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Abstract— Objective: The Temporal Response Function (TRF) 

is a linear model of neural activity time-locked to continuous 
stimuli, including continuous speech. TRFs based on speech 
envelopes typically have distinct components that have provided 
remarkable insights into the cortical processing of speech. 
However, current methods may lead to less than reliable 
estimates of single-subject TRF components. Here, we compare 
two established methods, in TRF component estimation, and also 
propose novel algorithms that utilize prior knowledge of these 
components, bypassing the full TRF estimation. Methods: We 
compared two established algorithms, ridge and boosting, and 
two novel algorithms based on Subspace Pursuit (SP) and 
Expectation Maximization (EM), which directly estimate TRF 
components given plausible assumptions regarding component 
characteristics. Single-channel, multi-channel, and source-
localized TRFs were fit on simulations and real magneto-
encephalographic data. Performance metrics included model fit 
and component estimation accuracy. Results: Boosting and ridge 
have comparable performance in component estimation. The 
novel algorithms outperformed the others in simulations, but not 
on real data, possibly due to the plausible assumptions not 
actually being met. Ridge had slightly better model fits on real 
data compared to boosting, but also more spurious TRF activity. 
Conclusion: Results indicate that both smooth (ridge) and sparse 
(boosting) algorithms perform comparably at TRF component 
estimation. The SP and EM algorithms may be accurate, but rely 
on assumptions of component characteristics. Significance: This 
systematic comparison establishes the suitability of widely used 
and novel algorithms for estimating robust TRF components, 
which is essential for improved subject-specific investigations 
into the cortical processing of speech.  
 

Index Terms — MEG, EEG, auditory, deconvolution, reverse 
correlation, attention, cocktail party, matching pursuit, ERP 
 

I. INTRODUCTION 
HE human brain time-locks to features of continuous 
speech, extracting meaningful information relevant to 
comprehension. Magnetoencephalography (MEG) and 

electroencephalography (EEG) are suitable methods to 
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measure these time-locked responses, due to their high 
temporal resolution. Traditional methods for analyzing 
auditory responses involve averaging over multiple trials of 
repeated stimuli to estimate Evoked Response Potentials 
(ERPs) [1], [2]. But exploring the complex mechanisms 
involved in speech processing requires non-repetitive, 
continuous speech stimuli of long duration, and averaging 
over trials is no longer feasible. One method of analyzing 
responses to continuous stimuli uses linear models called 
Temporal Response Functions (TRFs), that estimate the 
impulse response of the neural system to continuous stimuli 
[3], [4]. TRFs based on neural recordings using 
magnetoencephalography (MEG) have response components 
such as the M50 (~50 ms latency), M100 (~100-150 ms) and 
M200 (~200-250 ms) that are analogous to well-known 
auditory ERP components, the P1, N1, and P2 components of 
electroencephalography (EEG), and which have been utilized 
to investigate selective attention [3], [5]–[7], linguistic 
processing [8]–[10], and age-related differences in the 
auditory system [11]. However, though estimated TRFs 
display these canonical components at the group-average 
level, individual TRFs are much noisier and do not always 
have well-defined components. It is essential to detect robust 
response components on a per-subject level, both to identify 
task effects and for biomedical applications such as smart 
hearing aids. Hence, the suitability of various TRF methods 
for component estimation must be determined. 

Variations of regularized regression and machine learning 
methods for estimating TRFs have been previously compared 
for decoding subject attention in a multi-talker scenario [6], 
[12], [13]. However, it is unclear how they compare to 
commonly used sparse TRF estimation techniques such as 
boosting [14], [15]. Furthermore, a focus on model fits for 
attention decoding may not be suitable for studies interested in 
accurate estimation of TRF components. 

In this work we perform a systematic comparison of TRF 
algorithms in terms of estimating TRF components. Two 
widely used TRF estimation algorithms are ridge regression 
[13], [16] and boosting [3], [14], [15]. The former uses ℓ! 
regularization which leads to smooth TRFs with broad 
components, while the latter greedily adds values to the TRF, 
thereby prioritizing sparsity in the TRF and leading to 
narrower, sharper components. However, it is not clear which 
of these methods is more accurate in estimating TRF 
component latencies and amplitudes.  

Both ridge and boosting do not place restrictions on the 
number or latencies of specific TRF components. Since 
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canonical auditory response components are often present in 
TRFs to the speech envelope, it is reasonable to incorporate 
this information during estimation. Several methods have been 
proposed for directly estimating latencies and amplitudes for 
M/EEG evoked responses (but not for TRFs). The earliest 
ERP latency estimation methods involved cross correlation 
with average response templates [17]. More recent algorithms 
have utilized techniques such as Independent Component 
Analysis [18], [19], wavelet decomposition [20], maximum 
likelihood estimation [21], [22], autoregressive models [23], 
Expectation Maximization (EM) [24], Matching Pursuit [25] 
and Bayesian methods [26], [27].  

In this work, we propose novel TRF component estimation 
algorithms that utilize prior knowledge of the characteristics 
of neural responses (i.e., component latency ranges), and 
directly estimate component latencies, amplitudes and 
topographies. The first proposed algorithm estimates single-
channel TRF component latencies and amplitudes using 
Subspace Pursuit (SP) [28]. The second algorithm extends this 
method for multi-channel TRFs using SP and Expectation 
Maximization (EM) [24], [29],  and also directly estimates 
sensor topographies or cortical source distributions of TRF 
components. The SP algorithm is widely used for sparse signal 
recovery and is typically capable of recovering components in 
an efficient manner. The EM algorithm is a maximum 
likelihood method that is able to incorporate ‘hidden’ 
variables and is widely used in signal estimation [30]. Pursuit 
algorithms and EM have been used for single trial evoked 
response estimation [24], [25], and here, we employ natural 
extensions of these algorithms for TRF component estimation. 

