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ABSTRACT
Numerical relativity is central to the investigation of astrophysical sources in the dynamical and 

strong-held gravity regime, such as binary black hole and neutron star coalescences. Current chal­
lenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scal­
able codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, 
high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of 
the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space- 
times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving punc­
ture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive 
convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body 
waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve ex­
cellent scalability. We measure strong scaling efficiencies above 95% for up to ~ 1.2 x 104 CPUs and 
excellent weak scaling is shown up to ~ 105 CPUs in a production binary black hole setup with adaptive 
mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences 
and offers a viable path towards numerical relativity at exascale.

1. INTRODUCTION
Numerical relativity (NR) provides robust techniques 

for constructing numerical solutions to the Einstein held 
equations (EFE). The phenomenology of astrophysical 
inspiral and merger events, such as those between bi­
nary constituents involving (variously) black holes (BH) 
or neutron stars (NS) can be succinctly described with 
gravitational waves (GW) computed with NR Pretori us 
(2005); Baker et al. (2007); Campanelli et al. (2006); 
Shibata & Uryu (2000). This has crucially assisted in 
the recent detection of such events by the LIGO and 
Virgo collaborations Abbott et al. (2016a,b, 2017a). As 
the operating sensitivity of these detectors is improved 
Abbott et al. (2020) and new (KAGRA Akutsu et al. 
(2020)), approved (LISA Amaro-Seoane et al. (2017)), 
or proposed (Einstein telescope Punturo et al. (2010), 
Cosmic explorer Abbott et al. (2017b)) designs come on­
line a concomitant enlargement of the physical parame­
ter space that may be experimentally probed is offered. 
These experimental efforts are complemented by pub­
licly available catalogs of simulation data provided by 
the NR community (see e.g. Dietrich et al. (2018); Boyle 
et al. (2019); Healy et al. (2019); Jani et al. (2016)).

On the NR side there is thus a pressing requirement 
to better resolve and characterize the underlying physics 
during simulation of binary black holes (BBH) in ever 
more extreme configurations, such as higher mass ratio 
Lousto et al. (2010); Nakano et al. (2011) or to provide 
discrimination between candidate models in description 
of binary NS Radice et al. (2020); Bernuzzi (2020) or 
BH-NS Shibata & Taniguchi (2011) events. Such sim­
ulations can be extremely demanding from the point of 
view of computational resources and viability typically 
hinges upon the availability of high performance com­
puting (HPC) infrastructure Huerta et al. (2019). Thus 
accurate NR codes that remain performant as HPC re­
sources are scaled up and simultaneously allow for the 
scope of input physics to be simply extended are crucial.

An important concern for NR investigations of the bi­
nary merger problem is treatment of features sensitive to 
widely-varying length and time-scales. An approach in­
spired by Berger-Oliger Berger & Oliger (1984) (see also 
Berger & Colella (1989)) is based on the introduction of 
a sequence of hierarchically, well-nested patches (usually 
boxes) of increasing resolution and decreasing diameter 
centered at the constituents of the binary. The rela­
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tive spatial positions of such patch configurations may 
be arranged to automatically track the time-evolution 
of the aforementioned compact objects. This has been 
a common approach adopted for NR codes that build 
upon the open source Cactus framework Goodale et al. 
(2003) and utilize the Carpet thorn Schnetter et al. 
(2004) (see also the Einstein toolkit Loftier et al. (2012) 
for an overview tailored to astrophysical applications). 
Some notable code implementations based on Cactus 
are Llama Pollney et al. (2011); Reiss wig et al. (2013), 
McLachlan Brown et al. (2009), LEAN Sperhake (2007), 
LazEv Zlochower et al. (2005), and Maya Herrmann et al. 
(2007) furthermore within this framework magnetohy­
drodynamics (MHD) may be coupled through use of 
GRHydro Mosta et al. (2014) or WhiskyTHC Radice et al. 
(2014). Other examples of non-Cactus codes adopting 
the Berger-Oliger approach include BAM Briigmann et al. 
(2008); Galaviz et al. (2010); Thierfelder et al. (2011), 
AMSS-NCKU Gao et al. (2008). Elements of this approach 
are also shared by the recent GRChombo Clough et al. 
(2015). Thus far, all code-bases discussed here make 
(at least some) use of Cartesian grid coordinatizations 
and involve use of finite-difference (FD) approximants 
to derivative operators.

Unfortunately here a priori specification of patch hier­
archies is usually required which makes capturing emer­
gent features at unexpected locations challenging. More 
importantly for Berger-Oliger the overhead of synchro­
nization of solution data between patches on differ­
ing levels can incur heavy performance penalties which 
spoil scaling in modern highly-parallel HPC architec­
tures Stout et al. (1997).

Other approaches such as those based on pseudo- 
spectral methods are represented by SpeC Szilagyi et al. 
(2009) where multi-patch decomposition of the compu­
tational domain is made using a combination of topo­
logical spheres and cylinders. The SXS collaboration 
Boyle et al. (2019) has used SpeC to produce some of 
the longest and most-accurate binary GW to date, albeit 
BBH mass ratio (defined q := mi/m2 where m.j are con­
stituent masses and m \ > m2) for publicly available GR 
templates remains confined to q < 10. Closely related 
are efforts based on the discontinuous Galerkin (DG) 
method such as Lamps Hilditch et al. (2016); Bugner 
et al. (2016) and SpECTRE Kidder et al. (2017). An­
other recently pursued alternative has been an attempt 
to eliminate the need for refinement altogether through 
generation of adapted, problem-specific curvilinear-grids 
as recently demonstrated in SENR/NRPy+ Mewes et al. 
(2020, 2018); Ruchlin et al. (2018).

A blend of benefits that ameliorates some of the dis­
advantages of the above approaches is offered in block-

based adaptive mesh refinement (AMR) strategies Stout 
et al. (1997). Crucially, in contrast to hierarchical, 
nested patches, for block-based AMR each physical po­
sition on a computational domain is covered by one 
and only one level. This reduces the problem of syn­
chronizing the data of a solution over differing levels to 
communication between block boundaries (as in DG) 
which when logically arranged into an oct-tree (in 3 
spatial dimensions - see e.g. Burstedde et al. (2011)) 
can greatly improve computational efficiency through 
preservation of data locality in memory. Furthermore, 
making use of task-based parallelism as the computa­
tional model greatly facilitates the overlap of communi­
cation and computation. Additionally, great flexibility 
is maintained in how the computational domain can be 
refined. The recent work of Dendro-GR Fernando et al. 
(2018) utilizes such an approach in treatment of the vac­
uum sector of the EFE with the BSSNOIv formulation 
Nakamura et al. (1987); Stub at a & Nakamura (1995); 
Baumgarte & Shapiro (1999) where solution representa­
tion is in terms of adaptive wavelets and choice of regions 
to refine controlled by the wavelet expansion itself Holrn- 
strom (1999). Scaling in terms of HPC performance 
appears to have been convincingly demonstrated with 
Dendro-GR for a mock q = 10 BBH event, although nu­
merical accuracy and full scale evolutions, together with 
GW characteristics that would potentially be calculated 
during production runs are not presented for any q.

In this work we present our effort to build upon a 
public version of Athena++ White et al. (2016); Felker 
& Stone (2018); Stone et al. (2020) where changes to 
core functionality have been made, together with intro­
duction of new modules targeted towards solution of the 
EFE. We refer to these new features as GR-Athena++. 
Originally Athena++ was conceived as a framework for 
purely non- and special-relativistic MHD, as well as 
GRMHD for stationary space-times, which adopts many 
of the mature and robust numerical algorithms of Stone 
et al. (2008) in a modern C++ design centered around 
block-based AMR. Key design elements include native 
support for Cartesian and curvilinear coordinates and a 
particular focus on future-proofing through code mod­
ularity. The computational model is task-based and 
embeds hybrid parallelism through dual use of mes­
sage passing interface (MPI) and threading via OpenMP 
(OMP). In addition to excellent scaling properties on 
HPC infrastructure, modularity and modern code prac­
tices have allowed for extension of Athena++ to hetero­
geneous architectures through Kokkos Carter Edwards 
et al. (2014) resulting in performant MHD calculation 
on graphics processing units with K-Athena Crete et al. 
(2019) (see also parthenon Miller et al. (2021)).
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These attractive properties served as a strong moti­
vation in development of GR-Athena++ where we have 
implemented the Z4c formulation Bernuzzi & Hilditch 
(2010); Ruiz et al. (2011); Weyhausen et al. (2012); 
Hil ditch et al. (2013) of NR utilizing the (moving) punc­
ture gauge Brandt & Briigmann (1997); Baker et al. 
(2007); Campanelli et al. (2006). We provide accu­
rate and efficient extensions to derivative approximants 
through (templated) arbitrary-order FD based on Al­
bert et al. (2018). Our introduction of vertex-centered 
(VC) variable treatment (extending core cell- and face- 
centered functionality) is motivated by a desire to match 
any selected FD order in calculations that involve AMR. 
Furthermore our implementation of the level to level 
transfer operators that occur in AMR takes advantage 
of the particular structure over sampled nodes at dif­
fering grid levels to simultaneously improve computa­
tional efficiency and accuracy. Within (GR-) Athena++ 
time-evolution is achieved through the standard method 
of lines approach where scheme order may be specified 
flexibly. In this work the formal order of the spatial 
discretizations considered are 4th and 6th whereas the 
temporal treatment is at 4th order.

As calculating quantities such as GW typically in­
volves integration over spherical surfaces we have intro­
duced a module implementing geodesic spheres based on 
Wang & Lee (2011). A primary demonstration of this 
functionality is presented in direct, cross-code validation 
against BAM where extracted GW are computed from the 
Weyl scalar d'4 and the gravitational strain is examined 
for the prototype BH and BBH calibration problems of 
Briigmann et al. (2008). Additionally, it is important 
that simulations can be carried out that provide data 
of physical relevance to detection efforts. To this end 
we consider an equal mass BBH inspiral on an initially 
quasi-circular (i.e low eccentricity) co-orbit that results 
in a merger event. Initial data is based on the config­
uration of Hannam et al. (2010). Verification is made 
utilizing the state-of-the-art, NR informed, effective one 
body model of TEOBResumS Nagar et al. (2018).

As we prioritized HPC efficiency it is thus important 
that GR-Athena++ preserves the already impressive be­
havior of Athena++ where over 80% parallel efficiency 
is shown in weak scaling tests with uniform grids em­
ploying up to ~ 1.3 x 105 CPUs for MHD/HD prob­
lems Stone et al. (2020). Dendro-GR code, in which 
BBH are evolved using an oct-tree grid as we do in 
GR-Athena++ but with different strategies, demonstrates 
very good scaling properties of q = 10 BBH evolutions 
utilizing up to ~ 1.3x 105 CPUs. In these tests, however, 
re-mesh and inter-grid transfer operations are disabled.

In this work we aim to reach such performance for BBH 
evolutions with full AMR.

The rest of this paper is organized as follows: In §2 we 
provide further details on the computational approach 
taken within (GR-) Athena++ together with the various 
extensions we have made to core functionality. Subse­
quently in §3 an overview of the Z4c system we use in 
our calculations is provided together with description of 
the numerical algorithms employed. Refinement strat­
egy and details concerning grids are provided in §4. In §5 
we discuss results of extensive testing of GR-Athena++ on 
BH and BBH problems performing cross-code validation 
and assessing convergence properties whereupon in §6 
computational performance is detailed through strong 
and weak scaling tests. Finally §7 summarizes and con­
cludes.

2. METHOD
GR-Athena++ builds upon Athena++ thus in order to 

specify nomenclature, provide a self-contained descrip­
tion, and explain our extensions, we first briefly recount 
some details of the framework (see also White et al. 
(2016); Felker & Stone (2018); Stone et al. (2020)).

In (GR-)Athena++ overall details about the domain 
12 over which a problem is formulated are abstracted 
from the salient physics and contained within a class 
called the Mesh. Within the Mesh an overall represen­
tation of the domain as a logical n-rectangle is stored, 
together with details of coordinatization type (Carte­
sian or more generally curvilinear), number of points 
along each dimension for the coarsest sampling Nm = 
(NMl, • • • , NMd), and physical boundary conditions on 
<912. In order to partition the domain we first fix a choice 
Nb = (NBl, • • • , NBd) where each element of NB must 
divide each element of Nm component-wise. Then 12 
is domain-decomposed through rectilinear sub-division 
into a family of n-rectangles satisfying Cl = l_l;eZ12;, 
where Z is the set of MeshBlock indices, correspond­
ing to the ordering described in §2.1. Nearest-neighbor 
elements are constrained to only differ by a single sub­
division at most. The MeshBlock class stores properties 
of an element 12; of the sub-division. In particular the 
number of points in the sampling of 12; is controlled 
through the choice of NB. For purposes of communi­
cation of data between nearest neighbor MeshBlock ob­
jects the sampling over 12.; is extended by a thin layer of 
so-called “ghost nodes” in each direction. Furthermore 
the local values (with respect to the chosen, extended 
sampling on 12;) of any discretized, dependent held vari­
ables of interest are stored within the MeshBlock.

