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Abstract— High load latency that results from deep cache
hierarchies and relatively slow main memory is an important
limiter of single-thread performance. Data prefetch helps reduce
this latency by fetching data up the hierarchy before it is
requested by load instructions. However, data prefetching has
shown to be imperfect in many situations. We propose cache-
level prediction to complement prefetchers. Our method predicts
which memory hierarchy level a load will access allowing the
memory loads to start earlier, and thereby saves many cycles. The
predictor provides high prediction accuracy at the cost of just
one cycle added latency to L1 misses. Level prediction reduces
the memory access latency by 20% on average, and provides
speedup of 10.3% over a conventional baseline, and 6.1% over
a boosted baseline on generic, graph, and HPC applications.

1. INTRODUCTION

Low memory-load latency is critical for high-performance
computing applications. Achieving low load latency is challeng-
ing because latency has been trending up as cache hierarchies
grow in capacity and complexity. Recent Intel processors, for
example, have estimated second- and third-level cache (L2 and
L3) latencies of 12 and 40 cycles, respectively [17]. The levels
of the hierarchy are typically looked up in sequence, starting
from the first-level cache (L.1) and proceeding through second-
and third-level caches. If the data is not found in any cache,
it is fetched from memory. Deep cache hierarchies generally
improve performance, but can result in higher load latencies
when caches do not successfully filter requests, only adding
lookup delays [6], [25], [39].

Prefetchers somewhat mitigate the latency impact of level-
by-level lookup by moving data between levels prior to the
execution of load instructions [13], [14], [15], [18], [19], [20],
[24], [32], [40], [41]. Despite prefetch effectiveness, many
loads are still exposed to sequential-lookup delays. Previous
work has demonstrated miss coverage of just 24% and 40% for
SPEC CPU 2006 [34] and CloudSuite [8], [9], respectively. In
fact, our analysis of a large set of benchmarks running on an
Intel Skylake processor demonstrates that many applications
are likely to benefit from non-sequential cache access, even
when cache hit rates are high.

We propose and evaluate a novel low-cost approach to
dynamically skip unnecessary cache-level lookups, reducing
the average load latency by 10— 30%. Our memory hierarchy
level predictor (abbreviated as level predictor or LP) enables
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Fig. 1. Comparing Level prediction to other solutions.

directly looking up the cache level where a block resides with
minimal memory hierarchy changes.

On an L1 miss, a (per core) LP predicts which memory levels
to target, bypassing some levels and occasionally indicating
partial parallel lookups across memory levels. The bypass
and parallel access hardware mechanisms reuse structures that
already exist in current sequential lookup implementations,
requiring only small modifications to control logic. Any mis-
predictions that incorrectly bypass a level are also handled with
cache controller modifications and reuse existing structures:
unnecessary parallel accesses are terminated by modifying
existing address matching-logic on the return path, and with a
directory, incorrect bypasses are reissued quickly.

Though the level prediction concept and our proposed
recovery mechanisms are novel, naively, the level predictor
can be implemented as a per-level cache miss predictor [?],
[23], 28], [31], [38]. Because miss predictors were introduced
to either improve instruction scheduling or for addressing the
long-latency of DRAM caches, we find that simply using, or
even naively extending prior mechanisms works poorly for
level prediction in modern core configuration. Prior cache miss
predictors require infeasibly-large resources to provide high
enough accuracy, and they squander opportunities for cross-
level coordination, especially prefetchers.

Other prior work that focuses on reducing hierarchy latency
includes parallel lookup across all cache levels and the Direct-
to-Data (D2D) hierarchy [29]. Parallel lookup is impractical
because it increases energy consumption and requires over-
provisioning tag array ports. D2D eschews traditional caches by
including placement information as part of address translation.
While appealing conceptually, D2D is challenging to adopt
in practice because the entire hierarchy, tag store, TLBs, and
coherence protocol are completely redesigned [29]. Figure 1



qualitatively compares LP with prior approaches that can reduce
cache-hierarchy lookup times, showing that LP is favorable
because our design is low cost, accurate, and offers a low-
friction adoption path with few new components that are off
the critical path, requires only small modification to controllers,
and maintain existing coherence protocols.

We are the first to propose a holistic, simple, and low-cost
solution for all misses. We extend the concept of hit/miss
prediction to level prediction and show that this is not trivial.
Stacking hit/miss predictors is both more costly and less
accurate than our predictor. Furthermore, level prediction
requires a new recovery mechanism that we architect by
reusing existing components (e.g., consulting the directory for
recovery). Thus, our approach is both performant and practical.
To summarize our main contributions:

« We demonstrate that many graph analytics and scientific
applications benchmarks can benefit from non-sequential
lookup; including applications with a high cache hit ratio.

o We architect and evaluate an effective, yet low-cost level
predictor that operates in each core on the L1 cache miss
path and substantially outperforms cache miss predictors
when incorporating prefetchers.

« We incorporate level prediction keeping to minimal mi-
croarchitectural changes; level mispredictions are handled
by utilizing the cache coherence directory and existing
address-matching logic.

« We rigorously evaluate level prediction and compare
it to an idealized baseline and to the complex state-
of-the-art D2D scheme [29]. Overall, level prediction
improves performance by 6.1% on average over a baseline
with aggressive prefetchers and modern configuration
called BaselineStrong, and 10.3% over a baseline with
configurations similar to prior work called BaselinePrior.

o Level prediction reduces cache hierarchy energy and
average load latency by 18% and 20%, respectively, as it
eliminates many unnecessary miss lookups.

II. MOTIVATION

Many applications are memory-latency bound. To study the
effectiveness of the level-by-level lookup strategy, we compare
the number of misses at different levels. If the application
shows good locality or has access patterns that are detected
by prefetchers, the number of demand load misses decreases
significantly from one level to the next. Our analysis below
demonstrates that while sequential level lookup indeed works
well for many applications that exhibit this type of behavior,
other applications suffer from unnecessary lookups as either
L2 does not successfully filter requests, or L3 provides no
substantial additional benefit over the L1 and L2 caches.

The high-level insights from our analysis are summarized in
Figure 2. The figure plots each evaluated application in terms
of its L2 and L3 effectiveness—the filtering capability of each
level of cache. The x-axis (log scale) is the ratio of L1 to L2
misses and points further on the right indicate applications for
which L2 more effectively filters L1 misses from reaching L3,
thus indicating that looking up L2 before L3 is the right strategy.
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Fig. 2. The x- and y-axes on this log-log plot represent the effectiveness of L2
and L3 at filtering misses, respectively. Each application is plotted according
to the ratio of misses filtered by each level compared to the level above it.
Applications further to the top and right work best with sequential access,
while those toward the bottom left stand to benefit most from non-sequential
level-predicted lookups.

