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ORTHOGONAL TRACE-SUM MAXIMIZATION: APPLICATIONS,
LOCAL ALGORITHMS, AND GLOBAL OPTIMALITY*
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Abstract. This paper studies the problem of maximizing the sum of traces of matrix quadratic
forms on a product of Stiefel manifolds. This orthogonal trace-sum maximization (OTSM) problem
generalizes many interesting problems such as generalized canonical correlation analysis (CCA),
Procrustes analysis, and cryo-electron microscopy of the Nobel prize fame. For these applications
finding global solutions is highly desirable, but it has been unclear how to find even a stationary
point, let alone test its global optimality. Through a close inspection of Ky Fan’s classical result
[Proc. Natl. Acad. Sci. USA, 35 (1949), pp. 652-655] on the variational formulation of the sum of
largest eigenvalues of a symmetric matrix, and a semidefinite programming (SDP) relaxation of the
latter, we first provide a simple method to certify global optimality of a given stationary point of
OTSM. This method only requires testing whether a symmetric matrix is positive semidefinite. A
by-product of this analysis is an unexpected strong duality between Shapiro and Botha [STAM J.
Matriz Anal. Appl., 9 (1988), pp. 378-383] and Zhang and Singer [Linear Algebra Appl., 524 (2017),
pp. 159-181]. After showing that a popular algorithm for generalized CCA and Procrustes analysis
may generate oscillating iterates, we propose a simple fix that provably guarantees convergence to
a stationary point. The combination of our algorithm and certificate reveals novel global optima of
various instances of OTSM.
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1. Introduction.

1.1. Orthogonal trace-sum maximization. Given S;; = S;f’; € R%xd; for
i,7 = 1,...,m, and r < min;—;, _,,d;, we are interested in solving the following
optimization problem:

1 m
(OTSM)  maximize 5 Z tr(OlvTSijOj) subject to O; € Oy, », t=1,...,m,

4,j=1

where Og,, = {0 € R¥*" : OTO = I,.} is the Stiefel manifold of (partially) orthogonal
matrices [8]; I- denotes the identity matrix of order r. Since adding a positive multiple
of the identity matrix to S;; only increases the objective by a constant amount, without
loss of generality we can assume each S;; is positive semidefinite. In what follows, we
call (OTSM) the orthogonal trace-sum mazimization problem. OTSM arises in many
interesting settings, as follows.
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Canonical correlation analysis. Canonical correlation analysis (CCA) [18] seeks
directions to maximize the correlation between two sets of n observations of variables
of possibly different dimensions, A; € R™*% and A, € R™*92:

maximize corr(Ajty, Asta) subject to t?ti =1,1i=1,2,

where t; € R% are the optimization variables, and corr(-,-) denotes the Pearson
correlation coefficient between two sample vectors. Generalizations of CCA (i) handle
more than two sets of variables Aj,..., A, (m >2), and (ii) seek partial rotation
matrices (as opposed to vectors) of A;’s to achieve maximal agreement. The popular
MAXDIFF and MAXBET criteria [15,21, 31, 34] solve

(MAXDIFF) maximize Y tr(O] AT A;0;) subject to O; € Og,r, i=1,...,m;
i<j
1 m

(MAXBET) maximize - > tr(OF AT A;0;5) subject to O; € O, r, i=1,...,m.

ij=1

Both MAXDIFF and MAXBET are instances of (OTSM) with S;; = ATA; (if
MAXDIFF, S;; = 0), for i,57 = 1,...,m. It is worth noting that when d; = --- =
dm = d =1, i.e., the fully orthogonal case, MAXDIFF coincides with MAXBET up
to an additive constant.

Procrustes analysis and little Grothendieck problem. If the variables are fully or-
thogonal and there exist Si1, S12, ..., Smm € R¥? such that the symmetric md x md
block matrix S = (Sij)i% =1 is positive semidefinite (denoted S = 0), then (OTSM)
reduces to the little Grothendieck problem over the orthogonal group [5], which arises
in generalized Procrustes analysis [13,14,30]. Given a collection of n landmarks of
d-dimensional images A; € R"*? j =1,... m, the goal is to find orthogonal matrices
that minimize the pairwise discrepancy

1 m
(L1) (01, 0m) =5 > 1Ai0; — A;05]% = =) tr(O] AT A;0,) + const.

ij=1 i<j

subject to the constraints that O; € Qg4 for all 4, where || - ||g is the Frobenius
norm. This problem is a special case of (OTSM) with S;; = AT A; fori,j =1,...,m.
Clearly, S = [A1,..., An]"[A1, ..., Ap] = 0. When m = 2, problem (1.1) reduces to
ordinary (partial) Procrustes analysis [10, Chapter 7].

Cryo-EM and orthogonal least squares. Another instance of (OTSM) involving
fully orthogonal matrices is the least squares regression problem that minimizes the
squared Frobenius norm of the difference between a given nxd matrix Agx 1 and linear
combination Zfil A;O; of given n x d matrices A; with O; € Og 4,9 =1,..., K. This
least-squares problem has a direct application in single-particle reconstruction with
cryo-electron microscopy (cryo-EM) celebrated by the 2017 Nobel Prize in Chemistry.
Then we can equivalently minimize

1
(1.2) 2HAK+1 —Ok41) ZA 0; ;tr(ofAZAjoj) + const.
i<y
subject to the orthogonality constraints on O1,...,Ok41. Any minimizer (Ol, e
Ok +1) of (1.2) supplies a minimizer (— 010K+1, e OKOK-H) of the original prob-

lem. This is a special case of (OTSM) with S;; = fA A;. In cryo-EM, reconstruction

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/19/21 to 131.179.220.6. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

ORTHOGONAL TRACE-SUM MAXIMIZATION 861

of the three-dimensional (3D) map of a particle involves estimating viewing directions
of its two-dimensional (2D) projections. Retrieval of the orthogonal matrices repre-
senting the orientations is posed as the above least squares problem [6,33,35,37].

1.2. Global solutions of OTSM. Each instance of (OTSM) above can be
posed as a maximum likelihood estimation problem under an appropriate model.
Finding its global solution is highly desirable for correct inference. While it attains a
maximum because each Oy, , is compact and the objective function is continuous in
RAXT ... xR4m T (OTSM) is a nonconvex optimization problem since the constraint
set Og,.» X -+ X Oq, r is nonconvex. Except for the special case of m = 2 in which
an analytic global maximizer can be found using the singular value decomposition
(SVD) [13,34], we generally have to resort to iterative methods. The nonconvexity of
the problem makes it difficult to test global optimality of a candidate (local) solution.

To add further difficulties, the global solution to (OTSM) is not unique. If
(O1,...,0r,) is a solution to (OTSM), then for any R € O, ,, (OTR,...,O0R) is
also a solution.