In both uniform grid (Vi € Z) vol(12;) = C and refined 
meshes (3i, j € Z) vol(12;) % vol(12j) it is crucial to
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arrange inter-MeshBlock communication efficiently - to 
this end the relationships between differing MeshBlock 
objects are arranged in a tree data structure, to which 
we now turn.

2.1. Tree Structure of Mesh
For the sake of exposition here and convenience in 

later sections we now particularize to a Cartesian coor- 
dinatization though we emphasize that the general pic­
ture (and our implementation) of the discussions here 
and in §2.2 carry over to the curvilinear context with 
only minor modification.

(GR-) Athena++ stores the logical relationship between 
the MeshBlock objects (i.e. fb) involved in descrip­
tion of a domain f2 within a tree data structure. A 
binary-tree, quad-tree or oct-tree is utilized when d := 
dim(f2) = 1, 2, 3 respectively. The relevant tree is then 
constructed by first selecting the minimum N such that 
2n exceeds the largest number of fb along any dimen­
sion. The root of the tree is assigned a logical level 
of zero and the tree terminates at level N with every 
MeshBlock assigned to an appropriate leaf, though some 
leaves and nodes of the tree may remain empty. Data 
locality is enhanced, as references to MeshBlock objects 
are stored such that a post-order, depth-first traversal 
of the tree follows Morton order (also termed Z-order) 
Morton (1966). This order can be used to encode multi­
dimensional coordinates into a linear index parametriz­
ing a Z-shaped, space-filling curve where small changes 
in the parameter imply spatial coordinates that are close 
in a suitable sense Burstedde et al. (2019).

As an example we consider a three-dimensional Mesh 
described by (Nx, Ny, Nz) = (2, 5, 3) MeshBlock ob­
jects in each direction at fixed physical level in Fig.l.

Consider now a Mesh with refinement. Function data 
at a fixed physical level is transferred one level finer 
through use of a prolongation operator V; dually, func­
tion data may be coarsened by one physical level through 
restriction FZ. The number of physical refinement levels 
added to a uniform level, domain-decomposed f2 is con­
trolled by the parameter Affi. By convention Affi starts 
at zero. Subject to satisfaction of problem-dependent 
refinement criteria, there may exist physical levels at 
0, • • • , Affi. When a given MeshBlock is refined (coars­
ened) 2d MeshBlock objects are constructed (destroyed). 
This is constrained to satisfy a 2 : 1 refinement ratio 
where nearest-neighbor MeshBlock objects can differ by 
at most one physical level.

In Fig.2 we consider an example of a non-periodic f2 
described by Nx = Ny = Nz = 2 MeshBlock objects 
with Affi = 3 selected with refinement introduced at the

0
1
2 
3

Figure 1. Example of Mesh partitioned uniformly by 
MeshBlock objects indexed via Z-order and traced in red 
through constituent geometric centroids. The logical rela­
tionship between fh is stored in an oct-tree. Empty leaves 
are suppressed though each populated node above logical 
level three has eight children. Notice that physical level p 
and logical level l are distinct. See text for further discus­
sion.

corner xmax, zmax- If periodicity conditions are imposed 
on <9f2 then additional refinement may be required for 
boundary intersecting MeshBlock objects so as to main­
tain the aforementioned inter-MeshBlock 2 : 1 refine­
ment ratio.

2.2. Fertez-cey&ffired DzscreZ&zaZffiM,
Natively Athena++ supports cell-centered (CC) and 

face-centered (FC) description of variables, together 
with calculation of line-averages on cell edges Stone 
et al. (2020). GR-Athena++ extends support to allow 
for vertex-centering (VC). The modifications required to 
achieve this are extensive as core code must be changed 
in such a way so as to complement existing functionality. 
The modularity and good code practices of Athena++ 
greatly facilitated matters. Our motivation for intro­
duction of VC is a desire to ensure each stage of our nu­
merical scheme maintains consistent (high) order while 
simultaneously maintaining efficiency of 7Z and V op­
erator choice and implementation. In the remainder of 
this section we briefly describe this newly introduced 
functionality.

2.2.1. VC and Communication: Fixed Physical Level

Unless otherwise stated in all remaining sections we 
fix Nm and Nb to be uniform in each dimension and 
represent each of these tuples with a single scalar. As a
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Figure 2. Example of Mesh partitioned and refined by 
MeshBlock objects indexed (labels explicitly indicated up to 
logical level two) via Z-order and traced in red through con­
stituent geometric centroids. The logical relationship be­
tween pfb and neighbors is stored in an oct-tree. There are 
no unpopulated leaves. Notice that physical level p and logi­
cal level l are distinct; coloring corresponds to physical level: 
p = 0 in black, p = 1 in dark green, p = 2 in blue, and p = 3 
in purple. See text for further discussion.

preliminary, x E [a, b] is said to be vertex-centered when 
discretized as xi = a + ISx where 5x = (b — a)/NB and 
7 = 0,..., Nb yielding NB + 1 total samples. In prac­
tice, to this an additional Afg so-called ghost nodes are 
appended which extend the interval by Afg5x on both 
sides. When d = dim(f2J) =2,3 an appropriate ten­
sor product of such extended one-dimensional discretiza­
tions is utilized. When a field component V is sampled 
on such grids it is said to be VC. The additional ghost 
nodes form a layer that enables imposition of physical 
boundary conditions and inter-MeshBlock communica­
tion.

Consider a domain decomposed into multiple 
MeshBlock objects. Discretized variable data must be 
communicated. An additional intricacy however arises 
due to the sharing of vertices at neighboring MeshBlock 
interfaces that are not part of the ghost-layer. The num­
ber of MeshBlock objects a node is shared between is 
referred to as the node-multiplicity.

We illustrate this with a two-dimensional example. 
Let V be sampled on neighboring MeshBlock objects

MeshBlock :

Figure 3. Schematic of (communicated) nodes on a two- 
dimensional MeshBlock O*. The ghost-layer is shaded in 
gray with alternating shading demarcating differing neigh­
bor MeshBlock objects. Nodes marked with are interior 
to Qi and are unaffected as neighbor data is received - all 
other nodes are updated. Ghost-layer multiplicities are in­
dicated for and dark-green where p = 1 whereas nodes 
in “4” and light-green have p = 2. Interface nodes along 
edges are marked with in light-green and correspond to 
p = 2 whereas corner nodes marked “V’ in green correspond 
to p = 4. See text for further discussion.

of fixed physical level, where NB = 6 is chosen and 
ghost-zone layer selected to have Afg = 2 nodes. Fur­
ther, we assume that f\ is not on the physical boundary 
of the domain. This entails that (NB — l)2 nodes are 
internal and the remainder require synchronization via 
data received (i.e. populated) from neighboring blocks 
as depicted in Fig. (3). Note that independent commu­
nication requests and buffers are posted for each neigh­
bor. Communication from neighbors therefore has no 
preferred order and consequently we follow an averaging 
approach to achieve consistency as follows: All received 
data is first additively accumulated on the MeshBlock 
with node-multiplicity p dynamically updated in an aux­
iliary array of 7d elements based on the location of the 
relevant neighbor1. After data from all relevant neigh­
bors has been received, a final division by p is performed. 
This is done so as to not preferentially weight data from 
any particular neighbor. In principle, it is possible to 
construct p a priori, however, we elect to follow this 
dynamical strategy to facilitate automatic treatment of 
boundary conditions and avoid the additional complex­
ity involved during Mesh refinement.

1 For a given node p is uniform in all VC variables that are to be 
communicated and hence need only be constructed once in the 
absence of Mesh refinement. The choice of 7d elements is made to 
simultaneously treat communication over distinct physical levels 
(see §2.2.2).
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2.2.2. Communication: Distinct Physical Levels

We now consider a Mesh featuring refinement. The 
fundamental description of variables between neighbor­
ing MeshBlock objects may therefore differ by (at most) 
a single physical level (see also 2.1).

A MeshBlock at physical level p will be denoted by pCtj 
and the corresponding collection of fields sampled using 
VC discretization over the MeshBlock as J='(pCtj). In 
this context V G *7r(pflJ), has a complementary, coarse 
analogue Vc of + l)d samples further extended
by a coarse ghost-layer comprised of J\fcg nodes. The 
sampling resolution for Vc is thus half that used for 
V. In order to emphasize the physical level of a given 
MeshBlock and not blur the distinction between the 
types of samplings we also make use of the notation 
jr,(P^.) = JP(P-i^.).

In contrast to CC and FC as implemented in Athena++ 
our implementation of VC allows for Afg and Afcg to take 
odd values and be independently varied. For simplicity 
of discussion we impose Afg = Afcg.

When a Mesh involves multiple physical levels, prior 
to any communication of data, VC variables are initially 
restricted so as to have a fundamental and coarse de­
scription on each MeshBlock excluding the ghost-layers. 
For logically Cartesian grids in particular, this turns out 
to be an inexpensive and exact operation (§2.2.3). With 
this initial step neighboring MeshBlock objects at the 
same physical level have V and Vc communicated using 
the method described in §2.2.1.

To describe our treatment when neighboring physi­
cal levels differ, consider a two-dimensional Mesh where 
NB = 8 and A/g = 2. Once more, we work within a 
local portion of the full Mesh where the role of the phys­
ical boundary may be ignored. Suppose pLIa is neigh­
bored by p+1Hb and p+1D<p to the east and the latter 
two MeshBlock objects share a common edge. Figure 4 
shows how the ghost-layer nodes of the finer pJrlCtB 
based on the coarser neighbor pLIa are populated. In 
this situation data may be freely posted for communi­
cation to the MeshBlock on the finer level whereupon 
ghost-zones of its coarse variable are populated. How­
ever depending on the details of V, the prolongation op­
eration over the ghost-layer is blocked in the sense that 
the entirety of the coarse ghost-layer of J=’c(p^1^b) must 
first be populated. Once fully populated, prolongation 
is carried out on the target MeshBlock. During synchro­
nization of data from coarse to fine levels interface nodes 
are maintained at the value of the finer level.

An example of the dual process of populating nodes 
on a coarser level involving pLIa and p+1fl(p is depicted 
in Fig.5. In this case (previously) restricted data of the 
finer MeshBlock interior is communicated, updating the

MeshBlock pOA :
O—O-—O—p—O—"O—p—O—O—O"

—p—p—P—P—Q—p—p- 

—-p—6—0—p—0—p—p-

MeshBlock P+10B :

yyT>-p-a-p—q
TT-o--a

4-J:
Ltd HH rtl^tlt-t ^

k—EH; rtliri r Y i —p

Hi])—iS—d% HP K-—p
dpH%rriiriHfH

H >-ti-d]-o--d
ti-t

^---p—D~d-[d}-d- ----Q

Mesh (local view):

Figure 4. Schematic of two-dimensional MeshBlock pOA 
used to populate ghost-nodes of finer MeshBlock p+1Ob. Lo­
cal view of the Mesh depicts nearest-neighbor MeshBlock con­
nectivity and physical levels. Nodes over pOA, and p+1Ob 
together with coarse analogues are shown. Sampled values 
V G vF(pQa) that are to be sent are marked by in dark 
green; this data is received and directly populates the ghost- 
nodes marked by in dark green, i.e., V G vFc(p+1QB). 
Once the remaining data for T’c(p+1Qb) - marked by 
- is filled, and any multiplicity conditions (here suppressed) 
are accounted for, prolongation V : T’c(p+1Qb) T’(p+1Qb) 
can be performed in order to populate values at the ghost- 
nodes of p+1Qb marked by in purple. Notice that for 
this procedure data at nodes on the neighbor interface re­
main unchanged. See text for further discussion.

MeshBlock pOA :
□—o—□—o—p-—p—p-

p-—p-—p-—p-—p—p—-p-

P—P—P—P—P—P—P-

Mesh (local view):

p+1nB 
T+1ncmA

MeshBlock p+1fic: 
o—O-—-p—o—p—p—o—p—O

J>—&—(>—<>-p—P
Figure 5. Schematic of two-dimensional MeshBlock p+1flc 
used to populate ghost-layer of coarser MeshBlock pOA. Lo­
cally the Mesh has the same structure as in Fig.4. Nodes over 
PQA, and p+1flc together with coarse analogues are shown. 
Prior to communication, sampled data of V G T’(p+1flc) at 
nodes marked by in purple must be restricted to popu­
late data Vc G T’c(p+1flc) at nodes marked by in dark 
green. This is then sent whereupon data at the nodes of 
pQa marked by in dark green is provided. During this 
procedure data at nodes on the neighbor interface are (addi- 
tively) updated (cf. Fig.4) and multiplicity conditions (here 
suppressed) dynamically updated in an auxiliary array. See 
text for further discussion.
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common interface and ghost-layer of P^Qa)- In this 
situation no blocking occurs. However, non-trivial mul­
tiplicity conditions arise on the common neighbor inter­
face. Furthermore, the equivalent operation involving 
p+1f2s instead of p+1f2c' induces another edge within 
the ghost-layer of pCIa- Finally, we note that values 
of Tc{p£La) must also be updated. Thus another re­
striction of samples of Jrc(p+1f2c') is also made and the 
overall communication process repeated.