Similarly, the y-axis (log scale) represents the effectiveness
of L3 and higher points are for applications where misses
from L2 are mostly hits in L3. Data on cache effectiveness
is collected on a 3.2GHz Intel Core i7-8700 CPU for SPEC
CPU 2017 and NAS Parallel Benchmarks applications, the
gapbs graph analytics benchmark suite, and for the hpcg, gups,
stream, spmv, and bmt kernels (see Section IV for more details
on methodology).

Using this figure, we roughly classify applications into three
categories: (1) applications outside the red box are a good fit for
sequential level lookup and are unlikely to benefit from level
prediction, (2) applications inside the green box, for which non-
sequential lookup is likely to offer significant latency reductions,
and (3) applications between the boxes where we expect that
L2, L3, or levels can be occasionally bypassed for modest
performance gains. We observe that not only graph analytics
applications exhibit poor cache effectiveness, but that many
other applications are likely to benefit from level prediction.
We provide more details below.

Sequential Lookup Effectiveness Figure 3 provides more
details on the number of misses at each cache level across
the execution duration of several applications. We expect
sequential level lookup to be the best design choice when
caches reduce the number of misses significantly. Figure 3
(a) exemplifies such behavior and shows that for hpcg (which
falls outside the red box of Figure 2), the number of misses
significantly decreases after L2 (3x reduction) and also after L3
(a further 2x decrease). This behavior is consistent throughout
execution, meaning serial lookup performs well over the course
of execution.

Many other applications, however, suffer from serial lookup.
Figure 3 (b-f) show applications where either L2, L3, or both
are not effective. If the miss rate at any level is very high,
the access latency increases unnecessarily by looking up that
level. This is especially a problem when an intermediate level,
has a very high miss rate. This behavior is common in graph
applications, which frequently exhibit poor hit rates at L2 and
moderate hit rates at L3 [3]. For example, for gapbs Triangle
Count (fc in Figure 3 (b)), we observe a similar rate of L2 and
L1 misses, indicating that L2 is ineffective. L3 only moderately
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Fig. 3. Miss trace of several applications across their execution. A gap between the miss rate (number of misses per time window) of different cache levels
indicates effective miss filtering, while lines that are close to one another suggest a cache level lookup can be bypassed.

reduces the number of misses. Therefore, almost all L2 accesses
and the majority of L3 lookups are redundant and only increase
memory access latency.

A case where L3 cache is ineffective is shown in Figure 3
(c) where the number of misses at L3 is roughly the same as
at L2, despite the fact that L3 is 48 larger. Considering the
fact that the L3 is large and has a high access latency, level-by-
level lookup only squanders CPU cycles by looking up L3 for
every single access. This problem can be exacerbated when the
application has a random access pattern as in gups (Figure 3
(d)). Generally, random behavior impairs both prefetchers and
caches, and thus almost all references to caches waste cycles
that could otherwise be spent directly looking up main memory.

While it intuitively seems that sequential accesses should
be the best choice for applications with simple access patterns,
that is not necessarily the case. For example, Figure 3 (e)
shows that despite both L2 and L3 reducing the misses for an
easy-to-prefetch application like 679./bm, the number of misses
at each level is still high. Meaning a substantial fraction of the
memory requests still needs to traverse the memory hierarchy
level-by-level wasting many cycles.

Application behavior may change during execution, and thus
using a static strategy to lookup the caches is not optimal.
Figure 3 (f) shows the miss rates for 602.gcc from SPEC CPU
2017. L2 is not very effective at the early stages of execution
(0-25 seconds), is beneficial in filtering out requests from
20400 seconds, and decreases to lower effectiveness for the
rest of execution. The hardware-level predictor can exploit this
phase-dependent behavior and skip looking up levels of the
hierarchy (L2 in this case) when they do not provide benefit.
Prefetchers. Despite progress in designing prefetchers, many
misses are left uncovered. Figure 4 shows the simulated
coverage and accuracy of numerous state-of-the-art academic
prefetchers [13], [14], [15], [18], [19], [20], [24], [32], [40],
[41]. As a matter of fact, in the best-case scenarios, prefetchers
can eliminate up to 50% of LLC misses, meaning many
accesses still access slow main memory. The average accuracy
is also low (50%-60%), meaning many unnecessary blocks
are fetched and evicted with a possible negative impact on
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Fig. 4. Coverage and accuracy of LLC prefetchers. Coverage is the fraction
of misses eliminated by prefetching, and accuracy is the fraction of useful
prefetches. In the best cases (e.g., DCPT [15]), 40% of misses are eliminated
but with high overhead of 40% inaccuracy. High inaccuracy of prefetchers
makes level prediction very challenging.

performance. We offer a new mechanism that complements
advanced prefetchers and replacement policies, rather than
replacing them. We attempt to handle those misses that even
state-of-the-art prefetchers leave for main memory.

III. LEVEL PREDICTION [{{ARCHITECTURE

A. Predictor Design Considerations

Levels to Predict. Without loss of generality, assume that
there are four memory hierarchy levels, and any given block
can reside in L1, L2, L3 and main memory. Out of these, we
exclude L1 as a prediction target for two reasons. First, many
processors use virtually-indexed physically-tagged (VIPT) L1
caches (L1 and TLB are accessed concurrently), meaning the
physical address needed for skipping L1 is not available during
the L1 lookup itself. Second, the L1 is tightly integrated with
the core pipeline, and we choose not to disrupt its timing or
design. We do include L2 as a level prediction target because
our evaluation results indicate that skipping L2 lookups offers
substantial speedup in many of the applications that benefit
from level prediction. Additionally, our level predictor is simple
and scalable, and can be extended to predict more levels, if
required.



Level Prediction Approach. A level predictor must determine
whether to skip L2 lookup, L3 lookup, or both. This is distinct
from prior work on miss predictors and we find that such prior
approaches cannot be directly extended to level prediction
despite the fact that level prediction can be performed as a
set of per-level hit/miss predictions. The primary reason is
that the resources to accuracy characteristics of prior miss
predictors, especially if considered for multiple levels, cannot
be incorporated in an L2 and queried per L1 miss.

In particular, miss predictors based on classic binary predic-
tors [28], [31], [38] require large tables to achieve high accuracy
in the presence of sophisticated prefetchers. We demonstrate
this by extending the TAGE-based predictor of Sim et al. [31]
to provide ternary level predictions (L2, LLC and main
memory). We find the alternative “miss map” approach to miss
prediction [23], [26], where per-address presence information
is maintained at a specific cache level, more suitable for level
prediction yet shows that sophisticated extensions are required.

Our design-space exploration identifies several crucial issues
with prior miss-prediction designs, even when extended to LP.
We find that the MissMap approach requires tables that are
too large for the tight resource budget of LP while the history-
based predictors work poorly in the presence of advanced
prefetchers, unless significant additional storage resources
are made available.

