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Abstract— Objective: The Temporal Response Function (TRF)
is a linear model of neural activity time-locked to continuous
stimuli, including continuous speech. TRFs based on speech
envelopes typically have distinct components that have provided
remarkable insights into the cortical processing of speech.
However, current methods may lead to less than reliable
estimates of single-subject TRF components. Here, we compare
two established methods, in TRF component estimation, and also
propose novel algorithms that utilize prior knowledge of these
components, bypassing the full TRF estimation. Methods: We
compared two established algorithms, ridge and boosting, and
two novel algorithms based on Subspace Pursuit (SP) and
Expectation Maximization (EM), which directly estimate TRF
components given plausible assumptions regarding component
characteristics. Single-channel, multi-channel, and source-
localized TRFs were fit on simulations and real magneto-
encephalographic data. Performance metrics included model fit
and component estimation accuracy. Results: Boosting and ridge
have comparable performance in component estimation. The
novel algorithms outperformed the others in simulations, but not
on real data, possibly due to the plausible assumptions not
actually being met. Ridge had slightly better model fits on real
data compared to boosting, but also more spurious TRF activity.
Conclusion: Results indicate that both smooth (ridge) and sparse
(boosting) algorithms perform comparably at TRF component
estimation. The SP and EM algorithms may be accurate, but rely
on assumptions of component characteristics. Significance: This
systematic comparison establishes the suitability of widely used
and novel algorithms for estimating robust TRF components,
which is essential for improved subject-specific investigations
into the cortical processing of speech.

Index Terms — MEG, EEG, auditory, deconvolution, reverse
correlation, attention, cocktail party, matching pursuit, ERP

I. INTRODUCTION

HE human brain time-locks to features of continuous
speech, extracting meaningful information relevant to
comprehension. Magnetoencephalography (MEG) and
electroencephalography (EEG) are suitable methods to
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measure these time-locked responses, due to their high
temporal resolution. Traditional methods for analyzing
auditory responses involve averaging over multiple trials of
repeated stimuli to estimate Evoked Response Potentials
(ERPs) [1], [2]. But exploring the complex mechanisms
involved in speech processing requires non-repetitive,
continuous speech stimuli of long duration, and averaging
over trials is no longer feasible. One method of analyzing
responses to continuous stimuli uses linear models called
Temporal Response Functions (TRFs), that estimate the
impulse response of the neural system to continuous stimuli
[3], [4]. TRFs based on neural recordings using
magnetoencephalography (MEG) have response components
such as the M50 (~50 ms latency), M100 (~100-150 ms) and
M200 (~200-250 ms) that are analogous to well-known
auditory ERP components, the P1, N1, and P2 components of
electroencephalography (EEG), and which have been utilized
to investigate selective attention [3], [5]-[7], linguistic
processing [8]-[10], and age-related differences in the
auditory system [11]. However, though estimated TRFs
display these canonical components at the group-average
level, individual TRFs are much noisier and do not always
have well-defined components. It is essential to detect robust
response components on a per-subject level, both to identify
task effects and for biomedical applications such as smart
hearing aids. Hence, the suitability of various TRF methods
for component estimation must be determined.

Variations of regularized regression and machine learning
methods for estimating TRFs have been previously compared
for decoding subject attention in a multi-talker scenario [6],
[12], [13]. However, it is unclear how they compare to
commonly used sparse TRF estimation techniques such as
boosting [14], [15]. Furthermore, a focus on model fits for
attention decoding may not be suitable for studies interested in
accurate estimation of TRF components.

In this work we perform a systematic comparison of TRF
algorithms in terms of estimating TRF components. Two
widely used TRF estimation algorithms are ridge regression
[13], [16] and boosting [3], [14], [15]. The former uses ¥,
regularization which leads to smooth TRFs with broad
components, while the latter greedily adds values to the TRF,
thereby prioritizing sparsity in the TRF and leading to
narrower, sharper components. However, it is not clear which
of these methods is more accurate in estimating TRF
component latencies and amplitudes.

