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MOTIONBENCHMAKER:
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Abstract—Recently, there has been a wealth of development in
motion planning for robotic manipulation—new motion planners
are continuously proposed, each with their own unique strengths
and weaknesses. However, evaluating new planners is challenging
and researchers often create their own ad-hoc problems for
benchmarking, which is time-consuming, prone to bias, and does
not directly compare against other state-of-the-art planners. We
present MOTIONBENCHMAKER, an open-source tool to generate
benchmarking datasets for realistic robot manipulation problems.
MOTIONBENCHMAKER is designed to be an extensible, easy-
to-use tool that allows users to both generate datasets and
benchmark them by comparing motion planning algorithms. Em-
pirically, we show the benefit of using MOTIONBENCHMAKER
as a tool to procedurally generate datasets which helps in
the fair evaluation of planners. We also present a suite of 40
prefabricated datasets, with 5 different commonly used robots
in 8 environments, to serve as a common ground to accelerate
motion planning research.

Index Terms—Motion and Path Planning; Manipulation Plan-
ning; Data Sets for Robot Learning

I. INTRODUCTION

OTION planning is a core component of robotic manip-
ulation [1]. For example, motion planning is essential

in pick-and-place tasks [2], finding geometrically-constrained
motions such as opening drawers and doors [3], and as a tool
in task and motion planners to evaluate the feasibility of long-
horizon plans [4]. The multitude of applications of motion
planning has given rise to a multitude of motion planners
to tackle these specific problems, each employing their own
heuristics [5] to address the challenging general problem [6].
Despite the plethora of planning methods proposed over
the years, little emphasis has been placed on creating a
common ground to evaluate these planners—there are no shared
benchmarking datasets tailored to manipulation problems that
are commonly found in the literature [7]. The lack of shared
environments for evaluation often forces researchers to create
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their own, making it challenging for practitioners to understand
the advantages or disadvantages of a particular method if not
directly compared. Additionally, crafting bespoke planning
problems to evaluate a method is very time consuming, and
could lead to incorrect conclusions due to unintentional biases
in design. Finally, with the advent of learning-based planning
methods (e.g., [8]-[10]), there has been an increased need for
readily available open-source datasets that can be used for
training and testing.

We introduce MOTIONBENCHMAKER, a tool that facilitates
the creation of motion planning datasets to ease the evaluation
of motion planning algorithms in “realistic” manipulation
tasks. MOTIONBENCHMAKER was inspired by common issues
found in evaluating sampling-based planners on high-DOF
robots. Unlike most existing benchmarking resources, which are
designed for low-DOF robots or free-flying systems (see Table I),
MOTIONBENCHMAKER is intended for modern high-DOF
robots in “realistic” scenes, and its capabilities are broadly
useful to other types of planners, e.g., classical, optimization-
based, and learning-based. MOTIONBENCHMAKER consists
of a set of tools in the form of modules Fig. 1, which can
be utilized by user scripts and human-readable configuration
files. The two main use cases for MOTIONBENCHMAKER are
the generation of motion planning datasets and subsequent
evaluation of motion planners on these datasets. We also
provide 40 prefabricated datasets (5 different robots in 8
different environments) which are open source along with Mo-
TIONBENCHMAKER'. A video is also provided that visually
presents this work .

MOTIONBENCHMAKER specifies motion planning problems
as robot-agnostic manipulation queries which depend only on
the environment geometry—with this, it is easy to integrate new
problems and new robots to create new datasets (e.g., see Fig. 6).
Planning problems within a dataset are randomly generated

1 https://github.com/KavrakiL.ab/motion_bench_maker
Zhttps://youtu.be/t96Py0QXONI
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given a nominal environment and a set of tunable parameters.
These parameters specify how objects in the environment can
vary in their pose and control how new samples of planning
problems are be procedurally generated. MOTIONBENCH-
MAKER also provides the ability to convert scenes described
with geometric primitives and meshes to a “sensed” representa-
tion, i.e., point clouds and octomaps [I1]. MOTIONBENCH-
MAKER is fully compatible with the ROS [12] ecosystem
of tools and interfaces such as visualization with RViz and
motion planning through Movelt [13] and Robowflex [14]. To
summarize, with MOTIONBENCHMAKER we contribute a tool
which

o has a modular and open architecture to facilitate creating

new datasets,
o procedurally generates new datasets by randomly varying
scenes,

e can convert scenes to “sensed” representations,

« has benchmarking capabilities,

« and is easy to integrate into the existing ROS ecosystem.