Impact of Prefetchers. One important reason for the poor
performance of stacked miss predictors is the presence of
advanced prefetchers. While prior publications report very
high prediction accuracy for a range of history-based PC-
indexed [28], [38] and address-indexed [26], [31] miss predic-
tors, prior evaluations did not include sophisticated prefetchers.
We find that prefetchers add “noise” to the hit/miss history
and substantially degrade history-based predictor accuracy. We
evaluate a range of predictors with and without advanced
prefetchers and find that prefetchers necessitate much larger
prediction structures.

Furthermore, there is an opportunity for coordinating the
prefetcher and level predictor: the prefetcher may update the
level predictor about data movement within the hierarchy to
improve prediction accuracy. We add such updates to both
our LP-extensions of prior miss predictors and to our own LP
design described below. We find that even with such updates,
history-based predictors perform poorly because either the
additional histories from prefetches or the additional entries
introduced by prefetch updates overwhelm the prediction tables
at sizes that are reasonable for the tight LP resource constraints.

B. Cache Level Predictor Microarchitecture

Given the level prediction considerations described above,
we opt for a novel LP microarchitecture that is inspired by
the MissMap approach [23] but extends it in three critical
ways (Figure 5). First, we extend the MissMap to a location
map (LocMap), which provides the location of each block
(L2, L3, or MEM), requiring 2 bits of metadata per block.
Second, the original MissMap is implemented as a cache and

loses all information about a block when a MissMap entry is
evicted. We find that this either requires a very large MissMap
table or leads to low LP accuracy. Instead, we implement the
LocMap as an in-memory table containing location information
for every block in physical memory, which is cached in a small
metadata cache. The metadata is memory-mapped to a reserved
physical address range (cf. [10]) and the metadata cache is
connected to the memory hierarchy through the L2 cache with
L2 cache-block granularity accesses. The long-term location
information is then available even after an eviction. Third,
because the metadata cache is small and full LocMap access
has high latency, we add a small history-based Popular Level
Detector that provides fast level prediction on a metadata cache
miss. This history predictor requires just three counters.

The LP is physically integrated with the L2 cache in each
core and communicates with the LocMap through the LLC.
When a block is evicted from an LP cache, it is written back
to the LLC. When a block is needed by an LP it is requested
through the LLC. With this design, the LP does not require
new interfaces to memory and benefits from LLC caching.

The level predictor requires 4 pieces of information from L2
and L3 to keep track of locations. All information eventually
flows to the off-chip LocMap through the LP caches. Informa-
tion on (1) L2 fills (demand and prefetch) and (2) L2 evictions
is available within the L2. Information on (3) LLC prefetcher
fills and (4) LLC evictions are communicated back to LPs from
the LLC controller. For evictions, we assume the LLC tracks
which core installed the block and informs only the LP in that
core. Similarly, on an LLC prefetch fill, we inform the LP
in the core whose L2 miss triggered the LLC prefetch. Such
“source core” tracking is needed for (some) cache-partitioning
mechanisms as well, so is not in itself novel or unique. We
emphasize that LocMap updates are not broadcast across the
NoC and incur low overhead.

C. LocMap and Location Tracking

The LocMap is a flat table in system-reserved physical
memory and is accessed with the same granularity as the data
cache. The LocMap holds the level information of all memory
blocks using 2 bits of metadata (there are 3 possible levels
to predict: L2, LLC and main memory). Each 64-bit LocMap
entry holds location information of 32 blocks. To provide fast
access to LocMap, hot metadata is cached on-chip. For 64B
cache blocks, this metadata scheme incurs only 5% =0.39%
overhead.

LocMap Access. The LocMap is accessed (through the
metadata cache) on every L1 cache miss, and when it is
updated. Each block in physical memory is mapped to an
entry in LocMap. Hence, to access the LocMap, we need to
generate an address from the block’s physical address. To do
so, we employ a simple one-to-one mapping. We assume that
the base address to the LocMap table is set by the operating
system and that the memory access granularity and cache
blocks are 64B. Each 64B cache block requires 2 bits in the
LocMap such that information for 256 cache blocks fits into a
single 64B block of the LocMap (matching the memory access
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Fig. 5. The proposed architecture.

and cache granularity). , the memory address corresponding,
the memory address corresponding to a LocMap entry is:
LocMap Address = Base Address + Physical Address >> 14.
This physical address of a LocMap block is first looked up
in the per-core LocMap metadata cache, which is filled on a
miss through the data cache hierarchy and main memory.
LocMap Update. Level prediction does not need to be 100%
accurate. Hence, we can carefully trade accuracy for power-
efficiency. This can be achieved by updating the LocMap on
certain events. We update the LocMap only on demand cache
fills, dirty evictions, and prefetch fills that are metadata cache
hits. Thus, the LocMap may hold possibly-stale information
because it is not updated on all events happening in the
cache. Prefetch fills that are metadata cache misses do not
update the LocMap because the traffic this would incur
with our aggressive prefetchers is substantial and not worth
improving the already-high prediction accuracy (see Section V).
Because of the aggressive prefetchers, there are frequent
clean evictions and these do not update the LocMap as well.
Finally, to avoid changes to the coherence protocol and actions,
coherence-induced level changes (i.e., invalidations) are also
ignored. Again, staleness is tolerable because the predictor
already performs well and because misprediction recovery is
inexpensive.

Metadata Cache. The sizing of the metadata cache is impor-
tant. If the miss ratio is too high, the problem is two-fold.
First, many off-chip requests are issued to update the LocMap.
Second, the prediction accuracy may degrade as we have to
rely on the statistical Popular Level Detector, which is less
accurate than the LocMap. At the same time, the size of the
LocMap metadata cache is constrained to maintain low access
latency and energy—the benefits of level prediction can easily
be overwhelmed by an expensive predictor. We show this in
the evaluation by demonstrating the detrimental impact of a
higher-energy predictor, for example.

We experimented with a range of sizes and concluded that a
2KB, 2-way set associative cache best balances these tradeoffs
and offers the minimal predictor-energy point across multiple
benchmark suites: SPEC CPU 2017, GAPBS, NAS, and other
applications (bmt, hpcg, spmv, gups, and stream. We find that
a predictor with a 1KB LocMap metadata cache relies too
frequently on the Popular Level Detector and suffers from
lower accuracy, while the accuracy benefits of 4KB and 8KB
metadata caches are negligible.

D. Popular Levels Detector

When there is a miss in the metadata cache, it is not possible
to wait to fetch the LocMap entry from main memory because
this takes longer than the cache lookup itself. One option is to
follow a serial access pattern and predict L2 as the location of
the block. However, this option is too conservative and does
not cover applications with high metadata cache miss ratios
such as pr, bc, tc of the GAPBS benchmark suite. Hence, in
conjunction with the LocMap, we devise a simple counter-
based mechanism to find the most frequently accessed levels
and suggest those as the prediction target(s).