A simulation study, and an application of these algorithms 
to a real dataset, are reported and their performance is 
compared using single-channel, multi-channel, and source 
localized TRFs. Performance metrics include the correlation 
between the actual and the predicted signal, which is the 
conventional measure of model fit, and several other measures 
of component estimation accuracy. Throughout this work, 
“model fit” denotes the Pearson correlation between the actual 
and predicted signals. Other considerations such as spurious 
TRF activity and missing components are also examined. In 
summary, this work discusses the strengths and weaknesses of 
widely used algorithms and proposes novel methods for TRF 
component estimation that may provide robust and 
interpretable time-locked response components.  

II. METHODS 

A. Established Algorithms for TRF estimation 
The TRF estimation problem is given by the convolution 

" = $ ∗ & + ( (1) 

Where " ∈ ℝ"	is the vector of the single-channel measured 
signal (e.g., at one sensor) for , time points, & ∈ ℝ" is the 
predictor variable (e.g., the speech envelope), $ ∈ ℝ# is the 
corresponding TRF over - time lags, and ( ∈ ℝ" is the noise. 
This can be reformulated as a regression as follows 

" = .$ + ( (2) 

Where . ∈ ℝ"×# is the Toeplitz matrix formed by lagged 
predictor values. The well-known ridge regression algorithm 
has been widely used to solve this problem [16]. Another 
commonly used technique is the boosting algorithm, which is 
a sparse estimation technique belonging to the broad family of 
greedy additive estimators, and solves the TRF problem using 
coordinate descent [14], [15], [31]. In brief, this algorithm 
starts from an all-zero TRF and incrementally adds small, 
fixed values to the TRF to decrease the mean square error 
(MSE) at each iteration. The iterations are stopped when the 
MSE does not improve. A dictionary of basis elements (e.g., 
Hamming windows) is used for the incremental additions to 
the TRF. Both ridge and boosting can be used independently 
at each sensor to estimate TRFs for multi-channel data. 

 

B. Proposed SP algorithm for TRF estimation 
The SP algorithm searches for TRF components within 

predefined latency windows and directly estimates them. This 
is unlike the ridge and boosting algorithms that do not place 
specific restrictions on the number or latencies of detected 
TRF components. Assuming there are / components (e.g., / =
3 for M50, M100, M200 components), the TRF model is now 
given by a modified version of (1). 

" = ∑ 2%.3%
&
%'( + (  (3) 

Where 2% ∈ ℝ and 3% ∈ ℝ# are the amplitude and waveform 
for the 4)* component. The component waveforms 3% are 
selected according to the component latency 5% from a basis 
dictionary (e.g., Hamming windows) that span the TRF lags 
(i.e., 3% is column number 5% of the basis dictionary matrix). 
The SP algorithm directly estimates the amplitudes 2% 	and 
latencies 5%. The complete algorithm is given in Algorithm 1. 

 
Algorithm 1: SP for TRF estimation 
Inputs: Measured signal !"ℝ!, predictor matrix $"ℝ!×#, number of 

components %	and corresponding latency windows '$ 
1:  Initialize the set of TRF components to the empty set; (% = ∅.  
2:  Set the residual to the measured signal +% = !		 
3:  repeat for , = 1,2,…  
4:      repeat for 1 = 1, . . , %	  
5:             Find the best component latency  

3$∗ = argmax
'∈)!		

	9< ++ , $3, >9 

                where 3' is the basis component with latency < 
6:      Add the % new components to the set (= = (+-. ∪ {3$∗}  
7:      Estimate amplitudes AB = (D!D)-.D!! 
                  where D has columns {$3	|	3 ∈ (=} 
8:      Update the component set  
												(+ = {%	components with the largest amplitudes  
                         for each '$} 
9:      Re-estimate amplitudes A+ = (H!H)-.H!! 
                  where H has columns {$3	|	3 ∈ (+} 
10.    Calculate the new residual ++ = ! − HA+	 
11.    If J++J > J++-.J stop iterations and set (+ = (+-.	&	A+ = A+-. 
Output: amplitudes A+ = [M., … , M/], components 3$ ∈ (+ and TRF 
O = ∑ M$3$

/
$0. .    
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The SP algorithm estimates TRFs composed of only the 
required number of components, and can also be applied 
independently at each sensor for multi-channel TRFs. 

C. Proposed EM-SP algorithm for TRF Estimation  
The EM-SP algorithm is an extension of the SP algorithm 

for multidimensional TRFs. In addition to directly estimating 
amplitudes and latencies, this algorithm also directly estimates 
sensor topographies or source distributions for multi-channel 
TRFs. This algorithm uses EM to iteratively estimate 
component topographies in the E-step, and latencies using SP 
in the M-step. Given a predefined number of components and 
corresponding latency windows, the EM-SP multi-channel 
TRF model is given by a modified version of (3).    

6 = ∑ 7%8.3%9
+

% +:  (4) 

Where 6>ℝ,×" is the measured data over ? sensors and , 
time points, 7%>ℝ, is the spatial topography of the 4)* 
component, 3%>ℝ# is the temporal waveform of the 4)*  
component, .>ℝ"×# is the predictor matrix, and :>ℝ,×" is 
the measurement noise. The component latency is given by 5% 
and is related to (4) by the fact that @% corresponds to column 
number 5% in the TRF basis dictionary matrix. We assume the 
following priors, 

7%~B(C,E)  
:~B(F, G"×" ⊗I)  (5) 

Where the temporal noise covariance is assumed to be the 
identity matrix and the spatial noise covariance is given by 
I	>	ℝ,×,. For the EM algorithm, we consider the spatial 
topographies K = L7%M as the ‘hidden’ variables. The 
remaining parameters that need to be estimated are Θ =
L	C, E, I, 5%M. Detailed derivations of the algorithm are 
provided in supplementary materials. Here, we summarize the 
main steps of the algorithm. 

The Q-function is given by taking the expectation over the 
posterior probability O(K|6, Θ). 

 QRΘ9Θ(2)T = !
4 log|W

-.| + /
4 log|Y

-.| − .
4 Z[[\

!W-.\]		

						+Z[]\!W-.R∑ ^[_$] $̀
!

$ Ta − .
4 	Z[]∑ ∑ $̀

!`5^]_$_5!a$5 W-.a 	

						− .
4∑ Z[R^]_$_$!aY-.T$ − 2b6Y-.^]_$a  +b!Y-.b  

(6) 

In the Expectation step, the posterior means of the spatial 
topographies are estimated.  

