brain

esponses can provide a computational stand-in for a human brain that

lso smooths measurement noise in the stimuli-response maps. Neuro-
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en’s framework that couples the benefits of encoding models with re-

ent advances in generative networks in creating naturalistic-looking

mages, may prove to be an advance in discovery neuroscience that is

ore than the sum of its parts. 

Only a few previous studies have used generative networks to cre-

te synthetic images made to achieve activation maximization of sin-

le neurons or populations of neurons in non-human primates. Both

sed closed-loop physiological experimental designs to record and opti-

ize neuronal responses, e.g. maximize firing rates, to synthetic images

 Bashivan et al., 2019; Ponce, 2019 ). One synthesized images by directly

ptimizing in image space using an ANN model for the brain’s ventral

isual stream ( Bashivan et al., 2019 ), and the other synthesized images

n code space via a genetic algorithm to maximize neuronal firing in real

ime ( Ponce, 2019 ). Both of these studies successfully demonstrated that

ingle neurons or neuronal populations in monkeys can be controlled

ia optimization of synthetic images using generative networks. One

ifference in our framework, other than the species in question, is the

se of a conditional generator network that requires the identification

f an image class before synthesis. We wanted our framework to syn-

hesize images that were as natural-looking as possible for two reasons:

ecause our encoding model was trained on natural images and because

uture work will include presentation of these synthetic images to hu-

ans while they are undergoing fMRI to test if they achieve activation

bove and beyond the best natural images. One recently published work

n humans used a similar approach to NeuroGen to synthesize images

esigned to achieve maximal activation in one of three late visual re-

ions (FFA, EBA and PPA) to validate category selectivity of these re-

ions ( Ratan Murty et al., 2021 ). Our approach is different from theirs in

any ways, most importantly that our focus is on individual-level and

egion-level differences in category preference (with which we make

ome interesting observations that reflect underlying data) and, further,

ur interest in creating synthetic images designed to achieve optimal

ctivity (either maximized or minimized) in multiple regions at once. 

Our main discovery using the NeuroGen architecture was a previ-

usly not well-described balance of dog-person preference in face areas,

hich varied over individuals within the population and regions within

n individual. After inspecting the content of the top 10 images from

euroGen, we noted an abundance of dog faces in addition to human

aces that was not obvious in the top 10 natural images with the highest

easured or predicted activation; this was also apparent from looking

t the face regions’ wordclouds. We showed that the dog-human prefer-

nce ratio observed in NeuroGen’s synthetic images was reflected in the

nderlying data by observing a strong, significant correlation with the

-statistic of the measured activation (via fMRI response) from dog im-

ges versus human images. One idiosyncrasy of the ImageNet data used

o train our generative network is its prevalence of dogs; 120 out of the

pproximately 1000 ImageNet classes are dog breeds and, furthermore,

og images in ImageNet generally feature close-ups of dog’s faces. This

ver-representation of dogs in the ImageNet database could have biased

euroGen to more easily identify and amplify any existing dog-human

references in the underlying data. In addition, measured contrasts for

ome regions in some individuals showed a clear preference for dog faces

ver human faces (t-statistic > 4 ), which we conjecture could be due to
ither differences in visual attention between the two categories or the

act that the NSD “person ” images used to calculate the contrast are not

ll close-ups of human faces while the dog images do tend to be close up

og faces. As the face ROIs were derived based on the 𝑡 values of acti-

ation contrast for face > non-face images, it may alter our dog v human

ndings when the threshold for 𝑡 varies and/or when a more restrictive

ontrast is applied (e.g. face > objects). However, one can imagine if the

OI definition for face selectivity became less restrictive, you would see

 drop in the number of human faces and an increase of non-face images.

he fact that we are specifically observing dog images indicates that it

s not an effect of reduced selectivity of the face ROI, unless that reduc-

ion happened to encompass regions that were dog-face selective. There

ave been a few previous works investigating humans’ face-processing
11 
reas’ responses to images of human versus animal faces ( Downing et al.,