Because the metadata hit rate is relatively high (95% on
average across 37 applications), we can be more aggressive
on (relatively rare) misses and predict more than one level to
increase the prediction accuracy. This is particularly helpful
if the counters are not strongly biased toward one level. If
one level is suggested, we call the prediction a single-way
prediction, and a multi-way prediction otherwise. Multi-way
prediction for uncertain cases increases the prediction accuracy,
but requires a more complicated lookup.

We use 3 counters, one per cache level and main memory.
Upon a hit at a level the corresponding counter is incremented
by 1 and others are decremented by 1. This helps to rapidly
find popular levels and prevents counter saturation. When
a prediction is required, candidates are selected as follows.
The counters are sorted and the topmost is picked as the
first candidate. If its counter is higher than a threshold, then
only this level is selected as the level to look up. Otherwise,
the level with the second highest counter is also considered
to be a possible destination (two parallel lookup targets). If
again the sum of the first and the second counters does not
reach a predefined threshold, the third level is also included
(three parallel lookup targets). Hence, depending on the counter
values the locality predictor may issue single- or multi-way
predictions.

E. Misprediction Detection and Recovery

Mispredicting a level that is closer to the core than the
actual cache level does not require detection and recovery, and
is simply a lost opportunity to reduce latency. For example,
if the block is only in main memory and LLC is suggested,
then not looking up L2 saves cycles, but looking up the LLC
wastes CPU cycles; MSHR [22] entries are still allocated along
the request path and will be eventually filled as the response
arrives. Therefore, this type of misprediction is safe as it does
not violate correctness or functionality.

However, mispredicting a miss and bypassing a level that
has more up to date data does require recovery as stale data
is fetched. For example, if data is present in L2, but only L3
is suggested by the level predictor, then stale data may be
incorrectly fetched from L3. To cope with this problem, we
slightly modify the directory controller. Normally, the directory
is checked to make sure that private caches of other processors
are not holding the data block. When level prediction bypasses
L2, we also check the directory, as we may have skipped
the private cache. Fortunately, this can be done effectively
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for free. Recent processors collocate the directory with LLC
tags, meaning when the cache is looked up, the information
of the directory is also available [36]. This enables simple
misprediction detection.

Another misprediction type is where main memory is
predicted while the block is actually cached. This misprediction
is also detected by the directory, which is queried in any case
before accessing main memory.

We change the cache controller to raise a signal when a
misprediction is detected. Misprediction recovery first issues
a packet to the actual level, requesting to satisfy the pending
request and then deallocates all MSHR entries past the actual
level. This can be implemented as a new transaction over the
shared bus.

We present examples of detection and recovery schemes
from the simplest (one-way correct prediction) to the most
complex (multi-way wrong prediction) case below.

One-way correct prediction. Figure 6 (a) shows an example
for one-way correct prediction. Assume the predicted location
is LLC, and the block is present in the LLC (green box). When
an L1 miss occurs, an MSHR entry is allocated in L1 and
the request is sent to L2 (€)). Then without accessing L2, an
MSHR entry (denoting an L2 miss) is allocated in L2. Hence,
L2 is bypassed and the request is forwarded to the LLC (@).
Note that allocating an entry in the MSHRs for bypassed levels
(in this case L2) is necessary, otherwise it would be impossible
to fulfill the request later on the fill path. At the LLC, the
tag-store is checked (@). Since, the block already exists in the
cache and the directory confirms that the block is not stale,
the LLC responds to the request (@). The block is sent to L2

and the L2 MSHR is deallocated, and it is filled into L2 (@).

Finally, the block is forwarded to L1 which responds to the
CPU request (@).

One-way wrong prediction. Figure 6 (b) shows an example
where a block is present in L2, but the predictor suggests
LLC. In this example, steps €, @, and @ are the same as
before; MSHR entries are allocated in L1 and L2 and the
request is subsequently sent to the LLC. However, when the
tag store is looked up in the LLC, the extended way information
indicates that the block is present in L2 @. Thus, the cache
controller sends a new request to L2 to fulfill the request @.

In L2, the block is found and is forwarded to L1 @. Also, a
signal is raised to deallocate the L2 MSHR entry @. The only
modification here is to add the ability to cache controller to
deallocate the MSHR entry.

Multi-way wrong prediction. Figure 6 (c) shows an example
where LLC and DRAM have been suggested as targets by the
predictor, but the block is present in DRAM. Steps @, @, and
© are the same as in both the previous examples. However,
when the packet reaches to LLC, both LLC and directory are
accessed (steps @ and @ are simultaneous actions), and after
finding the location of the block which is the main memory,
the request is forwarded to the main memory. Finally, when
the request comes back, it can follow the normal path that any
miss sourced in DRAM can take. Note that in our design the
directory and LLC tags are collocated, thus as soon as the tag
is accessed, the request is sent to main memory.

1V. EVALUATION METHODOLOGY
A. Simulated Systems

We use the gem5 full-system cycle-level simulator to conduct
the experiments [12]. We model a 3-level cache hierarchy where
L1 and L2 are inclusive and private and L3 is non-inclusive
and shared. L1 and L2 are parallel caches where tag and data
stores are accessed in parallel with access latencies of 4 and 12
cycles, respectively. L3 is a sequential cache with latencies of
15 cycles and 25 cycles for tag and data, respectively. There is
a first-level TLB of 64 entries, a second- level TLB with 3072
entries that are equally partitioned between 4KB and 2MB
pages (1536 each). The L2TLB is 4-way set associative with
a 4-cycles access latency. There are 2 page walkers per core.

We compare the final level predictor configuration described
in Section III-B with the following systems:

(1) BaselineStrong: a realistic system configuration with an
advanced prefetch scheme (Table 1);

(2) BaselinePrior: a weak-prefetcher configuration that matches
the best methodology used in prior work (Table I);

(3) 2KB and 8KB TAGE-based level predictors. We augment
each entry of TAGE with 3 counters representing the three
memory levels. Having three counters, we use similar heuristic
as in Popular Level Detector to suggest a level. We compare



both a 2KB TAGE-based level predictor that has comparable
predictor energy to our final design but suffers from more
mispredictions and to an 8KB TAGE (accuracy competitor)
that approaches the accuracy of our final design, but which
consumes far more energy;

(4) D2D [29]: a design that extends TLB entries with location
information of the blocks (levels and ways), thus traversing
the memory hierarchy with a single lookup. D2D relies on a
centralized cache-like structure called Hub to keep track of
location information. D2D has a high implementation cost, but
offers high energy efficiency high accuracy. We assume that
the D2D Hub is an 8-way 4KB cache. Additionally, we assume
that the eTLB requires 10% higher energy per access as it
increases the length of entries [29]; and

(5) Ideal: a system where misses do not incur any performance
penalty; we configure a O-cycle miss latency with other
functionality of the simulator remaining the same (e.g., MSHR
misses are still counted for misses).