_c$ = R $̀
!

$̀W-. +Y-.T
-.(W-.(\ − ∑ _c5`5!57$ ) $̀ +Y-.b)  (7) 

For the Maximization step, we use the Conditional 
Maximization method [32] whereby we sequentially maximize 
over each one of the parameters	 Θ = LC, E, I, 5% , M, while 
holding the others fixed at their previous values.  

b = .
/∑_c$ 	  (8) 

Y = .
/8∑Re$ + _c$_c$

! − b_c$! − _c$b! + bb!T  (9) 

W = .
! \\

! − \R∑_c$ $̀
!T

! − R∑_c$ $̀
!T\!  

																					+∑ g $̀
!

$̀Re$ + _c$_c$!T
! +∑ $̀

!`5_c5_c$!57$ h$   
(10) 

The latencies 5% 	can be estimated in a similar manner to the 
single channel SP algorithm using a linear search to maximize 
RS T8\ − ∑ _U9`9:9≠< 9

"
I-(7U%&%

"V	over the component basis. The 
complete EM-SP algorithm is provided below. 

 
Algorithm 2: EM-SP 
Inputs: Multi-channel data \ ∈ ℝ8×!, $ ∈ ℝ!×#, the number of 

components %	and latency windows W$ 
1:  Initialize parameters _c$ 	and  Θ% = k<$%, b%, Y%, W%l.	 
2:  repeat for Z = 1, 2, ... 
3:     E-step: Estimate the spatial topographies _c$ using (7) 
4:     CM-steps: Estimate parameters b2, Y2, W2 using (8)-(10) 
        CM-step: Estimate the latencies <$2 using SP as shown below 
5:     Initialize residual \=% = \ and component set (% = ∅ 
6:     Normalize the spatial topographies _c$ = _c$/max(9_c$9) 
7:     repeat for iterations , = 1,2,…  
8:          repeat for components 1 = 1, . . , %	  
9:                Find the best component latency  

3$∗ = argmax
'∈)!

Z[R(\=+-.)!W-._c$($3')!T 

                       where 3' is the basis component with latency < 
10:         Add the % new components to the set (= = (+-. ∪ {3$∗}  
11:         Estimate amplitudes AB = (D!D)-.D!! 

                  where ! = mno(W-
"
#\)	is the vectorized whitened data  

                  and D has columns pmno(W-
"
#_c$R$3$T

!)	q 	3$ ∈ (=} 
12:         Update (+ = {%	components with the largest amplitudes  
                                       for each '$} 
13:          Re-estimate amplitudes A+ = (H!H)-.H!! 

                  where H has columns 	pmno gW-
"
#_c$R$3$T

!h	q3$ ∈ (+r 

14.         Calculate the new residual \=+ = \− ∑ M$_c$R$3$T
!

$ 	 
                  where M$ are the values in A+ 
15.        If J\=+ J > J\=+-.J stop iterations, let (+ = (+-.	&	A+ = A+-. 
16.   Update the spatial topographies _c$ = M$_c$ 
Output: The estimated TRF O = ∑ _c$3$!

/
$0. , spatial topographies _c$ ,	 

and components 3$ with latencies <$ 		and amplitudes 	M$ = maxR9_c$9T. 
  

All four algorithms can also be used to simultaneously fit 
TRFs to multiple predictors (e.g., foreground and background 
envelopes) by concatenating the W predictor matrices  X. ∈
ℝ"×# along the columns, resulting in a new predictor matrix 
X ∈ ℝ"×#/. In this work, we jointly fit TRFs to two predictors 
(corresponding to foreground and background speech 
envelopes) using a concatenated predictor matrix.  
 

D. Simulation Study 
Simulations were constructed to match typical cocktail 

party speech experiments which have two simultaneous 
speech streams. Accordingly, the envelopes of two speech 
stimuli (foreground and background) were used as predictors. 
These envelopes were constructed by first passing the speech 
waveform through a gammatone filterbank with 256 frequency 
bands between 20-4000 Hz, and the amplitude spectrogram 
was computed with an integration window of 10 ms. The 
resulting spectrogram was averaged across frequency bands, 
downsampled to 1000 Hz, and then band-passed at 1-10 Hz 
using a symmetric linear phase FIR filter with order 3301 and 
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cutoffs 0.5 Hz and 11.25 Hz. Finally, the envelopes were 
downsampled to 100 Hz for all further analysis. These 
envelopes were repeated three times, in line with experiments 
having multiple trials of repeated stimuli to extract consistent 
responses using spatial filters such as Denoising Source 
Separation (DSS [33]; details given below).  Each predictor 
was convolved with its own ground truth simulated TRF and 
the responses were summed together to form  one-dimensional 
responses at 100 Hz sampling rate for 30 pseudo-subjects 
comparable to a single-sensor M/EEG response or the first 
auditory response component after DSS.  

For each simulated subject, the ground truth simulated TRF 
was formed by placing Hamming windows of 50 ms width 
with peaks in the latency ranges 30-80 ms, 90-170 ms and 
190-250 ms corresponding to typical latencies of the M50, 
M100 and M200 components. The M100 component was 
given a negative sign, and the components were scaled and 
shifted according to randomized subject specific amplitudes 
and latencies. These amplitudes and latencies were later used 
as the ground truth for performance evaluation.  

Realistic noise was added to the simulated responses using 
the first DSS component of real MEG data collected from 30 
subjects listening to speech (previously published [34], [35]). 
DSS creates a series of spatial filters,  where the DSS 
component generated by the first of these filters corresponds 
to activity that is most consistent across repeated stimulus 
presentations (see [33] for details on DSS). Therefore, for this 
speech experiment, the first DSS component is dominated by 
auditory activity and displays a typical auditory response 
sensor topography. This component was then phase 
scrambled, preserving the spectral properties of MEG signals, 
to simulate noise added to the simulated response, at SNRs of 
-15, -20, -25 and -30 dB (SNRs selected to result in realistic 
TRF model correlation values). 