The steps for the above communication procedure are 
summarized in §2.2.4.

2.2.3. Restriction and Prolongation

When a Mesh is refined restriction 1Z and prolongation 
V operations are required. In GR-Athena++ these oper­
ations for VC variables are implemented based on uni­
variate Lagrange polynomial interpolation or products 
thereof when dim (12) > 1 with function data utilized at 
nodes centered about a target-point of interest.

For a Mesh sampled according to a Cartesian coordi- 
natization MeshBlock grids are uniformly spaced in each 
dimension. This provides immediate simplifications to 
1Z and V which may be understood as follows. Con­
sider interpolation of a smooth function V on a one­
dimensional interval. A polynomial interpolant V of de­
gree 2N with samples of the function V symmetrically 
and uniformly spaced about x* that passes through the 
2N + 1 distinct points:

/y := { (xi, V(x.j,))| x.j, = x* + idx A i E {—N, ..., N}} ,

is unique and may be written in Lagrange form Tre- 
fethen (2013):

N

V(%) = (1)
i= — N

where the Lagrange cardinal polynomials satisfy 
li(xj) = Sij when Xj is a node used during formation 
of Jy and Sij is the Ivronecker delta. We use Eq.(l) (or 
appropriate product generalizations) in order to specify 
7Z. Given function data on a uniform, VC discretized in­
terval suppose we wish to construct data on the interior 
of a coarser overlapping interval that shares the same 
end-points and is sampled at twice the spacing. We find 
that points in the image of 7Z (i.e. desired points over 
the coarse grid) form a subset of points over the orig­
inal fine grid. Therefore the desired data may simply 
be immediately copied (see Fig.5). This is efficient and 
involves no approximation.

Recall that the restriction operator is utilized during 
transfer of data from a MeshBlock to a coarser neighbor. 
Consider the case of the two-fold coarsened data that

must be provided to the neighbor MeshBlock. While 7Z 
as specified here is an idempotent operation, some care 
must be taken, because the spatial extent of the ghost- 
nodes to be populated is sampled by the non-ghost data 
of the source MeshBlock. To ensure this is possible we 
impose a constraint relating MeshBlock sampling and 
ghost-layer through:

Nb > max(4, 4AC - 2). (2)

The above does not place any constraint on whether 
JVS is even and therefore a choice of an odd or even 
number is allowed.

Interpolation based on Eq.(l) is also utilized for pro­
longation. Here function data is transferred to a finer, 
uniformly sampled grid of half the spacing and conse­
quently interspersed nodes coincide (see Fig.4) offering 
another optimization in execution efficiency. Due to 
the uniform structure of the source and target grids, 
interpolation at non-coincident nodes may be imple­
mented through a weighted sum where weight factors 
can be precomputed Berrut & Trefethen (2004). In prac­
tice the width of the interpolation stencil we utilize is 
N = [yVc g/2J + l.

Tailored, optimized routines for GR-Athena++ incor­
porate the above simplifications for the case of logically 
Cartesian grids.

Finally, for later convenience we note that the d- 
rectangle [xL, xR]d as represented by a Mesh with Carte­
sian coordinatization, Nm points along each dimension, 
and Nl physical levels of refinement has a grid spacing 
on the finest level of:

%R -Z.L 1
7VM

2.2.4. Summary

(3)

We close discussion of VC by providing a compact 
summary of the overall logic involved during synchro­
nization of data between MeshBlock objects for a prob­
lem involving refinement.

At compile time JVS and 7Vcg are selected and C++ 
templates specify precomputed weights for any requisite 
interpolation during a computation (thus fixing 7Z and 
V). A given problem of interest may then be executed 
for some choice of NM, NB (subject to Eq.(2)), NL, and 
physical grid.

The following steps are taken when function data from 
a MeshBlock pfl; is to be sent:

i. Non-ghost data is restricted populating Jrc(pHi).

ii. Neighbor MeshBlock objects are iterated over and 
treated according to the physical level of the target 
neighbors and the communication buffers are popu­
lated from:
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p — 1 : Relevant interior (and shared interface) nodes 
of Jc(pQ^); similarly is twice restricted
directly to the communication buffer.

p : Relevant interior (and shared interface) nodes 
of T(pQ.i) together with Rc(pQ,i).

p + 1 : Relevant interior nodes not on the common in­
terface from T(p£li).

The following steps are taken when function data on pfh 
is to be receded:

i. The ghost-layer of variable data for the given 
MeshBlock pfb is set to zero and any previously ac­
cumulated multiplicites are reset.

ii. Non-ghost data is restricted populating Tc(pQ.i).

iii. Function data is independently received (unordered) 
from neighbor MeshBlock objects. Treatment again 
splits based on physical level of the salient neighbor 
with additive updating of the following MeshBlock- 
local function data:

p — 1 : Relevant ghost-layer nodes of Rc{pQ,l).
p : Relevant ghost-layer and interface nodes of 

fc(pQi) and
p + 1 : Relevant ghost-layer and interface nodes of 

and

iv. Once all neighbor function data is received, division 
by multiplicity conditions is carried out.

v. Regions of the ghost-layer involving a coarser level 
neighbor may finally be prolongated.

For local calculations (in the absence of distributed, MPI 
communications) operations are performed locally in 
memory. Finally we emphasize that the base Athena++ 
CC and FC variables when required continue to simul­
taneously function as explained in Stone et al. (2020).

2.3. Oeodes/c sp/teres
Calculating quantities such as the ADM mass, mo­

mentum and gravitational radiation associated with an 
isolated system typically involves integration over spher­
ical surfaces, the radii of which are controlled by a lim­
iting procedure. In practice, a large but finite radius 
is often selected during numerical work. Denote the 2- 
sphere of fixed radius R by S2R. The natural choice of 
spherical coordinatization for Sy, involves uniform sam­
pling in the polar and azimuthal angles (d, y) and it is 
well-known that problems may arise at the poles during 
description of geometric quantities; furthermore, points 
tend to cluster there which may be undesirable from

Figure 6. Structure of the geodesic grid used by 
GR-Athena++. Left panel: an example of a low resolution (92 
vertices) geodesic grid highlighting the features of the grid. 
Right panel: a grid used for gravitational wave extraction in 
production simulations (9002 vertices).

the stand-point of efficiency in some applications. In 
GR-Athena++ we avoid these issues by instead working 
with triangulated geodesic spheres. In short, a geodesic 
sphere of radius R (denoted Qr) may be viewed as the 
boundary of a convex polyhedron embedded in Z3 with 
triangular faces, i.e., a simplicial 2-sphere that is home- 
omorphic to S2R. A sequence of geodesic spheres with an 
increasing number of vertices (and consequently surface 
tiling triangles) thus serves as a sequence of increasingly 
accurate approximants to S2R; see Fig.6

To construct the geodesic grid we start from a regular 
icosahedron with 12 vertices and 20 plane equilateral tri­
angular faces, embedded in a unit sphere. We refine it 
using the so called “non-recursive” approach described 
in Wang & Lee (2011). In this approach, each plane 
equilateral triangle of the icosahedron is divided into 
n2q small equilateral triangles (each side of the triangle 
is split into nq equal segments, where n.q is called the 
grid level). The intersection points are projected onto 
the unit sphere, and together with the original 12 ver­
tices of the icosahedron they form the convex polyhedron 
used as a grid. The resulting polyhedron has 10n2q + 2 
vertices, in which we define the desired physical quan­
tities. The left panel of Fig.6 shows the grid consisting 
of 92 vertices (nq = 3), while the right panel shows the 
grid consisting of 9002 vertices (nq = 30).

Integrals on the sphere are computed with numeri­
cal quadratures. To this aim we associate to each grid 
point a solid angle in the following way. We construct 
cells around each vertex of the grid by connecting the 
circumcenters of any pair of triangular faces that share 
a common edge. The resulting cells are mostly repre­
sented by hexagons, apart from the 12 vertices of the 
original icosahedron, which have only five neighbors and 
therefore correspond to pentagonal cells. The solid an­
gles subtended by the cells at the center of the sphere
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are used as weighting coefficients when computing the 
averages. The logical connection between the neighbor­
ing cells is implemented as described in Randall et al. 
(2002).

Using a geodesic grid ensures more even tiling of the 
sphere compared to the uniform latitude-longitude grid 
of similar resolution. The ratio between the solid angles 
corresponding to the largest and smallest cells in the 
n.Q = 30 grid is equal to 2. For comparison, a grid 
of comparable resolution with uniform sampling in the 
polar and azimuthal angles (say, 67 d angles and 134 
ip angles, with the total of 8978 cells), would have the 
ratio between the areas of the smallest and largest cells 
- l/sin(Tr/67) - 21.3.

3. Z4C SYSTEM IN GR-Athena++
In the Cauchy problem for the Einstein held equations 

(EFE), a globally hyperbolic space-time M is foliated 
by a family of non-intersecting spatial slices {Et}tei? 
where the parametrizing time-function t is assumed 
globally defined. An initial slice Eto is selected and 
well-posed evolution equations based on the EFE must 
be prescribed. A variety of mature approaches exist to 
this problem such as BSSNOIv Nakamura et al. (1987); 
Shibata & Nakamura (1995); Baumgarte & Shapiro 
(1999) or those based on the generalized harmonic gauge 
(GHG) formulation Friedrich (1985); Pretori us (2005); 
Lindblom et al. (2006). A unifying framework is pro­
vided in the Z4 approach Bona et al. (2003) where par­
ticular cases of both GHG and BSSNOIv formulations 
may be recovered (see Bona et al. (2010) and references 
therein). In particular Z4c Bernuzzi & Hilditch (2010); 
Ruiz et al. (2011); Weyhausen et al. (2012); Hilditch 
et al. (2013) seeks to combine the strengths of these 
other two approaches Cao & Hilditch (2012) thus moti­
vating it as the choice of formulation for GR-Athena++.

In §3.1 and §3.2 we describe the overall idea behind nu­
merical evolution with Z4c and implementation within 
GR-Athena++. Details on our method for wave extrac­
tion (i.e., calculation of gravitational radiation) is pro­
vided in §3.3 whereupon §3.4 closes with a brief descrip­
tion of numerical methods we utilize.

3.1. Overvieiv
At its core, the Z4 formulation Bona et al. (2003) seeks 

to stabilize the time-evolution problem through direct 
augmentation of the EFE via suitable introduction of 
an auxiliary, dynamical vector held Za and first-order 
covariant derivatives thereof. The approach admits nat­
ural incorporation of constraint damping via explicit 
appearance of (freely chosen) parameters k* Gundlach 
et al. (2005); Weyhausen et al. (2012).

Recall that in the standard method of ADM- 
decomposition Arnowitt et al. (1959); Baumgarte & 
Shapiro (2010) one introduces a future-directed ta satis­
fying f°Va,[f] = 1 and considers ta = ana + j3a where 
na is a future-directed, time-like, unit normal na to 
each member of the foliation Et, a is the lapse and f3a 
the shift. Subsequently geometric projections of am­
bient fields, to (products of) the tangent and normal 
bundle(s) of E may be considered, which here leads to 
evolution equations for the augmented EFE. The evo­
lution equations are written in terms of the variables 
(7ij, Kij, 0, Zi) where 7^ is the induced metric and 
K.ij the extrinsic curvature associated with E; 0 := 
—naZa and Zi :=_L“ Za (with _Lg:= gab + nanb and gab 
being the space-time metric) are the normal and spatial 
projections of Za respectively. Furthermore Hamilto­
nian, momentum, and auxiliary vector constraints must 
also be satisfied Cv := (%, Mi, Za) = 0 such that a nu­
merical space-time is faithful to a solution of the stan­
dard EFE. Importantly, for a space-time without bound­
ary if Cu = 0 for some element of the foliation Et. 
then analytically this property extends for all t Bona 
et al. (2003). This compatibility of Cu with the evolu­
tion is one crucial property for numerical calculations 
allowing for a choice of free-evolution scheme. In such a 
scheme equations are discretized and initial data of in­
terest is prepared so as to satisfy Cu = 0 on Eto, during 
the course of the time-evolution Cu is monitored and it 
must be verified that any accumulated numerical error 
converges away with increased resolution.