Both ridge and boosting do not place restrictions on the
number or latencies of specific TRF components. Since



canonical auditory response components are often present in
TRFs to the speech envelope, it is reasonable to incorporate
this information during estimation. Several methods have been
proposed for directly estimating latencies and amplitudes for
M/EEG evoked responses (but not for TRFs). The earliest
ERP latency estimation methods involved cross correlation
with average response templates [17]. More recent algorithms
have utilized techniques such as Independent Component
Analysis [18], [19], wavelet decomposition [20], maximum
likelihood estimation [21], [22], autoregressive models [23],
Expectation Maximization (EM) [24], Matching Pursuit [25]
and Bayesian methods [26], [27].

In this work, we propose novel TRF component estimation
algorithms that utilize prior knowledge of the characteristics
of neural responses (i.e., component latency ranges), and
directly estimate component latencies, amplitudes and
topographies. The first proposed algorithm estimates single-
channel TRF component latencies and amplitudes using
Subspace Pursuit (SP) [28]. The second algorithm extends this
method for multi-channel TRFs using SP and Expectation
Maximization (EM) [24], [29], and also directly estimates
sensor topographies or cortical source distributions of TRF
components. The SP algorithm is widely used for sparse signal
recovery and is typically capable of recovering components in
an efficient manner. The EM algorithm is a maximum
likelihood method that is able to incorporate ‘hidden’
variables and is widely used in signal estimation [30]. Pursuit
algorithms and EM have been used for single trial evoked
response estimation [24], [25], and here, we employ natural
extensions of these algorithms for TRF component estimation.

A simulation study, and an application of these algorithms
to a real dataset, are reported and their performance is
compared using single-channel, multi-channel, and source
localized TRFs. Performance metrics include the correlation
between the actual and the predicted signal, which is the
conventional measure of model fit, and several other measures
of component estimation accuracy. Throughout this work,
“model fit” denotes the Pearson correlation between the actual
and predicted signals. Other considerations such as spurious
TRF activity and missing components are also examined. In
summary, this work discusses the strengths and weaknesses of
widely used algorithms and proposes novel methods for TRF
component estimation that may provide robust and
interpretable time-locked response components.

II. METHODS

A. Established Algorithms for TRF estimation
The TRF estimation problem is given by the convolution

y=B*x+n (1)

Where y € R is the vector of the single-channel measured
signal (e.g., at one sensor) for T time points, X € RT is the
predictor variable (e.g., the speech envelope), B € RX is the
corresponding TRF over K time lags, and n € R is the noise.
This can be reformulated as a regression as follows

y=Xg+n 2

Where X € RT*K is the Toeplitz matrix formed by lagged
predictor values. The well-known ridge regression algorithm
has been widely used to solve this problem [16]. Another
commonly used technique is the boosting algorithm, which is
a sparse estimation technique belonging to the broad family of
greedy additive estimators, and solves the TRF problem using
coordinate descent [14], [15], [31]. In brief, this algorithm
starts from an all-zero TRF and incrementally adds small,
fixed values to the TRF to decrease the mean square error
(MSE) at each iteration. The iterations are stopped when the
MSE does not improve. A dictionary of basis elements (e.g.,
Hamming windows) is used for the incremental additions to
the TRF. Both ridge and boosting can be used independently
at each sensor to estimate TRFs for multi-channel data.

B. Proposed SP algorithm for TRF estimation

The SP algorithm searches for TRF components within
predefined latency windows and directly estimates them. This
is unlike the ridge and boosting algorithms that do not place
specific restrictions on the number or latencies of detected
TRF components. Assuming there are /] components (e.g., ] =
3 for M50, M100, M200 components), the TRF model is now
given by a modified version of (1).

j=1

Where a; € Rand ¢; € RX are the amplitude and waveform
for the j* component. The component waveforms ¢c; are
selected according to the component latency 7; from a basis
dictionary (e.g., Hamming windows) that span the TRF lags
(i.e., ¢; is column number 7; of the basis dictionary matrix).
The SP algorithm directly estimates the amplitudes a; and
latencies 7;. The complete algorithm is given in Algorithm 1.

