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Abstract 
Voice pitch carries linguistic as well as non-linguistic information. Previous studies have 
described cortical tracking of voice pitch in clean speech, with responses reflecting both pitch 
strength and pitch value. However, pitch is also a powerful cue for auditory stream segregation, 
especially when competing streams have pitch differing in fundamental frequency, as is the case 
when multiple speakers talk simultaneously. We therefore investigated how cortical speech pitch 
tracking is affected in the presence of a second, task-irrelevant speaker. We analyzed human 
magnetoencephalography (MEG) responses to continuous narrative speech, presented either as 
a single talker in a quiet background, or as a two-talker mixture of a male and a female speaker. 
In clean speech, voice pitch was associated with a right-dominant response, peaking at a latency 
of around 100 ms, consistent with previous EEG and ECoG results. The response tracked both 
the presence of pitch as well as the relative value of the speaker’s fundamental frequency. In the 
two-talker mixture, pitch of the attended speaker was tracked bilaterally, regardless of whether 
or not there was simultaneously present pitch in the speech of the irrelevant speaker. Pitch 
tracking for the irrelevant speaker was reduced: only the right hemisphere still significantly 
tracked pitch of the unattended speaker, and only during intervals in which no pitch was present 
in the attended talker’s speech. Taken together, these results suggest that pitch-based 
segregation of multiple speakers, at least as measured by macroscopic cortical tracking, is not 
entirely automatic but strongly dependent on selective attention.  

Introduction 
Pitch is a function of temporal periodicity and spectral order in acoustic waveforms (de 
Cheveigné, 2005). The cochlea transforms temporal periodicity into a spatial code by mapping 
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different frequencies in the signal to different spatial locations along the basilar membrane. 
Subcortical responses retain the periodicity in ranges critical for speech, and thus represent 
pitch temporally as well as spatially (Skoe and Kraus, 2010; Maddox and Lee, 2018). However, 
phase locking at faster frequencies gradually declines in the ascending auditory system (Joris et 
al., 2004). Extracranial recordings of cortical responses have observed population-level phase-
locking to periodicity in speech only up to approximately 110 Hz (Coffey et al., 2016; 
Kulasingham et al., 2020). This is insufficient for encoding most voice pitch, as voices often 
exhibit a fundamental frequency above 100 Hz. Instead, the auditory cortex is abundant with 
frequency-selective receptive fields (Saenz and Langers, 2014), and pitch features are encoded 
through a combination of place and rate code (Fishman et al., 2013). 

Cortical pitch tracking has primarily been analyzed with higher level representations of pitch. In 
speech, pitch is present intermittently, forming the basis of voiced segments and interrupted for 
unvoiced segments. Two aspects of pitch can thus be described separately that are relevant for 
cortical tracking: pitch strength, i.e., to what extent pitch is present at each moment in the 
speech signal, and pitch value, i.e., the height of the perceived pitch, generally corresponding to 
the fundamental frequency. Both these features are tracked by scalp electroencephalography 
(EEG) responses to continuous narrative speech (Teoh et al., 2019). Intracranial recordings 
suggest that representations of relative pitch, corresponding to speaker-independent intonation 
contours, are more prominent than representations of absolute pitch (Tang et al., 2017); and that 
the pitch of speech is associated with a prominent neural response at around 100 ms latency (Li 
et al., 2021).  

Here we investigate how pitch tracking is affected when listening to multiple simultaneous 
speakers. When the sound from two speakers is mixed, the sound waveforms combine 
additively. For simplicity we will consider the case of a single audio channel mixed signal 
presented diotically, i.e., the two source waveforms are mixed into a single mixed waveform 
presented to both ears. The problem of stream segregation then is segregating the spectro-
temporal elements of the heard sound into those associated with either of the sources (Bregman, 
1990). Pitch can be a strong cue for stream segregation (Bregman, 1990; Micheyl and Oxenham, 
2010). For example, pitch tracking can aid segregation by grouping together the different 
harmonics of a shared fundamental (Popham et al., 2018). The spatial code in A1 provides 
sufficient information to distinguish two concurrent vowels that differ in f0 by four semitones, 
consistent with human perceptual judgements (Fishman et al., 2014, 2016). Non-primary areas 
might thus reconstruct pitch from this representation (Bendor and Wang, 2005), for example 
using harmonic templates (Fishman et al., 2014). This would potentially allow the auditory cortex 
to segregate the pitch of two speakers, especially if those two streams differ substantially in 
pitch (e.g., a male and a female speaker). A pitch sensitive region in the anterior portion of the 
superior temporal plane (Norman-Haignere et al., 2013) could be the potential locus for such 
pitch-based segregation.  