The rest of the paper is organized as follows. In Sec. II
we review other works in robotic benchmarking and dataset.
In Sec. III we describe the modules of MOTIONBENCH-
MAKER and in Sec. IV, we show how MOTIONBENCH-
MAKER facilitates the generation of motion planning datasets
incorporating new robots into existing scenes without much
effort. In Sec. V-A, we show that it is possible to infer
an incorrect conclusion when comparing motion planning
algorithms due to limited data, emphasizing the importance of
MOTIONBENCHMAKER’s problem generation. In Sec. V-B we
show that the prefabricated datasets in MOTIONBENCHMAKER
are challenging even for fine-tuned planners, and no sampling-
based planner rules over all.

II. RELATED WORK

Well-maintained datasets such as ImageNet [34] or Tencent
ML-Images [35] are fundamental for algorithmic breakthroughs
in research fields like computer vision. To achieve similar feats,
the robotics community has developed several high-quality
datasets. We give a brief overview of the most popular ones
(as of August 2021) with a focus on datasets for manipulation
planning. A more detailed overview can be found in [36] (up
until 2015).

We compare datasets with each other based on six desirable
properties. First, we compare if a dataset is procedurally
generated, meaning if there exists an algorithmic generation of
problems from a given scenario. Second, we compare planner
benchmarking capabilities, meaning if there exists a tool to
benchmark different motion planning algorithms on the dataset.
Third, if a dataset is procedurally generated, we check if there is
an interface with funable parameters, i.e., if users can influence
the generation process. Fourth, we check if the dataset is high-
dof, i.e., if there exist robots with more than 6-DOF. Fifth, we
check if the dataset contains sensed representations, i.e., if there
exist environments in the dataset which are built from sensor
information. Finally, we check for articulated robots, i.e., if the
datasets contain robots that are beyond rigid bodies in 2D or
3D. Other properties could be examined, but we consider these
properties necessary for a tool that focuses on manipulation.

TABLE I
RELEVANT DATASETS IN ROBOTICS AS OF AUGUST 2021.
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Vehicle Navigation
CommonRoad [15] 2017 | x v x X X X
Robot@Home [16] 2017 | x x x x Vv X
Multi-Agent Path-Find Benchmark [17] 2019 x v x xX x X
MAVBench [18] 2020 x x x x v X
BARN [19] 2020 v v VvV X X X
Bench-MR [20] 2021 x v x x v X
PathBench [21] 2021 v v vV x x X
General Robotics
OMPLBenchmarks [22] 2015 x v x X x X
Robobench [23] 2016 x v x v V V
Roboturk (Teleoperation database) [24] 2019 | x x x v v V
RLBench [25] 2020 v x vV vV V V
OCRTOC [26] 2021 v v x vV V V]
Robot Manipulation

ACRV picking benchmark [2] 2017 x v x v V V
RoboNet [27] 2019| x x x v vV V
GraspNet [28] 2020 x x X X X X
Brown Planning Benchmarks [29] 20200 v vV x Vv x V
Aerial Manipulation [30] 2020 x x x Vv V V
Bimanual Manipulation Benchmark [31] 2020 x v x vV vV V
In-hand manipulation benchmark [32] 2020 x x x Vv x V
ProbRobScene [33] 2021 | v x v vV x V
MOTIONBENCHMAKER (ours) 2021 v v vV vV VY

As can be seen in Table I, we divide the datasets into three
categories. The first category is datasets for vehicle navigation.
Several high-quality datasets exists like common road [15],
bench mobile robot [20] and the benchmark for autonomous
robot navigation (BARN) [19]. Similar datasets concentrate
on indoor-navigation [16], 2D multi-agent path-finding [17],
discrete point-robot path finding in 2D and 3D [21], free-flying
robots [22] or drones [18]. Our paper is complementary to
vehicle navigation in that we concentrate on robot manipulation
tasks.