006; Whyte et al., 2016 ). One of the first studies showed that human

ace areas respond to mammals, although at a population level, the ac-

ivation in response to mammals was not stronger than responses to

umans ( Downing et al., 2006 ). Another study found that face areas in

dolescents with high functioning autism had a weaker response to un-

amiliar human, but not animal, faces and greater activation in affective

ace regions in response to animal, but not human, faces compared to

ypically developing adolescents ( Whyte et al., 2016 ). One of the few

tudies comparing humans’ neural representations of dog faces and hu-

an faces showed very similar response maps to both species, with lin-

ual/medial fusiform gyri being the only region having higher activa-

ions for dog over human faces ( Blonder, 2004 ). We conjecture that dif-

erences in our findings may be due to their population-level approach

o identifying differences in neural representations, as they used coreg-

stered contrast maps to identify group-level, voxel-wise significance.

e see that NeuroGen’s dog-human balance in response patterns varies

idely over individuals and brain regions, indicating that population-

evel approaches may not be adequate for creating stimulus-response

aps. 

While humans’ neural representations of faces, places and bodies are

enerally robust across the population, it has been shown that word

orm responses can vary based on an individual’s experience ( Baker,

007; Kanwisher, 2010 ). Our findings generally revealed more diver-

ence in the word form area preferred content across individuals than

ther categories of visual regions. This large individual-level variabil-

ty in preferred image content, including images of several very differ-

nt categories (humans, dogs, cats, birds, food, clocks), could be due

o the effect of individual experience in forming the neural represen-

ations in these word form areas. On the other hand, these areas do

end to be quite small and more susceptible to noise in the measured

ctivation patterns which were used to define the regions leading to

ore population-level divergence ( Brett et al., 2002 ). The natural im-

ges in the NSD dataset used to create the encoding model also did not

ontain isolated text, which could further contribute to noise in apply-

ng the NeuroGen framework to word form areas. However, many of

he synthetic images were derived from categories that contain items

ith text, including “odometer ”, “comic book ”, “book jacket ”, “street

ign ”, “scoreboard ”, “packet ” and “pill bottle ”. The word form regions

id also overlap regions in other categories (see Supplementary Figure

10-18), including face and place areas. This overlap could explain the

resence of dogs and humans (and possibly other mammals) but it does

ot explain, for example, the strong presence of food images in many of

he individuals’ top images (see Fig. 5 B). Despite these potential short-

omings, using only 10 images, NeuroGen was able to reflect measured,

nderlying preferences across several categories for these complex and

idely varying word form regions. 

One of the advantages of the NeuroGen framework is its flexibility

nd capacity - one can provide an arbitrary target response map contain-

ng desired activation levels for any (or all) of the 24 brain regions that

ave encoding models and produce synthetic images that achieve that

ector as closely as possible. As a simple example, we performed joint

ptimization of two or three regions, where we maximized and/or min-

mized their activations together. We chose to use V1v as one of the re-

ions as this is known to activate in response to high-frequency patterns

nd results could be readily validated visually. Indeed we do see that

hen maximizing V1v and face/place areas, we get faces/places with

n abundance of texture and when minimizing V1v we get places/faces

ith flat features. From looking at the scatter plots representing the syn-

hetic and natural images’ predicted activations in Fig. 8 , there is a clear

eparation of the two, where the synthetic images clearly push the pre-

icted brain activations to levels not achievable by the best-matching

atural images. This example application of NeuroGen highlights an-

ther advantage of this framework in that one could synthesize stimuli

redicted to evoke response patterns not generally observed in response

o natural images. 
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There are a few limitations in this work. First, the range of the syn-

hetic images is constrained by the images on which the generative net-

ork is trained, in this case ImageNet. Any preferences that exist for

mage content or features in the encoding model that do not exist in

he ImageNet database may remain obscured in NeuroGen. Second, the

eep generative network has a parameter that controls the balance be-

ween fidelity and variety of the synthetic images produced. It could

e that varying this parameter would provide more realistic images,

ut it may also result in images that do not have as extreme predicted

ctivation and/or have less variety and thus contain less information

bout the underlying stimuli-response landscape. Third, the optimiza-

ion of the synthetic images is done in two steps, by first selecting the

op 10 image classes and then optimizing the noise vector in that image

lass space. The classes identified in the first step could be constraining

he synthesizer so that it is not identifying a global optimum; however,

his trade-off was deemed an acceptable sacrifice for the more natural-

ooking images provided by a conditional generator. Lastly, this study

mployed AlexNet but more recent studies have found that other re-

ent state-of-the-art methods like ResNet ( He et al., 2016 ) and VGG19

 Simonyan and Zisserman, 2014 ) can perform better in terms of neural

redictivity. Exploring these architectures can also be useful in subse-

uent studies. 