If pitch extraction is automatic for each of several multiple sources in a mixture, it could then be 
used as bottom-up cue in stream segregation. This would be consistent with suggestions that 
the subcortical representation of voice pitch (Maddox and Lee, 2018; Van Canneyt et al., 2021a, 
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2021b) is affected by attention (Forte et al., 2017; Etard et al., 2019; Saiz-Alía et al., 2019). 
Cortical responses might then be expected to simultaneously track the pitch in the attended and 
the ignored speakers. Pitch tracking might still be affected by overlapping pitch to the extent 
that the overlap imposes additional demands for segregation. On the other hand, pitch tracking 
might reflect a secondary representation constructed during attentive speech processing, for 
example for linguistic prosody. In this case, pitch tracking might depend on selective attention, 
possibly without demonstrating pitch tracking for the ignored speaker at all. 

To investigate this, we analyzed a previously studied dataset of MEG responses to audiobooks 
in two conditions: speech from a single speaker in a quiet background, and speech from two 
speakers, one male and one female, reading different audiobooks mixed together and presented 
diotically, with the task of listening to one speaker and ignoring the other (Brodbeck et al., 2020). 
In the original study we analyzed responses as a function of spectrogram representations, and 
found that listeners segregate acoustic features even of the ignored speaker from the acoustic 
mixture. Here we ask to what degree listeners additionally track pitch in the attended and the 
ignored speaker. In this analysis of pitch tracking, all predictors used in the original analysis are 
also controlled for (Brodbeck et al., 2020). For clean speech, we model pitch through two 
separate time-dependent predictors, pitch strength and pitch value (Figure 1-A). For the two-
speaker mixture, we additionally distinguish (1) between pitch in the attended and the ignored 
talker, and (2) between pitch when it is overt, i.e., when only one of the two speakers exhibits 
pitch at a time, and when it is masked, i.e., when both speech signals contain pitch 
simultaneously (Figure 1-B). Masked pitch deserves special attention because the two sources 
of pitch may interfere with each other, such that naïve pitch detection algorithms would fail 
without considering the effect of that interference through some kind of segregation mechanism 
(Micheyl and Oxenham, 2010). 
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Figure 1. Predictors for analyzing pitch tracking. (A) For a single speaker, pitch tracking was 
estimated using two predictors: Pitch Strength, reflecting the degree to which a distinctive pitch 
is present in the sound signal, and Pitch Value, reflecting the fundamental frequency of the pitch, 
relative to baseline. For moments when Pitch Strength is 0, Pitch Value is set to the default 
baseline value. (B) For two-speaker stimuli, pitch strength and value were estimated separately 
for each speaker, and then split into two separate predictors reflecting overt pitch (i.e., pitch is 
present only in a single speaker) and masked pitch (i.e., pitch is present in both speakers). Note 
that, as a consequence of this definition, the two masked pitch predictors are always on 
simultaneously, whereas the overt pitch predictors are mutually exclusive. 

Method 
We reanalyzed MEG responses from 26 native speakers of English (8 female, 18 male; age mean 
45.2 years, range 22-61), listening to multiple 1 minute duration audiobook segments, in quiet 
and in a two-talker mixture (8 and 16 minutes, respectively). Mixtures always consisted of a male 
and a female speaker, with clearly separable by pitch. Most of the analysis followed essentially 
the same procedures as the original study (Brodbeck et al., 2020) but with additional predictors 
to isolate representations of pitch. 

MEG recordings were pre-processed in MNE-Python (Gramfort et al., 2014) with temporal signal-
space separation (Taulu and Simola, 2006), and a 1- 40 Hz bandpass filter (zero-phase FIR filter, 
MNE-Python 0.15 default settings). Independent component analysis (Bell and Sejnowski, 1995), 
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was used to remove known biological artifacts such as eye blinks and heart beat (on average, 
4.7 components were removed per subject). An additional 20 Hz lowpass filter (same details as 
bandpass filter) was applied to increase analysis power because consistent phase-locked 
responses occur predominantly at lower frequencies (Ding and Simon, 2013). Response epochs 
related to the stimuli were then extracted and downsampled to 100 Hz. For two-talker stimuli, 
the first second contained only the target talker and data corresponding to this second was 
discarded. Responses were then projected to current dipoles oriented perpendicularly to the 
white matter surface (4-fold icosahedral subdivision) using distributed minimum ℓ2 norm source 
current estimates, using a noise covariance estimate from empty room data and regularization l 
= 1/6 (no depth weighting). 