The second category of datasets is focused on general
robotics. These works aim at covering broad robotic categories
like providing datasets and tools for remote teleoperation [24]
or object rearrangement [26]. While many papers are concen-
trating on learning-based approaches [25], there is also a trend
towards more reproducibility, for example by using container-
ization [21] to ease comparison over different operating systems
or configurations.

However, several tools in robotics have been developed
specifically for manipulation tasks. While the data generation is
often similar, approaches differ by focusing either on learning-
based algorithms or on planning-based algorithms. In learning-
based approaches like RobotNet [27], the focus is more on gen-
erating diverse camera streams. In planning-based approaches
like the Brown planning benchmark [29] the focus is more
on creating mesh-based representations of the world useful
to benchmark motion planners [37]. Other frameworks like
ProbRobScene [33] are independent of the algorithm used and
focus instead on generating scenes automatically. A particular
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Fig. 2. Scene Sampler: The scene sampler module generates variations on a nominal input scene given sampling parameters. When performing SE(3) sampling
(shown in a)), variation in the pose of objects in the scene can be specified globally (e.g., the bookshelf moving) and locally (e.g., the cylinders moving on the
shelves of the bookshelf). When performing URDF sampling (shown in b)), valid configurations of the kinematic structure specified by the URDF are sampled,

which results in different configurations of the cabinets.

dataset aimed at grasping is GraspNet, which concentrates on
using the YCB dataset of objects [28] to generate large sets of
grasping poses. Similar datasets and benchmark utilities concen-
trate on specific aspects of manipulation. This involves tasks
like bimanual manipulation [31], in-hand manipulation [32],
cloth manipulation [38], aerial manipulation [30], or solving
Rubik’s cube [39].

MOTIONBENCHMAKER differs from all those approaches
by (a) focusing on benchmarks specifically for motion planning
algorithms, (b) having an incremental generation tool to create
diverse sets of manipulation tasks, and (c) by concentrating on
broad manipulation capabilities for diverse high-dimensional
robotic arms. This involves not only single gripper grasps but
also bimanual manipulation (e.g., using the Baxter robot) and
multi-finger manipulation (e.g., using the ShadowHand robot).

III. LIBRARY MODULES

MOTIONBENCHMAKER is a flexible modular library com-
posed of four basic modules, shown in Fig. 1. The Scene
Sampler shown in Fig. 2, creates variations of a given nominal
scene. The Octomap Generator, shown in Fig. 3, converts a
geometric scene to a point cloud and subsequently an octomap.
The Problem Generator generates motion planning problems
given a scene, robot, and necessary configuration files. Finally,
the Setrup module enables the easy creation and usage of the
generated datasets.

A. Scene Sampler

Given variation parameters, the Scene Sampler module
procedurally generates multiple scenes by randomly changing
the nominal scene. Currently, two complementary types of
sampling are provided namely SE(3) and URDF sampling as
shown in Fig. 2.

1) SE(3) sampling: For SE(3) sampling, the nominal scene
is a set of collision objects with SE(3) poses relative to the
global frame (shown in Fig. 2a). New scenes are generated
by adding random noise to the SE(3) poses of the collision

Geometric Scene (Input)

Ray
y | Casting
Camera S| —

Position

Sensed Scene (Output)

7|~ Ry

Fig. 3. Octomap Generator: The octomap generator module generates a
sensed representation (point cloud and octomap) by emulating a depth camera
from different positions.