1.3. Contributions. The contributions of this paper are as follows: (i) pro-
viding a simple certificate that guarantees the global optimality of a local stationary
point of problem (OTSM) (section 3) and (ii) showing that a standard algorithm for
generalized CCA and Procrustes analysis may exhibit oscillation, and proposing an
efficient proximal block relaxation algorithm with a convergence guarantee to a sta-
tionary point (section 4). Our certificate and duality results are developed in close
analogy to the classical result by Ky Fan [11] on the variational formulation of the
sum of largest eigenvalues of a symmetric matrix (section 2). (In the accompanying
supplementary material file OTSM_supp.pdf [local/web 625KB], we also establish a
duality between problem (OTSM) and another eigenvalue optimization problem. As
a special case, a strong duality between two separately known results in the litera-
ture [28,40] is shown.) The certificate only requires testing positive semidefiniteness
of a symmetric matrix constructed from a stationary point and data. Therefore, it
is simple to verify global optimality. The convergence theory for the proposed algo-
rithm proves that the whole sequence {OF = (O¥,... OF )} of iterates converges to a
stationary point at least at a sublinear rate—this result is stronger than convergence
of the objective value sequence or convergence of a subsequence of {O*}. To the best
of our knowledge, there has been no convergence result of this stronger kind for the
related problems. Some numerical results of the proposed algorithm combined with
the certificate are presented in section 5.

2. Preliminary: The m = 1 case and Ky Fan theorem. As a preparation
for what follows, we review the classical results on variational formulations of the sum
of r largest eigenvalues of a symmetric matrix. For a matrix S in the vector space of
d x d symmetric real matrices (denoted S%), let \;(S) be the ith largest eigenvalue of
S. Then it is well known that

2.1 Ai(S) = tr(07S0) = tr(SU) : 0 U < Iy, tr(U) =r}.
21 3ON(S) = gags 6(07S0) = pax {a(SU) 0 < U < Lo ) =)
The first equality is the celebrated Ky Fan theorem [11], where the involved nonconvex
optimization problem over a Stiefel manifold is a special case of (OTSM) for m = 1.
The second equality is due to [17,25], which state that there always is a tight convex
relaxation of Ky Fan’s nonconvex problem. It is also well known that the dual of this
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convex semidefinite programming (SDP) problem is an SDP

minimize 7z + tr(M),

(22) subject to zIz+ M —-L=S, M*>=0, L*>0

for variables M, L € S and z € R [3,23,26].
Let us examine the relation between stationary points of these optimization prob-
lems closely. For Ky Fan’s nonconvex problem, the Lagrangian is

L(0,A) = —tr(0TSO) + %tr [A(0TO - 1,)],

by rewriting the constraint O € O, as an equality constraint OTO = I,. The
Lagrange multiplier matrix A is symmetric due to the symmetry of the corresponding
constraint. Point O € Oq4,, is a stationary point if the directional derivative of £ with
respect to W € R¥*"

dwL = —tr [(SO)"W] + tr [(ON)"W]

vanishes for any W, i.e., if O satisfies the necessary condition for first-order local
optimality. This is equivalent to the existence of a symmetric matrix A satisfying

(2.3) OA = SO.

Further, using the constraint OTO = I,., we have a representation A = 0TSO € S".
The Karush-Kuhn—Tucker (KKT) optimality conditions assert that a locally maximal
point is also stationary [24, Theorem 12.1].

The second-order necessary condition for a local maximum is

(2.4) 3 L = tr(AWTW) — tr(WTSW) >0

for all W € R?*" such that W70 + OTW = 0 [24, Theorem 12.5]; the set of such W
is the tangent space of the Stiefel manifold Og,, at O. For the convex problem (either
the primal or dual), the KKT conditions are

0=U=<1I; t(U)=r, M>=0, M+z[,—L=S5,

(2:5) tr(LU) =0, tr[M(I;—U)]=0, L>O0.

Assume that O is a local maximizer. Let A = OTSO, U = OOT, and M =
O(A — zI,)OT for z = Apin(A), the smallest eigenvalue of A. Since O is a stationary
point, it is easy to verify that (U, M, L = M +zI;— S) satisfies all the KKT conditions
in (2.5) but L = 0.} If r < d, let O+ € Og—rr consist of orthonormal columns that
span the null space of O, and choose W = OLK for K € R(@=")%" g0 that it satisfies

WTO + OTW = 0. Then after some algebra,
tr(AWTW) — tr(WTSW) = tr(KAK™) — tr(KTO*+T SO+ K) > 0.

Since K is arbitrary, choose K = BuT. for B € R and vmin € R, where the latter

min

is the unit eigenvector of A associated with z. So,

tr(KAKT) —tr(KTOYT SO K) = 2887 — pTOTSO+p >0 VB eRY™.

IThe construction of matrices M and L is inspired by [26, Theorem 3.3|, in which optimality

conditions of the dual SDP (2.2) is given. In particular, if O consists of the orthonormal eigen-
vectors of S corresponding to the r largest eigenvalues, it follows that A-(S) > z > Ar-41(9),
M = Odiag(A\1(S) — 2,...,Ar(S) — 2)OT and L = O+ diag(z — A\r41(S), ..., Z — Xq(S))O+T.
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This implies ZIq_, — OLT SO+ = 0. On the other hand, as any y € R% can be written
as y = Oa + O+ for « € R" and 3 € R, it can be easily seen that

y" (M + 21, — S)y = " (2lq—r — OSO)B > 0.

Thus L = M + zI; — S = 0 and O satisfies all the KKT conditions. (Ifr=d, it is
immediate that M = S — zI, or L = 0.) This implies that all the local maxima of
Ky Fan’s nonconvex optimization problem are global maxima.

Conversely, if a stationary point O satisfies L & M + zI; — S = 0 for A, U, and
M constructed as in the beginning of the previous paragraph, then it is also globally
optimal, which obviously is locally maximal. In other words, L = 0 = (global
optimum) = (local maximum) == L = 0; hence L = 0 is necessary and sufficient
for a stationary point to be globally optimal.

The above analysis of Ky Fan’s problem (2.1) sheds light on (OTSM) in three
ways. First, there can be a tight convex relaxation to (OTSM). Second, by analyzing
the KKT conditions of the convex relaxation, we may be able to certify a stationary
point of (OTSM) to be globally optimal. Third, the dual of the convex relaxation
may have to do with a sum of the eigenvalues of a block matrix constructed from
S;;’s. In what follows, we carry out an analysis of the OTSM problem inspired by the
Ky Fan problem. The added complexity due to m > 1 reveals both similarities and
differences between the two problems.

