


qualitatively compares LP with prior approaches that can reduce

cache-hierarchy lookup times, showing that LP is favorable

because our design is low cost, accurate, and offers a low-

friction adoption path with few new components that are off

the critical path, requires only small modification to controllers,

and maintain existing coherence protocols.

We are the first to propose a holistic, simple, and low-cost

solution for all misses. We extend the concept of hit/miss

prediction to level prediction and show that this is not trivial.

Stacking hit/miss predictors is both more costly and less

accurate than our predictor. Furthermore, level prediction

requires a new recovery mechanism that we architect by

reusing existing components (e.g., consulting the directory for

recovery). Thus, our approach is both performant and practical.

To summarize our main contributions:

• We demonstrate that many graph analytics and scientific

applications benchmarks can benefit from non-sequential

lookup; including applications with a high cache hit ratio.

• We architect and evaluate an effective, yet low-cost level

predictor that operates in each core on the L1 cache miss

path and substantially outperforms cache miss predictors

when incorporating prefetchers.

• We incorporate level prediction keeping to minimal mi-

croarchitectural changes; level mispredictions are handled

by utilizing the cache coherence directory and existing

address-matching logic.

• We rigorously evaluate level prediction and compare

it to an idealized baseline and to the complex state-

of-the-art D2D scheme [29]. Overall, level prediction

improves performance by 6.1% on average over a baseline

with aggressive prefetchers and modern configuration

called BaselineStrong, and 10.3% over a baseline with

configurations similar to prior work called BaselinePrior.

• Level prediction reduces cache hierarchy energy and

average load latency by 18% and 20%, respectively, as it

eliminates many unnecessary miss lookups.

II. MOTIVATION

Many applications are memory-latency bound. To study the

effectiveness of the level-by-level lookup strategy, we compare

the number of misses at different levels. If the application

shows good locality or has access patterns that are detected

by prefetchers, the number of demand load misses decreases

significantly from one level to the next. Our analysis below

demonstrates that while sequential level lookup indeed works

well for many applications that exhibit this type of behavior,

other applications suffer from unnecessary lookups as either

L2 does not successfully filter requests, or L3 provides no

substantial additional benefit over the L1 and L2 caches.

The high-level insights from our analysis are summarized in

Figure 2. The figure plots each evaluated application in terms

of its L2 and L3 effectiveness—the filtering capability of each

level of cache. The x-axis (log scale) is the ratio of L1 to L2

misses and points further on the right indicate applications for

which L2 more effectively filters L1 misses from reaching L3,

thus indicating that looking up L2 before L3 is the right strategy.
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Fig. 2. The x- and y-axes on this log-log plot represent the effectiveness of L2
and L3 at filtering misses, respectively. Each application is plotted according
to the ratio of misses filtered by each level compared to the level above it.
Applications further to the top and right work best with sequential access,
while those toward the bottom left stand to benefit most from non-sequential
level-predicted lookups.

Similarly, the y-axis (log scale) represents the effectiveness

of L3 and higher points are for applications where misses

from L2 are mostly hits in L3. Data on cache effectiveness

is collected on a 3.2GHz Intel Core i7-8700 CPU for SPEC

CPU 2017 and NAS Parallel Benchmarks applications, the

gapbs graph analytics benchmark suite, and for the hpcg, gups,

stream, spmv, and bmt kernels (see Section IV for more details

on methodology).

Using this figure, we roughly classify applications into three

categories: (1) applications outside the red box are a good fit for

sequential level lookup and are unlikely to benefit from level

prediction, (2) applications inside the green box, for which non-

sequential lookup is likely to offer significant latency reductions,

and (3) applications between the boxes where we expect that

L2, L3, or levels can be occasionally bypassed for modest

performance gains. We observe that not only graph analytics

applications exhibit poor cache effectiveness, but that many

other applications are likely to benefit from level prediction.

We provide more details below.

Sequential Lookup Effectiveness Figure 3 provides more

details on the number of misses at each cache level across

the execution duration of several applications. We expect

sequential level lookup to be the best design choice when

caches reduce the number of misses significantly. Figure 3

(a) exemplifies such behavior and shows that for hpcg (which

falls outside the red box of Figure 2), the number of misses

significantly decreases after L2 (3× reduction) and also after L3

(a further 2× decrease). This behavior is consistent throughout

execution, meaning serial lookup performs well over the course

of execution.