Predictors 
Pitch was extracted from each stimulus using Praat (Boersma and Weenink, 2017). Pitch 
strength was taken directly from the Praat estimate, which quantifies the degree of periodicity in 
the signal, taking values between 0 and 1. The pitch value, reflecting the frequency in Hz, was 
log transformed, and sections without pitch (pitch strength of zero) were set to the 5th percentile 
value of sections with pitch (see Figure 1-A). This baseline correction was performed for each 
1-minute segment separately, to derive relative pitch regardless of the specific speaker’s
fundamental frequency. The pitch value was oriented relative to the lower end of the scale to
account for the observation in ECoG that native English speakers show selective responses to
higher relative pitch (Li et al., 2021). Across all stimuli, pitch strength and value were moderately
correlated (r=0.66). To control for spectro-temporal acoustic processing we included the
acoustic spectrogram and onset spectrogram predictors from the original study (8 bands each).

We also considered a pitch onset predictor (Krumbholz et al., 2003), based on the half-wave 
rectified derivative of the pitch strength. We reasoned that this predictor might be able to isolate 
responses related to the initial detection of pitch. However, the predictor did not improve 
predictive power beyond pitch strength and value (tmax=2.28, p=.385, when restricted to the 
STG), and we consequently dropped it from further analysis. A reason for this might be that pitch 
onset in speech almost always coincides with a sound onset in the spectrogram, which our 
analysis always controlled for.  

For the two-speaker condition, we first generated pitch predictors for each of the two source 
segments in the mixture. Masking was operationalized as a binary distinction: The ignored 
speaker was considered masked where the pitch strength of the attended speaker exceeded 0.5 
and vice versa. Based on this, both speaker’s pitch predictors were split into two different sets, 
one reflecting overt pitch, the other masked pitch (Figure 1-B). On average, overt speech 
predictors were non-zero at 24.6% of time points, and masked speech at 29.9%. To control for 
spectro-temporal processing we included all predictors from the two talker condition of the 
original study, including overt and masked onsets (Brodbeck et al., 2020, second equation on p. 
17). 
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Model tests 
Multivariate temporal response function (mTRF) models were estimated separately for each 
subject and source dipole with Eelbrain (Brodbeck et al., 2021). As in the original study, models 
with latency range 0-500 ms were estimated and tested on held-out data using 4-fold cross-
validation. Predictive power was quantified as the proportion of the variability in the source 
localized MEG responses explained by the model. Each predictor was evaluated by comparing 
the predictive power of the complete model (all predictors) with a model that was estimated while 
excluding the to-be-tested predictor. Importantly, these tests assess the unique predictive 
power of the predictor under investigation, after controlling for all other predictors (i.e., a 
significant result indicates that this predictor contains information about the brain responses that 
is not also present in any of the other predictors). This is important because different speech 
features are often correlated, and a spurious predictor by itself might derive some predictive 
power simply from being correlated with a neurally meaningful speech feature (e.g., Gillis et al., 
2021). 

We defined anatomical areas for mass-univariate tests (based on “aparc” labels; Desikan et al., 
2006): For pitch representations of clean speech we initially tested in the whole cortex with the 
exception of the occipital lobe, insula and cingulate cortex (i.e., regions in which we did not 
expect a substantive auditory response, excluded in order to expedite these numerically 
intensive computations). Based on these results, we performed tests for the two-speaker 
condition in more restricted areas in the superior temporal gyrus (STG; transverse and superior 
temporal gyrus labels) and the inferior frontal gyrus (IFG; pars opercularis, pars triangularis and 
pars orbitalis labels). Anatomical maps of predictive power were smoothed (SD = 5 mm) and 
compared with mass-univariate related measures t-tests, correcting for multiple comparison with 
threshold-free cluster enhancement (Smith and Nichols, 2009) and a permutation distribution 
based on 10000 random permutations of condition labels. Tests of whether a given predictor 
improved predictive power were one-tailed, all other comparisons were two-tailed. Even though 
we sometimes report results separately for the left and right hemisphere, multiple comparison 
correction was always based on a permutation distribution estimated from the combination of 
both hemispheres. 