In Z4c Bernuzzi & Hilditch (2010); Hilditch et al. 
(2013) to fashion an evolution scheme an additional step 
is taken wherein a spatial conformal degree of freedom 
is first factored out via:

7ij '■='lP liji A-ij :=rtp ^ A ij — — A 7y i (4)

with K := Kijj‘3 and rtp := (7/f)1^12 where 7 and 
/ are determinants of 7.7 and some spatial reference 
metric fij respectively. Here we assume fij is flat and 
in Cartesian coordinates which immediately yields the 
o/gefuwc cuustrumts:

CA:=(ln(7),f^)=0. (5)

The expression Ca = 0 must be continuously enforced2 
during numerical evolution (see §3.4) to ensure consis­
tency Cao & Hilditch (2012). Additionally we introduce

2 From the point of view of computational efficiency this is trivial 
to accomplish but strictly speaking doing so entails a partially- 
constrained evolution scheme.
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the transformations:

%:=T-i/3, AT:=A:-20; (6)
r := r := f "f®,&; (7)

where the definition of % implies that % = t/A4. Col­
lectively the Z4c system is comprised of dynamical vari­
ables (x, 7ij, K,Aij, 0, f®) which are governed by the

dt[x] =^X (a{K + 20) — di[/3®] j + /i'd^x], (8)

where in terms of the conformal connection D; compat­
ible with 7jk:

RX«=*

- ^2D'[x]D;[%]7^, (16)

and:

Rij — ~ t^7lmdi[dmY)ij]\ + 7fc(j5j)[ffc] + rfcf(,y)fc

+ 7(m(2f fc;(jf j)fcm + f fc.;mf klj) (17)

9t[7u] 2aAij + j3kdu [lij] — 7;lijdk [/3fc]

27&(^j)[^"]- (9)

dt[K\ = - D'[D,[a]] + a i^' + -(K + 20)3

+ /i'd-i [A] + otn\ (1 — K'2 )© A 4ttq:[5 + p\, (10)

Furthermore, we emphasize that in Eq.(13) and Eq.(17) 
it is crucial to impose T® where it appears through the 
definition of Eq.(7).

The dynamical constraints in terms of transformed 
variables (77, M,., 0, Zl) may be monitored to assess 
the quality of a numerical calculation:

77 := A - Ay A®^ + ^(A: + 20)^ - 167TP = 0, (18)

dt[Aij\ — x[-Dj[DjM] + a(Rij — STrS'y )]tf
+ a[(K T 20)Ay — 2AkiAkj\ + /3kdb[Ay]

+ 2Afc(.;9j)[/3fc] — ^Ay<9fc[/3fc], (11)

Mj :—D* [Alj\ — ^A®j9*[ln(x)]

- + 20] - 8^ = 0, (19)

<9t[6] =77 77 - 2ki(2 + k2)0 ^a,[@], (12)

dt[P] - 2A'^[a] + 2a[r,&A^ - -A'^,[ln(x)]

- Ki(f' -F®) - ^7®^j[2AT + 0] - STrf^j

+ ^^[f®] - + ^F®^[^]; (13)

where in Eq.(ll) the trace-free operation is computed 
with respect to 7y and 77 is defined in Eq.(18). Dehni- 
tions of matter fields are based on projections of the de­
composed space-time, energy-momentum-stress tensor:

R ab — P^a.nb T 2S (a,U-b) T (14)
in terms of the energy density p := Tabnanb, momentum 
Si := -Tbcnb _L °, and spatial stress S'y := Tcd 1 ? 1 j 
with associated traces T := gabTab = —p + S and S := 
7®JS'y. The intrinsic curvature appearing in Eq.(ll) is 
decomposed according to:

/>'•; =Rxij + Rij, (15)

e =o, %® =f ® - r® = o. (20)

Depending on the quantities of interest we may alterna­
tively monitor the original non-rescaled constraints Cjy. 
Furthermore, we introduce for later convenience a single, 
scalar-valued collective constraint monitor:

C := \/773 + 7yA/f®AfJ + 03 + 47y%®%7. (21)

Finally we note that we have made use of the freedom to 
adjust the system by non-principal parts prior to con­
formal decomposition so as to have a result closer to 
BSSNOIv (which may be obtained by taking the formal 
limit 0 —> 0 in Eqs.(8-13)).

3.2. Gauge choice and boundary conditions
To close the Z4c system it must be further supple­

mented by gauge conditions (i.e., conditions on a and 
/?®) that specify how the various elements Et of the foli­
ation piece together. Furthermore in this work the com­
putational domain does not extend to spatial infinity 
and consequently boundary conditions (BC) on <972 must 
also be imposed.
In GR-Athena++ we make use of the puncture gauge 

condition which consists of the Bona-Masso lapse Bona
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et al. (1995) and the gamma-driver shift Alcubierre et ah 
(2003):

dt[®\ = — + /3ldi[a],
W] = [/r ].

In specification of Eq.(22) we employ the 1 + log lapse 
variant = 2/a together with = 1/a2. Initially a 
“precollapsed” lapse and zero-shift is set:

«lt=o = V’ “|t=0. + t=o = 0; (^S)

consideration for future work would be to incorporate 
within GR-Athena++ the constraint-preserving BC of e.g. 
Ruiz et al. (2011); Hilditch et al. (2013) (see also Rhine 
et al. (2009)).

3.3. kHzue erfmcfion
To obtain the gravitational wave content of the space- 

time, we calculate the Weyl scalar d,4, the projection 
of the Weyl tensor onto an appropriately chosen null 
tetrad k, /, m, m. We use the same definition of d,4 here 
as Briigmann et al. (2008):

where the choice is motivated by a resulting reduction 
in initial gauge dynamics Campanelli et al. (2006). The 
shift damping parameter q appearing in Eq.(22) reduces 
long-term drifts in the metric variables Alcubierre et al. 
(2003) and serves to magnify the effective spatial resolu­
tion near a massive feature, which in turn reduces noise 
in its local motion and extracted gravitational wave­
forms Briigmann et al. (2008) (see also §5). We adopt a 
fixed choice q = 2/M where M is the total ADM mass 
Arnowitt et al. (2008) of the system throughout this 
work as it is known to lead to successful time evolution 
of binary black holes (BBH) of comparable masses Briig- 
mann et al. (2008) and improves stability more broadly 
Gao & Hilditch (2012). With a view towards potential 
investigations of high mass ratio binaries we have also 
incorporated q damping conditions within GR-Athena++ 
based on BBH location as a function of time Purrer 
et al. (2012) together with the conformal factor based 
approach of Nakano et al. (2011); Lousto et al. (2010); 
Muller & Briigmann (2010).

When coupled to the puncture gauge with the choices 
made above Z4c forms a PDE system that is strongly 
hyperbolic Gao & Hilditch (2012) and consequently the 
initial value problem is well-posed Bernuzzi & Hilditch 
(2010). Artificial introduction of a boundary at finite 
distance complicates the analysis of numerical stabil­
ity significantly Hilditch & Ruiz (2018). For the ini­
tial boundary value problem the analysis benefits from 
symmetric hyperbolicity of the underlying evolutionary 
system however for Z4c starting in fully second order 
form this property does not appear to exist within a 
large class of symmetrizers Gao & Hilditch (2012). We 
do not seek to address this issue further here. Our 
boundary treatment follows an approach due to Hilditch 
et al. (2013). We consider a Cartesian coordinatiza- 
tion of the Mesh SI as a compactly contained domain 
within Ej capturing the physics of interest. On dQ 
Sommerfeld BC are imposed on the subset of dynam­
ical fields {K, f, O, Ay}. Though this choice is not 
optimal, as it is not constraint-preserving, we have not 
experienced issues on account of this. An interesting

4'i = —Rabcdkambkcmd, (24)

where we have exchanged the Weyl tensor for the Rie- 
mann tensor since we extract the gravitational waves 
in vacuum. The 4 dimensional Riemann tensor is con­
structed from 3+1 split ADM variables using the Gauss- 
Codazzi relations as detailed in Briigmann et al. (2008). 
To construct the null tetrad we start from a spatial co­
ordinate basis:

<^=(-2/, %,0), A =(%,%/, z), (25)

which is then Gram-Schmidt ortho normalized. The 
newly formed orthonormal, spatial triad is extended to 
space-time with 0th components set to 0. With this we 
construct the null tetrad:

k

m

T(„-o,

T(0 + .«,

; = /=(,,+a

m = -^=(0 — +; (26)

where na = (1/a, —/+/a). Once the Weyl scalar is 
obtained we perform a multipolar decomposition onto 
spherical harmonics of spin-weight s = —2, defined as 
follows3:

/>2tT f 7T

--

-2^lm =

sin ?9di9dy,
'0 vo 

21+1 
4tt

(27)

(28)

+ (-l)^((A+m)!(A-m)!(A-2)!(A + 2)!)V2
(ml J (f + n?,-&)!(f-&-2)!&!(&-m + 2)!

k=k\
(0X | cos | -

‘2£-\-tyi—2 — 2 A $
Sm 1 2

Aq =max(0, m — 2),
A:2 = min (A + m, A - 2).

2 k—m+2

(29)

(30)
(31)

3 Convention here is that of Goldberg et al. (1967) up to a Condon- 
Shortley phase factor of ( —l)m .
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To obtain the multipolar decomposition, ^4 is first 
calculated at all grid points throughout the Mesh. This 
is then interpolated onto a set of geodesic spheres QR 
(see §2.3) at given extraction radii Rq, over which the 
integral in Eq.(27) is performed. Recall that the grid 
level parameter uq controls the total number of samples 
on on Qr as 10riq + 2. We select uq through local 
matching to an area element of a MeshBlock:

MQ = (32)

The modes of the gravitational wave strain h are com­
puted from the projected Weyl scalar by integrating 
twice in time

: (33)

The strain is then given by the mode-sum:

OO ^
R(h+ - ih.) = "^2 ^2 hem(t) -zYemi'&jtp). (34)

1=2 m=—£

Following the convention of the LIGO algorithms library 
LIGO Scientific Collaboration (2018) we set:

Rh(m — -1 On ), (35)

and the gravitational-wave frequency is:

d ,
1 (ptm ■ (36)

3.4. Numerical technique
We implement the Z4c system described in §3.1 in 

GR-Athena++ based on the method of lines approach 
where held variables may be chosen to obey a VC or 
CC discretization at compile time and time-evolution is 
performed using the fourth order in time, four stage, 
low-storage RK4()4[2S'] method of Ivetcheson (2010).

Generic spatial held derivatives in the bulk (away 
from <9f2) are computed with high-order, centered, finite 
difference (FD) stencils whereas shift advection terms 
use stencils lopsided by one grid point Zlochower et al. 
(2005); Husa et al. (2008); Brugmann et al. (2008); Chir- 
vasa & Husa (2010). The implementation is based on 
Alheri et al. (2018) and utilizes C++ templates to offer 
hexibility in problem-specific accuracy demands with­
out performance penalties. A similar approach is taken 
for implementation of the 1Z and V operators discussed 
in §2.2.3. With this a consistent, overall, formal or­
der throughout the bulk of the computational domain is 
maintained during calculations by compile-time specifi­
cation of the ghost-layer through choice of Ng together

with Afcg. Throughout this work we take Afg = Afcg 
though for a VC discretization this is not a requirement 
within GR-Athena++ and may be tuned to the demands 
of the desired Mesh refinement strategy. In the case of 
Z4c and VC this translates to an order for spatial dis­
cretization in the bulk of 2(AG — 1).

We emphasize that during calculation of FD, 1Z and 
V approximants, special care has been taken in the or­
dering and grouping of arithmetical operations so as to 
reduce accumulation of small floating-point differences. 
This is a particularly important consideration in the 
presence of physical symmetries where linear instabil­
ities may amplify unwanted features present in the op­
erator approximants and lead to resultant, spurious ap­
pearance of asymmetry during late-time solutions Stone 
et al. (2020).

For most calculations involving Z4c the treatment of 
the physical boundary is non-trivial. GR-Athena++ ex­
tends Athena++ by providing the Sommerfeld BC mo­
tivated in §3.2. To accomplish this, within every time- 
integrator substep an initial Lagrange extrapolation is 
performed so as to populate the ghost-layer at dCl. Or­
der is again controlled at compile-time and we typically 
select JVg + 1 points for the extrapolation, albeit nu­
merical experiments did not indicate significant changes 
when this choice was varied. The dynamical equations 
of §3.1 and gauge conditions of §3.2 populate the sub­
set of fields {%, 7ij, a, ff} on nodes of dii whereas 
for {K, f, O, Aij} Sommerfeld BC are imposed as in 
Hilditch et al. (2013) where first order spatial deriva­
tives are approximated through second order accurate, 
centered FD; we have found this to be crucial for nu­
merical stability.

As observed in Gao & Hil ditch (2012) in the absence 
of algebraic constraint Ca projection Z4c is only weak- 
hyperbolic. Therefore in GR-Athena++ we enforce Ca 
at each time-integrator substep. On the other hand a 
coarse indicator on the overall error during the course 
of a calculation is provided through inspection of the 
constraints Cjy together with C (of Eq. (21)). Note that 
these latter constraints are not enforced.

In order to have confidence in implementation details 
we have replicated a subset of tests from the “Apples 
with Apples” test-bed suite Alcubierre et al. (2004); 
Babiuc et al. (2008); Gao & Hil ditch (2012); Daverio 
et al. (2018) a discussion of which is provided in the 
appendix §A.