Many other applications, however, suffer from serial lookup.

Figure 3 (b-f) show applications where either L2, L3, or both

are not effective. If the miss rate at any level is very high,

the access latency increases unnecessarily by looking up that

level. This is especially a problem when an intermediate level,

has a very high miss rate. This behavior is common in graph

applications, which frequently exhibit poor hit rates at L2 and

moderate hit rates at L3 [3]. For example, for gapbs Triangle

Count (tc in Figure 3 (b)), we observe a similar rate of L2 and

L1 misses, indicating that L2 is ineffective. L3 only moderately
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Level Prediction Approach. A level predictor must determine

whether to skip L2 lookup, L3 lookup, or both. This is distinct

from prior work on miss predictors and we find that such prior

approaches cannot be directly extended to level prediction

despite the fact that level prediction can be performed as a

set of per-level hit/miss predictions. The primary reason is

that the resources to accuracy characteristics of prior miss

predictors, especially if considered for multiple levels, cannot

be incorporated in an L2 and queried per L1 miss.

In particular, miss predictors based on classic binary predic-

tors [28], [31], [38] require large tables to achieve high accuracy

in the presence of sophisticated prefetchers. We demonstrate

this by extending the TAGE-based predictor of Sim et al. [31]

to provide ternary level predictions (L2, LLC and main

memory). We find the alternative “miss map” approach to miss

prediction [23], [26], where per-address presence information

is maintained at a specific cache level, more suitable for level

prediction yet shows that sophisticated extensions are required.

Our design-space exploration identifies several crucial issues

with prior miss-prediction designs, even when extended to LP.

We find that the MissMap approach requires tables that are

too large for the tight resource budget of LP while the history-

based predictors work poorly in the presence of advanced

prefetchers, unless significant additional storage resources

are made available.

Impact of Prefetchers. One important reason for the poor

performance of stacked miss predictors is the presence of

advanced prefetchers. While prior publications report very

high prediction accuracy for a range of history-based PC-

indexed [28], [38] and address-indexed [26], [31] miss predic-

tors, prior evaluations did not include sophisticated prefetchers.

We find that prefetchers add “noise” to the hit/miss history

and substantially degrade history-based predictor accuracy. We

evaluate a range of predictors with and without advanced

prefetchers and find that prefetchers necessitate much larger

prediction structures.

Furthermore, there is an opportunity for coordinating the

prefetcher and level predictor: the prefetcher may update the

level predictor about data movement within the hierarchy to

improve prediction accuracy. We add such updates to both

our LP-extensions of prior miss predictors and to our own LP

design described below. We find that even with such updates,

history-based predictors perform poorly because either the

additional histories from prefetches or the additional entries

introduced by prefetch updates overwhelm the prediction tables

at sizes that are reasonable for the tight LP resource constraints.

B. Cache Level Predictor Microarchitecture

Given the level prediction considerations described above,

we opt for a novel LP microarchitecture that is inspired by

the MissMap approach [23] but extends it in three critical

ways (Figure 5). First, we extend the MissMap to a location

map (LocMap), which provides the location of each block

(L2, L3, or MEM), requiring 2 bits of metadata per block.

Second, the original MissMap is implemented as a cache and

loses all information about a block when a MissMap entry is

evicted. We find that this either requires a very large MissMap

table or leads to low LP accuracy. Instead, we implement the

LocMap as an in-memory table containing location information

for every block in physical memory, which is cached in a small

metadata cache. The metadata is memory-mapped to a reserved

physical address range (cf. [10]) and the metadata cache is

connected to the memory hierarchy through the L2 cache with

L2 cache-block granularity accesses. The long-term location

information is then available even after an eviction. Third,

because the metadata cache is small and full LocMap access

has high latency, we add a small history-based Popular Level

Detector that provides fast level prediction on a metadata cache

miss. This history predictor requires just three counters.

The LP is physically integrated with the L2 cache in each

core and communicates with the LocMap through the LLC.

When a block is evicted from an LP cache, it is written back

to the LLC. When a block is needed by an LP it is requested

through the LLC. With this design, the LP does not require

new interfaces to memory and benefits from LLC caching.