The multi-channel simulation followed the same method for 
157 simulated sensor signals, but in addition also used ground 
truth sensor topographies for each TRF component. These 
topographies were constructed from the TRF component 
topographies of a real subject with typical auditory TRF 
components, with the addition of Gaussian noise to simulate 
individual variability. Real multi-channel MEG data was again 
phase scrambled and added as noise on a per channel basis 
using the method described above, at SNRs of -20, -25, -30 
and -35 dB (lower SNRs were used because unprocessed 
multi-channel data is typically noisier than the extracted 
auditory component).  

The DSS algorithm was also applied to the simulated multi-
channel data and corresponding TRFs were calculated for the 
first 6 DSS components. These DSS TRFs were projected 
back into sensor space for subsequent analysis and for 
computing performance metrics. 

The source space simulation was constructed using the 
Freesurfer ico-4 surface source space of the ‘fsaverage’ brain 
[36]. An ROI in temporal lobe with 245 sources that included 
auditory cortex was used for this simulation (‘aparc’ labels 
‘transversetemporal’ and ‘superiortemporal’). The three TRF 
components were simulated using dipoles in Heschl’s gyrus, 
Planum Temporale and Superior Temporal Gyrus in both 
hemispheres. These dipoles were projected onto the sensors 
using forward models from real data and back projected back 

onto source space with Minimum Norm Estimation (MNE) 
[37] using Eelbrain [14], [38] and MNE-Python softwares [39] 
to simulate the source localization procedure. The back-
projected source distributions of these simulated TRF 
components were also used as the ground truth for subsequent 
performance comparisons. The TRFs were then convolved 
with the predictors to form the responses at each of the 245 
sources. Real MEG data was phase scrambled and added as 
noise to the response at each source at SNRs of -15, -20, -25 
and -30 dB following the same procedure as above.  

 

E. Experimental Dataset 
MEG data collected in a prior study [34], [35] was used for 

evaluating the performance of the algorithms on real data. The 
study was approved by the IRB of the University of Maryland 
and all participants provided written informed consent prior to 
the start of the experiment. The dataset consisted of MEG data 
collected from 40 subjects while they listened to speech from 
the narration of an audiobook. Subjects listened to two 
speakers simultaneously in a cocktail party experiment, but 
were asked to attend to only one speaker. The data was from 
the condition where the foreground speaker was 3 dB louder 
than the background speaker. TRFs were estimated for the 
foreground and background envelopes. Whole head sensor 
space TRFs (157 sensors) were computed for each algorithm 
on three minutes of data. Additionally, TRFs were also 
computed for the first 6 DSS components. Finally, the MEG 
responses of this dataset were source localized using MNE and 
source space TRFs were also computed.  

 

F. Algorithm Implementation 
The algorithms were implemented in Python (version 3.9.6) 

using SciPy (version 1.8.0) [40], and Eelbrain (version 
0.36.1). The code is available online at <URLs available upon 
acceptance>. A basis dictionary with Hamming windows of 
width 50 ms was used for boosting, SP and EM-SP. The 
component latency windows for the SP and EM-SP algorithms 
were 30-80 ms, 90-170 ms and 190-250 ms. To avoid 
instability and convergence issues, the spatial covariance R for 
the EM-SP algorithm was assumed to be the identity matrix. 
The EM-SP was initialized using the extracted components 
from the SP algorithm applied at each sensor/source 
independently.  

A nested 4-fold cross validation procedure was followed for 
all algorithms to allow for unbiased comparison. The data was 
divided into 4 splits, with 1 for testing, 1 for validation and 2 
for training. The validation and training splits were permuted 
for each test split in a nested fashion. The training data was 
used to optimize the ridge TRF over several regularization 
parameters (steps of 20, 21, ..., 216) based on the model fit on 
the validation data. The boosting TRF was fit on the training 
data, and the validation data was used to check for 
convergence and terminate the algorithm. The SP and EM-SP 
TRFs were fit on the training data, and the model fit on the 
validation data was used to terminate the EM iterations. 
Finally, the overall model fit metric was calculated by 
convolving the average TRF over all training splits with the 
appropriate test predictor and computing the Pearson 
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correlation between this predicted signal and the actual test 
signal.  

G. Performance Metrics 
The model fit was calculated as the Pearson correlation 

between the estimated and the predicted response (averaged 
over channels for multidimensional cases). A null model was 
constructed by fitting TRFs using circularly time-shifted 
predictors (shifts of 15 s) and the correlation of this null model 
was subtracted from the true model. This bias corrected model 
fit is reported for both simulations and real data.  

In addition to model fit, several other metrics of TRF 
component estimation were also calculated for the simulations 
(but not for real data, since the ground truth components were 
unknown). TRF components were automatically detected as 
the peaks of the r.m.s of the TRF across channels in the 
appropriate latency windows (30-80 ms, 90-170 ms, 190-250 
ms) and the following metrics were used; 1) Pearson 
correlation between the estimated and ground truth TRF, 2) 
Absolute error of individual component latency estimates 3) 
Absolute error of individual component amplitude estimates 
(estimated vs, ground truth), 4) Spurious TRF activity given 
by the % r.m.s. power in the estimated TRF after 300 ms (note 
that there is no activity in the ground truth TRF after 300 ms), 
5) Number of missing components 6) Sensor/source 
topography estimation error using the angle between the 
estimated topography vector and the ground truth topography 
vector. These metrics were averaged over channels, predictors, 
and components. 

III. RESULTS 

A. Simulation: Single-Channel TRFs 
Single-channel TRFs were simulated, and the ridge, 

boosting, and SP algorithms were compared in terms of 
several performance metrics. The estimated TRFs for a 
representative subject are shown in Fig. 1. The conventional 
measure for evaluating the performance of TRF models is the 
correlation between the actual and the predicted responses. In 
this work we used a nested cross-validation procedure for all 
algorithms to reduce overfitting and a null model based on 
shifted predictors for bias correction. However, correlation 
between the actual and the predicted responses may not 
always be an appropriate measure of TRF component 
estimation, since it depends on a variety of factors including 
SNR and predictor characteristics. This metric may also not 
appropriately penalize latency errors or spurious activity in the 
TRF. Hence, we used several other metrics, including 
component latency and amplitude errors, to compare these 
algorithms in terms of TRF component estimation (see right 
column of Fig. 1).   