The Z4c system does not strictly impose any partic­
ular underlying Mesh structure or refinement strategy 
and consequently we use this freedom to improve effi­
ciency and accuracy by raising resolution only where 
it is required. During evolution the Courant-Friedrich-
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Lewy (CFL) condition must be satisfied. To achieve 
this in the context of refinement, spatial resolution on 
the most refined level and the choice of CFL factor itself 
determines the global time-step that is applied on each 
MeshBlock. Finally, in order to suppress high-frequency 
numerical artifacts generated at MeshBlock boundaries 
and not present in the physical solution we make use 
of high-order Ivreiss-Oliger (KO) dissipation Ivreiss & 
Oliger (1973); Gustafsson et al. (2013) of uniform fac­
tor a over all levels. In particular given a system of 
time-evolution equations for a vector of variables u the 
replacement <9t[u] <— dt [u] + ctD[u] is made where V[-\ 
is proportional to a spatial derivative of order 2Afg — 2.

4. MESH REFINEMENT FOR PUNCTURES

Black holes in GR-Athena++ are modeled as in BAM 
making use of the puncture formalism Briigmann et al. 
(2008). In numerical relativity, BH can be treated by 
adopting the Brill-Lindquist wormhole topology which 
consists of considering N black holes with N+l asymp­
totically flat ends for the initial geometry. These flat 
ends are compactihed and identified with points on R3 
and the coordinate singularities at these points are called 
punctures. This allows one to produce black hole ini­
tial data associating masses, momenta and spins to any 
number of black holes. The main application of this 
formalism is binary black hole evolution.

The adaptive mesh refinement criterion implemented 
in GR-Athena++ for puncture evolution mimics the clas­
sic box-in-box refinement (used in e.g. BAM, Cactus), 
within the Athena++ infrastructure. The main idea is 
to follow the punctures’ position during the evolution 
and refine the grid depending on the distance from each 
puncture.

4.1. Punctures’ initial data
Black holes initial data are constructed follow­

ing Briigmann et al. (2008). We consider as our ini­
tial data the positive-definite metric and extrinsic cur­
vature (•jij, I<ij) on a spatial hypersurface E with 
time-like unit normal nl such that nltii = —1. Such 
initial data are constructed by means of the confor­
mal, transverse-traceless decomposition of the initial- 
value equations York (1979). We can use the map of 
Eq.(4) and freely choose an initially conformally flat 
background 7y = Ay and take a maximal slice, i.e. 
set K = 0. Doing so, the momentum constraint be­
comes dj = 0 and admits Bowen-York solu­
tions Bowen & York (1980) for an arbitrary number of 
black holes.

The Hamiltonian constraint reduces to an elliptic 
equation for t/h with solution (for N black holes with

centers at ?■*):

N

Ao = 1 + ^2 9----^ ll" (37)
»=i ^

The variable Ao represents the initial value of Vh which, 
based on its relation to %, is evolved according to Eq.(8).
In this equation the function u can be determined by an 
elliptic equation on R3 and is C2 at the punctures and 
C°° elsewhere. The variable m* is called the bare mass 
of a black hole and it coincides with the actual mass 
only in the Schwarzschild case. The total ADM mass of 
each black hole at the puncture is given by:

Mi = nii ^I + Ui + ^2 ^ ; (38)

where u* is the value of u at each puncture and ciy is 
the coordinate distance between each pair of punctures. 
Ultimately, we denote the total mass of the system with 
M, which represents the physical mass scale of the prob­
lem and thus all results will be reported accordingly.

To produce BBH initial data following the above de­
scription, we make use of an external C library based on 
the pseudo-spectral approach of Ansorg et al. (2004), 
which is also used in the TwoPunctures4 thorn of 
Cactus.

4.2. RuncZwe Zmc&e?'
To follow the punctures’ position we need to solve an 

additional ODE, which is not coupled to the Z4c system. 
Since the conformal factor % vanishes at the puncture, 
Eq.(8) implies that Campanelli et al. (2006):

Xp(f) = -/3|x„(f), (39)

where /3Xp is the shift function evaluated at the punc­
ture position. We solve this vectorial equation at every 
timestep using an explicit Euler solver. Though BAM im­
plements higher order methods to solve this equation 
(Crank-Nicolson method), the solution obtained with 
the first order Euler solver agrees with that of BAM where 
a comparison is made for two trajectories in the left 
panel of Fig. 10.

4.3.
In Athena++, adaptive mesh refinement (AMR) is im­

plemented as follows: during the evolution a certain

4 We adapted the public code into a stand-alone library that 
may be found at the URL https://bitbucket.org/bernuzzi/ 
twopuncturesc/.
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condition is evaluated on each MeshBlock and conse­
quently the code refines the particular MeshBlock, de­
refines it or does nothing. In the punctures’ case the 
condition we employ relies on the punctures’ position. 
For a given MeshBlock we first calculate the distance 
min | |xp — xmb | |oo? where xp, xMb denote the puncture
and MeshBlock positions5 respectively, and i labels each 
puncture that is present. This allows one to assess the 
theoretical refinement level the MeshBlock should be in. 
If the refinement level of the considered MeshBlock is 
not the same as the theoretical one just calculated, then 
the block is either refined or de-rehned according to its 
current level. The theoretical refinement level is deter­
mined by considering a classic box-in-box structure of 
the grid, in which each puncture is enclosed in a series 
of nested boxes centered on the puncture, all with the 
same number of points but with increasing physical ex­
tent, i.e. with decreasing resolution. In particular, each 
box has half of the resolution of the next one it contains. 
The presence of punctures and their position determines 
a structure of nested boxes, in such a way that the small­
est (and finest) imaginary box around a puncture defines 
the highest refinement level. The box containing it cor­
responds to a lower refinement level and so on up to 
the 0th level which corresponds to the initial mesh it­
self. Practically, to define a grid in (GR-) Athena++one 
needs to specify the number of points of the initial mesh 
grid Nm, the number of points per MeshBlock consti­
tuting the mesh iVg, and the number of total refinement 
levels Nl up to which the grid has to be refined. Follow­
ing the procedure above, GR-Athena++ will refine each 
MeshBlock, producing an oct-tree box-in-box grid struc­
ture. A visualization of this can be seen in Fig.7, in 
which the initial configuration of two coalescing black 
holes and a snapshot at later time are shown. Here 
Nm = 64 and Nb = 16, thus the initial mesh is di­
vided into 43 MeshBlocks (level 0, see §2.1). Follow­
ing the procedure described above, MeshBlocks are sub­
divided up to level 10, which corresponds to the smallest 
MeshBlocks containing the two black holes. The final 
grid is composed of the initial MeshBlocks, which are 
those far from the punctures and thus untouched, and 
increasingly smaller blocks (in terms of physical extent) 
for each refinement level. Note that in the top panel 
levels 7, 8, 9, 10 are visible, while due to regridding at 
later times in the bottom panel MeshBlocks of level 7

5 For implementation reasons, xmb is defined as follows: we con­
sider a cube with same center, the edge of which is 1/4 of the 
edge of the original MeshBlock. xmb are the coordinates of the 
corner of this cube which is closer to the closest puncture.

(the ones closest to the edges of the plot) have been 
subdivided and their children belong to level 8.

x/M
-15 -10 5 0 5 10 15

x/M

Figure 7. 2D slice at z = 0 of a mesh grid produced with 
GR-Athena++, setting 11 refinement levels. Top panel: black 
holes at initial position x± = (±3.257,0,0) M. Bottom 
panel: snapshot at 50 M in which trackers are shown (red 
lines). The color code refers to the value of the conformal 
factor x- For clarity, in the figure only a subset of the total 
slice is shown, therefore only highest levels are visible. It is 
also possible to see the underlying box-in-box structure, in 
which boxes are made up of MeshBlocks.

4.4. Grid
In order to accurately and efficiently perform a BBH 

merger simulation it is crucial to optimize the grid con­
figuration for a given problem. Thus to attain accuracy 
at reduced computational cost a balance must be struck 
such that the strong-held dynamics are well-resolved and
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their effects propagate cleanly into the wave-zone for ex­
traction. The former can be directly controlled based on 
the oct-tree box-in-box refinement criterion and fixing 
a target puncture resolution 5xp or equivalently, maxi­
mum number of refinement levels Nl- For the wave-zone 
an extraction radius R must be selected and the under­
lying refinement strategy together with choices of NM 
and Nb induce6 a resolution Sxw. Finally, the maximum 
spatial extent xm of the computational domain Cl must 
be chosen to be sufficiently large so as to mitigate any 
potential spurious effects due to imposed approximate 
boundary conditions.

Unless otherwise stated we select Cl as the Cartesian 
coordinated cube [~xM, xM}3 which results in a res­
olution on the most refined level in the vicinity of a 
puncture of:

, (40)

Wave-zone resolution Sxw may similarly be computed 
taking NL = [log2 (^r1)) in the above where R is the 
extraction radius. For the calculations presented in this 
work, we typically select NB = 16, which allows for 
up to 6th order accuracy for approximants to operators 
pertaining to quantities appearing during spatial dis­
cretization. The constraint on maximum approximant 
order that can be selected for a choice of Nb is given in 
Eq.(2) which arises on account of the double restriction 
operation described in §2.2.3. Natively, GR-Athena++ 
supports up to 8th order which may be further extended 
through simple modification of the relevant C++ tem­
plates.

We have observed that a simple approach to further 
optimize for efficiency once convergence properties are 
established is to modify NM and Nb-

5. PUNCTURE TESTS
In this section we present several tests of puncture 

evolutions to validate GR-Athena++. We compare our 
results against BAM code and TEOBResumS, used as bench­
marks. We also demonstrate the convergence properties 
of our code for these tests.

Unless otherwise stated, throughout this section we 
adopt tortoise coordinates, in which evolution time t 
is mapped as t -> u = t — r*, where r* = r + 
2M log 1— 11 and M, r are the total mass of the 
binary system and the Schwarzschild coordinate, re­
spectively. In waveform plots quantities are suitably

6 Direct control on Sxw is offered in GR-Athena++ through optional
introduction of a minimum refinement level maintained over a
ball of radius R centered at C but for the results presented it
was not found to be necessary to utilize.

rescaled by M (see §4.1) and by the symmetric mass 
ratio v := The merger or time of merger
is defined as the time corresponding to the peak of the 
(C = 2, m = 2)-mode of A(m7 * * (defined as in Eq.(35)).

5.1. Ptmcfwre
In order to verify the evolution of a single black hole 

puncture, as well as the gravitational wave signal calcu­
lated by GR-Athena++ we perform a direct comparison 
with the established BAM code. Using initial data gen­
erated by the TwoPunctures library for both codes, as 
used in similar tests of the BAM code in Hilditch et al. 
(2013), we simulate the evolution of a single spinning 
puncture, representing a Kerr black hole with dimen­
sionless spin parameter a = 0.5. To this end we initial­
ize two black holes, one with the target mass, 1M, and 
spin a = 0.5, and another with negligible mass, 10~12M, 
and zero spin, with a small initial separation, 10~5M. 
These black holes merge soon after the simulation be­
gins, and the resulting single black hole can be treated as 
our target Kerr BH. We use the static mesh refinement 
of GR-Athena++ to construct a refined grid around the 
puncture that matches the resolution of the BAM evolu­
tion both at the puncture {Sx = 0.08333M) and in the 
wave zone {Sx = 0.66667M).

To compare the two wave signals, we calculate the 
dominant (2, 0) mode of the strain from the expressions 
above in Eqs.(27-31, 33). In doing so, we perform two 
integrations in the time domain (note this is different 
to the frequency domain integration performed for the 
(2,2) mode studied below for the black hole binary, as 
here we have no well-motivated cut-off frequency avail­
able Dietrich & Bernuzzi (2015)). These integrations 
may add an arbitrary quadratic polynomial in time onto 
the strain as constants of integration Damour et al. 
(2008); Baiotti et al. (2009) and so, in the results pre­
sented here, we fit for, and then subtract, this quadratic. 
We further note this reconstruction has been shown to 
introduce errors in the waveform ring-down Dietrich & 
Bernuzzi (2015).

In Fig.8 we show the match between the two calcu­
lated signals for the real part of the (2,0) mode of the 
gravitational wave strain. These show consistency in 
the phasing of the signal, with slight discrepancies in 
the amplitude of the strain.

We also demonstrate the convergence properties of the 
waveforms in GR-Athena++ for this test. We perform 
the same simulation at a coarse, medium and fine reso­
lution (with finest grid spacings Sxc = 0.025M, Sxm =

' Hereafter the (2,2) mode, and similarly for other (£, m) modes 
and for all related quantities.
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Figure 8. iR(Rh2o / M) for a single spinning puncture in 
GR-Athena++ and BAM with difference shown in black as a 
function of Schwarzschild tortoise coordinate, u. Wave ex­
tracted at R = 50M.
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Figure 9. The difference between the waveform at coarse 
and medium resolution (5xc — Sxm) is consistent with the 
difference between the waveform at medium and fine resolu­
tion (Sxm — Sxf) when rescaled by the appropriate factor for 
4th order convergence Q±. Waves extracted at R = 50M

0.02083M,8xf = 0.01563M), and show that the differ­
ence between the medium and fine resolution waveform 
matches the difference between the coarse and medium 
waveform, when rescaled by the factor Qn for nth order 
convergence, defined as:

= Sx? -

- 5xnf'
(41)

In Fig.9 we show convergence properties for a simula­
tion with 4th order accurate finite differencing operators.