The level predictor requires 4 pieces of information from L2

and L3 to keep track of locations. All information eventually

flows to the off-chip LocMap through the LP caches. Informa-

tion on (1) L2 fills (demand and prefetch) and (2) L2 evictions

is available within the L2. Information on (3) LLC prefetcher

fills and (4) LLC evictions are communicated back to LPs from

the LLC controller. For evictions, we assume the LLC tracks

which core installed the block and informs only the LP in that

core. Similarly, on an LLC prefetch fill, we inform the LP

in the core whose L2 miss triggered the LLC prefetch. Such

“source core” tracking is needed for (some) cache-partitioning

mechanisms as well, so is not in itself novel or unique. We

emphasize that LocMap updates are not broadcast across the

NoC and incur low overhead.

C. LocMap and Location Tracking

The LocMap is a flat table in system-reserved physical

memory and is accessed with the same granularity as the data

cache. The LocMap holds the level information of all memory

blocks using 2 bits of metadata (there are 3 possible levels

to predict: L2, LLC and main memory). Each 64-bit LocMap

entry holds location information of 32 blocks. To provide fast

access to LocMap, hot metadata is cached on-chip. For 64B

cache blocks, this metadata scheme incurs only 2
512

= 0.39%

overhead.

LocMap Access. The LocMap is accessed (through the

metadata cache) on every L1 cache miss, and when it is

updated. Each block in physical memory is mapped to an

entry in LocMap. Hence, to access the LocMap, we need to

generate an address from the block’s physical address. To do

so, we employ a simple one-to-one mapping. We assume that

the base address to the LocMap table is set by the operating

system and that the memory access granularity and cache

blocks are 64B. Each 64B cache block requires 2 bits in the

LocMap such that information for 256 cache blocks fits into a

single 64B block of the LocMap (matching the memory access
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and cache granularity). , the memory address corresponding,

the memory address corresponding to a LocMap entry is:

LocMap Address = Base Address + Physical Address >> 14.

This physical address of a LocMap block is first looked up

in the per-core LocMap metadata cache, which is filled on a

miss through the data cache hierarchy and main memory.

LocMap Update. Level prediction does not need to be 100%

accurate. Hence, we can carefully trade accuracy for power-

efficiency. This can be achieved by updating the LocMap on

certain events. We update the LocMap only on demand cache

fills, dirty evictions, and prefetch fills that are metadata cache

hits. Thus, the LocMap may hold possibly-stale information

because it is not updated on all events happening in the

cache. Prefetch fills that are metadata cache misses do not

update the LocMap because the traffic this would incur

with our aggressive prefetchers is substantial and not worth

improving the already-high prediction accuracy (see Section V).

Because of the aggressive prefetchers, there are frequent

clean evictions and these do not update the LocMap as well.

Finally, to avoid changes to the coherence protocol and actions,

coherence-induced level changes (i.e., invalidations) are also

ignored. Again, staleness is tolerable because the predictor

already performs well and because misprediction recovery is

inexpensive.

Metadata Cache. The sizing of the metadata cache is impor-

tant. If the miss ratio is too high, the problem is two-fold.

First, many off-chip requests are issued to update the LocMap.

Second, the prediction accuracy may degrade as we have to

rely on the statistical Popular Level Detector, which is less

accurate than the LocMap. At the same time, the size of the

LocMap metadata cache is constrained to maintain low access

latency and energy—the benefits of level prediction can easily

be overwhelmed by an expensive predictor. We show this in

the evaluation by demonstrating the detrimental impact of a

higher-energy predictor, for example.

We experimented with a range of sizes and concluded that a

2KB, 2-way set associative cache best balances these tradeoffs

and offers the minimal predictor-energy point across multiple

benchmark suites: SPEC CPU 2017, GAPBS, NAS, and other

applications (bmt, hpcg, spmv, gups, and stream. We find that

a predictor with a 1KB LocMap metadata cache relies too

frequently on the Popular Level Detector and suffers from

lower accuracy, while the accuracy benefits of 4KB and 8KB

metadata caches are negligible.