The SP algorithm performed the best in most measures, 
while ridge and boosting performed comparably. Spurious 
peaks after 300 ms (when there was no activity in the ground 
truth TRF) could lead to difficulties in interpretation and to 
false positives when detecting TRF components in real data. 
Conversely, missing components (false negatives) could also 
lead to improper interpretation of TRFs. Ridge had more 
spurious activity than boosting but was also able to detect 
more components than boosting. 

 
B. Simulation: Multi-channel TRFs 

Sensor space TRFs were simulated using realistic sensor 
topographies for TRF components, and the performance of 
each algorithm was compared (see Fig. 2). TRFs were 
estimated independently at each sensor for the boosting, ridge 
and SP algorithms, while the EM-SP algorithm directly 
estimated multi-channel component topographies. The EM-SP 
algorithm performed the best in most measures, while ridge 
and boosting performed comparably. The sensor topographies 
estimated by boosting and SP are worse than those estimated 
by ridge and EM-SP, which is to be expected given that the 
former are sparse algorithms that are fit at each sensor 
independently. Interestingly, the missing components are 
similar for both ridge and boosting, unlike in the single-
channel case. If boosting is able to correctly estimate 
components even for only a few channels, sparsity (in time) 
can then preserve the presence of the component peak when 
the r.m.s of the TRF is taken across channels. This 
improvement in component detection for boosting is also seen 
for the DSS and source space TRFs reported below. 
 

C. Simulation: Denoised TRFs using DSS 

The DSS algorithm was applied to the simulated sensor 
space responses to extract spatial filters corresponding to 
auditory response components. The algorithms were fit on the 
first 6 DSS components, and the resulting TRFs were 
projected back onto the sensor space for performance 
evaluation. Model fit response correlations increased greatly 
over the sensor space TRFs in all cases (see Fig. 3). Ridge, 

 
Fig. 1. Performance comparison for single-channel simulations. (a) The 
fitted TRFs for a representative subject. The ground truth TRF is shown as a 
dotted green line over the estimated TRFs. (b) Algorithm comparison using 
the performance metrics. Violin plots over simulated subjects are shown, with 
the symbols indicating the mean. Within each SNR condition, the algorithms 
are plotted in ascending order of their means from left to right. SP does not 
have spurious activity after 300 ms or missing components by design and is 
not shown for the bottom two subplots. Boosting seems to miss some 
components, while ridge has more spurious activity. Ridge and boosting are 
comparable for most measures, while SP seems to outperform the others in 
higher SNR cases. 
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boosting and EM-SP had comparable results. Interestingly, 
EM-SP did not have a significant advantage over the other 
algorithms, indicating that the established algorithms are just 
as suitable for low dimensional, denoised data.  
 

 
 

D. Simulation: Source Localized TRFs 
Source space simulations were constructed with dipoles in 

auditory areas for each TRF component. These dipoles were 
projected onto sensor space using the forward model and 
source localized back to source space to simulate source 
localized MEG data. The algorithms were fit on these source 
localized signals and performance was compared using the 
same metrics (see Fig. 4). Results were similar to the sensor 
space simulation, with EM-SP outperforming the others, and 
ridge and boosting giving comparable results (with ridge 
typically performing marginally better than boosting for most 
measures except spurious activity). 

 
 

Overall, the simulation results for single-channel and multi-
channel TRFs indicate that both boosting and ridge are 
comparable, with ridge typically performing slightly better. 
Interestingly, SP outperformed ridge and boosting in the high 
noise single-channel simulations, while EM-SP outperformed 
the others by a large margin in the multi-channel and source-
localized simulations. It should be noted that the component 
windows used for the simulation were identical to the 
component windows provided a-priori to SP and EM-SP, 
which may explain their better performance. Therefore, SP 
and EM-SP may be suitable for estimating TRFs in high noise 
conditions, assuming that the appropriate latency windows can 
be determined a-priori. Ridge also had lower spatial error 
compared to boosting (sensor topography and source 
distribution errors), perhaps because a sparse estimation 
technique like boosting cannot capture smooth spatial patterns 
as well as ridge. Conversely, ridge had much larger amounts 
of spurious activity compared to boosting. However, after 
applying the DSS algorithm in sensor space, ridge, boosting 
and EM-SP once again showed comparable performance, 
highlighting the importance of denoising methods when 
estimating TRFs from noisy multidimensional data.  

 
Fig. 2. Performance comparison for multi-channel simulations. (a) The 
fitted TRFs for a representative subject. The TRF at each sensor is plotted in 
gray, while the ℓ!-norm over sensors is plotted as a colored thick line. The ℓ!-
norm of the ground truth TRF is shown as a dotted green line over the 
estimated TRFs. The sensor topography at the largest peak near 100 ms is 
shown as an inset. (b) Algorithm comparison using the performance metrics. 
Since there is no activity after 300 ms in the SP and EM-SP TRFs by design, 
they are not plotted in the spurious activity subplot. EM-SP outperforms the 
others in most measures. Although all methods find similar components, the 
sensor topographies for boosting and SP are worse than the others, perhaps 
because they are sparse estimation techniques. 

 
Fig. 3. Performance comparison after DSS denoising. (a). The fitted TRFs 
for a representative subject, similar to the previous figure. The TRFs were fit 
on the first 6 DSS components and then back-projected to sensor space. All 
the algorithms result in reasonable TRF components and sensor topographies. 
(b). Algorithm comparison using the performance metrics. All the algorithms 
except SP perform comparably, while the latter performs the worst in most 
cases.   
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E. Performance on Real Data 
The algorithms were compared on a real MEG dataset 

collected for a cocktail party experiment. Sensor space, DSS 
and source space TRFs are shown for a representative subject 
in Fig. 5. The only metric used was the correlation between 
the measured and predicted signals, since the other metrics 
cannot be calculated when the ground truth TRF components 
are unknown. Interestingly, boosting had significantly lower 
correlation accuracy compared to each of the three other 
algorithms for sensor and source space TRFs (paired samples 
permutation tests with Holm-Bonferroni correction; all 
comparisons with boosting resulted in t39 > 4, p < 0.01), but 
there were no significant differences in correlation accuracy 
between ridge, SP and EM-SP. However, it is unclear if 
correlation is the most suitable metric for evaluating the 

accuracy of estimating TRF components. The correlation 
values were distributed over a large range across subjects, 
possibly indicating a high degree of inter-subject variability in 
neural SNR for time-locked responses. Ridge resulted in 
smooth TRFs with several peaks and large amounts of non-
zero activity which made them more difficult to interpret, 
especially for the sensor and source space TRFs. Boosting, 
though performing worse in terms of correlation, allowed for 
sparser TRFs with fewer peaks that were easier to interpret.  