3. Certificate of global optimality.
3.1. Local optimality conditions.

3.1.1. First-order conditions. Rewriting the constraints O; € Oy, , as equal-
ity constraints Of O; = I,., the Lagrangian of (OTSM) is

m m

E(Ol,...,Om,Al,...,Am):—%Z tr(O1 8;;0;) + Ztr A;(OT0; — 1)),

ij=1

where the Lagrange multiplier matrices A; are symmetric due to the symmetry of the
corresponding constraints. In parallel with section 2, a point O = (Oy,...,0,,) is a
stationary point of problem (OTSM) if the directional derivative of £ with respect to
W= (Wi,...,W,,) € REX" x ... x RdmXT

(3.1) dw L = — ZZtr (S:;05)" W3] +Ztr [(0:0:)T W3]
=1 j=1
vanishes for any W. A local maximum satisfies condition (3.1), which is equivalent to
(32) OzAz = ZSijOj’ 1= 1,...,m,
j=1

resembling the first-order condition (2.3) of the Ky Fan problem.
Using the constraint O;‘F O; = I, we further have a representation for A;:

m m T
(3.3) A= 0?(25”-03-) = <Zsijoj) 0;.
j=1

j=1
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The second equality follows from the symmetry of the Lagrange multiplier. Substi-
tuting this quantity in (3.2), we obtain

m T m
(3.4) 0i<ZSijoj> 0; =) 805, i=1,..,m.
j=1 j=1

3.1.2. Second-order condition. The second-order necessary condition for lo-
cal maximality of (OTSM) is

(3.5) Ay £ =" tr(AWIW;) — tr(WTSW) > 0

i=1
for all W = [W{,...,WZI]T such that W; is a tangent vector of Oy, , at Oy, i.e.,
(3.6) Wro; + OfwW, =0, i=1,...,m,

where S = (S;;) is the symmetric Dx D block matrix whose (i, ) block is S;; € R%*%
1,7 = 1,...,m. Again see the resemblance of condition (3.5) to the second-order
condition (2.4) for Ky Fan’s problem.

Unfortunately, in (OTSM) we do not have the luxury of all the local maxima
being globally optimal. We revisit this issue after studying a potentially tight convex
relaxation to the problem in the next subsection. As a partial result, some of the
following characterization of the Lagrange multipliers associated with a local or global
maximum can be deduced from [31, pp. 489-490].

PROPOSITION 3.1. IfO = (01,...,0) € Og, »x---XOq,, » is a local mazimizer
of (OTSM), then A; as defined in (3.3) is positive semidefinite, for i € {1,...,m}
such that d; > r. If O is a stationary point but A; is not positive semidefinite

for some i, then one can find another stationary point O = (Oq,...,0,,) such that
%Ei,j tI‘(OiSijOj) < %Ei,j tI‘(OiSijéj) and [\i = O~iT Z;nzl Sijéj 18 positive semi-
definite for all i = 1,...,m. Furthermore, if O is a global mazimizer of (OTSM),
then A; is positive semidefinite for all i.

A full proof is provided in Appendix A.

3.2. Semidefinite programming relaxation. By introducing an appropriate
matrix variable and constraints, we can obtain an upper bound of the optimal value
of (OTSM) by that of an SDP relaxation. Besides providing tight bounds, the SDP
formulation paves the way toward certifying the global optimality of a local solution.
If D=73""d;, then we can define a D x D matrix

(3.7) U4 %OOT, O=1[0{,...,0"T e RP*"

so that >, . tr(O7'S;;0;), the objective function of (OTSM), is equal to %2 tr(SU),
where S = (S,;). We can express (OTSM) in terms of the matrix U by imposing
appropriate constraints. The proof of the following proposition is in Appendix A.

PROPOSITION 3.2. Problem (OTSM) is equivalent to the optimization problem
(3.8)

mazimize (m/2)tr(SU)

subject to U =0, rank(U) =r, mU;; 2 Iy, tr(mUy) =7, i=1,...,m,
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where the optimization variable is a symmetric D x D matriz U, U;; denotes the ith
diagonal block of U whose size is d; X d;, and A < B denotes the Loewner order, i.e.,
B—-—A*0.

By dropping the rank constraint from problem (3.8) we obtain a convex, SDP
relaxation of (OTSM):

maximize (m/2)tr(SU)

(P-SDP) subject to U = 0, mUy; = Ia,, tr(mUy) =7, i=1,...,m.

This relaxation is tight if the solution U* has rank r. The solution to (OTSM) is
recovered by the decomposition (3.7). The dual of (P-SDP) is easily seen to be the
following SDP:
(D-SDP) min.imize > iy [rzi + tr(M;)] .

subject to Z4+ M -L=S, L>0, M; =0, i=1,...,m,
where Z = diag(mz114,,...,mznly,, ) and M = diag(mM;,...,mM,,). The opti-
mization variables are L € SP, M; € S%, z; € R, i = 1,...,m. Strong duality
between (P-SDP) and (D-SDP) holds (e.g., Slater’s condition is satisfied). A rank-r
solution to the SDP relaxation (P-SDP), if it exists, yields a globally optimal solution
to the original problem (OTSM). However, solving these convex programs is com-
putationally challenging even with modern convex optimization solvers due to their
lifted dimensions. Moreover, if the optimal SDP solution U has rank greater than r,
the factor O in (3.7) is infeasible to the original problem (OTSM).

Thus it is natural to ask when the candidate rank-r solution (3.7) to (P-SDP)
constructed from a stationary point (O1,...,0,,) of (OTSM) becomes actually an
optimal solution. If this is the case, then the local solution globally solves (OTSM).
We explore this path in the next subsection.

3.3. Certifying global optimality of a stationary point. The KKT condi-
tions for (P-SDP) and (D-SDP) are

(KKT-a) U >0,

(KKT-b) mUy; <14, i=1,...,m,
(KKT-c) tr(mUy;) =,

(KKT-d) M; =0, i=1,...,m,
(KKT-e) Z+M—-L=S5,

(KKT-f) tr(LU) = 0,

(KKT-g) tr(M;(lg, —mUy)) =0, i=1,....m,
(KKT-h) L>0,

where Z = diag(mz114,,...,mzmla,) for z1,...,2,, € R and M = diag(mM;,...,
mM,,). If any tuple (U, Z, M, L) satisfies conditions (KKT-a)-(KKT-h), then U is
an optimal solution to (P-SDP) and (Z, M, L) is optimal for (D-SDP) [36].

Now suppose O = (Oy,...,0,,) is a stationary point of (OTSM). Recalling
(3.3), let the associated Lagrange multipliers be A; = Z;”:l OF'S;;0;. We can find
the quantities that satisfy the KKT conditions above in a similar, but not completely
obvious, manner to section 2. The matrix
(3.9) g2 Loor

m
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clearly satisfies (KKT-a), (KKT-b), and (KKT-c). Now let 7; be the smallest eigen-
value of the symmetric matrix A;. Then

_ R R _ 1 - _
(3.10) M; £ OlAZOzT — EZOlO;T =0, (Az — Zilr) O;F

satisfies (KKT-d) for any z; < 7;/m. If we define block diagonal matrices

(3.11) 7Z = diag(mz,1y,,...,mz,ly,), M =diag(mb,...,mM,,),
then
tr[(M + 2)U] = Ztr [(M; + z: 1, )mU;]
i=1
1 m o o o
= E tr [(OZAzO;‘F — mEZOzOZT +mz;, )O 3“]
i=1
1 m B 1 m m . B .
- = ;tr(Al) = ; ;tr(OZ S:;0;) = tr(SU)

This satisfies (KKT-e) and (KKT-f) for L 2 M + Z — S. Finally,
tr(mMi) = tr [Oz(j\l - mZZIT)O;T] = tr(]&l - méiLn),
tr [(mMz)(mUu)] =tr [(Ol(/_\l — leIT)O?)(Oléf)] = tI‘(Ai - mEiIT);

thus (KKT-g) is satisfied. In short, the choices of variables (3.9), (3.10), and (3.11)
satisfy all the KKT conditions except (KKT-h) for any z; < 7;/m.