Algorithm 1: SP for TRF estimation

Inputs: Measured signal yeR”, predictor matrix XeR7*X, number of
components J and corresponding latency windows W;

1: Initialize the set of TRF components to the empty set; C° = @.

2: Set the residual to the measured signal r® =y

3: repeat forl =12, ...

4: | repeatforj=1,..,]

5: Find the best component latency
¢/ = argmax |< r!,Xc, >|
TEW

where c; is the basis component with latency T
6: | Add the J new components to the set € = €™ U {c¢}
7: | Estimate amplitudes @ = (ATA)"1ATy
where A has columns {Xc | ¢ € €}
8: | Update the component set
€' = {J components with the largest amplitudes
for each W}
9: | Re-estimate amplitudes @' = (B"B)'B"y
where B has columns {Xc | ¢ € C'}
10.| Calculate the new residual r' = y — Ba'
11| If ||eY]| > ||r*=?|| stop iterations and set ' = ¢"* & a' = a'~?
Output: amplitudes a' = [ay, ..., a;], components ¢; € C' and TRF

B = 2§=1 a,-c,-.




The SP algorithm estimates TRFs composed of only the
required number of components, and can also be applied
independently at each sensor for multi-channel TRFs.

C. Proposed EM-SP algorithm for TRF Estimation

The EM-SP algorithm is an extension of the SP algorithm
for multidimensional TRFs. In addition to directly estimating
amplitudes and latencies, this algorithm also directly estimates
sensor topographies or source distributions for multi-channel
TRFs. This algorithm uses EM to iteratively estimate
component topographies in the E-step, and latencies using SP
in the M-step. Given a predefined number of components and
corresponding latency windows, the EM-SP multi-channel
TRF model is given by a modified version of (3).

Y=73,2(X) +N )

Where YERM*T is the measured data over M sensors and T
time points, z;eRY is the spatial topography of the jt*
component, ¢;eR¥ is the temporal waveform of the jt*
component, XeR™*X is the predictor matrix, and NeRM*T is
the measurement noise. The component latency is given by ;
and is related to (4) by the fact that ¢; corresponds to column
number 7; in the TRF basis dictionary matrix. We assume the
following priors,

Z'NN(P—, R)
N~ (0, Iy @ A) ®)

Where the temporal noise covariance is assumed to be the
identity matrix and the spatial noise covariance is given by
A e RM*M_ For the EM algorithm, we consider the spatial
topographies Z = {zj} as the ‘hidden’ wvariables. The
remaining parameters that need to be estimated are © =
{ WRAT; } Detailed derivations of the algorithm are
provided in supplementary materials. Here, we summarize the
main steps of the algorithm.

The Q-function is given by taking the expectation over the
posterior probability p(Z1Y, ©).

Q(e|e®) = glog|A—1| + éloglR‘ll - %tr[YTA_lY]
+er[YTA(Z Elz; x-T)] S tr[Z»Z]- XJ-TX-E[z-z-T] Al (6)
——2, tr(E[zz]|R™!) - zluTR 1E[z;] +u"R"1p

In the Expectation step, the posterior means of the spatial
topographies are estimated.

= (A + R T ATNY - B ZxDX R (7)

For the Maximization step, we use the Conditional
Maximization method [32] whereby we sequentially maximize
over each one of the parameters © = {u, R AT } while
holding the others fixed at their previous values.

1 —
n=72z ®)
1 — — —
= 28 +27 —pz] - " + ") ©)
A=1vv"—y(3zx])" - (Szx])Y"

+21( x](S + Z;Z; ) + XizjX; xilif) (10

The latencies T; can be estimated in a similar manner to the

single channel SP algorithm using a linear search to maximize
tr|(Y - 274 A1
complete EM-SP algorlthm is provided below.

]over the component basis. The

Algorithm 2: EM-SP

Inputs: Multi-channel data Y € RM*T X € R™X, the number of
components J and latency windows W;

1: Initialize parameters Z; and ©° = {ij, u°, RO,AO}.

2: repeatfort=1,2, ...