We see here that, rescaling assuming 4th order conver­
gence, GR-Athena++ demonstrates under-convergence at 
initial times and a consistent order of convergence at

later times, although without a precise point-wise scal­
ing. We note that for similar tests performed with the 
BAM code in Hilditch et al. (2013) using initial data con­
structed in the same manner, these same convergence 
properties are observed for the waveform of the spin­
ning puncture problem.

5.2. ewWzorz, o/ Ztuo ptmcZm'es
We validate GR-Athena++ against binary black hole 

evolutions by comparing with BAM and performing con­
vergence tests. For these tests the two initial non­
spinning black holes, with bare-mass m± = 0.483 M, are 
located on the x—axis, with x^±(t = 0) = ±3.257 M, 
and initial momenta directed along the y—axis, p±(t = 
0) = TO.133 M. The gauge is chosen as explained in 
§3.2. For the GR-Athena++ vs. BAM comparison and for 
convergence tests several runs at different resolutions 
have been performed. The grid configuration for both 
codes is described in detail below. This initial setup re­
sults in a ^ 2.5 orbits evolution of the two black holes be­
fore merger, which happens at evolution time t ~ 170 M, 
as can be seen in Fig. 10.

In the next two subsections the (2, 2) mode of gravi­
tational wave strain is calculated according to Eq.(33).

5.2.1. GR-Athena++ vs. BAM comparison
Athena++ and BAM implement completely different 

grid structures. To compare the two codes, we try to 
generate grids as similar as possible aiming to match 
the resolution at the puncture and the physical extent 
of the grid. In the case of GR-Athena++ we choose 
grid parameters NB = 16, NL = 11, xm = 3072 M 
and various resolutions Nm = [96, 128, 192, 256].
This results in resolutions at the puncture of 5xp = 
[1.5625,1.171875,0.78125,0.5859375] x lO^ M (see 
Eq.(40)). For BAM the same is achieved in each corre­
sponding simulation by considering 6 nested boxes of 
Nm points and 10 smaller boxes (5 per puncture, cen­
tered at each one) of Nm/2 points and maximum spac­
ing in the outermost grids Ax = [96, 64, 48, 32, 24] M 
respectively. In both cases all simulations are performed 
with 4th order finite differences stencils for derivatives. 
Fig. 10 shows very good agreement between the two 
codes regarding black hole trajectories (left panel). This 
can be also seen looking at the right panel, in which the 
two GW frequencies perfectly match. There is a dis­
crepancy of 2% between GW amplitudes that converges 
away with increasing resolution.

5.2.2. Convergence tests for GR-Athena++

Convergence tests are performed on the same runs 
as the previous section plus an additional run made 
at resolution Nm = 384, with NB = 24 resulting in
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Figure 10. Comparison between BAM and GR-Athena++ of the trajectories of puncture — (left panel) and of gravitational 
waveforms (right panel) for resolution Nm = 192. Waveforms are extracted at a representative radius R = 120 M and merger 
time is defined as the amplitude peak time. Discrepancy between the two amplitudes is < 2%.

Nm = 192 Nm = 384
= 256 ------ %(%2)/(AM= 128

------ A<)>(96,128)
A<M128,192) - 

— A<^>(192, 256) 
— A<M256,384)

Nm = 192 Nm = 384
AIM = 256 ------ %(%2)/(AM= 128

------ A<^>(96,128)
A^,(128,192) 

— A<^>(192, 256) 
— A^,(256,384)

Figure 11. Convergence plots for calibration BBH evolution. Left and right plots correspond respectively to 4th order and 6th 
order finite differencing. In both case waves are extracted at R = 120M. In bottom panels phase differences between resolutions 
are rescaled according to Eq.(41) with respect to the blue line (corresponding to lowest resolutions).

Sxp = 0.390625 x 10-2 M. Moreover, we consider an­
other set of runs employing 6th order finite differences, 
with the same grid setup as in the previous section 
but halving the maximum extent of the physical grid, 
namely in this case xm = 1536 M. This has the ef­
fect of doubling the resolution at the puncture. In the 
top panels of Fig. 11 we compare the gravitational wave 
strain extracted at R = 120 M for every resolution, both 
for 4th and 6th order.

In order to quantitatively investigate the effect of res­
olution on phase error we inspect differences in phase 
between runs in the bottom panels of Fig. 11. Inverting 
Eq.(35) allows us to write the phase difference as:

|A<p(a, /3)| := <t>[h 22] |Q <P[h22}\[3 (42)

In the bottom panel of the 4th order plot (Fig.11 left) 
the red and green lines match, demonstrating 4th order 
convergence for the highest resolutions. In the 6th order 
case (Fig.ll right) the waveforms (and corresponding
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Figure 12. Self-convergence test for the calibration BBH 
evolution. In the plot phase difference at merger with re­
spect to the highest resolution available is reported on y- 
axis, against the resolution Nm- Diamonds correspond to 
4th order series, while dots refer to 6th order series. Purple 
and cyan lines represent the theoretical convergence for both 
cases.

frequencies) lay on top of each other, so as to be indis­
tinguishable, and this translates into smaller phase dif­
ferences comparing the bottom panels of the two plots. 
Even though the red line, corresponding to the phase 
difference between the two highest resolution, is quite 
noisy, 6th order convergence can be seen here for the 
three highest resolutions as in the previous case. This 
behavior is present in every extraction radius. In all 
cases, the plots show a convergent behavior with respect 
to the phase differences, i.e., the differences between 
each pair of lines decreases with increasing resolution. 
Additionally, we check the accuracy of our convergence 
tests by evaluating the error on the phase differences, es­
timated for each line as the difference between the phase 
given by the Richardson extrapolation formula and the 
phase corresponding to the highest resolution used to 
calculate the Richardson extrapolated phase, similarly 
to what is done in Bernuzzi & Dietrich (2016). For each 
corresponding phase difference line, we find that this er­
ror is always at least ~ 50% smaller than A(p.

Additionally, we show in Fig. 12 a convergence plot in 
which phase differences are calculated at merger (see be­
ginning of §5). This figure further confirms the clean 4th 
order convergence of GR-Athena++ for the highest res­
olution cases. For the 6th order case, comparing with 
the other, phase differences are smaller and the conver­
gence is faster. However, the noise in the phase differ­
ences with respect to the highest resolution (right plot 
in Fig. 11, bottom panel) makes the convergence assess­
ment less clean.

5.3. Two ewMmn, o/ £en, orWs
Physically one anticipates that inspiral of astrophysi- 

cal binary systems is well-described by a significant du­
ration of co-orbit on a quasi-circular trajectory Peters & 
Mathews (1963); Peters (1964). This assumption is con­
sistent with the events detected by the LIGO and Virgo 
collaborations Abbott et al. (2016a,b, 2017a). Conse­
quently it is of considerable interest to also test the per­
formance of GR-Athena++ in this scenario. To this end 
we evolve non-spinning, equal-mass, low eccentricity ini­
tial data based on Hannam et al. (2010) where bare-mass 
parameters are m± = 0.488479 M and the punctures 
are initially on-axis at x± = ±6.10679 M with instan­
taneous momenta p± = (=p5.10846 x 10-4, ±8.41746 x 
10—2, 0) M. This choice of parameters results in ~10 
orbits prior to merger at £^2145 M. In comparison to 
the calibration evolution this evolution is of significantly 
longer duration and therefore it is of interest to inves­
tigate how waveform accuracy is affected for a selection 
of Mesh parameters that reduce computational resource 
requirements. In order to provide another comparison 
that is independent of BAM here we provide a final as­
sessment on the quality of waveforms computed with 
GR-Athena++ based on the NR informed, effective-one- 
body model TEOBResumS Nagar et al. (2018).

5.3.1. Setup

The convergence studies performed for the calibra­
tion BBH merger problem provide a guide as to how 
to choose resolution at the puncture 5xp. Here we fix 
the MeshBlock sampling to Nb = 16 and work at 6th 
order in the spatial discretization. For the Mesh sam­
pling we select NM = 64 and construct a sequence of 
grid configurations where each value of 5xp is reduced 
by a factor of 3/2 compared to the previous in Tab.l.

m Nl Sxp x 10~2[M] #MB
vvl 10 768 4.6875 1072
vl 11 1152 3.515625 1352

1 11 768 2.34375 1184
ml 12 1152 1.757812 1464
m 12 768 1.171875 1296

mh 13 1152 0.878906 1576
h 13 768 0.585938 1744

Table 1. A distinct label p(.) is assigned to each run with 
corresponding maximum number of refinement levels Nl and 
fixed physical extent xm of the Mesh (see §4.4). Resultant 
puncture resolutions 5xp and total number of MeshBlock ob­
jects initially partitioning a Mesh are provided.

That the choice of parameters in Tab.l reduce overall 
computational resource requirements can be understood
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Figure 13. Coordinate trajectories of both punctures 
(x+(t) in blue and x_(£) in orange) for parameter choice 
Al­

as follows. Consider the choice of parameters made in ph 
and suppose Nm and Nl are varied while maintaining 
Sxp fixed. With this, the number of MeshBlock objects 
required to partition the initial Mesh changes. For ex­
ample, taking Nm = 128 and Nl = 12 resulted in an 
initial number of MeshBlock objects of = 8352.
Whereas selecting Nm = 256 and Nl = 11 leads to 
#MB = 58752 initially. Generally, we found an approx­
imate cubic scaling in #MB as Nm is scaled which is 
related to the dimensionality of the problem.

In this section an extraction radius of R = 100 M is 
used. The CFL condition is 0.25 and a KO dissipation 
of a = 0.5 is chosen. Constraint damping parameters 
are selected as ki = 0.02 and k2 = 0.

The coordinate trajectories of the punctures for a cal­
culation utilizing grid parameters ph of Tab.l can be 
seen to satisfy ten orbits in Fig. 13. This provides an ini­
tial verification of expected qualitative properties Han- 
nam et al. (2010) of the BBH inspiral and merger. In 
order to investigate the behavior of the constraints we 
focus attention on the collective constraint C of Eq.(21). 
We display values of C in the orbital plane (z = 0) at 
fixed times t = 500 M and t = 2100 M in Fig.14. The 
general properties of C discussed here we found to be 
shared between other simulations utilizing parameters 
from Tab.l. Crucially, this means that increasing re­
finement in the vicinity of the puncture does not con­
taminate the rest of the physical domain. In all cases we 
found that away from the punctures values of C decrease 
on average as the boundary of the computational do-

Figure 14. Values of the (normalized) collective constraint 
C(%, %/, z) := C(%, 0)/max%,3/C(%, 2/, 0) over the orbital
plane z = 0 for a simulation with ph of Tab.l. Upper panel: 
Evolution time is t = 500 M where maxX) y C(x, y, 0) ~ 
111.3. Lower panel: Evolution time is t = 2100 M where 
maxX) y C(x, y, 0) ~ 3.3. As can be seen in both cases con­
straint violation is greatest directly in the vicinity of the 
punctures. See text for further discussion.

main is approached. In particular, for the calculation in­
volving parameters ph and during 500 M < t < 2200 M 
as q := \Jx1 + y2 —> 100 M we found C ~ 10-8 which 
continues to decrease as p —> 300 M to C ~ 10-10 there­
after plateauing at C ~ 10-11 towards the boundary. 
We found qualitatively similar behavior when inspect­
ing the Hamiltonian constraint. We remark that, even 
in the continuum limit, constraints are not expected to 
converge to zero in the entire domain for this solution 
because punctures are excluded from R3.

Of principal interest for gravitational wave detection 
is the strain. To this end we solve Eq.(33) for /i22 in
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Figure 15. The (2,2) multipole of the GW strain normal­
ized to the symmetric mass ratio v = 1/4 computed for sim­
ulations based on parameters of Tab.l. Peak amplitude for a 
choice of ph occurs at u/M = 2037.5 which indicates the end 
of the inspiral Bernuzzi et ah (2014). Dephasing as merger­
time is approached reduces rapidly with increased resolution 
(see also Fig. 16 though note that the legend differs there). 
Note: horizontal axis scale changes at u/M = 1500.

the frequency domain making use of the FFI method 
of Reisswig & Pollney (2011). A cut-off frequency of 
fo = 1/300 x 3/4 is chosen which is physically motivated 
by inspecting the early time puncture trajectories of the 
inspiral. We display the resulting (2, 2) mode of the 
strain for calculations using the parameters of Tab.l in 
Fig.15.