To satisfy this final KKT condition, let L(Zy,...,Zy,) = M 4+ Z — S and observe
that M + Z = diag [61]\10{ +mz0{0:7T, ..., 0mA, 0T + mémOf,;O#;T], where
Ot € Oy, 4,—r satisfies O OFT = I, — O,0F . If the linear matrix inequality (LMI)

(3.12) L(Z1,...,Zm) =0, Z <7/m, i=1,...,m,

has a feasible point (Z},...,2%), then this is a certificate that (O1,...,0,,) is a
global maximizer of (OTSM). While, in general, LMIs are solved by interior-point
methods [23], for LMI (3.12) it is unnecessary. Since O; O:T is positive semidefinite,
L is monotone (in Loewner order) in the scalars 21, ..., Z,, i.e.,

L(z1,. .., 2m) = L(wy, ..., wy)

whenever z; > w; for i = 1,...,m. Thus it is sufficient to check the positive semidef-
initeness at values z; = 7;/m. If it holds, we have found a feasible point. If not, the
LMI is infeasible. We state this result as the following theorem.

~ THEOREM 3.3. Suppose O=(0y,...,0,) isa stationary point of (OTSM). Let
/}i = Z;":l O;‘FSUO]', and 7; be the smallest eigenvalue of A; fori=1,...,m. Then
O is a global optimum of (OTSM) if

(CERT) L* =diag (0:A107 + 1107077, ..., 0mAnOF + 7,05 05T) — S = 0.

Remark 3.4. Let O = m~Y2[07,.-- ,OL]T. Tt is easy to see that O € Op.,
and L*O = 0 using the stationarity condition (3.2). Therefore, it suffices to test
(OHTL*O+ = 0, where O+ € Op p—, fills out O to a fully orthogonal matrix. This
matrix is (D —r) x (D — r) and may be easier to handle than the D x D matrix L*.
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Ezxample 3.5. To see the significance of Theorem 3.3, consider the example ex-
amined by Ten Berge [30, p. 270] in the context of the MAXDIFF problem (S;; = 0,
1= 1,...,m). Let m = 37 d1 = d2 = dg = d, and set 512 = —Id, 513 = Id, 523 = Id.
Using Theorem 3.3, it is easy to see that any triple of (partially) orthogonal matrices
(01,02,03) € Oy x Oqr x Oy, such that O3 = Oy + Oy satisfies (CERT) for any
r < d. Indeed, for choices A; = I, and 7, = 1 for all 4,

I, Iy -1 14
=1y L ol =|I| [l L —L]=0
—Id —Id Id _Id

Specifically, for d = 3 and r = 2, the triple

) —1/2  V/3/2 ) /2 V32

0
1|, Os=|—V3/2 —1/2|, Osz=|—-V3/2 1/2
0 0 0 0 0

(313) Oy =

OO =

is a global maximizer. The global maximum value is 3.

Unlike the Ky Fan problem of the previous section, condition (CERT) is hardly
necessary for global optimality. This is a key difference of (OTSM) from the Ky
Fan problem. To see this, let O = (O1,...,0p,) be a local maximizer, and recall
14, = O;0F + OO} T. Tt follows from the tangency condition (3.6) that

tr(AWEW;) = te(W; AW E 0,07 + tr(Wi AW OF O
r(OF WA, WEO;) + tr(A; W OFOFTW5)
r(WIO;A;OFWy) + tr (AW OF O T W)
> tr(WIO;MOTW;) + 73 tr(WTOLOl W;).

A/_\

t
t
t

The last inequality is due to WO (OH)TW; = 0 and A; = 71, (see, e.g., [19, pp.
482-483]). Thus the local maximality condition (3.5) is sufficiently satisfied if

> (W00 Wy) + Zf, tr (W, OF O W;) — tr(WTSW) > 0
i i=1
for all W = [W{',...,WZL]T. This will be the case if L* = 0, but not only if.

Nevertheless, there are a few special cases that condition (CERT) is also necessary
for global optimality.

COROLLARY 3.6. For the MAXDIFF problem with m = 2, i.e., S11 = 0 and
Saa =0, if a point (01, O3) is a global mazimizer, then condition (CERT) is satisfied.
This is true for any r < min{d;,da}.

COROLLARY 3.7. For m =2 and r = 1, if a point (O1,03) is a global mazimizer
of (OTSM), then condition (CERT) is satisfied.

COROLLARY 3.8. If S;; has rank less than or equal to v with singular value de-
composition S;; = ViEijVjT Jor Vi € Og, r, Vj € Ou; r, and ¥;j is an v X1 nonnegative
diagonal matriz fori,j5 =1,...,m, then (V1,...,V,,) solves (OTSM) globally.

The last corollary provides a data-only sufficient condition for global optimality,

which does not require computing a stationary point. Its hypothesis is satisfied, e.g., if
A;’s share left singular vectors in the MAXDIFF or MAXBET problems: A; = REl-ViT
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for some R € O,.,.. Corollary 3.7 is due to [16, Result 4], which we discuss in the next
subsection. Proofs of the other corollaries are provided in Appendix A.

We also point out a special case in which a qualified local optimality implies
condition (CERT). For m = 2 involving fully orthogonal matrices (i.e., di = dy = 75
note in this case (OTSM) coincides with both MAXDIFF and MAXBET), it is well-
known that a locally maximal point O = (O, O3) such that A; = OT S1,0; is positive
semidefinite also implies global optimality [12,30]. Theorem 3.3 recovers this result.
To see this, observe that Ay = 07 81,0, = 0FSy0; = Ay by symmetry. Let
A =A; =A,. Then,

. _[0hOT =551 [0 ]:[0: 1"
L=V"2gt 0,007 = |-0,| A |=0,] =

since S12 = 01AO0T = ST, We see the circle L* = 0 = (global optimum) =
(local maximum with A = 0) = L* =0 for m = 2 and r = d; = dp, similar to the
Ky Fan problem. In fact, a stationary point with A > 0 suffices, and by Proposition
3.1, any stationary point can be improved to satisfy this condition.

Table 1 summarizes the results discussed so far and their parallelism with those
in section 2.

3.4. Other certificates. Sufficient conditions for global optimality of problem
(OTSM) appear understudied. Here we discuss three such conditions collected from
the generalized CCA and Procrustes analysis literature.