To express model predictive power as a meaningful quantity, the predictive power of different 
predictors is expressed as % of the explanatory power of the most complete model (separately 
for the single speaker and the two-speaker conditions). 

There is no standard measure of effect size for mass-univariate tests. As a compromise, we 
report tmax for mass-univariate tests, i.e., the largest t-value in the significant area (or the whole 
tested area for non-significant results). However, to provide a more traditional measure of effect 
size, we also defined a function region of interest (ROI). This ROI was defined based on the 
intersection of significant activation in the single speaker condition (to either of the two pitch 
predictors) and the STG anatomical area. We used this ROI to extract the average explained 
variability attributable to pitch strength and value combined (Figure 3-B) or each predictor 
individually ( 
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Left Hemisphere Right Hemisphere 
Speaker Masking Pitch t p d t p  d 
Attended Overt Strength 2.09 .023 *   0.41 0.36 .361 0.07 

Value 4.21 < .001 *** 0.83 3.18 .002 ** 0.62 
Masked Strength 0.85 .202 0.17 -1.44 .919 -0.28

Value 3.85 < .001 *** 0.75 3.45 .001 ** 0.68 
Ignored Overt Strength 0.71 .242 0.14 -0.25 .600 -0.05

Value 1.76 .045 *   0.35 2.90 .004 ** 0.57 
Table 1). 

ANOVA for difference in localization 
Localization differences in MEG should be interpreted with caution (Lütkenhöner, 2003; 
Bourguignon et al., 2018). However, the question whether two localizations are based on the 
same underlying source configuration can be tested in a straightforward manner, based on the 
linearity of the forward and inverse models. If two maps reflect the same underlying source 
configuration, they should produce the same relative measurements at the sensor level 
(McCarthy and Wood, 1985) and, consequently, in the source localized responses. Based on 
this, we test the null hypothesis that two predictors are represented in the same neural sources 
by first normalizing the two respective maps and subtracting one form the other. If the two 
underlying maps have the same shape, the sources should now only contain random noise. We 
thus used a one-way repeated measures ANOVA with factor source dipole to test whether there 
is a systematic pattern left after the subtraction (in other words, whether there is a systematic 
difference between the patterns of localization of the two predictors). 

Temporal response functions 
To analyze temporal response functions (TRFs), mTRF models were re-estimated using a latency 
range from -100 – 500 ms, and without held-out data (but still using early stopping based on 
cross-validation). For TRF estimation, predictors as well as MEG responses were normalized, 
and TRFs were analyzed at this normalized scale. Note that TRFs are equivalent to coefficients 
in a regression problem, and, unlike the model tests, may thus be sensitive to contamination 
from correlated predictors.  

Results 

Pitch strength and value are tracked in single talker speech 
In single talker clean speech, pitch strength and pitch value were both represented neurally 
(Figure 2). This was assessed by comparing the predictive power of a full model, containing 
pitch strength and value along with an auditory spectrogram and an acoustic onset spectrogram, 
with the predictive power of two control models which were fit either without the pitch strength 
or without the pitch value predictors. This indicated that both predictors contributed unique 
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predictive power to the full model  (strength: tmax=5.58, p<.001; value: tmax=6.00, p<.001). Overall, 
source localization is consistent with the majority of sources in the vicinity of the auditory cortex 
in Heschl’s gyrus and the superior temporal gyrus (see Figure 2-A). Pitch strength was 
significantly right-lateralized (Figure 2-B; tmax=4.90, p<.001), with no significant tracking in the left 
hemisphere (tmax=3.24, p=.670). 