The peak amplitude of h22 indicates the end of the 
inspiral Bernuzzi et al. (2014) and for a grid parameter 
choice of ph occurs at u = 2037.5 M. The maximum 
deviation from this value for parameters investigated in 
Fig.15 occurs when pm\ is utilized resulting in Au = 
10.3 M. In order to directly quantify how the choice 
of 5xp affects the phase error in the strain waveform as 
merger time is approached we compute Acj) using Eq.(42) 
and show the result in Fig. 16.

As we have not modified resolution globally over the 
computational domain but rather considered the effect 
of introducing additional refinement levels in the vicinity 
of the punctures it is not clear what sort of convergence 
should be expected. Furthermore the extent to which 
a time-integrator order below the order of the spatial 
discretization affects GW waveform quality can also be 
somewhat delicate (see e.g. the super-convergence dis­
cussion of Reisswig & Pollney (2011)). In Fig.16 (upper 
panel) clean 6th order convergence in Acj) is not found for 
all u upon rescaling with the appropriate factors deter­
mined through Eq.(41). An additional issue that com­
plicates the discussion here is that the parameters of 
Tab.l also vary the spatial extent of the computational 
domain potentially introducing a source of systematic

— A(j>{ph /3ml) ------ A(/>(>,, pm)
A4>(pmh pm) ------ A<X/3m, Ph)

AcXpi, Pml)/Qe 
AcXpl, Pm)/Qe------ A<X/9mh, ph)

d 10-1 -

2x10 3x10 4x1(1 6x1(1

Figure 16. Phase differences Acp between simulations in­
volving parameters of Tab.l. Upper panel: A trend of A(p ac­
cumulating with time is present. Merger time corresponding 
to ph is indicated with a vertical black line at u/M = 2037.5. 
A decrease in Acp occurs as 5xp pairs of decreasing values are 
compared. In order to mitigate a systematic effect of varied 
spatial extent in the computational domain we also com­
pute phase differences at fixed xm such as A0(pi, pm) and 
A(p(pm, Ph)- These two differences are also shown rescaled 
with Qq and Q'6 as computed using Eq.(41) under the as­
sumption of 6th order spatial discretization. Lower panel: 
Phase differences at merger computed with reference data 
taken from the ph run are depicted as a function of puncture 
resolution. Data on the black reference curve would obey a 
6th order convergence trend. See text for further discussion.

error. For example, at merger A(j)(pmh, ph) — 4 x 10_1
and A^(pm, Ph) — 6x10^ though &Cp(pm) > &Cp(Pmh)-
In order to compensate for this effect we consider phase 
differences at fixed xm- In particular the lower panel of 
Fig.16 displays phase differences at merger where ph is 
taken as the reference value for all comparisons. While 
displayed Acj) are compatible with a 6th order trend the 
Pvvi choice of parameters is likely of too low resolution to 
make a robust claim on convergence order with respect 
to varying 8xp. Nonetheless it is clear that judicious 
choice of refinement level (and hence resolution local to 
the punctures through Sxp) reduces GW phase error.

5.3.2. EOB comparison
We compare the gravitational waveform from the 

10 orbit simulation to the state-of-the-art EOB model 
TEOBResumS Nagar et al. (2018). The latter is in­
formed by several existing NR datasets and faithfully 
models the two-body dynamics and radiation of spin- 
aligned BBH multipolar waveforms for a wide variety of
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mass ratio and spins magnitudes. We focus again on 
the (2,2) mode of the gravitational wave strain. The 
GR-Athena++ ^22 output mode is first extrapolated to 
null infinity using the asymptotic extrapolation formula 
Lousto et al. (2010); Nakano (2015):

lim rrip22 ~ A (V-tAcc - —---^ + ^ [ rip22 df), (43)
r-TOO V >r J /

where A(r) := 1 — 2M/r and r := R{ 1 + M/(2i?.))2 
with i? being the (finite) GW extraction radius of an 
NR simulation. The extrapolated result is successively 
integrated twice in time (Eq.(33)) using the FFI method 
Reiss wig & Pollney (2011) to obtain the strain mode 
/? 22 • The waveform comparison is performed by suitably 
aligning the two waveforms; the time and phase relative 
shifts are determined by minimizing the L2 norm of the 
phase differences Bernuzzi et al. (2012).

Figure 17 shows the two waveforms are compatible 
within the NR errors. The accumulated EOBNR phase 
differences are of order 22O.I rad to merger and ~0.4rad 
to the ring-down for the highest resolution GR-Athena++ 
simulation. The larger inaccuracy of the ring-down part 
is a resolution effect related to the higher frequency of 
the wave; it can potentially be improved by adding a 
refinement level so as to better resolve the black hole 
remnant. The maximum relative amplitude difference 
is of order 22O.OI. The same comparison using the low­
est resolution gives ~0.4rad at merger (22I rad during 
the ring-down) and maximum relative amplitude differ­
ences of 22O.OI. Overall, this analysis demonstrates that 
GR-Athena++ can produce high-quality data for wave­
form modeling.

6. SCALING TESTS
To check the performance of GR-Athena++ and make 

sure it maintains the scalability properties of Athena++, 
we conduct weak and strong scaling tests with the same 
problem setup as in §5.2. In these tests BBH evolu­
tions of 20 Runge-Ivutta time-steps are performed, with 
full AMR and full production grids, in which Nb = 16, 
Nl = 11, xm = 1536 M are fixed and making use of 
hybrid MPI and OMP parallelization. These tests are 
performed on the cluster SuperMUC-NG at LRZ. Specif­
ically, on each node of the cluster (48 CPUs per node) 8 
MPI tasks with 6 OMP threads are launched, thus fill­
ing up the node. We find very good results using up to 
2048 nodes (~ 105) CPUs. With respect to scaling tests 
presented in Dendro-GR Fernando et al. (2018), our re­
sults favorably compare both in the case of strong and 
weak scaling tests.

6.1. 5Y?'ong am/mg feafa

To test the strong scaling behavior of the code in 
different regimes of CPU numbers, we consider 6 res­
olutions, namely NM = [64, 96, 128, 192, 256, 384]. 
For each of them we perform an evolution on i = 

nodes, where represent
some limits on the possible number of nodes that can 
be used for each resolution. The presence of these 
boundaries is due to the fact that for a certain res­
olution a specific number of MeshBlocks is produced 
and consequently on the one hand a sufficient num­
ber of CPUs is required to handle those MeshBlocks 
and, on the other hand, Athena++’s parallelization strat­
egy is based on MeshBlocks and so is not possible to 
use more OMP threads (and consequently CPUs) than 
MeshBlocks. Fig. 18 (left) shows that excellent strong 
scalability is obtained up to ~ 1.5 x 104 CPUs, with 
efficiency above 90%. For the aforementioned reasons, 
for a given resolution it is not possible to achieve high 
efficiency when increasing CPU number above a cer­
tain point. Fig. 18 (right) shows that efficiency strongly 
depends on the ratio between MeshBlock number and 
CPUs. In particular, for each resolution, an efficiency 
of above 90% is obtained when there are at least 10 
MeshBlocks/CPU. By contrast, the efficiency shown in 
the strong scaling plot of Fernando et al. (2018) appears 
to decrease faster when comparing to the brown line in 
Fig.18 (left), although the two results are obtained in 
slightly different regimes of CPU number.

6.2. am/mg feafa
For weak scaling tests we use asymmetric grids 

in terms of Nm in each direction, while keeping 
MeshBlocks of a constant size NB = 16. In particu­
lar, we start with a run on a single node with a grid 

= 128, Nl{ = 64, Nh = 64. Then for 2 nodes we 
double Nvm. For 4 nodes is doubled as well and for 8 
nodes Nf:[ is also doubled. We continue this up to 2048 
nodes. In this way, we are able to double the resources 
together with the required computations, and we man­
age to keep a ratio of ~ 33 MeshBlocks/CPUs in each 
different run. The results are displayed in Fig. 19. We 
performed these tests twice, once with the code compiled 
using the Intel compiler and once with the code compiled 
using the GNU compiler. The top panel of Fig. 19 shows 
that the total CPU time per MPI task remains constant 
up to 105 CPUs employed, thus demonstrating excellent 
scalability in an unprecedented CPU number regime for 
a numerical relativity code. The bottom panel displays 
the same result, but focuses on how the execution time 
is distributed between the main computational kernels. 
Notably, most of the computation time is spent in the 
calculation of the right hand side of the equations, which
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Figure 17. Comparison between the GR-Athena++ BBH q = 1 waveform and the semi-analytical effective-one-body model 
TEOBResumS. The plot shows the (2,2) multipole of the GW strain normalized to the symmetric mass ratio v = 1/4 and the 
instantaneous GW frequency. The time is shifted to the mode amplitude peak that approximately defines the merger time. The 
GR-Athena++ waveform is from the highest resolution simulation (ph of Tab.l), extracted at coordinate radius R = 100 M and 
extrapolated to null infinity using Eq.(43). Note: horizontal axis scale changes at (t — tmgr)/M = —400.
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Figure 18. Strong scaling tests for GR-Athena++ for several CPU number regimes. Left plot: speed-up (top panel) and efficiency 
(bottom panel) calculated with respect to the first point of the series. In each series the second point corresponds to a theoretical 
speed-up by a factor of 2, the third point a factor of 4 and so on. Right plot: efficiency as a function of the MeshBlock load 
each CPU carries.

is indeed the expected behavior in absence of race con­
ditions or other bottlenecks elsewhere in the code. The 
discrepancy between the height of each bar in the bot­
tom panel of the plot and the dotted line in the top panel 
give an estimate on the communication time among all 
MPI processes and OMP threads and the comparison 
between the two plots suggests that this also has good 
scaling behavior.

7. SUMMARY AND CONCLUSION

In this work we have presented GR-Athena++; a vertex- 
centered extension of the block-based AMR framework 
of Athena++ for numerical relativity (NR) calculations.

To this end we described our introduction of vertex- 
centered (VC) discretization for field variables which 
may be utilized for general problems. A principle ad­
vantage of VC is that restriction of sampled function 
data from fine to coarse grids that are interspersed and 
the coarser of which has fully coincident grid-points is ef­
ficiently achieved by copying of data. This procedure is 
formally exact. The dual operation of prolongation via 
interpolation of data from coarse to finer grids also takes 
advantage of the aforementioned grid structure where 
possible.

Another novel feature is our introduction of geodesic 
spheres in the sense of highly refined, triangulated con­
vex, spherical polyhedra. Placement on a Mesh may
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Figure 19. Weak scaling tests for Athena++, performed on SuperMUC-NG at LRZ compiling the code with GNU compiler 
and Intel compiler. Top panel reports total CPU times measured for rank 0 directly in the code with the C++ function clock_t. 
CPU time in the bottom panel is measured instead using the profiling tool gprof; here, times which count less than 2% of the 
total CPU time are neglected. Light (left) bars represent results obtained with GNU compiler, while dark (right) ones are for 
Intel compiler.

be arbitrarily chosen without restriction on underlying 
coordinatization. An advantage of this is that the as­
sociated vertices defining a geodesic sphere achieve a 
more uniform spatial sampling distribution when con­
trasted against traditional uniform spherical latitude- 
longitude grids at comparable resolution. Furthermore, 
the potential introduction of coordinate singularities is 
avoided. We demonstrated the utility of this approach 
when quantities need to be extracted based on spherical 
quadratures.

Our code implements the Z4c formulation of NR of the 
X moving-punctures variety. The overall spatial order of 
the scheme may be selected at compile time where easily 
extensible C++ templates define the formal order for de­

sired finite difference operators and VC restriction and 
prolongation operators. Time-evolution is performed 
with a low-storage 4th order Runge-Ivutta method. Our 
primary analysis tool is based on extraction of gravita­
tional radiation waveforms within GR-Athena++ through 
the use of the du Weyl scalar with numerical quadrature 
thereof based on the aforementioned geodesic spheres. 
Through a post-processing step we also analyze the grav­
itational strain h.

In order to assess the numerical properties of our im­
plementation we have repeated a subset of the stan­
dard Apples with Apples test-bed suite Alcubierre et al. 
(2004); Babiuc et al. (2008); Cao & Hilditch (2012); Dav- 
erio et al. (2018) and performed a variety of cross-code
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validation tests against BAM. To accomplish the latter 
within the oct-tree AMR approach of GR-Athena++ we 
constructed a refinement criterion so as to closely emu­
late a nested box-in-box grid structure. Test problems 
in the cross-code comparison involved a single spinning 
puncture and the two puncture binary black hole (BBH) 
inspiral calibration problem of Briigmann et al. (2008). 
For overall 4th order spatial scheme selection a commen­
surate 4th order convergence was cleanly observed. For 
6th order, convergence was also achieved for the same 
problem, though less cleanly. As another external val­
idation of GR-Athena++ and a demonstration of utility 
for potential future studies of high mass ratio BBF1 that 
involve significant evolution duration and where accu­
rate phase extraction from the gravitational strain is 
crucial, we investigated a quasi-circular ten orbit inspi­
ral problem based on parameters from Hannam et al. 
(2010). Here the evolution was performed with 6th order 
spatial discretization and comparison was made against 
the NR informed FOB model of TEOBResumS Nagar et al. 
(2018). Using a Mesh tailored to moderate computa­
tional resources we found accumulated EOBNR phase 
differences of order ~ O.lrad to merger and ~ 0.4rad 
to the ring-down for the highest resolution calculation. 
These tests highlight that GR-Athena++ is accurate and 
robust for BBH inspiral calculations and a strong con­
tender for construction of high-quality data for wave­
form modeling.