Ten Berge [30] shows that if dy = --- = d,,, = r (fully orthogonal) and A;; =
OF'S;;0; is symmetric and positive semidefinite for all i < j for global optimality, then
(O1,...,0,,) is a global solution. This sufficient condition is excessively strong, and,
in fact, he uses Example 3.5 to show that the condition is hardly met: no orthogonal
matrices (01,02,03) exist such that —Of@g, 6?63, and OQTO3 are simultaneously
symmetric and positive semidefinite. Nevertheless, Ten Berge’s sufficient condition
is implied by Theorem 3.3. To see this, observe that A; = Z;”:l A;j is symmetric
(and positive semidefinite), satisfying the stationarity condition (3.2). Also since
Sij = OlAZJOJT,

L* = diag(01A1O1, sy Om]\mom) - S

01 Sz My A s —Aym of
Om *]\ml te *Am,m—l Zj#m AMJ' O;Tn
It is easy to check that the middle block matrix is positive semidefinite, and so is L*.
_ Hanafi and Ten Berge [16] show that if unit vectors o; € R% i=1,...,m, satisfy
So = diag(\1, ..., Ao with o = (of ..., 0L )T and diag(A1 14y, -, Amla,,) — S = 0,
then (o01,...,0,,) maximizes %Z:nj:l ol S;;0; globally. Obviously, this is a special

case of Theorem 3.3 for r = 1. Corollary 3.7 follows from this result.

If a stationary point (Oq,...,O,,) satisfies the second-order condition (3.5) for
al W = [WT,..., WET € RP*" ie., each W; does not necessarily observe the
tangency condition (3.6) at O;, then this is obviously sufficient for the point to be
globally optimal. Liu, Wang, and Wang, [21, Theorem 2.4] describe this condition in
a matrix form:

(3.14)  L£* £ diag(K] ,(Ia, ® A)Kay rs- -, K (Ta,, @ M) Ka,, ») =S = 0,
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where § = (I, ® S;;), and K, is the commutation matrix such that K,,, vec A =
vec AT for A € R™*"; vec(-) is the usual vectorization operator, and ® denotes the
Kronecker product. Condition (3.14) can be related to Theorem 3.3 by the similarity
transform of £* with K = diag(Kq, ., .-, Ka,, r):

KLKT = diag(Iy, ® Ay, .., 1y, @ Ay) — KSKT
= diag(ly, ® Ay,..., 1q, @Ay) =S = 0, S=(S;®1I).

The second equality uses the fact Ky, (I, ® S@'j)Kg;’r = S;; ® I,. Observe the
resemblance of the last line to condition (CERT). When r = 1, these two conditions
actually coincide, hence also with the Hanafi-Ten Berge condition. For r > 1, besides
the expenses of constructing a larger matrix than L* (rDxrD versus D x D), condition
(3.14) is usually stronger than Theorem 3.3. For instance, in Example 5.1 of section 5
stationary points obtained by Algorithm 4.1 in section 4 satisfy condition (CERT) for
all possible values of r, but for those points £* > 0 only when r = 1.

TABLE 1
Comparison between Ky Fan’s problem and the orthogonal trace-sum mazimization problem
(OTSM). Set I'a refers to the set of locally mazimal points.

Ky Fan OTSM
Domain O € Oy, O—(Ol,...,ém)eodl,T><---><(9dm’r
Lagrange multiplier(s) A=0T80 =AT A = Z;nzl OiTSO]' = 1_\;, i=1,...,m
Lifting matrix U =00T U= %OOT
Cutoff matrix Z = Amin(A) Z = diag([ms1a;)™1)s T = Amin(As)
Nonneg. part of A M = O(A — zI)OT M = diag([0;(A; — 7:1.)OT]™ 1)
Nonpos. part of A L=M+zl;—-S L=M+27Z-S
Certificate matrix L >0 (YO €eTy) L>0 (30 eTy)

4. Proximal block relaxation algorithm. In order to apply Theorem 3.3 to
verify condition (CERT), an algorithm that generates iterates converging to a station-
ary point is needed. Although problem (OTSM) has been studied in the generalized
CCA and Procrustes analysis context for a long time, algorithms that possess this
desired property appear rare. In this section, we propose such an algorithm.

4.1. Oscillation of the standard algorithm. We first point out a flaw in
the block ascent algorithm widely employed in both the generalized CCA [15, 31, 32]
and the Procrustes analysis contexts [10,13,30]. This algorithm cyclically updates
each orthogonal matrix O; with other blocks O;, j # %, held fixed. To update the
ith block in the & + st cycle, let OP* = (OF*,... O8]} OF Ok, ,...,0%), then
maximize tr [OF (>, S;;O5™")]. This block update scheme is natural since the
domain Og, » X -+ x Oy,, » has a product structure. Furthermore, each maximization

is explicit: let us invoke the von Neumann—Fan inequality

tr(A"B) <) 0i(A)oi(B),
l

which holds for any two matrices A and B of the same dimensions with the /th largest
singular values 0;(A) and o;(B), respectively; equality is attained when A and B share
a simultaneous ordered SVD (see, e.g., [19]). Thus if B = 37", S;;07"" has an SVD

of P;D;QT where D; is r x r nonnegative diagonal, then the optimal choice of A = O;
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is P,QT. The latter matrix is orthogonal. This method can be considered a linearized
version of the alternating variable algorithm of [21, Algorithm 4.1].

However, convergence of this standard algorithm is not guaranteed. To be precise,
let OF = (OF,...,OF) be the kth iterate after k cycles of the algorithm. While it
can be shown that the sequence of objective values {f(O*)} converges [31], it cannot
be said that the iterates {O*} themselves converge. The main reason is that the map
B = Zj# Si;05 — P,QT is set-valued. If B is rank deficient, any orthonormal basis
of the null space of BT (resp., B) can be chosen as left (resp., right) singular vectors
corresponding to the zero singular value; the product P;Q7 may not be unique [2,
Proposition 7]. Each update of the ith block may place it too far from its previous
location. To see the potential peril of this update scheme, let us revisit Example 3.5.
Suppose the algorithm is initialized with O° = (I, J, I), where

1 0 0 1
I=10 1| € (9372 and J= |1 0| ¢ 03)2.
0 0 0 0

Both I — J and I + J have rank 1, and —J € argmaxg, co, , tr [OiT(I — J)], I e
argmaxo, co, , tr [OF(I + J)]. Taking these particular values as the outputs of an
instance of the above set-valued map, we have the following sequence of OF:

(Iv‘LI) - (_']7]7_']) - (_Ia_‘L_I) - (']7_]"]) - (I"]7I) e

Thus the standard algorithm oscillates while the objective does not change from a
suboptimal value of 1 (recall the globally optimal value is 3).