3. | E-step: Estimate the spatial topographies Z; using (7)

4: | CM-steps: Estimate parameters pf, Rt, A* using (8)-(10)

CM-step: Estimate the latencies T]-t using SP as shown below

5: | Initialize residual Y2 = Y and component set C° = @
6: | Normalize the spatial topographies Z; = Z; /max(| |)
7: | repeat for iterations [ = 1,2, .
8: repeat for components j = 1, i
9: Find the best component latency
¢ = al;%ﬁ?x tr((YEHTAZ;(Xe)™)
where c; is the basis component with latency T
10: Add the J new components to the set € = €'~ U {¢;}

11: Estimate amplitudes @ = (ATA)"1ATy
1
where y = vec(A 2Y) is the vectorized whitened data

1 ~
and A has columns {vec(A_T- -)T) | ¢ €EC}
12: Update €' = {J components with the largest amplitudes
for each W;}
13: Re-estimate amplitudes a’ = (BTB)_lBT

7(xc)") o ec’}
J(xc)

C1&al =a?

where B has columns {vec (

14. Calculate the new residual Yy =Y — ¥ a
where q; are the values in al

15| |If||YE| > ||Y}2 1| stop iterations, let ' =
16. | Update the spatial topographies z; = aj z;
Output: The estimated TRF g = Y/ i=1Zj ] ,
and components ¢; with latencies 7; and amplitudes a; = max(|zj |)

spatial topographies Z;,

All four algorithms can also be used to simultaneously fit
TRFs to multiple predictors (e.g., foreground and background
envelopes) by concatenating the P predictor matrices X, €
RT*X along the columns, resulting in a new predictor matrix
X € RT*KP In this work, we jointly fit TRFs to two predictors
(corresponding to foreground and background speech
envelopes) using a concatenated predictor matrix.

D. Simulation Study

Simulations were constructed to match typical cocktail
party speech experiments which have two simultaneous
speech streams. Accordingly, the envelopes of two speech
stimuli (foreground and background) were used as predictors.
These envelopes were constructed by first passing the speech
waveform through a gammatone filterbank with 256 frequency
bands between 20-4000 Hz, and the amplitude spectrogram
was computed with an integration window of 10 ms. The
resulting spectrogram was averaged across frequency bands,
downsampled to 1000 Hz, and then band-passed at 1-10 Hz
using a symmetric linear phase FIR filter with order 3301 and



cutoffs 0.5 Hz and 11.25 Hz. Finally, the envelopes were
downsampled to 100 Hz for all further analysis. These
envelopes were repeated three times, in line with experiments
having multiple trials of repeated stimuli to extract consistent
responses using spatial filters such as Denoising Source
Separation (DSS [33]; details given below). Each predictor
was convolved with its own ground truth simulated TRF and
the responses were summed together to form one-dimensional
responses at 100 Hz sampling rate for 30 pseudo-subjects
comparable to a single-sensor M/EEG response or the first
auditory response component after DSS.

For each simulated subject, the ground truth simulated TRF
was formed by placing Hamming windows of 50 ms width
with peaks in the latency ranges 30-80 ms, 90-170 ms and
190-250 ms corresponding to typical latencies of the M50,
M100 and M200 components. The M100 component was
given a negative sign, and the components were scaled and
shifted according to randomized subject specific amplitudes
and latencies. These amplitudes and latencies were later used
as the ground truth for performance evaluation.

Realistic noise was added to the simulated responses using
the first DSS component of real MEG data collected from 30
subjects listening to speech (previously published [34], [35]).
DSS creates a series of spatial filters, where the DSS
component generated by the first of these filters corresponds
to activity that is most consistent across repeated stimulus
presentations (see [33] for details on DSS). Therefore, for this
speech experiment, the first DSS component is dominated by
auditory activity and displays a typical auditory response
sensor topography. This component was then phase
scrambled, preserving the spectral properties of MEG signals,
to simulate noise added to the simulated response, at SNRs of
-15, -20, -25 and -30 dB (SNRs selected to result in realistic
TRF model correlation values).