\\

objects [40]. The pose of the collision objects in the nominal
scene serves as the mean of the sampling distribution and
the variance (Gaussian) or bounds (Uniform) parameters are
specified through a configuration file. Finally, the random
perturbations to the collision objects’ poses can happen both
globally, e.g., the shelf in Fig. 2a is moved with respect to
the global frame, and locally, e.g., the cylinders in Fig. 2a are
perturbed with respect to the local frame of the shelf. Examples
of samples drawn are shown on the right side of Fig. 2a.

2) URDF sampling: In this type of sampling, the nominal
scene is specified as a URDF (Unified Robot Description
Format) file [41]. The URDF specifies the number of joints
that describe the kinematic relations of objects in the scene. By
sampling valid configurations of this URDF (that is, collision-
free with itself), we can generate different scenes. This type
of sampling emulates movements of objects subject to kine-
matic constraints such as cabinets opening and closing, shown
in Fig. 2b.

B. Octomap Generator

Octomap Generator is an optional module that provides a
way to convert geometric scene representations (i.e., geometric
primitives and meshes) to point clouds and octomaps [11], as
shown in Fig. 3. The point cloud is generated by specifying
in the frame(s) of the depth camera which is simulated with
gl_depth_s im’. This point cloud is later converted to an

3https://github.com/Imeyer1292/g]_depth_sim
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Fig. 4. Problem Generator: Given a robot description (URDF), geometric

scene, and object-centric end-effector poses, the problem generator creates
a motion planning problem. To have robot-agnostic problems, the start and
goal of the problem can be specified as end-effector grasp poses, e.g., by
specifying pose S; relative to the object’s reference frame Sp. Additionally,
a robot-specific transformation Sa relative to the robot’s end-effector frame
is applied to the pose to account for different gripper idiosyncrasies. Full

joint configurations can also be used as start/goal. Finally, a robot also has an >

optional base offset (not shown) that can be specified.

octomap. When a dataset is generated, all three representations
(geometric, point cloud, octomap) can be simultaneously pro-
duced. Note that for motion planning, an octomap representation
usually has a much higher collision checking time and is
an over-approximation of the geometry, leading to harder
motion planning problems. Nevertheless, we consider the
sensed representation more “realistic” since it can be provided
from any RGB-D camera, and is often used in practice.

C. Problem Generator

One critical idea in MOTIONBENCHMAKER is the fact that
motion planning problems can be easily generated for any
robot-scene pair. When done by hand, this process can be
challenging and time-consuming since valid start and goal joint
configurations in a motion planning problem depend on both
the robot and the scene. The Problem Generator provides this
functionality by defining a set of start and goal manipulation
queries. These queries are specified as pose offsets expressed
in the frame of collision objects in the nominal scene. For
example as seen in Fig. 4, the query expresses how the blue
cup can be grasped. This is achieved by defining appropriate
object-centric offsets that are robot agnostic. This specification
is conceptually similar to the affordance templates proposed
by [42]. Finally, objects in the scene can be attached to the
end-effector(s) to emulate pick and place tasks.

The Problem Generator creates full-motion planning requests
(i.e., start/goal configurations in joint space) by performing
collision-aware inverse kinematics. These requests can be
readily used together with a scene, to create a varied set of
motion planning problems. Note that there can be multiple
queries defined for a scene, but the generated requests will
consist of a single start-goal pair. During generation, a planner
can optionally be used to verify the feasibility of a problem.