D. Popular Levels Detector

When there is a miss in the metadata cache, it is not possible

to wait to fetch the LocMap entry from main memory because

this takes longer than the cache lookup itself. One option is to

follow a serial access pattern and predict L2 as the location of

the block. However, this option is too conservative and does

not cover applications with high metadata cache miss ratios

such as pr, bc, tc of the GAPBS benchmark suite. Hence, in

conjunction with the LocMap, we devise a simple counter-

based mechanism to find the most frequently accessed levels

and suggest those as the prediction target(s).

Because the metadata hit rate is relatively high (95% on

average across 37 applications), we can be more aggressive

on (relatively rare) misses and predict more than one level to

increase the prediction accuracy. This is particularly helpful

if the counters are not strongly biased toward one level. If

one level is suggested, we call the prediction a single-way

prediction, and a multi-way prediction otherwise. Multi-way

prediction for uncertain cases increases the prediction accuracy,

but requires a more complicated lookup.

We use 3 counters, one per cache level and main memory.

Upon a hit at a level the corresponding counter is incremented

by 1 and others are decremented by 1. This helps to rapidly

find popular levels and prevents counter saturation. When

a prediction is required, candidates are selected as follows.

The counters are sorted and the topmost is picked as the

first candidate. If its counter is higher than a threshold, then

only this level is selected as the level to look up. Otherwise,

the level with the second highest counter is also considered

to be a possible destination (two parallel lookup targets). If

again the sum of the first and the second counters does not

reach a predefined threshold, the third level is also included

(three parallel lookup targets). Hence, depending on the counter

values the locality predictor may issue single- or multi-way

predictions.

E. Misprediction Detection and Recovery

Mispredicting a level that is closer to the core than the

actual cache level does not require detection and recovery, and

is simply a lost opportunity to reduce latency. For example,

if the block is only in main memory and LLC is suggested,

then not looking up L2 saves cycles, but looking up the LLC

wastes CPU cycles; MSHR [22] entries are still allocated along

the request path and will be eventually filled as the response

arrives. Therefore, this type of misprediction is safe as it does

not violate correctness or functionality.

However, mispredicting a miss and bypassing a level that

has more up to date data does require recovery as stale data

is fetched. For example, if data is present in L2, but only L3

is suggested by the level predictor, then stale data may be

incorrectly fetched from L3. To cope with this problem, we

slightly modify the directory controller. Normally, the directory

is checked to make sure that private caches of other processors

are not holding the data block. When level prediction bypasses

L2, we also check the directory, as we may have skipped

the private cache. Fortunately, this can be done effectively
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for free. Recent processors collocate the directory with LLC

tags, meaning when the cache is looked up, the information

of the directory is also available [36]. This enables simple

misprediction detection.

Another misprediction type is where main memory is

predicted while the block is actually cached. This misprediction

is also detected by the directory, which is queried in any case

before accessing main memory.

We change the cache controller to raise a signal when a

misprediction is detected. Misprediction recovery first issues

a packet to the actual level, requesting to satisfy the pending

request and then deallocates all MSHR entries past the actual

level. This can be implemented as a new transaction over the

shared bus.

We present examples of detection and recovery schemes

from the simplest (one-way correct prediction) to the most

complex (multi-way wrong prediction) case below.

One-way correct prediction. Figure 6 (a) shows an example

for one-way correct prediction. Assume the predicted location

is LLC, and the block is present in the LLC (green box). When

an L1 miss occurs, an MSHR entry is allocated in L1 and

the request is sent to L2 ( 1 ). Then without accessing L2, an

MSHR entry (denoting an L2 miss) is allocated in L2. Hence,

L2 is bypassed and the request is forwarded to the LLC ( 2 ).

Note that allocating an entry in the MSHRs for bypassed levels

(in this case L2) is necessary, otherwise it would be impossible

to fulfill the request later on the fill path. At the LLC, the

tag-store is checked ( 3 ). Since, the block already exists in the

cache and the directory confirms that the block is not stale,

the LLC responds to the request ( 4 ). The block is sent to L2

and the L2 MSHR is deallocated, and it is filled into L2 ( 5 ).

Finally, the block is forwarded to L1 which responds to the

CPU request ( 6 ).