The multi-channel simulation followed the same method for
157 simulated sensor signals, but in addition also used ground
truth sensor topographies for each TRF component. These
topographies were constructed from the TRF component
topographies of a real subject with typical auditory TRF
components, with the addition of Gaussian noise to simulate
individual variability. Real multi-channel MEG data was again
phase scrambled and added as noise on a per channel basis
using the method described above, at SNRs of -20, -25, -30
and -35 dB (lower SNRs were used because unprocessed
multi-channel data is typically noisier than the extracted
auditory component).

The DSS algorithm was also applied to the simulated multi-
channel data and corresponding TRFs were calculated for the
first 6 DSS components. These DSS TRFs were projected
back into sensor space for subsequent analysis and for
computing performance metrics.

The source space simulation was constructed using the
Freesurfer ico-4 surface source space of the ‘fsaverage’ brain
[36]. An ROI in temporal lobe with 245 sources that included
auditory cortex was used for this simulation (‘aparc’ labels
‘transversetemporal’ and ‘superiortemporal’). The three TRF
components were simulated using dipoles in Heschl’s gyrus,
Planum Temporale and Superior Temporal Gyrus in both
hemispheres. These dipoles were projected onto the sensors
using forward models from real data and back projected back

onto source space with Minimum Norm Estimation (MNE)
[37] using Eelbrain [14], [38] and MNE-Python softwares [39]
to simulate the source localization procedure. The back-
projected source distributions of these simulated TRF
components were also used as the ground truth for subsequent
performance comparisons. The TRFs were then convolved
with the predictors to form the responses at each of the 245
sources. Real MEG data was phase scrambled and added as
noise to the response at each source at SNRs of -15, -20, -25
and -30 dB following the same procedure as above.

E. Experimental Dataset

MEG data collected in a prior study [34], [35] was used for
evaluating the performance of the algorithms on real data. The
study was approved by the IRB of the University of Maryland
and all participants provided written informed consent prior to
the start of the experiment. The dataset consisted of MEG data
collected from 40 subjects while they listened to speech from
the narration of an audiobook. Subjects listened to two
speakers simultaneously in a cocktail party experiment, but
were asked to attend to only one speaker. The data was from
the condition where the foreground speaker was 3 dB louder
than the background speaker. TRFs were estimated for the
foreground and background envelopes. Whole head sensor
space TRFs (157 sensors) were computed for each algorithm
on three minutes of data. Additionally, TRFs were also
computed for the first 6 DSS components. Finally, the MEG
responses of this dataset were source localized using MNE and
source space TRFs were also computed.

F. Algorithm Implementation

The algorithms were implemented in Python (version 3.9.6)
using SciPy (version 1.8.0) [40], and Eelbrain (version
0.36.1). The code is available online at <URLs available upon
acceptance>. A basis dictionary with Hamming windows of
width 50 ms was used for boosting, SP and EM-SP. The
component latency windows for the SP and EM-SP algorithms
were 30-80 ms, 90-170 ms and 190-250 ms. To avoid
instability and convergence issues, the spatial covariance R for
the EM-SP algorithm was assumed to be the identity matrix.
The EM-SP was initialized using the extracted components
from the SP algorithm applied at each sensor/source
independently.

A nested 4-fold cross validation procedure was followed for
all algorithms to allow for unbiased comparison. The data was
divided into 4 splits, with 1 for testing, 1 for validation and 2
for training. The validation and training splits were permuted
for each test split in a nested fashion. The training data was
used to optimize the ridge TRF over several regularization
parameters (steps of 2°, 2!, ..., 2!%) based on the model fit on
the validation data. The boosting TRF was fit on the training
data, and the validation data was used to check for
convergence and terminate the algorithm. The SP and EM-SP
TRFs were fit on the training data, and the model fit on the
validation data was used to terminate the EM iterations.
Finally, the overall model fit metric was calculated by
convolving the average TRF over all training splits with the
appropriate test predictor and computing the Pearson



correlation between this predicted signal and the actual test
signal.