As an additional feature, the Problem Generator supports the
specification of manipulation queries for multiple end-effectors
in the kinematic chain, e.g., multi-tip queries. This is useful
for applications in bimanual manipulation and when planning
for dexterous hand robots such as the bookshelf with Baxter
and the Shadowhand examples respectively (see Fig. 0).
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// Load the dataset given a meta-data file

auto setup = stdimake_shared<Setup> ("conf.yaml");
auto robot = setup—getRobot () ;

auto planner = setup—createPlanner ("planner");
Experiment experiment ("exp", Profiler:Options());
for (int 1 = 1; 1 <= setup—getNumSamples(); i++)

{
// Load the ith scene in the dataset
auto scene std:make_shared<Scene> (robot) ;
setup—loadGeometricScene (i, )

scene

for "BiEST"})

{

(auto planner_name {"PRM",
// Load the start and goal configuration
auto request setup—createRequest () ;
setup—loadRequest (i, request);

// Set planner.e.g., PRM, BiEST

request—setConfig(planner_name);

experiment .addQuery ( //
planner_name, planner,

scene, request) ;

}

auto data experiment .benchmark () ;
OMPLPlanDataSetOutputter output ("results.log");
output.dump (xdata) ;

Fig. 5. A code snippet demonstrating how to load a dataset and benchmark
different planners through the Sezup module.

D. Setup

A convenient Setup class provides an easy-to-use interface to
load created datasets and create planner, scene and robot. An
example script with Sefup is shown in Fig. 5. A dataset created
by MOTIONBENCHMAKER comes with a meta-data manifest
(line 2, “conf.yaml”). This manifest contains all the relevant
parameters that define the dataset and allow the user to access
the sampled scenes and requests. Once loaded, Setup can create
instances of a robot (line 3) and a planner (line 4). Our library
takes advantage of the Robowflex [14] library to provide these
constructs—Robowflex encapsulates the Movelt [13] library for
motion planning and provides capabilities for planning inside
simple scripts.

The Setup class also provides a simple way to access each
scene (line 11) and corresponding request (line 17) within
a dataset. After creating an experiment (line 5), it is easy
to add this specific problem (a scene and request, line 22)
to the set of problems to benchmark. After a benchmark
is executed (line 26), the collected data can be output into
a variety of formats, e.g., a SQL database compatible with
PlannerArena [22].

IV. EXAMPLE USECASES

The user interacts with MOTIONBENCHMAKER in two
ways: by creating C++ scripts that call library modules or by
specifying values in configuration files to define new problems.
The first case of using C++ scripts was shown in Sec. III-D.
There (shown in Fig. 5) the user loads an existing dataset
in MOTIONBENCHMAKER to benchmark different motion
planners— benchmarking results can be plotted and analyzed
through PlannerArena [22].
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Fig. 6. Representative problems from the 40 different prefabricated datasets provided with MOTIONBENCHMAKER. There are 8 nominal scenes and 5 robots,

which create the 40 datasets, each consisting of 100 different problems.

The second case considered is a user who desires to create
a new dataset with a robot or scene not currently in MOTION-
BENCHMAKER. The user simply needs to provide a robot
description and scene description file along with the required
offsets (Sec. ITI-C). Given these files, MOTIONBENCHMAKER
through a script will procedurally generate varied motion
planning problems, without the burden of manually creating
valid start/goal configurations and scene samples for different
problems. For example, we used this script for the 40 different
prefabricated datasets, shown in Fig. 6. We created 8 nominal
scenes and specified the end-effector and base offsets of the
following 5 robots: a Fetch (7-8-DOF) a Panda (7-DOF), a URS
(6-DOF), a Baxter (7-14-DOF) and a ShadowHand mounted on
a KUKA arm (31-DOF).

To verify that each generated problem is feasible, we used a
highly-tuned sampling-based planner with a large timeout (60
seconds) and discarded problems that could not be solved in
time. For each dataset, an arbitrary number of motion planning
problems can be generated but for our purposes, we created
100 motion planning problems for each dataset.

Finally, MOTIONBENCHMAKER has already been used to
create a diverse set of datasets suitable for learning-based
methods [8], [43], for hyper-parameter tuning methods [44],
for planning under uncertainty [45], for planning in partially
observable environments [46] and for planning on different
abstraction levels [5], [47].