Figure 2. Separable tracking of pitch strength and pitch value of a single talker. (A) Pitch 
strength and pitch value both improved model predictions independently, when controlling for 
acoustic envelope and onset spectrograms (p ≤ 0.05, corrected; darkened areas excluded from 
analysis). The color scale reflects the explained variability in MEG responses, expressed as % of 
the complete model. (B) Both pitch predictors showed some right-lateralization. Plots show 
right–left hemisphere predictive power difference, same scale as (A). (C) Temporal response 
functions (TRFs) showed dominant responses at latencies between 50-200 ms. TRF magnitude 
is shown for regions of significant model prediction. The three horizontal red bars indicate time 
windows used in (D). (D) Anatomical distribution of TRFs in 50 ms time windows. LH: left 
hemisphere; RH: right hemisphere; STG: superior temporal gyrus; IFG: inferior frontal gyrus; 
aSTG: anterior STG. 
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The localization of pitch value was more complex: when tested in the whole brain, it was 
significantly right-lateralized (tmax=4.90, p<.001). However, the region of significant difference 
coincided with the anatomical label of the pars opercularis of the inferior frontal gyrus (IFG). 
When repeated in the STG only, lateralization was not significant (tmax = 2.28, p = .385). To confirm 
that pitch strength and value are tracked by non-identical sources we applied a predictor × 
source dipole ANOVA in the right hemisphere (see Methods). This indicated that the distribution 
of sources tracking the two predictors was indeed different (F(117, 2925) = 1.85, p < .001). 
Together, these results suggest that pitch value tracking engages additional, more anterior 
sources compared to pitch strength tracking. The source localization raises the possibility that 
pitch value specifically engages the right IFG, although due to the proximity to the anterior 
temporal lobe it is impossible to exclude the possibility of an anterior temporal source with 
dispersion into IFG due to imperfect source localization (cf. Bourguignon et al., 2018). 

Response to pitch peaks around 100 ms latency 
The Temporal Response Functions (TRFs), i.e., the estimated impulse responses to elementary 
pitch features, and are shown in in Figure 2-C and D. Figure 2-C shows the response magnitude, 
summed across source dipoles, as a function of time. Responses are shown in functional ROIs, 
based on combining the region of significant model predictions (union across the two predictors) 
with anatomical STG and IFG labels. Most of the response power is concentrated in the first 50-
200 ms, with a clear response peak to pitch value around 100 ms. Comparison of responses to 
pitch value in the STG and IFG ROIs suggests that the relative involvement of the anterior peak 
is stronger at the shorter latencies. The anatomical distribution of the response magnitude is 
consistent with this, showing a stronger response at the anterior source in the early time window 
(Figure 2-D). 

In two simultaneous talkers, pitch-tracking depends on selective attention 
To test how pitch is tracked when listening to one of two concurrent talkers, we generated 4 
versions of each predictor: first, we generated separate versions for pitch of the attended 
speaker and of the ignored speaker; second, for each of those, we separated each time point 
into overt or masked pitch, based on whether pitch was simultaneously present in the other 
talker or not (see Figure 1-B). First, we tested for pitch tracking in the STG by combining pitch 
strength and value in each of the four categories (Figure 3-A). Results indicated significant pitch 
tracking for overt pitch, regardless of whether pitch originated from the attended (tmax=4.38, 
p<.001) or the ignored speaker (tmax=3.74, p=.008). In contrast to this, masked pitch was tracked 
only in the attended speaker (tmax=3.57, p=.003), whereas we did not find evidence for tracking 
of masked pitch in the unattended speaker (tmax=2.42, p=.432). None of the effects were 
significantly lateralized. Although tracking of overt pitch in the ignored speaker was only 
significant in the right hemisphere, the lateralization of this effect was not significant either 
(tmax=2.47, p=.054; other ps≥.199). 

A direct comparison in the STG confirmed effects of selective attention for tracking of overt as 
well as masked pitch. For masked pitch, tracking was significantly stronger in the attended 
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speaker than in the unattended speaker in both hemispheres (one-tailed test: right: tmax=3.88, 
p=.005; left: tmax=3.07, p=.042). For overt pitch, tracking of the attended speaker was stronger in 
the left hemisphere only (tmax=3.26, p=.031; right: tmax=2.48, p=.415), again without significant 
lateralization of the effect. While these results appear more robust for masked pitch than overt 
pitch, there was somewhat more data for masked pitch than for overt pitch (29.9% vs. 24.6%), 
suggesting that the former test might be somewhat more powerful, and this difference should 
be interpreted with care. 