G. Performance Metrics

The model fit was calculated as the Pearson correlation
between the estimated and the predicted response (averaged
over channels for multidimensional cases). A null model was
constructed by fitting TRFs using circularly time-shifted
predictors (shifts of 15 s) and the correlation of this null model
was subtracted from the true model. This bias corrected model
fit is reported for both simulations and real data.

In addition to model fit, several other metrics of TRF
component estimation were also calculated for the simulations
(but not for real data, since the ground truth components were
unknown). TRF components were automatically detected as
the peaks of the r.m.s of the TRF across channels in the
appropriate latency windows (30-80 ms, 90-170 ms, 190-250
ms) and the following metrics were used; 1) Pearson
correlation between the estimated and ground truth TRF, 2)
Absolute error of individual component latency estimates 3)
Absolute error of individual component amplitude estimates
(estimated vs, ground truth), 4) Spurious TRF activity given
by the % r.m.s. power in the estimated TRF after 300 ms (note
that there is no activity in the ground truth TRF after 300 ms),
5) Number of missing components 6) Sensor/source
topography estimation error using the angle between the
estimated topography vector and the ground truth topography
vector. These metrics were averaged over channels, predictors,
and components.

III. RESULTS

A. Simulation: Single-Channel TRF's

Single-channel TRFs were simulated, and the ridge,
boosting, and SP algorithms were compared in terms of
several performance metrics. The estimated TRFs for a
representative subject are shown in Fig. 1. The conventional
measure for evaluating the performance of TRF models is the
correlation between the actual and the predicted responses. In
this work we used a nested cross-validation procedure for all
algorithms to reduce overfitting and a null model based on
shifted predictors for bias correction. However, correlation
between the actual and the predicted responses may not
always be an appropriate measure of TRF component
estimation, since it depends on a variety of factors including
SNR and predictor characteristics. This metric may also not
appropriately penalize latency errors or spurious activity in the
TRF. Hence, we used several other metrics, including
component latency and amplitude errors, to compare these
algorithms in terms of TRF component estimation (see right
column of Fig. 1).

The SP algorithm performed the best in most measures,
while ridge and boosting performed comparably. Spurious
peaks after 300 ms (when there was no activity in the ground
truth TRF) could lead to difficulties in interpretation and to
false positives when detecting TRF components in real data.
Conversely, missing components (false negatives) could also
lead to improper interpretation of TRFs. Ridge had more
spurious activity than boosting but was also able to detect
more components than boosting.
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Fig. 1. Performance comparison for single-channel simulations. (a) The
fitted TRFs for a representative subject. The ground truth TRF is shown as a
dotted green line over the estimated TRFs. (b) Algorithm comparison using
the performance metrics. Violin plots over simulated subjects are shown, with
the symbols indicating the mean. Within each SNR condition, the algorithms
are plotted in ascending order of their means from left to right. SP does not
have spurious activity after 300 ms or missing components by design and is
not shown for the bottom two subplots. Boosting seems to miss some
components, while ridge has more spurious activity. Ridge and boosting are
comparable for most measures, while SP seems to outperform the others in
higher SNR cases.

B. Simulation: Multi-channel TRFs

Sensor space TRFs were simulated using realistic sensor
topographies for TRF components, and the performance of
each algorithm was compared (see Fig. 2). TRFs were
estimated independently at each sensor for the boosting, ridge
and SP algorithms, while the EM-SP algorithm directly
estimated multi-channel component topographies. The EM-SP
algorithm performed the best in most measures, while ridge
and boosting performed comparably. The sensor topographies
estimated by boosting and SP are worse than those estimated
by ridge and EM-SP, which is to be expected given that the
former are sparse algorithms that are fit at each sensor
independently. Interestingly, the missing components are
similar for both ridge and boosting, unlike in the single-
channel case. If boosting is able to correctly estimate
components even for only a few channels, sparsity (in time)
can then preserve the presence of the component peak when
the rm.s of the TRF is taken across channels. This
improvement in component detection for boosting is also seen
for the DSS and source space TRFs reported below.