B. System Configuration

We experimented extensively with a wide range of state-
of-the-art prefetchers and their combinations. The highest-
performing scheme overall in our experiments uses the DCPT
prefetcher [15] with degree 2 in L3, stride prefetchers of degrees
2 for L2, and BOP [24] for L1 with a degree of 1. DCPT
exhibits the highest coverage and high accuracy (Figure 4) and
worked well in combination with the L1 and L2 prefetchers.

We also find that always enabling these prefetchers signif-
icantly degrades system performance for some applications
(e.g., 605.mcf) because the prefetchers contend too strongly
with demand requests. We therefore implement two prefetch
throttling mechanisms. In the first scheme, we reserve 25%
of MSHR entries for demand accesses, which decreases the
prefetch rate and maintains some minimum demand request
service. The second throttling mechanism is that we monitor
the performance of the prefetcher periodically and disable a
prefetcher when its accuracy drops below 40%. Specifically,
in each epoch of 10 million accesses, the prefetchers operate
for the first 1 million accesses, then the prefetcher accuracy
determines if the prefetcher remains enabled for the following
9 million accesses.

We simulate out-of-order cores with a fetch width of 4
instructions, 192 ROB entries, and 64-entry store and 32-entry
load queues. The frequency of the system is set to 4 GHz.

We use a single DDR4-2400 x64 channel (one command
and address bus), with timings based on a DDR4-2400 8 Gbit
datasheet (Micron MT40A1G8) in an 8 x 8 configuration. Total
channel capacity is 16GB. This maintains a reasonable core-
to-memory ratio for the simulations.

C. Benchmarks

We evaluate the applications of: (1) SPEC CPU 2017 [33],
(2) GAPBS [11] (pr, tc, cc, bfs, and bc), (3) NAS (cg, ft, is,
mg, and ua) and (4) bmt, hpcg, stream-copy, and gups. In the
evaluation section we report averages for the full benchmark
suites, but choose to highlight 21 applications to maintain

TABLE I
EVALUATED SYSTEM CONFIGURATION.

Processor Single and Quad-core, 4.0 GHz, Ubuntu 16.04 OS.
ROB:192, LQ:64, SQ:64, Fetch-width=4

L1 Cache 32kB 4-way; LRU; 4 cycles. Prefetchers: BaselinePrior
[29], [30]: Stream, BaselineStrong: BOP with degree=1

L2 Cache 256KB 8-way; LRU; 12 cycles, Prefetchers: BaselinePrior
[29], [30]: None, BaselineStrong: Stride with degree=2

L3 Cache 2MB single-core and 8MB multi-core; 16-way; Sequential
cache (15+25). Prefetchers: BaselinePrior [29], [30]: None,
BaselineStrong: DCPT prefetcher degree of 2

Main Memory 16 GB: DDR4-2400 x64, 8x8 Micron MT40A1G8

TABLE I
MULTI-PROGRAM AND MULTI-THREADED APPLICATIONS.

mix1: GAPBS.bfs, lbm, NAS.lu, bmt
mix3: omnetpp, GAPBS.pr, cam, NAS.cg
mix5: GAPBS.bfs, Ibm, wrf, NAS.bt
MT1: GAPBS.pr with 2 threads

mix2: roms, NAS.mg, fotonik3d, gcc
mix4: cam, NAS.cg, wrf, NAS.bt

MT2: GAPBS.pr with 4 threads

readability of figures. We pick 12 applications that we expect
to highly-benefit from level prediction (within the green box of
Figure 2) and 9 applications that we expect to exhibit smaller
benefits (from within the red box).

All SPEC CPU applications are run with the reference inputs.
We use the Twitter [1] dataset for GAPBS, with the exception
of fc that uses a synthetic graph of 2%° nodes. For NAS, input
class C is used. For gups, we replace the random generator
with the C++ built-in random generator to ensure that the
table is randomly accessed. The table size is 8GB and 4
million locations are accessed. We compile all benchmarks
with gcc/gfortran and -O3 flags.

We use the SimPoint methodology [16] to find representative
regions of each application. We use 2 SimPoints of 250 million
instructions each and 250 million instructions of warmup. For
kernels (gups, stream, bmt), we annotate the code with gem5
pragmas to simulate just the region of interest.

For multi-core evaluation, we use a set of multi-program
and multi-threaded applications listed in Table II. We use level
prediction accuracy from single core simulation to observe how
different applications with high, medium, and low prediction
accuracy interact. From application mixes, mix1, mix3, and
mix5 have 2 high expected benefit applications (green box) and
2 expected medium benefit applications (red box), mix2 has 1
high-benefit application and 3 medium-benefit applications (red
box), and mix4 has 4 expected medium-benefit applications.
For multi threadeds, we focus on GAPBS.pr with 2 and 4
threads. Given the GAPBS.pr has one the lowest single-core
hit prediction accuracy, we can observe how level prediction
accuracy changes as the contention increases, and how the
accuracy is impacted as the LocMap does not update the
prediction table on snoop invalidations.

V. EVALUATION RESULTS
A. Single-Core Performance

Figure 7 and Figure 8 show the IPC improvements for
the 2KB and 8KB TAGE predictors, D2D, our final LP,
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Fig. 9. Single-core memory access latency.

and the idealized system, when normalized to BaselinePrior
and BaselineStrong, respectively. The geomean speedups for
BaselinePrior/BaselineStrong are: 2KB-TAGE 9%/3.8%, 8KB-
TAGE 9.4%/4.8%, D2D 11.2%/6.3%, final LP 10.3%/6.1%,
and Ideal 11.6%/6.7%.

There are two key takeaways overall. First, the final LP
is within 90% of the ideal speedup and within (95%) of the
far more intrusive D2D architecture, on average. At the same
time, LP offers both far better, and more robust performance
improvements than when adapting prior miss predictors to level
prediction. The second key takeaway is that prefetchers have
a big impact on the relative success of the different schemes.
With the poor prefetchers of BaselinePrior (mirroring prior
work), the impact of reducing miss latency is greater and the
relative performance of all the schemes is closer to that of
the idealized system. With the more realistic prefetchers of
BaselineStrong, the potential speedup is lower, and importantly,
the benefits of LP remain far more robust and closer to ideal

than with the TAGE-based approach. This is especially evident
for benchmarks for which prefetching is highly effective, such
as stream and 619.1bm.