The two proposed algorithms were restricted to finding 
exactly three TRF components, assuming fixed component 
waveforms and latency windows. The fact that EM-SP may 
have performed worse than ridge for real data, even though it 
outperformed the others in the simulations, indicates that these 
assumptions may not be valid for all subjects. This could be 
due to a variety of reasons including missing components due 
to anatomical or functional differences, and large individual 
variability in TRF components latencies, waveforms, and peak 
widths. Indeed, a separate simulation analysis (not shown) 
with missing components and mismatched latency windows 
resulted in similar performance for EM-SP, with it no longer 
outperforming ridge and boosting. In any case, conventional 
post-hoc analysis of TRF components estimated using 
established algorithms is also typically performed under 
similar assumptions to those used for EM-SP (i.e., detecting 
TRF peaks using similar latency windows). However, even 
with these constraints, EM-SP was often able to recover TRF 
components and spatial patterns comparable to ridge.  

 

IV. CONCLUSION 
TRFs provide a significant advancement over ERPs, 

allowing for experiments with more naturalistic speech 
paradigms. Detecting robust TRF components is essential for 
reliable single-subject investigations that could inform 
diagnosis and treatment of hearing disabilities and lead to 
improved biomedical applications like smart hearing aids. 

We compared TRF algorithms using both model fit and 
component estimation accuracy. Simulations indicate that 
boosting and ridge are comparable for most cases. 
Interestingly, ridge had better model fits on real data. 
However, in general, ridge TRFs displayed more spurious 
activity, while boosting TRF peaks were more interpretable. 
Therefore, ridge may be suitable for studies focused on 
prediction accuracy, while boosting may be appropriate for 
detecting easily identifiable TRF components. We restricted 
our analysis of established methods to these two algorithms 
that are the most widely used. Other variations on regularized 
regression, such as Lasso and Elastic Net, may provide 
improvements in TRF estimation [12].  

SP and EM-SP performed exceptionally in simulations, but 
not on real data, possibly due to invalid assumptions. The a-
priori parameters may need to be tuned for each predictor type 
or experiment, or even for each subject 

 
Fig. 4. Performance comparison for source space simulations. (a) The 
fitted TRFs for a representative subject are shown, similar to the previous 
figure. The source distributions in the temporal lobe ROI at the largest peak 
near 100 ms are shown as insets. Boosting and SP result in much sparser 
source distributions, and all the algorithms except SP perform comparably in 
estimating the TRF components, although the ridge TRF has a lot more 
activity that may make it difficult to interpret in realistic situations where the 
ground truth is unknown. (b). Algorithm comparison using the performance 
metrics, similar to those shown in the previous figure. EM-SP outperforms 
the others in most cases.   
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Modern TRF analyses involve multiple types of predictors 
[42] (e.g., envelopes, phoneme onsets, multiple frequency 
bands for spectrotemporal TRFs). Boosting and banded ridge 
regression may be suitable for these studies [10], [13], [43], 
[44]. The component characteristics of TRFs to these higher-
level predictors must be determined before SP and EM-SP can 
be applied. Additionally, early low-level responses could 
impact TRFs to high-level predictors, and sparse algorithms 
with fewer false positives (but more false negatives) may be 
more conservative. In conclusion, our results indicate that SP 
and EM-SP may only perform well under realistic 
assumptions, while ridge and boosting perform comparably in 
most cases, with ridge typically having higher prediction 
accuracies, but also more spurious activity.  

REFERENCES 
[1] T. Picton, “Hearing in Time: Evoked Potential Studies of Temporal 

Processing,” Ear and Hearing, vol. 34, no. 4, pp. 385–401, 2013, doi: 
10.1097/AUD.0b013e31827ada02. 

[2] T. W. Picton, S. A. Hillyard, H. I. Krausz, and R. Galambos, “Human 
auditory evoked potentials. I: Evaluation of components,” 
Electroencephalography and Clinical Neurophysiology, vol. 36, pp. 
179–190, Jan. 1974, doi: 10.1016/0013-4694(74)90155-2. 

[3] N. Ding and J. Z. Simon, “Emergence of neural encoding of auditory 
objects while listening to competing speakers,” PNAS, vol. 109, no. 
29, pp. 11854–11859, Jul. 2012, doi: 10.1073/pnas.1205381109. 

[4] E. C. Lalor and J. J. Foxe, “Neural responses to uninterrupted natural 
speech can be extracted with precise temporal resolution,” European 
Journal of Neuroscience, vol. 31, no. 1, pp. 189–193, 2010, doi: 
10.1111/j.1460-9568.2009.07055.x. 

[5] S. Akram, J. Z. Simon, and B. Babadi, “Dynamic Estimation of the 
Auditory Temporal Response Function From MEG in Competing-
Speaker Environments,” IEEE Transactions on Biomedical 
Engineering, vol. 64, no. 8, pp. 1896–1905, Aug. 2017, doi: 
10.1109/TBME.2016.2628884. 

[6] S. Geirnaert et al., “Electroencephalography-Based Auditory 
Attention Decoding: Toward Neurosteered Hearing Devices,” IEEE 
Signal Processing Magazine, vol. 38, no. 4, pp. 89–102, Jul. 2021, 
doi: 10.1109/MSP.2021.3075932. 