C. Simulation: Denoised TRFs using DSS

The DSS algorithm was applied to the simulated sensor
space responses to extract spatial filters corresponding to
auditory response components. The algorithms were fit on the
first 6 DSS components, and the resulting TRFs were
projected back onto the sensor space for performance
evaluation. Model fit response correlations increased greatly
over the sensor space TRFs in all cases (see Fig. 3). Ridge,



boosting and EM-SP had comparable results. Interestingly,
EM-SP did not have a significant advantage over the other
algorithms, indicating that the established algorithms are just
as suitable for low dimensional, denoised data.
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Fig. 2. Performance comparison for multi-channel simulations. (a) The
fitted TRFs for a representative subject. The TRF at each sensor is plotted in
gray, while the £,-norm over sensors is plotted as a colored thick line. The £,-
norm of the ground truth TRF is shown as a dotted green line over the
estimated TRFs. The sensor topography at the largest peak near 100 ms is
shown as an inset. (b) Algorithm comparison using the performance metrics.
Since there is no activity after 300 ms in the SP and EM-SP TRFs by design,
they are not plotted in the spurious activity subplot. EM-SP outperforms the
others in most measures. Although all methods find similar components, the
sensor topographies for boosting and SP are worse than the others, perhaps
because they are sparse estimation techniques.

D. Simulation: Source Localized TRFs

Source space simulations were constructed with dipoles in
auditory areas for each TRF component. These dipoles were
projected onto sensor space using the forward model and
source localized back to source space to simulate source
localized MEG data. The algorithms were fit on these source
localized signals and performance was compared using the
same metrics (see Fig. 4). Results were similar to the sensor
space simulation, with EM-SP outperforming the others, and
ridge and boosting giving comparable results (with ridge
typically performing marginally better than boosting for most
measures except spurious activity).
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Fig. 3. Performance comparison after DSS denoising. (a). The fitted TRFs
for a representative subject, similar to the previous figure. The TRFs were fit
on the first 6 DSS components and then back-projected to sensor space. All
the algorithms result in reasonable TRF components and sensor topographies.
(b). Algorithm comparison using the performance metrics. All the algorithms
except SP perform comparably, while the latter performs the worst in most
cases.

Opverall, the simulation results for single-channel and multi-
channel TRFs indicate that both boosting and ridge are
comparable, with ridge typically performing slightly better.
Interestingly, SP outperformed ridge and boosting in the high
noise single-channel simulations, while EM-SP outperformed
the others by a large margin in the multi-channel and source-
localized simulations. It should be noted that the component
windows used for the simulation were identical to the
component windows provided a-priori to SP and EM-SP,
which may explain their better performance. Therefore, SP
and EM-SP may be suitable for estimating TRFs in high noise
conditions, assuming that the appropriate latency windows can
be determined a-priori. Ridge also had lower spatial error
compared to boosting (sensor topography and source
distribution errors), perhaps because a sparse estimation
technique like boosting cannot capture smooth spatial patterns
as well as ridge. Conversely, ridge had much larger amounts
of spurious activity compared to boosting. However, after
applying the DSS algorithm in sensor space, ridge, boosting
and EM-SP once again showed comparable performance,
highlighting the importance of denoising methods when
estimating TRFs from noisy multidimensional data.
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Fig. 4. Performance comparison for source space simulations. (a) The
fitted TRFs for a representative subject are shown, similar to the previous
figure. The source distributions in the temporal lobe ROI at the largest peak
near 100 ms are shown as insets. Boosting and SP result in much sparser
source distributions, and all the algorithms except SP perform comparably in
estimating the TRF components, although the ridge TRF has a lot more
activity that may make it difficult to interpret in realistic situations where the
ground truth is unknown. (b). Algorithm comparison using the performance
metrics, similar to those shown in the previous figure. EM-SP outperforms
the others in most cases.
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E. Performance on Real Data