We make four additional important observations on the
realistic results of BaselineStrong (Figure 8). First, with two
exceptions, speedup correlates well with the level-prediction
potential discussed in Section II and summarized in Figure 2.
The largest speedup is achieved for those applications for which
sequential lookup is harmful (application within the green box
in Figure 2): 619.1bm, 649.foton, all the gapbs applications,
and gups. The first exception is 605.mcf where speedup is just
3%. The results of a top-down microarchitecture analysis [37]
show that 605.mcf is both memory-bound (35%) and front-end-
bound (31%). This, together with relatively high memory-level
parallelism, limits the potential benefit of level prediction. The
second exception is nas.is, which falls outside the green box
of Figure 2 but still exhibits high speedup. We attribute this
anomaly to the better prefetchers available on the commercial
Intel core compared to our simulated processor. Indeed, when
performing the same analysis with our simulated result, nas.is
falls within the green box.

The second observation is that bypassing L2 is very useful.
Bypassing L3 lookup and directly accessing memory instead
has somewhat higher benefits than skipping the much-lower
latency L2, but bypassing L2 is still very useful. Even just
bypassing L2 offers > 5% speedup for many applications.

Third, LP nearly matches the speedup of Ideal and D2D
in all but two cases: 650.roms and nas.is. Both benchmarks
exhibit high speedup potential and lower prediction accuracy
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compared to other applications with high-speedup potential. As
discussed below and shown in Figure 12, LP only successfully
bypasses a relatively small fraction of accesses (40%), while
also requiring recovery relatively frequently (20%). The other
two similar applications are 605.mcf and nas.ft, but those offer
minimal speedup opportunity. The reason for the large speedup
difference with nas.is is different. For nas.is, the LP relies
heavily on the PLD, which frequently suggests parallel 1.2
and L3 access. This increases pressure on the cache ports,
realizing lower speedup than Ideal and D2D, which do not
attempt parallel accesses.

Finally, Figure 9 shows the average memory access latency
for LP and Ideal. BaselineStrong is shown with a red line. The
average memory access latency is improved by 20% on average.
Graph applications obtain lower memory access latency with
LP because they have high miss ratios at all levels and avoiding
those unnecessary lookups helps reduce memory access latency.
The trends match the speedup trends overall.

B. Prediction Accuracy

The LP predictions may be: (1) correctly predicted sequential
(sequential); (2) correctly predicted skip (skip); (3) wrongly pre-
dicted sequential (opportunity loss); or wrongly predicted skip
requiring recovery (harmful). Additionally, some predictions
are multi-way and add some overhead despite reducing access
latency. The overall prediction accuracy (Figure 12) is very
high. Only 605.mcf, 620.omnetpp, 649.foton, 654.roms, and
nas.ft exhibit accuracies under 90%, and only gups and nas.is
exhibit non-negligible lost opportunities. It is also clear that
LP correctly identifies a large number of useful non-sequential
lookup opportunities.

Interestingly, the lower accuracies are not a result of high
LocMap metadata cache miss rates. As shown in Figure 13,
those applications with lower accuracies still exhibit reasonable
metadata cache hit ratios and high accuracy LDP predictions.
Instead, the mispredictions are a result of stale LocMap informa-
tion originating from a combination of aggressive prefetchers
and poor metadata cache locality. When the prefetchers are
aggressive, more clean lines are evicted without updating the
LocMap. When the metadata cache replacement rate is high, a

larger number of prefetch fills miss in the metadata cache and
also do not update the LocMap.

Figure 13 also demonstrates the importance of the Pop-
ular Levels Detector (PLD). Several benchmarks (605.mcf,
620.omnetpp, gapbs.bc, gapbs.pr, gups, and nas.is) exhibit high
LocMap metadata cache miss rates, but those misses use the
PLD, which offers high accuracy for these benchmarks. Note
that the figure shows the PLD accuracy only considering those
accesses that use it (metadata cache misses).

There are two reasons for the high accuracy of the PLD.
The first is that some applications exhibit clear cache-level
usage patterns, as discussed in Section II and summarized in
Figure 2. For example, gapbs.bc and gapbs.tc exhibit very low
hit rates in both L2 and L3, allowing the PLD to frequently
suggest skipping both levels.

The second reason is that the PLD can suggest multi-way
access to multiple levels in parallel, and thus not mispredict but
with access overhead. This is shown in Figure 14 with good
examples being: 620.omnetpp with 25% of PLD predictions
suggesting all levels in parallel, gapbs.pr with 35% of PLD
predictions of parallel accesses to memory and L3, and nas.is
with 50% of PLD predictions requesting simultaneous access
to L2 and L3. However, for the most part multi-way prediction
is rare.

C. Cache Energy Dissipation

We use CACTI to obtain energy per access and then
accumulate the total energy. There are two major contributors
to the energy consumption of predictors: (1) how frequent
the structures are accessed to update and for prediction,
and (2) how frequently we have to refer to the directory
because of mispredictions. D2D also has two sources of energy
overhead: (1) accessing larger TLB entries, and (2) updating
the Hub on TLB misses and new insertions. While there are no
mispredictions because D2D is a precise scheme, applications
with a high TLB miss rate (e.g. is) need to access the hub
more frequently, and energy consumption increases. Note that
our energy analysis here refers to access energy alone and does
not account for the additional energy savings resulting from
the higher performance provided by level prediction.

Figure 15 shows the energy consumption of LP normalized
to the baseline system and also compares this energy to the
2KB and 8KB address+history TAGE variants. We make four
important observations. First, our LocMap + PLD predictor is
substantially better than either TAGE variant. The 2KB TAGE
has the same access energy as the LP, but its accuracy is far
lower, which increases recovery overhead. In contrast, the 8KB
TAGE offers similar (just slightly lower) prediction accuracy,
but its access energy is far higher, resulting in significant
additional cache-hierarchy energy.

The second observation is that LP saves energy in all but two
cases, with an average energy saving of 16%. The predictor is
accurate and the recovery scheme simple, such that on average
only 1% of the cache-hierarchy energy is spent on recovery.

The third observation is that in the two cases where energy
is slightly increased, the overhead was a result of the very
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Fig. 14. Levels suggested by the level predictor.

small benefit opportunity available. In 620.omnetpp, the energy
overhead was the result of frequent all-level predictions by the
PLD, while for nas.ft the overhead was a result of the low
potential coupled with a relatively low prediction accuracy of
just 80%, and nearly all of those were for sequential lookup.
Finally, D2D also has overheads and can only improve on our
LP by 3% on average.