One-way wrong prediction. Figure 6 (b) shows an example

where a block is present in L2, but the predictor suggests

LLC. In this example, steps 1 , 2 , and 3 are the same as

before; MSHR entries are allocated in L1 and L2 and the

request is subsequently sent to the LLC. However, when the

tag store is looked up in the LLC, the extended way information

indicates that the block is present in L2 4 . Thus, the cache

controller sends a new request to L2 to fulfill the request 5 .

In L2, the block is found and is forwarded to L1 6 . Also, a

signal is raised to deallocate the L2 MSHR entry 7 . The only

modification here is to add the ability to cache controller to

deallocate the MSHR entry.

Multi-way wrong prediction. Figure 6 (c) shows an example

where LLC and DRAM have been suggested as targets by the

predictor, but the block is present in DRAM. Steps 1 , 2 , and

3 are the same as in both the previous examples. However,

when the packet reaches to LLC, both LLC and directory are

accessed (steps 3 and 4 are simultaneous actions), and after

finding the location of the block which is the main memory,

the request is forwarded to the main memory. Finally, when

the request comes back, it can follow the normal path that any

miss sourced in DRAM can take. Note that in our design the

directory and LLC tags are collocated, thus as soon as the tag

is accessed, the request is sent to main memory.

IV. EVALUATION METHODOLOGY

A. Simulated Systems

We use the gem5 full-system cycle-level simulator to conduct

the experiments [12]. We model a 3-level cache hierarchy where

L1 and L2 are inclusive and private and L3 is non-inclusive

and shared. L1 and L2 are parallel caches where tag and data

stores are accessed in parallel with access latencies of 4 and 12

cycles, respectively. L3 is a sequential cache with latencies of

15 cycles and 25 cycles for tag and data, respectively. There is

a first-level TLB of 64 entries, a second- level TLB with 3072

entries that are equally partitioned between 4KB and 2MB

pages (1536 each). The L2TLB is 4-way set associative with

a 4-cycles access latency. There are 2 page walkers per core.

We compare the final level predictor configuration described

in Section III-B with the following systems:

(1) BaselineStrong: a realistic system configuration with an

advanced prefetch scheme (Table I);

(2) BaselinePrior: a weak-prefetcher configuration that matches

the best methodology used in prior work (Table I);

(3) 2KB and 8KB TAGE-based level predictors. We augment

each entry of TAGE with 3 counters representing the three

memory levels. Having three counters, we use similar heuristic

as in Popular Level Detector to suggest a level. We compare
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both a 2KB TAGE-based level predictor that has comparable

predictor energy to our final design but suffers from more

mispredictions and to an 8KB TAGE (accuracy competitor)

that approaches the accuracy of our final design, but which

consumes far more energy;

(4) D2D [29]: a design that extends TLB entries with location

information of the blocks (levels and ways), thus traversing

the memory hierarchy with a single lookup. D2D relies on a

centralized cache-like structure called Hub to keep track of

location information. D2D has a high implementation cost, but

offers high energy efficiency high accuracy. We assume that

the D2D Hub is an 8-way 4KB cache. Additionally, we assume

that the eTLB requires 10% higher energy per access as it

increases the length of entries [29]; and

(5) Ideal: a system where misses do not incur any performance

penalty; we configure a 0-cycle miss latency with other

functionality of the simulator remaining the same (e.g., MSHR

misses are still counted for misses).

B. System Configuration

We experimented extensively with a wide range of state-

of-the-art prefetchers and their combinations. The highest-

performing scheme overall in our experiments uses the DCPT

prefetcher [15] with degree 2 in L3, stride prefetchers of degrees

2 for L2, and BOP [24] for L1 with a degree of 1. DCPT

exhibits the highest coverage and high accuracy (Figure 4) and

worked well in combination with the L1 and L2 prefetchers.

We also find that always enabling these prefetchers signif-

icantly degrades system performance for some applications

(e.g., 605.mcf) because the prefetchers contend too strongly

with demand requests. We therefore implement two prefetch

throttling mechanisms. In the first scheme, we reserve 25%

of MSHR entries for demand accesses, which decreases the

prefetch rate and maintains some minimum demand request

service. The second throttling mechanism is that we monitor

the performance of the prefetcher periodically and disable a

prefetcher when its accuracy drops below 40%. Specifically,

in each epoch of 10 million accesses, the prefetchers operate

for the first 1 million accesses, then the prefetcher accuracy

determines if the prefetcher remains enabled for the following

9 million accesses.