4.2. Proximal regularization. We propose a simple modification of the stan-
dard algorithm that leads to a convergent algorithm. Define a bivariate function
fi : Od,-,r X (Odl,r X - X Od”“'r) — R as fZ(O“@) = tr [OIT(Egnzl Sij@j)} for
t=1,...,m, where © = (01,...,0,,). Then the objective function of (OTSM) can
be denoted by f(O) = % >ty fi(0;,0), where O = (Oy, ..., 0O,,). For the update of
the ith block in the k + 1st cycle, we consider a spherical quadratic approximation of

fi at Of, ie.,
(4.1)

]' rev rev
F:(OF, 0P )+ tx[V1 fi(OF, OP*V) (0, — OF)] - @IIOz‘—OfII%Jer;’(O? , OPY),

J#i

where OP™" = (O™, ..., Of ", 0F,0F,,...,0F), and V1f;(0;,0) = 31| 5,0,
is the derivative of f; in the first variable; a > 0 is a given constant. We then maximize
this approximation with respect to O;, with the other coordinates held fixed. This par-
tial maximization is also explicit, as it can be easily seen that maximizing the objective
(4.1) is equivalent to maximizing tr [OF (37, S;;O07" +a~OF)]. Therefore, we can
employ the von Neumann—Fan inequality to A = O; and B = Z;ﬂ:l Sij O;’rev—i—a*lOf.
If B has an SVD of P,D;QT, then the optimal choice of A is again P,Q7, which is or-
thogonal. This fact suggests Algorithm 4.1, which includes that standard algorithm as
a special case (& = +00). The quadratic regularization term in objective (4.1) keeps
the update Oi-“'l in the proximity of its previous value OF, and the o moderates the de-
gree of attraction. Algorithm 4.1 is also an instance of the minorization-maximization
(MM) algorithm (see, e.g., [20]): at each update, the surrogate function defined on

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/19/21 to 131.179.220.6. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

ORTHOGONAL TRACE-SUM MAXIMIZATION 871

(Oayr X -+ X Oy r) X (Ogy o X -+ X Og,, 1)

m T

§(010) = f(0) + 3 [V £i(0,,0)7(0; 0] — 5 > 10: ~ OF
=1

i=1

minorizes the objective function f(O) at © = (Oy™,...,0F"!,OF OF ,,...,0F)
for a certain range of a and is partially maximized. As a consequence of being an
MM algorithm, each update monotonically improves the objective function f. Due
to the compactness of each Oy, ., actually the sequence of objective values {f(OF)}
converges.

In the next subsection we proceed to show that the sequence of iterates {O*}
converges to a stationary point, in contrast to the standard algorithm. In particular,
in the example of the previous subsection, with any finite a > 0 the maximizers of
tr [OF (—J +1+a D], tr [OF (=T +I+a"1J)], and tr [OT (I +J+a '1)] in O3,
are uniquely determined by I, J, and I. This yields O° = (I, J, 1) = 0! =0? = ...
in Algorithm 4.1. In fact, the point (I, J,I) is a stationary point. (Convergence to
a global maximizer, e.g., (3.13), requires a good initial point. We discuss this in
section 5 with another global solution.) Note, however, the map in lines 5 and 6 of
Algorithm 4.1 is nevertheless set-valued, since there is no guarantee of full rank of B.

Algorithm 4.1 Proximal block relaxation algorithm for solving (OTSM).

1: Initialize O1, ..., On; Set a € (0,1/ max;—1,.._m ||Sill2)
2: For k=1,2,...

3: Fori=1,...,m

4: Set B = Z;n:l SijOj + cflOi

5: Compute SVD of B as Pl-DinT

6: Set O; = P,QT

7: End For

8: If there is no progress, then break

9: End For

10: Return (Oq,...,0m)

4.3. Global convergence. Algorithm 4.1 with o > 0 converges despite the
nonuniqueness of the map in lines 5 and 6.

THEOREM 4.1. The sequence {(OF,...,0F)} generated by Algorithm 4.1 con-
verges to a stationary point of (OTSM) for o € (0,1/max;=1,. m [|Siill2); || - ll2
denotes the spectral norm. Furthermore, the rate of convergence is at least sublinear.

This result is stronger than typical global convergence results that all the limit
points are stationary [19,39], or that the gradient vanishes [1,24]. Theorem 4.1 can be
shown using Theorems 1 and 2 in Xu and Yin [38] by noting that Algorithm 4.1 falls
into their “deterministic block prox-linear” class of algorithms and problem (OTSM)
possesses the Kurdyka—FLojasiewicz property [4]. In the accompanying supplementary
material file OTSM_supp.pdf [local/web 625KB], we provide a simpler proof utilizing
the closedness [39] of the map in lines 5 and 6, and the geometry of the product of
Stiefel manifolds.

Remark 4.2. In case S;; =0 for i = 1,...,m, e.g., the MAXDIFF problem, the
« can be chosen as an arbitrary positive constant.
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5. Numerical experiments.

5.1. Setup. In this section we test Algorithm 4.1 equipped with the certificates
of global optimality and suboptimality discussed in section 3 with both synthetic
and real-world examples. Algorithm 4.1 was implemented in the Julia programming
language [7] and run on a standard laptop computer (Macbook Pro, i5@2.4GHz, 16GB
RAM). We set the proximity constant a = 1000 and terminated the algorithm if the
mean change m~' 37 |OF — OF~!||p was less than 10~% and the relative change
of the objective function was less than 10710, or a maximum iteration of 50000 was
reached. For comparison, we also tested the generic Riemanian trust-region method [1]
implemented in the Manopt MATLAB toolbox [9]. The maximum number of outer
iterations of this method was set to 10000. For both methods, four initialization
strategies were considered:

1. (“eye”) The ith block OY of the initial point takes the first 7 columns of I, .

2. (“tb”) Take the eigenvectors corresponding to the r largest eigenvalues of the
data matrix S = (S;;) to form a D x r orthogonal matrix V. Split V into m
blocks so that V = [f/lT, e VTE]T, where V; € R%*" § =1,...,m. Project
each block V; to the Stiefel manifold Oy, ,. to obtain OY.

3. (“sb”) Replace the diagonal blocks Sj; of S by — > i (Sij 55)1/2, where M1/2
denotes the matrix square root of the positive semidefinite matrix M. Take
the eigenvectors corresponding to the r largest eigenvalues of the resulting
negative semidefinite matrix to form a D x r orthogonal matrix V. Proceed
as strategy “tb.”

4. (“lww1”) Set OV to the top r eigenvectors of Sj;. Then set 02 = UpQg,
where Uy, is the top r eigenvectors of Sy and Q) is the Q factor in the QR
decomposition of Uy 3>, Sij09, k=2,...,m.

The initial point of strategy “tb” coincides with that which gives the second upper
bound of the orthogonal Procrustes problem [30, p. 273], and also with the starting
point strategy 2 of [21, p. 1495] for the MAXBET problem. Strategy “sb” extends
[28, p. 380] for the orthogonal Procrustes problem; see Lemma A.1 in Appendix A,
and also the accompanying supplementary material file OTSM_supp.pdf [local/web
625KB]. Strategy “lwwl” is the starting point strategy 1 by [21, p. 1494].