D. Multi-Core Results

For multi-core simulation, we enable one LP per core.
Figure 10 shows the predictor accuracy for the five multi-
process mixes and the multi-threaded applications. Overall,
LP accuracy with four cores is lower than with a single
core. This is because contention on LLC is greater while
prefetch aggressiveness is also substantially larger because
more prefetchers operate in parallel. Still, accuracy is high
with the exception of mix4. For multi-threaded applications,
we run gapbs.pr with 2 and 4 threads on a 4-core processor.
While accuracy changes a little between 2 and 4 threads, both
harmful and opportunity-loss mispredictions are more frequent
than a single thread. This is expected because not only there
are greater LLC contention and prefetch aggressiveness, but
there is also some degradation in LocMap accuracy. This is
because the LocMap is not updated with coherence events and
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because the LocMap uses a single entry per block even though
it may or may not be cached in multiple private L2 caches.

Figure 11 shows the speedup and relative energy-efficiency
improvement for the mixes. Notably, level prediction always
provides some speedup and cache-energy improvement. For
multi-program mixes, mix/ has the highest IPC improvement
(13%), and mix4 has the lowest (1.2%). The main reason is that
mix4 is composed of four low-MPKI applications and offers
minimal speedup potential, whereas mix/ has 4 very high
MPKI applications and offers high speedup potential. Overall,
the speedup geomean with LP is 6%, achieving a large fraction
of the potential 7% geomean speedup of the idealized system.
Energy efficiency is improved by an average (geomean) of 8%,
which is again, more than 85% of the potential energy benefits
of the ideal case.

For multi-threaded applications, speedup improves as the
thread count increases. This is despite the prediction accuracy
slightly decreasing because of higher LLC contention. This
same LLC contention, however, also increases speedup potential
because memory is accessed more frequently.

E. Sensitivity Analysis

Figure 16 compares the average normalized IPC across all
applications for 5 experiments: (1) the Baseline system with a
slower LLC (55 cycles) to represent new machines with large
LLCs, (2) the Baseline system; (3) Baseline but with a more
aggressive core (ROB=224); (4) system 3 plus a larger LSQ
(96 entries); and (5) system 4 (ROB=224, and LSQ=96) with
a parallel-lookup (faster) LLC.

We normalize the IPC with level prediction to that of the
same configuration of each experiment without level prediction.
Speedup geomeans of the 5 systems are 7.8%, 6.1%, 5.5%,
5.4%, and 4.7%. The overall improvement decreases as the
systems become more aggressive. However, even for the
most aggressive configuration, level prediction provides 4.7%
speedup compared to the clearly aggressive baseline.

F. Bandwidth Analysis

The level predictor has two possible sources of bandwidth
overhead: (1) communicating metadata with the LocMap; and
(2) mispredictions that suggest skipping all caches while the
data is on chip. The LP cache exhibits high hit ratios (>91%
shown in Figure 13 first bar) because each cache line covers
16KB of addresses. Coupled with effective LLC LocMap



—— Baseline Energy B L2+L3 [ Predictor [ Misprediction
14-

? 12-

q1.0-

M og- TAGE-2KB
2 06- TAGE-8KB
g 04- D2D

© 02- LP

/& 0.0 -

X & % %
q’ Q‘) $° o $\.§'\d} b}o & .0%' ’5’% & 'o% c,"o & %‘ & & ‘b%&"ov o‘b &0
¢ & Gl c‘f‘ F &S s

Fig. 15. Energy normalized to the BaselineStrong. The bars are 8KB-TAGE, 2KB-TAGE, D2D, and LP (left to right per benchmark); Ideal is "L2+L3” only.

UHII[

LP+slow LLC (35 + ROB (224) +LSQ (96) {Parallel L3 (40
cycles) cvcles)

Fig. 16. Sensitivity analysis to ROB size, L.SQ size and LLC latency for
a single core evaluation (average of all benchmarks). We evaluated LP in
previous section.

caching (98% of LLC metadata hit ratio shown in Figure 13
second bar), negligible off-chip bandwidth is consumed. The
directory stops mispredictions from unnecessarily accessing
main memory.

G. Extending LP to Processors with Snoop Filters

LP is currently described and evaluated for a full directory,
however non-inclusive caches with snoop filters are also easily
supported. Snoop filters track all L2 blocks but are allowed to
not track all LLC blocks. While our directory-based recovery
is no longer guaranteed, the necessary changes to recovery are
minor: If the snoop-filter lookup returns ‘not-present’ for a
block that is incorrectly predicted as bypassing L3, the block
is simply dropped at L3 insertion time. We expect the impact
of the slower recovery to be small given the high LP accuracy
and the good coverage of snoop filters (e.g., ARM recommends
covering 75% of total cache capacity [7]).

H. Overhead Analysis

Our design requires only a 2KB metadata cache per core
as well as three 32-bit wide counters. For each 64B-block
in physical memory 2 bits are assigned leading to a memory
overhead of 0.39%. The directory remains unchanged, and only
the cache controller is notified with a mechanism to deallocate
the MSHR entries on a misprediction.

VI. RELATED WORK

Per level hit/miss predictor is either used in front of L1
cache [26], [38] to handle instruction scheduling better, or
only employed at L4 caches [23], [28], [31]. The insight
behind L4 hit/miss prediction that the miss penalty is high, and
blindly accessing cache incurs high performance and power
consumption costs. Our proposal extends such a solution to all
memory hierarchy, which is getting deeper recently.

D2M [30] finds the location of a block in the memory
hierarchy with a single lookup. D2M separates metadata from
the data hierarchy, and uses pointers to forward each request to
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its destination. D2M requires significant changes to the current
processor, such as enlarging TLB entries and adopting a new
coherence scheme.

Cache bypassing [21], [35] selectively insert data blocks in
the cache. Because many applications with streaming behavior
have little reuse, this bypassing retains more valuable data on-
chip. Way prediction reduces energy consumption by avoiding
searching all ways to match the tag [27].

Software prefetching is an appealing solution to reduce
memory access latency for applications with complex address
patterns [3], [4], [5]. This technique is useful when the memory
access pattern is complex and thereby cannot be captured by
hardware prefetchers Pro-actively finding the best time slot
to issue the software prefetch request has been studied in [2].
Event-driven software prefe tch generation has been proposed
in [4]. Although software prefetch can increase the coverage
to almost 100%, it severely suffers from lack of timeliness. its
effectiveness.

Many spatial and temporal prefetchers have been proposed in
the past decade [3], [4], [5] [13], [14], [15], [18], [19], [20], [24],
[32], [40], [41]. Spatial prefetchers rely on spatial behavior of
access patterns to predict the next address, and require complex
logic to detect access patterns. Temporal prefetchers record
past addresses and use them for future predictions, and need a
significant amount of metadata to record past sequences. Such
prefetchers peak at ~ 40% miss coverage [9].

LP achieves high accuracy with a simple table. In contrast to
D2D and D2M [29], [30], the overall system design remains un-
touched because LP utilizes existing resources and mechanisms.
Our unified predictor needs smaller space and attains better
accuracy as it aggregates information from multiple levels and
incorporate information from the prefetchers.