V. EVALUATIONS

In this section, we present two evaluations to showcase the
efficacy of MOTIONBENCHMAKER. In Sec. V-A we demon-

strate how using few motion planning problems can potentially
lead to wrong conclusions, for example when comparing two
motion planners. In Sec. V-B we demonstrate that many of the
prefabricated datasets are challenging and no specific planner
outperforms the other ones.

A. Wrong Hypothesis

Undoubtedly, in any research field, it is necessary to compare
the performance of different methods. In motion planning
research, it is often the case that a practitioner has a specific
robot and target application in mind, which begets the need to
manually construct an appropriate benchmark. Creating a bench-
mark from scratch without the appropriate tools is both time-
consuming and challenging since a large number of problems
might be required to achieve statistical significance. We note
here that the designed experiments highlight the importance of
using a large number of problems when comparing different
planners and should not be interpreted as an indication of which
planner is best. Unless indicated, planners are using default
parameters from OMPL [37].

Consider the following hypothetical scenario: a practitioner
wants to compare different planners on a picking task. Specif-
ically, the problem of interest involves a URS robot tasked
with picking a cylinder from a shelf, shown in Fig. 7a. Say
the practitioner either samples or chooses specific instances of
this scene: in Fig. 7b and Fig. 7c, we present the worst case
scenarios for this practitioner (for 5, 10, 50, and 100 problem
instances) in terms of drawing conclusions on their planner’s
performance.
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a) One of the 100 sampled problems in a simple shelf-picking dataset for a URS robot. Both the relative angular position of the shelf as well as

the position of the cylinder (not shown for visual clarity) vary between motion planning problems. b), ¢) Two different adversarial orderings of the same 100
motion planning problems. The Y-AXIS shows the planning time while the X-AXIS is the number of motion planning problems considered. A timeout of 60
seconds was used for all the problems and each motion planning problem was solved 20 times. It is clear that when using only a small number of motion
planning problems, the wrong conclusions can be drawn, as the best performing planner can be different when considering all 100 problems.
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Fig. 8. a) One of the 100 sampled in a box-picking dataset with the Panda

robot. In this task, both the relative angular position of the box and the position
of the object in the box (not shown for visual clarity) vary. b), ¢), d) Show

the normalized cost for 3 different optimizing planners in the box-picking task.

The median is shown of 5 independent runs for each planner with a 99%
confidence interval. Trial 1 and 2 shown in ¢), d) show the convergence plots
of RRT* BIT* and AIT* on a single, specific motion planning problem while
b) shows results considering all 100 problems. Results in aggregate differ
between Trial 1 and Trial 2 demonstrating that using a few motion planning
problems could potentially lead to incorrect conclusions.

We generated 100 feasible motion planning problems as
described in Sec. IV and benchmarked planning time for
BIEST [48] and RRTConnect [49] (we use RRTConnect with
two different “range” values, 0.05 and 0.5, which controls the
C-space expansion step). For each specific problem (an instance
of the scene), the problem was solved 20 times (with a 60
seconds timeout), for a total of 2000 data points given 100
scenes. In figures Fig. 7b and Fig. 7c you can see two different

adversarial orderings of the data. That is, for both of these
plots, we sorted the same motion planning problems in the
dataset such that problems early in the dataset have the largest
difference in average planning time between the two compared
planners. In Fig. 7b BIEST and RRTConnect with range 0.5 are
compared. The X-AXIS denotes how many problems from the
sorted problems are considered. Here, BIEST is better when
considering only 5 or 10 problems, while when considering
the entire dataset (100 problems) it is clear that RRTConnect is
more performant. In Fig. 7c, the same effect is demonstrated
between BIEST and RRTConnect with a range parameter of
0.05, with BIEST faster only after aggregating the results
from all 100 problems. This empirically shows the danger
in considering only a few problem instances for evaluation.
MOTIONBENCHMAKER provides the tools necessary to easily
create varied datasets to help avoid this problem.