The NSD data on which the encoding model was trained is unsur-

assed in its quality and quantity, consisting of densely-sampled fMRI

n 8 individuals with several thousand image-response pairs per sub-

ect. Still, the natural images sourced from the COCO dataset used in

he NSD experiments are inevitably limited in their content and fea-

ures, which can mean possibly inaccurate brain-response mappings for

mages not used to train the encoding model. Additionally, when cal-

ulating preference ratios in the measured NSD data, it was at times

ifficult to choose the combination of image labels that produced the

esired image content or features (e.g. only a person’s face). Relat-

dly, it is not always straightforward to classify the natural or syn-

hetic images into the appropriate category; the word form areas were

articularly challenging. In addition, fMRI has many known sources of

oise/confounds such as system-related instabilities, subject motion and

ossibly non-neuronal physiological effects from breathing and blood

xygenation patterns ( Liu, 2016 ). Careful design of the acquisition and

ost-processing pipeline for the NSD data mitigated these effects. Fi-

ally, the localizer task, while previously validated, may have some

ariability due to the contrast threshold applied. Using a more or less

iberal threshold for the region boundary definition may result in dif-

erent results than what is presented here. Different visual regions used

n this work did have some overlap within certain individuals, which

ould have contributed to similarities in synthetic image content for re-

ions of different categories. Supplementary Figure S10-18 show each

ndividual’s regional definitions and a heatmap of the Dice overlap of

egions from different categories for each individual. 

To validate and demonstrate the capability of our novel NeuroGen

ramework, we present here as a proof-of-concept optimization of pre-

icted responses in one, two or three regions. However, this optimiza-

ion can be performed on an arbitrary desired activation pattern over

ny regions (or voxels) that have existing encoding models. Generative

etworks for creating synthetic images are an highly active area of re-

earch; specialized generators for faces or natural scenes could be inte-

rated into the NeuroGen framework to further improve the range and

delity of the synthetic images. Furthermore, the work presented here

oes not investigate the measured responses in humans to NeuroGen’s

ynthetic images. However, we believe that the current paper introduc-

ng and validating the NeuroGen framework and demonstrating its use

n a discovery neuroscience context represents an important technical

nd conceptual contribution to the field. The idea that this type of syn-

hetic generator coupled with an encoding model can be used to make

iscoveries about regional or individual-level selectivity to stimuli is it-

elf a novel conceptual contribution, and the NeuroGen framework is

 novel technical contribution whose utility is demonstrated here with
12 
xamples. Future work will involve presentation of these synthetic im-

ges to individuals while undergoing fMRI to test if their responses are

ndeed more extreme than the best natural images. One hypothesis is

hat the synthetic images may command more attention, as it is clear

hey are not perfectly natural and thus may produce a more extreme

esponse than natural images, as found in studies of single or neuronal

opulation responses ( Bashivan et al., 2019; Ponce, 2019 ). The other

s that there may be some confusion about what the image contains or

dditional processing that an individual will undergo when interpret-

ng the image that will result in an unpredictable pattern of response.

f it can be demonstrated that synthetic images indeed produce activa-

ions matching a pre-selected target pattern, the NeuroGen framework

ould be used to perform macro-scale neuronal population control in

umans. Such a novel, noninvasive neuromodulatory tool would not

nly be powerful in the hands of neuroscientists, but could also open up

ossible avenues for therapeutic applications. 

. Conclusions 

The NeuroGen framework presented here represents a robust and

exible framework that can synthesize images predicted to achieve a

arget pattern of regional activation responses in the human visual cor-

ex that exceeds that of predicted responses to natural images. We posit

hat NeuroGen can be used for discovery neuroscience to uncover novel

timuli-response relationships. If it can be shown with future work that

he synthetic images actually produce the desired target responses, this

pproach could be used to perform macro-scale, non-invasive neuronal

opulation control in humans. 
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