We simulate out-of-order cores with a fetch width of 4

instructions, 192 ROB entries, and 64-entry store and 32-entry

load queues. The frequency of the system is set to 4 GHz.

We use a single DDR4-2400 x64 channel (one command

and address bus), with timings based on a DDR4-2400 8 Gbit

datasheet (Micron MT40A1G8) in an 8×8 configuration. Total

channel capacity is 16GB. This maintains a reasonable core-

to-memory ratio for the simulations.

C. Benchmarks

We evaluate the applications of: (1) SPEC CPU 2017 [33],

(2) GAPBS [11] (pr, tc, cc, bfs, and bc), (3) NAS (cg, ft, is,

mg, and ua) and (4) bmt, hpcg, stream-copy, and gups. In the

evaluation section we report averages for the full benchmark

suites, but choose to highlight 21 applications to maintain

TABLE I
EVALUATED SYSTEM CONFIGURATION.

Processor Single and Quad-core, 4.0 GHz, Ubuntu 16.04 OS.

ROB:192, LQ:64, SQ:64, Fetch-width=4

L1 Cache 32kB 4-way; LRU; 4 cycles. Prefetchers: BaselinePrior

[29], [30]: Stream, BaselineStrong: BOP with degree=1

L2 Cache 256KB 8-way; LRU; 12 cycles, Prefetchers: BaselinePrior

[29], [30]: None, BaselineStrong: Stride with degree=2

L3 Cache 2MB single-core and 8MB multi-core; 16-way; Sequential

cache (15+25). Prefetchers: BaselinePrior [29], [30]: None,

BaselineStrong: DCPT prefetcher degree of 2

Main Memory 16 GB: DDR4-2400 x64, 8x8 Micron MT40A1G8

TABLE II
MULTI-PROGRAM AND MULTI-THREADED APPLICATIONS.

mix1: GAPBS.bfs, lbm, NAS.lu, bmt mix2: roms, NAS.mg, fotonik3d, gcc

mix3: omnetpp, GAPBS.pr, cam, NAS.cg mix4: cam, NAS.cg, wrf, NAS.bt

mix5: GAPBS.bfs, lbm, wrf, NAS.bt

MT1: GAPBS.pr with 2 threads MT2: GAPBS.pr with 4 threads

readability of figures. We pick 12 applications that we expect

to highly-benefit from level prediction (within the green box of

Figure 2) and 9 applications that we expect to exhibit smaller

benefits (from within the red box).

All SPEC CPU applications are run with the reference inputs.

We use the Twitter [1] dataset for GAPBS, with the exception

of tc that uses a synthetic graph of 225 nodes. For NAS, input

class C is used. For gups, we replace the random generator

with the C++ built-in random generator to ensure that the

table is randomly accessed. The table size is 8GB and 4

million locations are accessed. We compile all benchmarks

with gcc/gfortran and -O3 flags.

We use the SimPoint methodology [16] to find representative

regions of each application. We use 2 SimPoints of 250 million

instructions each and 250 million instructions of warmup. For

kernels (gups, stream, bmt), we annotate the code with gem5

pragmas to simulate just the region of interest.

For multi-core evaluation, we use a set of multi-program

and multi-threaded applications listed in Table II. We use level

prediction accuracy from single core simulation to observe how

different applications with high, medium, and low prediction

accuracy interact. From application mixes, mix1, mix3, and

mix5 have 2 high expected benefit applications (green box) and

2 expected medium benefit applications (red box), mix2 has 1

high-benefit application and 3 medium-benefit applications (red

box), and mix4 has 4 expected medium-benefit applications.

For multi threadeds, we focus on GAPBS.pr with 2 and 4

threads. Given the GAPBS.pr has one the lowest single-core

hit prediction accuracy, we can observe how level prediction

accuracy changes as the contention increases, and how the

accuracy is impacted as the LocMap does not update the

prediction table on snoop invalidations.

V. EVALUATION RESULTS

A. Single-Core Performance

Figure 7 and Figure 8 show the IPC improvements for

the 2KB and 8KB TAGE predictors, D2D, our final LP,
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