[7] C. Brodbeck, A. Jiao, L. E. Hong, and J. Z. Simon, “Neural speech 
restoration at the cocktail party: Auditory cortex recovers masked 
speech of both attended and ignored speakers,” PLOS Biology, vol. 
18, no. 10, p. e3000883, Oct. 2020, doi: 
10.1371/journal.pbio.3000883. 

[8] C. Brodbeck, A. Presacco, and J. Z. Simon, “Neural source dynamics 
of brain responses to continuous stimuli: Speech processing from 
acoustics to comprehension,” NeuroImage, vol. 172, pp. 162–174, 
May 2018, doi: 10.1016/j.neuroimage.2018.01.042. 

[9] M. P. Broderick, A. J. Anderson, G. M. Di Liberto, M. J. Crosse, and 
E. C. Lalor, “Electrophysiological Correlates of Semantic 
Dissimilarity Reflect the Comprehension of Natural, Narrative 
Speech,” Current Biology, vol. 28, no. 5, pp. 803-809.e3, Mar. 2018, 
doi: 10.1016/j.cub.2018.01.080. 

[10] C. Brodbeck, L. E. Hong, and J. Z. Simon, “Rapid Transformation 
from Auditory to Linguistic Representations of Continuous Speech,” 
Current Biology, vol. 28, no. 24, pp. 3976-3983.e5, Dec. 2018, doi: 
10.1016/j.cub.2018.10.042. 

[11] C. Brodbeck, A. Presacco, S. Anderson, and J. Z. Simon, “Over-
Representation of Speech in Older Adults Originates from Early 
Response in Higher Order Auditory Cortex,” Acta Acustica united 
with Acustica, vol. 104, no. 5, pp. 774–777, Sep. 2018, doi: 
10.3813/AAA.919221. 

[12] D. D. E. Wong, S. A. Fuglsang, J. Hjortkjær, E. Ceolini, M. Slaney, 
and A. de Cheveigné, “A Comparison of Regularization Methods in 
Forward and Backward Models for Auditory Attention Decoding,” 
Front. Neurosci., vol. 12, 2018, doi: 10.3389/fnins.2018.00531. 

[13] M. J. Crosse, N. J. Zuk, G. M. Di Liberto, A. R. Nidiffer, S. Molholm, 
and E. C. Lalor, “Linear Modeling of Neurophysiological Responses 
to Speech and Other Continuous Stimuli: Methodological 
Considerations for Applied Research,” Front Neurosci, vol. 15, p. 
705621, Nov. 2021, doi: 10.3389/fnins.2021.705621. 

[14] C. Brodbeck et al., “Eelbrain: A Python toolkit for time-continuous 
analysis with temporal response functions,” Aug. 2021. doi: 
10.1101/2021.08.01.454687. 

 
Fig. 5. Performance comparison on real MEG data. (a) The estimated sensor, DSS and source localized TRFs are shown for a representative subject. The 
sensor topographies and source distributions at the large peak near 100 ms are shown as insets. The sensor space EM-SP TRF has clear components and 
topographies, while the boosting TRF has overly sparse topographies and the ridge TRF has a lot of hard to interpret activity. Boosting, ridge and EM-SP show 
clear components and spatial patterns for the DSS and source localized TRFs. (b) Correlation between the measured and predicted signals is shown as a 
measure of model fit. Violin plots across subjects are shown for each algorithm in ascending order of their mean from left to right.  



 9 

[15] S. V. David, N. Mesgarani, and S. A. Shamma, “Estimating sparse 
spectro-temporal receptive fields with natural stimuli,” Network, vol. 
18, no. 3, pp. 191–212, Sep. 2007, doi: 10.1080/09548980701609235. 

[16] M. J. Crosse, G. M. Di Liberto, A. Bednar, and E. C. Lalor, “The 
Multivariate Temporal Response Function (mTRF) Toolbox: A 
MATLAB Toolbox for Relating Neural Signals to Continuous 
Stimuli,” Front. Hum. Neurosci., vol. 0, 2016, doi: 
10.3389/fnhum.2016.00604. 

[17] C. D. Woody, “Characterization of an adaptive filter for the analysis 
of variable latency neuroelectric signals,” Medical & Biological 
Engineering, vol. 5, no. 6, pp. 539–554, Nov. 1967, doi: 
10.1007/BF02474247. 

[18] T.-P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, 
and T. J. Sejnowski, “Analyzing and Visualizing Single-Trial Event-
Related Potentials,” in Advances in Neural Information Processing 
Systems 11, M. J. Kearns, S. A. Solla, and D. A. Cohn, Eds. MIT 
Press, 1999, pp. 118–124. 

[19] S. Makeig et al., “Dynamic Brain Sources of Visual Evoked 
Responses,” Science, vol. 295, no. 5555, pp. 690–694, Jan. 2002, doi: 
10.1126/science.1066168. 

[20] R. Q. Quiroga and H. Garcia, “Single-trial event-related potentials 
with wavelet denoising,” Clinical Neurophysiology, vol. 114, no. 2, 
pp. 376–390, Feb. 2003, doi: 10.1016/S1388-2457(02)00365-6. 

[21] J. C. de Munck, F. Bijma, P. Gaura, C. A. Sieluzycki, M. I. Branco, 
and R. M. Heethaar, “A maximum-likelihood estimator for trial-to-
trial variations in noisy MEG/EEG data sets,” IEEE Transactions on 
Biomedical Engineering, vol. 51, no. 12, pp. 2123–2128, Dec. 2004, 
doi: 10.1109/TBME.2004.836515. 

[22] P. Jaskowski and R. Verleger, “Amplitudes and latencies of single-
trial ERP’s estimated by a maximum-likelihood method,” IEEE 
Transactions on Biomedical Engineering, vol. 46, no. 8, pp. 987–993, 
Aug. 1999, doi: 10.1109/10.775409. 

[23] L. Xu, P. Stoica, J. Li, S. L. Bressler, X. Shao, and M. Ding, “ASEO: 
A Method for the Simultaneous Estimation of Single-Trial Event-
Related Potentials and Ongoing Brain Activities,” IEEE Transactions 
on Biomedical Engineering, vol. 56, no. 1, pp. 111–121, Jan. 2009, 
doi: 10.1109/TBME.2008.2008166. 