Only attended masked pitch was also significant in the IFG area (tmax=3.20, p=.025), and in this 
area attended masked pitch was significantly stronger than ignored masked pitch (tmax=3.54, 
p=.017). Representation of attended masked pitch was also stronger than attended overt pitch 
(tmax=3.40, p=.035) (subject to the same caveat that there was slightly more data for masked 
pitch). 
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Figure 3. Pitch tracking in two simultaneous speakers depends on selective attention. (A) 
Significance tests of pitch tracking for overt and masked pitch in the attended and ignored 
speaker. STG and IFG were separately tested (darkened area excluded from tests). (B) Individual 
subject data (% variability explained) in a region of interest, defined as the intersection of the 
region of significant activity in the single speaker condition and the STG anatomical label. (C) 
Temporal response function (TRF) magnitude with dominant response at 100-200 ms latency. 
The three horizontal red bars indicate time windows used in (D). (D) TRF activity localized mainly 
to the auditory cortex, with involvement of a more anterior region for masked pitch in the 
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attended speaker. LH: left hemisphere; RH: right hemisphere; STG: superior temporal gyrus; IFG: 
inferior frontal gyrus; aSTG: anterior STG. 

Next, we asked whether pitch strength and pitch value were independently tracked for 
concurrent speakers in each of the significant categories. Surprisingly, in mass-univariate tests 
in the STG none of the pitch strength predictors were significant, while all three pitch value 
predictors were. To derive proper measures of effect size we also performed univariate tests in 
a ROI based on significant STG activation in the one speaker condition ( 

Left Hemisphere Right Hemisphere 
Speaker Masking Pitch t p d t p  d 
Attended Overt Strength 2.09 .023 *   0.41 0.36 .361 0.07 

Value 4.21 < .001 *** 0.83 3.18 .002 ** 0.62 
Masked Strength 0.85 .202 0.17 -1.44 .919 -0.28

Value 3.85 < .001 *** 0.75 3.45 .001 ** 0.68 
Ignored Overt Strength 0.71 .242 0.14 -0.25 .600 -0.05

Value 1.76 .045 *   0.35 2.90 .004 ** 0.57 
Table 1). While these results are largely consistent with the mass-univariate tests, they do 
suggest marginally significant tracking of overt pitch strength in the left hemisphere. The 
univariate tests are likely less conservative than the mass-univariate tests, by not correcting for 
multiple comparisons in the two hemispheres. Nevertheless, the result suggests that some pitch 
strength tracking might exist, although with a much weaker effect size than pitch value tracking. 

Left Hemisphere Right Hemisphere 
Speaker Masking Pitch t p d t p  d 
Attended Overt Strength 2.09 .023 *   0.41 0.36 .361 0.07 

Value 4.21 < .001 *** 0.83 3.18 .002 ** 0.62 
Masked Strength 0.85 .202 0.17 -1.44 .919 -0.28

Value 3.85 < .001 *** 0.75 3.45 .001 ** 0.68 
Ignored Overt Strength 0.71 .242 0.14 -0.25 .600 -0.05

Value 1.76 .045 *   0.35 2.90 .004 ** 0.57 
Table 1. In the two-talker mixture, pitch tracking is dominantly due to pitch value, not pitch 
strength. Each row shows the unique predictive contribution of one predictor, in the two-
speaker condition, in an STG ROI based on significant activity in the one speaker condition. 
Shown are a one-sample t-test of the difference in prediction accuracy when excluding a given 
predictor, and Cohen’s d. 

Based on the above results, we only analyzed TRFs to pitch value. The TRFs to overt pitch in the 
attended and the ignored speaker were qualitatively similar (Figure 3-B, C). In contrast, masked 
pitch in the attended speaker was associated with a large peak in the right STG around 140 ms. 
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Discussion 
Our analysis of responses to clean speech confirms a previous report of separate cortical pitch 
strength and pitch value tracking seen with EEG (Teoh et al., 2019). In addition, source 
localization suggested a differentiation between the two representations, with a right-lateralized 
STG representation of pitch strength and a bilateral STG representation of pitch value, with 
potential additional involvement of a more anterior region. While source localization suggests 
that this more anterior region lies in IFG, we cannot exclude the possibility of this being an artifact 
of imperfect source localization (Bourguignon et al., 2018), as a source in anterior STG would be 
more consistent with fMRI reports of a pitch representation in the anterior STG (Norman-
Haignere et al., 2013). 