VII. CONCLUSION

We propose a cache level predictor in order to enhance the
lookup strategy in multiple-cache setting. This technique filters
unnecessary accesses to intermediate levels, and thus reduces
the cumulative miss latency. The proposed system enhances
the IPC by 6.1% compared to the baseline.

VIII. ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their valuable
feedback and suggestions. The authors acknowledge Texas
Advanced Computing Center (TACC) for providing computa-
tion resources. This work was funded by the National Science
Foundation Grant #1719061.



[1

—

[2]

[3

[t

[4]

[5]

[6

=

[7

—

[8]

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

“Twitter graph.” [Online]. Available: http://an.kaist.ac.kr/~haewoon/
release/twitter_social_graph/twitter_rv.tar.gz

S. Ainsworth and T. M. Jones, “Graph prefetching using data
structure knowledge,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS 16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2925426.2926254

S. Ainsworth and T. M. Jones, “Software prefetching for indirect memory
accesses,” in Proceedings of the 2017 International Symposium on Code
Generation and Optimization, ser. CGO ’17. IEEE Press, 2017, p.
305-317.

S. Ainsworth and T. M. Jones, “An event-triggered programmable
prefetcher for irregular workloads,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS *18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 578-592.
[Online]. Available: https://doi.org/10.1145/3173162.3173189

S. Ainsworth and T. M. Jones, “Software prefetching for indirect
memory accesses: A microarchitectural perspective,” ACM Trans.
Comput. Syst., vol. 36, no. 3, Jun. 2019. [Online]. Available:
https://doi.org/10.1145/3319393

R. Alves, A. Ros, D. Black-Schaffer, and S. Kaxiras, “Filter caching for
free: The untapped potential of the store-buffer,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA *19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
436-448. [Online]. Available: https://doi.org/10.1145/3307650.3322269
ARM, “https://developer.arm.com/documentation/100023/0100/functional-
description/operation/snoop-filter?lang=en.”

M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 20/8 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Feb 2018, pp. 131-
142.

M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Bingo spatial data prefetcher,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2019, pp.
399-411.

A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, p. 237-248, Jun. 2013. [Online]. Available:
https://doi.org/10.1145/2508148.2485943

S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP
benchmark suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available:
http://arxiv.org/abs/1508.03619

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, Aug. 2011.

S. R. Brown N. T., “Sandbox based optimal offset estimation,” in DPC2,
2014.

M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction
fetch,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-44. New York,
NY, USA: ACM, 2011, pp. 152-162. [Online]. Available: http:
//doi.acm.org/10.1145/2155620.2155638

M. Grannaes, M. Jahre, and L. Natvig, “Multi-level hardware prefetching
using low complexity delta correlating prediction tables with partial
matching,” in Proceedings of the 5th International Conference on High
Performance Embedded Architectures and Compilers, ser. HIPEAC’ 10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 247-261.

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and
more flexible program phase analysis,” J. Instruction-Level Parallelism,
vol. 7, 2005. [Online]. Available: http://www.jilp.org/vol7/vT7paper14.pdf
Intel, “Intel® 64 and ia-32 architectures optimization reference manual,”
2017.

Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for data
cache prefetch,” in Proceedings of the 23rd International Conference on
Supercomputing, ser. ICS ’09. New York, NY, USA: ACM, 2009, pp. 499—
500. [Online]. Available: http://doi.acm.org/10.1145/1542275.1542349
A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New

12

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[36]

(371

(38]

York, NY, USA: ACM, 2013, pp. 247-259. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540730

P. V. G. Jinchun Kim and A. L. N. Reddy, “Lookahead prefetching with
signature path,” in DPC2, 2015.

T. L. Johnson, D. A. Connors, M. C. Merten, and W. . W. Hwu, “Run-
time cache bypassing,” IEEE Transactions on Computers, vol. 48, no. 12,
pp. 1338-1354, 1999.

D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in
Proceedings of the 8th Annual Symposium on Computer Architecture,
ser. ISCA ’81. Washington, DC, USA: IEEE Computer Society Press,
1981, p. 81-87.

G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked dram caches,” in 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2011, pp.
454-464.

P. Michaud, “A best-offset prefetcherr,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016.
A. V. Nori, J. Gaur, S. Rai, S. Subramoney, and H. Wang, “Criticality
aware tiered cache hierarchy: A fundamental relook at multi-level cache
hierarchies,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 96-109.

J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom filtering cache
misses for accurate data speculation and prefetching,” in Proceedings
of the 16th International Conference on Supercomputing, ser. ICS *02.
New York, NY, USA: Association for Computing Machinery, 2002, p.
189-198. [Online]. Available: https://doi.org/10.1145/514191.514219
M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via way-prediction and selective
direct-mapping,” in Proceedings. 34th ACM/IEEE International Sympo-
sium on Microarchitecture. MICRO-34, 2001, pp. 54-65.

M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with
a simple and practical design,” in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, 2012, pp. 235-246.

A. Sembrant, E. Hagersten, and D. Black-Schaffer, “Navigating the cache
hierarchy with a single lookup,” in 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), 2014, pp. 133-144.

A. Sembrant, E. Hagersten, and D. Black-Schaffer, “A split cache
hierarchy for enabling data-oriented optimizations,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2017, pp. 133-144.

J. Sim, G. H. Loh, H. Kim, M. OConnor, and M. Thottethodi, “A
mostly-clean dram cache for effective hit speculation and self-balancing
dispatch,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012, pp. 247-257.

S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09.
New York, NY, USA: ACM, 2009, pp. 69-80. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555766

S. Song, Q. Wu, S. Flolid, J. Dean, R. Panda, and J. Deng, “Experiments
with spec cpu 2017 : Similarity , balance , phase behavior and simpoints,”
2018.

H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA *19, 2019,
pp. 449-461.

X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated static
and dynamic cache bypassing for gpus,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015,
pp. 76-88.

M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in 2019 2019 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, may
2019. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP.2019.00004

A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014, pp. 35-44.

A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation techniques
for improving load related instruction scheduling,” in Proceedings
of the 26th International Symposium on Computer Architecture (Cat.
No0.99CB36367), 1999.



[39] V. Young, C. Chou, A. Jaleel, and M. Qureshi, “Accord: Enabling with slim ampm,” in DPC2, 2016.
associativity for gigascale dram caches by coordinating way-install
and way-prediction,” in 2018 ACM/IEEE 45th Annual International  [41] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “Imp: Indirect memory
Symposium on Computer Architecture (ISCA), 2018, pp. 328-339. prefetcher,” in 2015 48th Annual IEEE/ACM International Symposium
[40] V. Young and A. Krisshna, “Towards bandwidth-efficient prefetching on Microarchitecture (MICRO), Dec 2015, pp. 178-190.

13