[24] T. Limpiti, B. D. Van Veen, and R. T. Wakai, “A Spatiotemporal 
Framework for MEG/EEG Evoked Response Amplitude and Latency 
Variability Estimation,” IEEE Transactions on Biomedical 
Engineering, vol. 57, no. 3, pp. 616–625, Mar. 2010, doi: 
10.1109/TBME.2009.2032533. 

[25] C. Sieluzycki, R. Konig, A. Matysiak, R. Kus, D. Ircha, and P. J. 
Durka, “Single-Trial Evoked Brain Responses Modeled by 
Multivariate Matching Pursuit,” IEEE Transactions on Biomedical 
Engineering, vol. 56, no. 1, pp. 74–82, Jan. 2009, doi: 
10.1109/TBME.2008.2002151. 

[26] H. R. Mohseni, F. Ghaderi, E. L. Wilding, and S. Sanei, “Variational 
Bayes for Spatiotemporal Identification of Event-Related Potential 
Subcomponents,” IEEE Transactions on Biomedical Engineering, vol. 
57, no. 10, pp. 2413–2428, Oct. 2010, doi: 
10.1109/TBME.2010.2050318. 

[27] W. Wu, C. Wu, S. Gao, B. Liu, Y. Li, and X. Gao, “Bayesian 
estimation of ERP components from multicondition and multichannel 
EEG,” NeuroImage, vol. 88, pp. 319–339, Mar. 2014, doi: 
10.1016/j.neuroimage.2013.11.028. 

[28] W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive 
Sensing Signal Reconstruction,” IEEE Transactions on Information 
Theory, vol. 55, no. 5, pp. 2230–2249, May 2009, doi: 
10.1109/TIT.2009.2016006. 

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood 
from Incomplete Data Via the EM Algorithm,” Journal of the Royal 
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 
1977, doi: 10.1111/j.2517-6161.1977.tb01600.x. 

[30] C. B. Do and S. Batzoglou, “What is the expectation maximization 
algorithm?,” Nat Biotechnol, vol. 26, no. 8, pp. 897–899, Aug. 2008, 
doi: 10.1038/nbt1406. 

[31] T. Zhang and B. Yu, “Boosting with early stopping: Convergence and 
consistency,” The Annals of Statistics, vol. 33, no. 4, pp. 1538–1579, 
Aug. 2005, doi: 10.1214/009053605000000255. 

[32] X.-L. Meng and D. B. Rubin, “Maximum Likelihood Estimation via 
the ECM Algorithm: A General Framework,” Biometrika, vol. 80, no. 
2, pp. 267–278, 1993, doi: 10.2307/2337198. 

[33] A. de Cheveigné and J. Z. Simon, “Denoising based on spatial 
filtering,” J Neurosci Methods, vol. 171, no. 2, pp. 331–339, Jun. 
2008, doi: 10.1016/j.jneumeth.2008.03.015. 

[34] A. Presacco, J. Z. Simon, and S. Anderson, “Evidence of degraded 
representation of speech in noise, in the aging midbrain and cortex,” J 
Neurophysiol, vol. 116, no. 5, pp. 2346–2355, Nov. 2016, doi: 
10.1152/jn.00372.2016. 

[35] A. Presacco, J. Z. Simon, and S. Anderson, “Effect of informational 
content of noise on speech representation in the aging midbrain and 
cortex,” Journal of Neurophysiology, vol. 116, no. 5, pp. 2356–2367, 
Nov. 2016, doi: 10.1152/jn.00373.2016. 

[36] B. Fischl, “FreeSurfer,” NeuroImage, vol. 62, no. 2, pp. 774–781, 
Aug. 2012, doi: 10.1016/j.neuroimage.2012.01.021. 

[37] M. S. Hämäläinen and R. J. Ilmoniemi, “Interpreting magnetic fields 
of the brain: minimum norm estimates,” Med. Biol. Eng. Comput., vol. 
32, no. 1, pp. 35–42, Jan. 1994, doi: 10.1007/BF02512476. 

[38] C. Brodbeck, P. Das, J. P. Kulasingham, S. Reddigari, and T. L. 
Brooks, Eelbrain 0.36. Zenodo, 2021. doi: 10.5281/zenodo.5152554. 

[39] A. Gramfort et al., “MNE software for processing MEG and EEG 
data,” NeuroImage, vol. 86, pp. 446–460, Feb. 2014, doi: 
10.1016/j.neuroimage.2013.10.027. 

[40] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific 
computing in Python,” Nature Methods, vol. 17, no. 3, Art. no. 3, Mar. 
2020, doi: 10.1038/s41592-019-0686-2. 

[41] C. Brodbeck and J. Z. Simon, “Continuous speech processing,” 
Current Opinion in Physiology, vol. 18, pp. 25–31, Dec. 2020, doi: 
10.1016/j.cophys.2020.07.014. 

[42] M. Gillis, J. Vanthornhout, J. Z. Simon, T. Francart, and C. Brodbeck, 
“Neural Markers of Speech Comprehension: Measuring EEG 
Tracking of Linguistic Speech Representations, Controlling the 
Speech Acoustics,” J. Neurosci., vol. 41, no. 50, pp. 10316–10329, 
Dec. 2021, doi: 10.1523/JNEUROSCI.0812-21.2021. 

[43] J. P. Kulasingham, N. H. Joshi, M. Rezaeizadeh, and J. Z. Simon, 
“Cortical Processing of Arithmetic and Simple Sentences in an 
Auditory Attention Task,” J. Neurosci., vol. 41, no. 38, pp. 8023–
8039, Sep. 2021, doi: 10.1523/JNEUROSCI.0269-21.2021. 

[44] J. P. Kulasingham, C. Brodbeck, A. Presacco, S. E. Kuchinsky, S. 
Anderson, and J. Z. Simon, “High gamma cortical processing of 
continuous speech in younger and older listeners,” NeuroImage, vol. 
222, p. 117291, Nov. 2020, doi: 10.1016/j.neuroimage.2020.117291. 

 
     