In addition to accuracy, efficiency of computational 
resource utilization is crucial. The task-based compu­
tational model for distribution of calculations within 
Athena++ and concomitant impressive scalability prop­
erties as available resources are increased we have found 
to readily extend to GR-Athena++ and the Z4c system 
with VC discretization for a wide variety of problem 
specifications. Indeed during strong scaling tests it 
was found that efficiency above 95% is reached up to 
~ 1.2x 104 CPUs, whereas in weak scaling tests almost 
perfect scaling is achieved up to ~ 105 CPUs. This in­
dicates that for the high resolutions and consequently

resources required for a potential calculation describing 
an intermediate mass ratio BBH inspiral GR-Athena++ 
compares favorably with the code-base of Dendro-GR 
Fernando et al. (2018) in terms of scalability.

Finally, as GR-Athena++ builds upon the modular 
framework of Athena++ we inherit all its extant infras­
tructure which will enable incorporating an NR treat­
ment of the matter sector in future work. It is our inten­
tion to make GR-Athena++ code developments publicly 
available in future in coordination with the Athena++ 
tearn.
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APPENDIX

A. APPLES WITH APPLES TEST-BEDS
In order to provide a series of computationally in­

expensive and standard tests of differing formulations 
in numerical relativity (tailored for the vacuum sec­
tor) a suite of so-called “Apples with Apples” test-bed 
problems (hereafter AwA) have been proposed Alcubierre 
et al. (2004); Babiuc et al. (2008).

Our goal here is to ensure that the implementation of 
Z4c within GR-Athena++ reflects the overall properties 
observed in prior tests made based on the same formu­
lation Cao & Hilditch (2012); Daverio et al. (2018) with 
a particular focus on elements directly relevant to grav­
itational wave propagation and extraction. Specifically, 
we examine the AwA: robust stability §A.l, linearized 
wave §A.2 and gauge-wave §A.3 tests.
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Genetically the AwA tests are specified for three di­
mensional periodic spatial grids (i.e. of T3 topology) 
where the effective dynamics occur over one (or two) 
spatial dimensions. Dynamics in “trivial” directions are 
reduced to a thin layer which in GR-Athena++ is achieved 
by selecting the relevant component (s) of NM of the 
Mesh sampling to be equal to 4 (selected chosen as to 
probe potential “checker-board instability” Babiuc et ah 
(2008)). This entails the full Z4c equations and imple­
mentation of (§3.1) are active during a calculation. Di­
rections involving non-trivial dynamics are sampled and 
tested on both cell-centered Qcc and vert ex-centered 
<2vc grids:

Qcc | — (n 2)^ n E {0, ... N — 1} j, 

Qvc :=| — — + n5x n E {0, ... TV} jq

(Al)

where 5x = 1/N and N = 50p with p E N serving 
to adjust resolution as required. Each direction is fur­
ther extended by ghost-zones as described in §2. No 
refinement is present in this section though MeshBlock 
objects have NB chosen so as to partition the domain 
and allow for a further consistency check on the MPI- 
OMP hybrid parallelism. Selection of Z4c parameters is 
as follows: Constraint damping Ki = 0.02 and k2 = 0 
with shift-damping typically selected as p = 2. Kreiss- 
Oliger (KO) dissipation is taken as cr = 0.02 and the 
Courant-Friedrich-Lewy (CEL) condition as 1/2. These 
choices are motivated by those made in prior work Gao 
& Hilditch (2012) and we comment on behavior upon 
deviation from them as tests are presented.

For the tests performed here Z4c is always coupled to 
the puncture gauge described in §3.2 as this is of primary 
interest in this work. We take initial gauge conditions 
to be:

a\t=o ~ @l\t=o ~ °-

Furthermore, in order to facilitate comparison we set 
Afg = 2 throughout such that spatial discretization is of 
2nd order, though numerical experiments with Afg = 3 
reveal similar properties. Time-evolution is performed 
using the 4th order RK4()4[25'] method of Ketcheson 
(2010).

10

Figure 20. Robust stability test. Errors are displayed for 
Qvc with solid lines and Qcc with solid lines marked 
Different selections of parameter entering the Mesh sampling 
are: p = 1 in blue; p = 2 in orange; p = 4 in green; p = 8 in 
red; p = 16 in purple. Top panel: Rescaled norm of col­
lective constraint monitor. Bottom panel: Deviation from 
flat metric. Consistent behavior between CC and VC dis­
cretization is observed at all resolutions. See text for further 
discussion.

dependent, distinct (i.e. independent) uniform random 
value added:

e € (-l(T10/p2, KT10/?2). (A2)

Values are selected such that e2 is below round-off in 
double precision arithmetic. The variable e models the 
effect of finite machine precision and for a code to pass 
the test stable evolution must be observed. A code that 
cannot pass this test would potentially have severe issues 
with any evolution of smooth initial data. We evolve to 
a final time T = 1000 and monitor ||C||oo where C is de­
fined in Eq.(21) together with ||q,^ — (%||oo as suggested 
in Daverio et al. (2018). Results are displayed in Fig.20.

We find that over the duration of the time-evolution 
||C||oo plateaus for p > 2 with p = 1 appearing also 
to tend towards a plateau. Similar behavior is found 
for Halloo. This indicates stability in the sense that 
no spurious exponential modes are excited. Reducing 
77 -ff 0 is observed to lead to qualitatively similar general 
behavior. This was also observed in Gao & Hilditch 
(2012). As errors decrease as resolution is increased we 
consider GR-Athena++ to pass this test.

A.l. Robust stability
The robust stability test is performed with one effec­

tive spatial dimension and is designed to efficiently de­
tect instability within numerical algorithms affecting the 
principal part of the evolution system. An initial spatial 
slice of Minkowski is made where all Z4c field compo­
nents (§3.1) have to each sampled grid point a resolution

A.2. Tmmrized
The purpose of the linearized wave test is to check 

whether a code can propagate a linearized gravitational 
wave, a minimal necessity for reliable wave extraction 
from strong-field sources Babiuc et al. (2008).

An effective one-dimensional test with dynamics 
aligned along the x-axis is specified through spatial she-
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ing of:

ds2 = -At2 + dx2 + (1 + H)dy2 + (1 - H)Az2, (A3) 

where:

and d = 1 is set to match the periodicity of the un­
derlying computational domain and A = 10-8 selected 
such that quadratic terms are on the order of numerical 
round-off in double precision arithmetic. Consequently, 
initially we have a = 1 and f3l = 0 with non-trivial 
extrinsic curvature components:

Kyy = - \dt[H(x, t)], Kzz =\dt[H(x, t)]. (A5)

Time evolution is performed to a final time of T = 1000.
Rather than displaying approximate sinusoidal pro­

files at some final time as in Alcubierre et al. (2004); 
Babiuc et al. (2008); Cao & Hilditch (2012) we follow a 
suggestion of Daverio et al. (2018) to instead consider 
the spectra of data. To this end we compute the discrete 
Fourier transform as:

1 N
:= Zn) - l) exp(-27T2&(%n, - t)),

n=1

& 10

Figure 21. Linearized wave test with parameters and leg­
end of Fig.20. Top panel: relative error in the travelling wave 
amplitude ea{t] p). Middle panel: phase error ep(t; p). Bot­
tom panel: offset of the wave relative to amplitude e0(t; p). 
The CC and VC discretizations display mutually consistent 
behavior in all variables for all t apart from e0(t; 16) though 
the overall trend is recovered as t —>• T. See text for discus­
sion.

H(x, t) = A sin
27r(%

where xn E C(.) (see Eq.(Al)). In the case of VC dis­
cretization the last point of the (periodic) grid is identi­
fied with the first and therefore dropped from the sum­
mation. Thus comparing Eq.(A4) a spectral measure 
of the relative error in the travelling wave amplitude 
is provided through ea{t) := ||Fi(t)| — A|/A. The ab­
solute phase error may be directly inspected through 
ep(t) := | arg(Fi(t)) — tt/2|. We also compute the off­
set of the numerical waveform relative to the amplitude

= |Fb(t)|/A.
The initial data are constraint violating Cao & 

Hilditch (2012) and the puncture gauge is not neces­
sarily compatible with simple advection, nonetheless we 
find that to an excellent approximation the solution is 
a simple travelling wave with results of the analysis de­
scribed above shown in Fig.21.

In agreement with Cao & Hilditch (2012); Daverio 
et al. (2018) we find the dominant source of error to 
be in the phase of the propagating waveform where the 
coarsest sampling p = 1 leads to a final absolute phase 
error of ~ 3.9 rad cf., the finest sampling p = 16 yielding 
~1.5xl0-2 rad. For ea(t) and ep(t) we observe conver­
gence with increasing resolution. For e0(T) at T = 1000 
increasing p tended to increase error albeit overall this 
is acceptably within [7.4, 97] x 10-3; this is compatible 
with the general behavior found in Daverio et al. (2018).

As observed in Cao & Hilditch (2012) reducing —> 0 
or r] —> 0 leads to qualitatively very similar results. We 
thus consider GR-Athena++ to pass this test.

A.3. Gmn/e
A gauge transformation of Minkowski space-time 

defines this test with parameters selected so as to 
involve the full non-linear dynamics. One takes 
?7a6=diag(—1, 1, 1, 1) in Cartesian coordinates x'a and 
transforms:

a/, %/, /) (t + C+(z, t), cc - t), %/, z),

where G±(x, t) := ±dt[H(x, t)\/(8tt2) with H defined in 
Eq.(A4). Two test cases are defined: shifted where G- 
is selected for the transformation on the x' component 
whereas for unshifted G+ is chosen in both components. 
For the latter the induced metric is:

Ixx —1 H, 7yy ~lzz ~ li (A6)

resulting in non-trivial extrinsic curvature component:
dt[H(x, t)] 

2\/l — H(x, t)
(A7)

During calculations we evolve to a hnal time of T = 
1000. In contrast to the standard AwA specification Alcu­
bierre et al. (2004); Babiuc et al. (2008) we make use of
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Figure 22. Gauge-wave test. Top panel: Error of met­
ric components based on Eq.(A8). Legend indicates scal­
ing applied (based on an assumed 2nd order spatial scheme). 
Rescaling indicates anticipated convergence is well-obeyed. 
Bottom panel: Hamiltonian constraint with displayed data 
following the legend of Fig.20. It is clear that with increased 
resolution constraint violation converges away. Consistent 
behavior between CC and VC discretizations is observed at 
all samplings. See text for discussion.

the puncture gauge where we found it crucial to select a 
non-zero shift-damping of rj = 2. In addition to inspec­
tion of the constraints through WTiWoo we also consider 
convergence of the aggregate, induced metric quantity:

<N(C p) =
\

^2 (TuWlp
i,j=1 RMS

(A8)

where the root-mean-square (RMS) value is computed at 
fixed times over a Mesh sampled with N = 50. In Fig.22

we plot e7(t; p) for a choice of A = 1/100 and d = 1 in 
Eq.(A4) and find a 2nd order rate of convergence as is 
expected for J\fg = 2.

The behavior of the shifted case is identical for the 
stated parameters and therefore we do not show it.

A two-dimensional variant of the gauge wave test 
may also be considered where an initial spatial rota­
tion of 7t/4 is made. In particular, coordinates are 
mapped according to SO(2) 3 R : (x, y) (x, y) =
(x + y, x — y)/\/2. This results in x-aligned propaga­
tion mapped to a periodic diagonal trajectory in the 
x-y plane. Here as per AwA specification we evolve to 
a final time of T = 100 and selected resolutions based 
on p E {1, 2, 4, 8}. For an amplitude of A = 1/100 
we similarly found a 2nd order rate of convergence with 
Afg = 2 in rescaling of e7(p). For the case of A = 1/10 
however we did not observe clean 2nd order convergence. 
Indeed the AwA specification suggestion to use an even 
higher amplitude A = 1/2 is well-known to cause issues 
with stability in a variety of formulations and regard­
less of puncture or harmonic gauge choice Daverio et ah 
(2018); Cao & Hilditch (2012); Boyle et al. (2007).

We consider GR-Athena++ to pass this test in both 
the one-dimensional (un)-shifted cases and in the two- 
dimensional unshifted case with the caveat that initial 
amplitude must be reduced.

A.4. AwA summary
We have demonstrated that GR-Athena++ with Z4c 

coupled to the moving puncture gauge passes the AwA ro­
bust stability (§A.l) and the one-dimensional linearized 
wave (§A.2) tests. For the gauge wave tests (§A.3) we 
find that GR-Athena++ passes for a choice of reduced 
initial amplitude of the propagated wave.
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