Beyond planning time, this phenomenon could occur when
comparing other planner metrics, e.g., comparing the best cost
over time for asymptotically-optimal sampling-based planners,
as shown in Fig. 8. Here the experiment entails a Panda
robot grasping a cylinder from the box with similar variation
as in Fig. 7. In this example cost is defined as joint path
length, but different costs suchs as clearance or cartesian length
can be specified through the Movelt [13] interface. We show
the median of the best normalized cost found for RRT* [50],
BIT* [51], and AIT* [52]. Each planner is run 5 times per
problem, with a given 180 seconds planning time. Fig. 8c
and Fig. 8d indicate two different conclusions about which
planner performs best when considering a single problem
instance. As above, incorrect conclusions would be drawn about
planner performance in this domain if only based on a specific
problem instance—Fig. 8b shows the aggregated results over
all 100 problems, which provides a stronger conclusion. Note
that in general all datasets are prone to bias, but procedurally
generating more instances ameliorates this bias.
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Fig. 9. Timing results for three planners (BKPIECE, RRTConnect, and BIEST) in 4 environments from Fig. 6 (both geometric and sensed) on 3 different robots
(the Fetch, URS, Baxter) for a total of 12 datasets. We plan for both arms of the Baxter in the table environment while for only in the rest. In each plot on this
matrix, the value of each of the planner’s range parameters (which controls C-space expansion) is varied between O to 7, in increments of 0.25. The average
planning time over the 100 problems in the dataset for each range parameter is shown on a log scale, plotted as a line. Planning timeout was 60 seconds,
visualized as a dotted red line—lines touching the red line indicate planning timeout. Note that for many problems, specific tunings of the planners are required
to solve the problem, while no planner consistently outperforms all others, indicating their difficulty and diversity.

B. Benchmarking Results of Datasets

In this section, we analyze the results of benchmarking
12 out of the 40 datasets on both the geometric and sensed
(octomap) representations to demonstrate the difficulty of the
provided datasets. We benchmarked three bidirectional tree-
based planners, namely BIEST [53], RRTConnect [49], and
BKPIECE [54] for different values of their range parameter
as shown on the X-AXIS of each subplot in Fig. 9. We choose
these planners, as among sampling-based planners they are
typically highly performant in such tasks. Additionally, the
range parameter (used by each planner to control the rate of
expansion in C-space) is empirically known to have a significant
influence on planning performance.

Results are shown in Fig. 9. We first note that these
problems demonstrate a broad range of planning performance—
each of these planners varies in performance according to
environment and robot and there is no clear winner across
the full spectrum of problems. In several cases, even the most
performant planner has more than 1 second of average planning
time indicating the difficulty of the datasets. Moreover, note
that planner performance is comparable between the geometric
and the sensed problems, with a small performance hit in the
sensed representation. Finally, we verify that these planners are
sensitive to the range parameter, as there are clear performance
peaks for the planners at specific range values for different
problems.

VI. DISCUSSION

In this paper, we have presented MOTIONBENCHMAKER, a
new open-source tool to procedurally generate and benchmark
motion planning datasets. MOTIONBENCHMAKER supports
a robot-agnostic specification of environments, sampling new
planning problems from a specified distribution, and can gener-
ate “sensed” representations for realistic, challenging problems.

Through our experiments, we show the importance of proce-
durally generating datasets, as using only a few hand-designed
problems could potentially lead to incorrect conclusions.

In the future, we would like to continue extending the
repository of generated datasets with the help of the community,
with more robots and environments as well as supporting
sequential motion planning problems, such as in task and motion
planning. We would also like to add features that help users
profile their dataset with a set of metrics or features, e.g., space
expansiveness, to help understand what are the challenging
aspects of the proposed problem. Some of the limitations
of this work are that SE(3) and URDF sampling are only
approximations of the variability of the real world, no camera
data can be given to the planner for visual planning, and only
geometric constraints are considered. We hope to continuously
improve this tool and that it will help the community advance
the field of motion planning by supporting researchers to design
and share benchmarking datasets.
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