The algorithms were compared on a real MEG dataset
collected for a cocktail party experiment. Sensor space, DSS
and source space TRFs are shown for a representative subject
in Fig. 5. The only metric used was the correlation between
the measured and predicted signals, since the other metrics
cannot be calculated when the ground truth TRF components
are unknown. Interestingly, boosting had significantly lower
correlation accuracy compared to each of the three other
algorithms for sensor and source space TRFs (paired samples
permutation tests with Holm-Bonferroni correction; all
comparisons with boosting resulted in tzo > 4, p < 0.01), but
there were no significant differences in correlation accuracy
between ridge, SP and EM-SP. However, it is unclear if
correlation is the most suitable metric for evaluating the

accuracy of estimating TRF components. The correlation
values were distributed over a large range across subjects,
possibly indicating a high degree of inter-subject variability in
neural SNR for time-locked responses. Ridge resulted in
smooth TRFs with several peaks and large amounts of non-
zero activity which made them more difficult to interpret,
especially for the sensor and source space TRFs. Boosting,
though performing worse in terms of correlation, allowed for
sparser TRFs with fewer peaks that were easier to interpret.
The two proposed algorithms were restricted to finding
exactly three TRF components, assuming fixed component
waveforms and latency windows. The fact that EM-SP may
have performed worse than ridge for real data, even though it
outperformed the others in the simulations, indicates that these
assumptions may not be valid for all subjects. This could be
due to a variety of reasons including missing components due
to anatomical or functional differences, and large individual
variability in TRF components latencies, waveforms, and peak
widths. Indeed, a separate simulation analysis (not shown)
with missing components and mismatched latency windows
resulted in similar performance for EM-SP, with it no longer
outperforming ridge and boosting. In any case, conventional
post-hoc analysis of TRF components estimated using
established algorithms is also typically performed under
similar assumptions to those used for EM-SP (i.e., detecting
TRF peaks using similar latency windows). However, even
with these constraints, EM-SP was often able to recover TRF
components and spatial patterns comparable to ridge.

IV. CONCLUSION

TRFs provide a significant advancement over ERPs,
allowing for experiments with more naturalistic speech
paradigms. Detecting robust TRF components is essential for
reliable single-subject investigations that could inform
diagnosis and treatment of hearing disabilities and lead to
improved biomedical applications like smart hearing aids.

We compared TRF algorithms using both model fit and
component estimation accuracy. Simulations indicate that
boosting and ridge are comparable for most cases.
Interestingly, ridge had better model fits on real data.
However, in general, ridge TRFs displayed more spurious
activity, while boosting TRF peaks were more interpretable.
Therefore, ridge may be suitable for studies focused on
prediction accuracy, while boosting may be appropriate for
detecting easily identifiable TRF components. We restricted
our analysis of established methods to these two algorithms
that are the most widely used. Other variations on regularized
regression, such as Lasso and Elastic Net, may provide
improvements in TRF estimation [12].

SP and EM-SP performed exceptionally in simulations, but
not on real data, possibly due to invalid assumptions. The a-
priori parameters may need to be tuned for each predictor type
or experiment, or even for each subject
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Fig. 5. Performance comparison on real MEG data. (a) The estimated sensor, DSS and source localized TRFs are shown for a representative subject. The
sensor topographies and source distributions at the large peak near 100 ms are shown as insets. The sensor space EM-SP TRF has clear components and
topographies, while the boosting TRF has overly sparse topographies and the ridge TRF has a lot of hard to interpret activity. Boosting, ridge and EM-SP show
clear components and spatial patterns for the DSS and source localized TRFs. (b) Correlation between the measured and predicted signals is shown as a
measure of model fit. Violin plots across subjects are shown for each algorithm in ascending order of their mean from left to right.

Modern TRF analyses involve multiple types of predictors
[42] (e.g., envelopes, phoneme onsets, multiple frequency
bands for spectrotemporal TRFs). Boosting and banded ridge
regression may be suitable for these studies [10], [13], [43],
[44]. The component characteristics of TRFs to these higher-
level predictors must be determined before SP and EM-SP can
be applied. Additionally, early low-level responses could
impact TRFs to high-level predictors, and sparse algorithms
with fewer false positives (but more false negatives) may be
more conservative. In conclusion, our results indicate that SP
and EM-SP may only perform well under realistic
assumptions, while ridge and boosting perform comparably in
most cases, with ridge typically having higher prediction
accuracies, but also more spurious activity.
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