In the presence of two simultaneous speakers, pitch tracking depends on selective attention, 
but not exclusively. Overt pitch was similarly represented, regardless of whether that pitch was 
in the attended or the ignored speaker. This suggests that overt pitch extraction occurs without 
a need for selective attention, and might form part of an auditory background representation. On 
the other hand, when pitch was present in both speakers simultaneously, selective attention had 
a strong effect: pitch in the attended speaker was tracked very robustly, with recruitment of 
additional, more anterior neural sources, possibly reflecting additional resources recruited for 
speaker segregation. At the same time, we found no evidence for a representation of pitch in the 
ignored speaker when pitch was simultaneously present in the attended speaker. 

Stream segregation of a monaural mixture is cortical and depends on selective 
attention 
A long-standing question on cocktail party speech processing is whether segregation of multiple 
speakers occurs pre-attentively, with selective attention merely selecting one of multiple input 
streams, or post-attentively, with selective attention actively contributing to the segregation. 
Recent evidence support the latter view, at least when the speech signals are mixed together 
monophonically, i.e. without spatial separation cues (Puvvada and Simon, 2017; O’Sullivan et 
al., 2019; Brodbeck et al., 2020). Our new results are consistent with this. On the one hand, 
significant tracking of overt pitch in the ignored speaker suggests that pitch tracking itself does 
not require selective attention, as long as the pitch is easily extracted through the periodicity of 
the signal. However, in masked pitch we found a strong effect of selective attention, with no 
evidence of tracking of ignored pitch at all. Consistent with the previous reports, the present 
results do not provide evidence for pre-attentive pitch-based segregation, but do suggest 
enhanced pitch processing in a selectively attended speaker. 

Cortical pitch tracking reflects acoustic and, possibly, linguistic processes 
These results have implications for determining what neural processes give rise to cortical pitch 
tracking. Cortical voice pitch tracking might reflect purely acoustic processing, i.e., the extraction 
of pitch and the pitch trajectory (e.g. Andermann et al., 2021). However, pitch also carries 
linguistic information (Stevens, 1998), and neural responses to linguistic events may be 
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confounded with responses to pitch per se. For instance, the presence of pitch normally 
coincides with voiced segments, predominantly vowels, and thus responses related to pitch 
might also reflect extraction of vowel features. Furthermore, the pitch contour is a prosodic cue 
that relates to the information structure and phrase structure of an utterance. Pitch tracking could 
thus also reflect processing of such higher-level properties such as pitch accents (Llanos et al., 
2021).  

Our data suggest that pitch tracking at least partially reflects relatively low-level, auditory 
processing. We here observed robust tracking of pitch in the ignored talker during times when 
the attended talker did not also produce pitch. Previous work suggests that linguistic processing 
of ignored speech in selective listening tasks is very limited (Brodbeck et al., 2018; Broderick et 
al., 2018). In particular, in the same dataset as used here we found no evidence for time-locked 
processing of words in the ignored speaker (Brodbeck et al., 2018). The tracking of pitch in the 
ignored speaker thus likely reflects acoustic processing at a pre-lexical stage. The sources of 
pitch tracking in the attended speaker thus likely include similar acoustic processing, but might 
in addition include higher-level, linguistic processes. Engagement of higher-level processing 
might also explain the enhanced tracking of overt pitch in the attended vs. ignored speaker in 
the left STG. 

Lateralization 
Cortical pitch processing has sometimes been specifically associated with the right hemisphere. 
For example, pitch judgements engage the right prefrontal cortex (Zatorre et al., 1992), and the 
right auditory cortex might play a causal role in pitch discrimination learning (Matsushita et al., 
2021). Our results provide additional evidence for a tendency towards right-lateralization of at 
least some aspects of pitch tracking in speech, as we found evidence for stronger pitch 
representations of clean speech in the right hemisphere. However, we did not find significant 
lateralization effects in the two-speaker condition. This suggests that pitch processing might 
become more bilateral in the more demanding condition, possibly through recruitment of 
additional (left-hemispheric) higher-level processes. 

Conclusion 
The central finding of this study is that cortical pitch tracking is modulated by selective attention. 
While listeners represent overt pitch similarly in an attended or an ignored speaker, they do not 
seem to track pitch of an ignored speaker that is masked by pitch in the attended speaker. In 
contrast, tracking of masked pitch is robust for an attended speaker, suggesting that this pitch 
is selectively extracted and processed.  
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