5.2. Small examples.

Ezample 5.1 (CCA of port wine data). We consider generalized CCA of the
subset of the data from sensory evaluation of port wines analyzed by Hanafi and
Kiers [15, Table 2]. The goal is to capture the agreement between m = 4 assessors in
the assessment of the appearance of n = 8 port wines. Note that the dimensions are
disparate: d; = 4, do = 3, d3 = 4, and dy = 3. The MAXDIFF criterion was tested
for all possible » = 1,2,3. The results are summarized in Table 2. Algorithm 4.1
achieved global optimum for all » and for all initial point strategies. A similar phe-
nomenon occurred with MAXBET, whose results are provided in the accompanying
supplementary material file OTSM _supp.pdf [local/web 625KB], except for r = 3 with
strategies “eye” and “lwwl.” On the other hand, Manopt occasionally converged to
a stationary point violating the conclusion of Proposition 3.1. In addition, Algorithm
4.1 was orders of magnitudes faster than Manopt. In all cases certified to be globally
optimal, the smallest eigenvalues of L* in condition (CERT) (denoted Apin(L*)) were
numerically zero up to the fourteenth digit after the decimal point, whereas those of
L* (denoted Apmin(£*)) in condition (3.14) were often definitely negative.
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TABLE 2
Port wine data, MAXDIFF. In “classification,” “not loc. opt.” means that the iterate at ter-
mination is stationary but violates Proposition 3.1.

r  Init Method Iter Time (sec) Obj Classification ~ Amin(L*)  Amin(L*)

eye PBA 10  0.0001923 209.8  global opt. -1.276e-14  -1.276e-14
Manopt 9 0.07502 209.8  global opt. -2.482e-15  -2.482e-15
b PBA 10  0.0002432 209.8  global opt. -2.101e-14  -2.101e-14
1 Manopt 7 0.05024 209.8  global opt. 6.234e-15 6.234e-15
tb PBA 9 0.0001739 209.8  global opt. -1.159e-14  -1.159e-14
Manopt 5 0.03958 209.8  global opt. -1.951e-14  -1.951e-14
— PBA 10  0.0002291 209.8  global opt. 2.599e-15 2.599e-15
Manopt 9 0.05789 209.8  global opt. -1.024e-15  -1.024e-15
eye PBA 10  0.0002719 271.2  global opt. -1.471e-14  -79.61
Manopt 11 0.1084 271.2  global opt. -2.707e-15  -79.61
<b PBA 9 0.0002301 271.2  global opt. -6.812e-14  -79.61
9 Manopt 7 0.08470 271.2  global opt. -4.465e-14  -79.61
b PBA 9  0.0002238 271.2  global opt. -2.418e-14  -79.61
Manopt 6 0.07996 271.2  global opt. -1.992e-14  -79.61
lwwl PBA 10  0.0002762 271.2  global opt. -1.364e-13  -79.61
Manopt 12 0.1024 271.2  global opt. -1.219e-14  -79.61
eye PBA 13 0.0002659 284.1  global opt. -3.292e-14  -106.1
Manopt 13 0.1814 280.7 not loc. opt. - -
b PBA 9 0.0001853 284.1  global opt. -1.370e-14  -106.1
3 Manopt 6 0.1135 284.1  global opt. -5.021e-14  -106.1
tb PBA 10  0.0002105 284.1  global opt. -1.16e-13 -106.1
Manopt 6 0.1078 284.1  global opt. -4.389%e-15  -106.1
— PBA 11 0.0002893 284.1  global opt. 4.392e-15  -106.1
Manopt 12 0.1530 280.7 not loc. opt. - -

Ezxample 5.2. We revisit Example 3.5 for d = 3 and r = 1,2,3. The results are
summarized in Table 3. Strategies “eye” and “lwwl” gave suboptimal stationary
points as initial points, and both algorithms could not make progress. Strategy “sb”
yielded global optima for both r = 1,2. For r = 3, no strategy could certify global
optimality. For » = 2, while both “sb” and “tb” were successful, Algorithm 4.1 took
the full 50000 iterations to achieve the same accuracy as Manopt, which in this case
took 22 outer iterations. The stationary points reached from the two initial points
were all quite different from each other, and also from the analytic solution (3.13).
The error ||O; + O —O3]| s was between 8.877x 107 and 6.146 x 10~5. Together with
the smallest eigenvalue of L* computed being —6.674 x 1076, this relatively large error
reflects the hardness of this problem illustrated in Example 3.5. This difficulty was
also experienced with an extra run of the commercial interior-point method solver
MOSEK [22] to solve the convex relaxtion (P-SDP). While the optimal objective
value was 3 up to the eighth digit after the decimal point, MOSEK failed to obtain
a rank-two solution. With this exception, Algorithm 4.1 terminated in a fraction of
time for Manopt.

Additional examples. In the supplementary material (OTSM _supp.pdf [local /web
625KB]), Examples 5.1 and 5.2 of [21] are considered under both MAXDIFF and
MAXBET criteria, and new global optima are found.

5.3. Simulation studies. Following the orthogonal Procrustes analysis model,
we generated n sets of d-dimensional landmarks from the standard normal distribution
independently, and randomly rotated them by m orthogonal matrices of size d x r.
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TABLE 3
Exzample 5.2. In “classification, tationary” means that the iterate at termination is station-
ary but its global optimality is not confirmed by using Theorem 3.3.

” o«
S

r  Init Method Iter Time (sec) Obj Classification ~ Amin(L*)  Amin(L*)

eye PBA 2 0.0005041 1.000  stationary -1.000 -1.000
Manopt 1 0.001597 1.000 stationary -1.000 -1.000
b PBA 12 0.0001631 1.500 global opt. -1.608e-10  -1.608e-10
1 Manopt 7 0.02612 1.500 global opt. -1.045e-7 -1.045e-7
tb PBA 2 0.0001112 1.000 stationary -1.000 -1.000
Manopt 1 0.001039 1.000  stationary -1.000 -1.000
lwwl PBA 2 0.0001182 1.000 stationary -1.000 -1.000
Manopt 1 0.0009643 1.000 stationary -1.000 -1.000
eye PBA 2 0.0001587 2.000 stationary -1.000 -1.000
Manopt 1 0.001062 2.000  stationary -1.000 -1.000
b PBA 50000 0.5982 3.000 global opt. -6.674e-6 -6.674e-6
9 Manopt 22 0.2152 3.000 global opt. -1.241e-6 -1.183e-6
b PBA 50000 0.4910 3.000 global opt. -6.674e-6 -6.674e-6
Manopt 22 0.1925 3.000 global opt. -1.322e-6 -1.322e-6
lwwl PBA 2 0.0001049 2.000 stationary -1.000 -1.000
Manopt 1 0.0009794 2.000 stationary -1.000 -1.000
PBA 2 6.970e-5 3.000 stationary -1.000 -1.000
eye Manopt 1 0.001210 3.000 stationary -1.000 -1.000
b PBA 14 0.0002474 4.000 stationary -1.000 -1.000
3 Manopt 8 0.03438 4.000 stationary -1.000 -1.000
tb PBA 11 0.0001370 4.000 stationary -1.000 -1.000
Manopt 7 0.02888 4.000 stationary -1.000 -1.000
lwwl PBA 2  5.438e-5 3.000 stationary -1.000 -1.000
Manopt 1 0.0009759 3.000 stationary -1.000 -1.000

For this set of n x d matrices, normal error with variance o2 to obtain A; was added,
i =1,...,m. The data matrix S = (S;;) was constructed with S;; = AT A;, i # j,
and S;; = 0. Values of m = 5, n = 100, and d € {10,20,...,100} were used. The
noise levels considered were o € {0.1,1.0,5.0,10.0}. The rank r was set to 3. Initial
value strategies “sb” and “tb” were used for both Algorithm 4.1 and Manopt, as they
showed good performance in the small examples. One hundred samples of random
sets were generated for each combination of simulation parameters. In Figure 1, error-
versus-time curves are plotted for typical instances. Algorithm 4.1 was more than an
order of magnitude faster than Manopt. (For d = 100, Manopt did not terminate for
more than three days, hence the results were omitted.) There was little difference
between the two initial value strategies, hence the differences of the final objective
values between Algorithm 4.1 and Manopt are plotted in Figure 1 for strategy “tb”
only. The final objective values of the two algorithms agreed in most cases, while
Algorithm 4.1 tended to give larger values. The proportions of certified global optima
are reported in Table 4 for d that are multiples of tens. Not surprisingly, when the
noise level was low both Algorithm 4.1 and Manopt almost always solved (OTSM)
globally. Even if o was as large as 10.0, the success rate was between 8% and 24%.

5.4. Real-world examples.

Ezample 5.3 (cryo-EM). Ab initio modeling for the single-particle reconstruction
(SPR) problem in cryo-EM refers to the procedure of obtaining a preliminary 3D map
of the particle in the ice from 2D images by tomographic inversion. Since each cryo-
EM image is a noisy projection of the particle with unknown orientation, reliable
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Fic. 1. Simulation studies. Left: relative error versus wall clock time for each method and
initialization strategy. Right: objective value difference between Algorithm 4.1 and Manopt at con-
vergence.

estimation of orientations from a collection of images is an important step in SPR. A
popular approach is based on the common-lines property [6]: the Fourier slice theorem
implies that any pair of projection images possesses a pair of radial lines on which
their Fourier transforms coincide. Once the common lines of all the pairs among m
projections are given, the orientations can be estimated via orthogonal least squares
[37]. For a pair of images i and j, if the common line between images ¢ and j appears in
the direction of ¢;; = (cos6;;,sin6;;,0)” in image i and in ¢;; = (cos 0;;,sin 6;;,0)T in
image j, then the unknown 3D rotation matrices O; and O; in the special orthogonal
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TABLE 4
Frequency of certified global optimality, large examples.

Certification rate (o) Certification rate (o)

d Init Method d Init Method
0.1 1.0 5.0 10 0.1 1.0 5.0 10
10 sb PBA 1.0 94 .19 .17 60 sb PBA 1.0 .78 21 .20
Manopt 1.0 .94 .19 .17 Manopt 1.0 .78 .21 .20
th PBA 1.0 94 .19 a7 th PBA 1.0 .78 .21 .20
Manopt 1.0 .94 .19 .17 Manopt 1.0 .78 .21 .20
20 sb PBA 1.0 .88 .14 .17 70 sb PBA 1.0 79 .14 .15
Manopt 1.0 .88 .14 .17 Manopt 1.0 .79 .14 .15
th PBA 1.0 .88 .14 .17 tb PBA 1.0 79 .14 .15
Manopt 1.0 .88 .14 .17 Manopt 1.0 .79 .14 .15
30 sb PBA 1.0 91 .12 .12 80 sb PBA 1.0 .91 .18 .14
Manopt 1.0 91 .12 .12 Manopt 1.0 .91 .18 .14
tb PBA 1.0 91 .12 .12 tb PBA 1.0 91 .18 .14
Manopt 1.0 .91 .12 .12 Manopt 1.0 .91 .18 .14
40 sb PBA 1.0 .86 .10 .19 90 sb PBA 1.0 .80 .21 .23
Manopt 1.0 .86 .10 .19 Manopt 1.0 .80 .21 .23
tb PBA 1.0 .86 .10 .19 tb PBA 1.0 .80 .21 .23
Manopt 1.0 .86 .10 .19 Manopt 1.0 .80 .21 .23
50 sb PBA 1.0 .86 .22 .21 100 sb PBA 1.0 .76 .23 .21
Manopt 1.0 .86 .22 .21 Manopt - - - -
th PBA 1.0 .86 .22 .21 th PBA 1.0 .76 .23 .21
Manopt 1.0 .86 .22 .21 Manopt - - - -

group SO(3) should approximately satisfy O ¢;; = Ochji. Thus for estimating these
matrices for all pairs among the m images, we may minimize

> 10F e — OF ciill %,

i<j

which is (OTSM) with dy = --- =d,, =7 =3, S;; = cl-jc]Ti for i # j, and S;; = 0,
i =1,...,m (i.e., MAXDIFF), but the domain is SO(3) x --- x SO(3) instead of
O33 x -+ x Oz 3. Algorithm 4.1 can be trivially modified for this setting, since the
projection of B = PDQT € R™*" (full SVD) onto SO(r) is Pdiag(1,...,1,-1)Q7 if
the singular values of B are sorted in descending order.

We generated m noisy projections of a ribosomal subunit provided with ASPIRE
software for SPR? that implements the orthogonal least squares method via SDP
relaxation (m = 100, 500, 1000). The orientations of the projections were distributed
uniformly over SO(3). White Gaussian noise was added to the clean projections to
generate noisy images of size 65 by 65 with signal-to-noise ratios (SNRs) oo, 1, 1/2,
1/4, 1/8, and 1/16. Common-line pairs were detected with a 1° resolution using the
functionality of ASPIRE. Due to the presence of noise, the common-line detection
rate deteriorates as SNR decreases. Orientations were estimated using two methods,
i.e., SDP relaxation of ASPIRE (which utilizes the SDPLR solver?) and Algorithm 4.1
initialized with “sb.” The mean squared error of the estimated rotation matrices was
computed using the formula of [37, eq. (8.2)]. Because we had difficulties in installing
ASPIRE on the Macbook Pro laptop and common-line detection is computationally
demanding, all the computations except for Algorithm 4.1 were conducted on a Linux

2 Available at http://spr.math.princeton.edu/content/download-software.

3 Available at http://sburer.github.io/files/SDPLR-1.03-beta.zip.
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TABLE 5
Ezxzample 5.3. “CL rate” refers to the common-line detection rate. In “classification,” “station-
ary” means that the iterate at termination is stationary but its global optimality is not confirmed by
using Theorem 3.3; “not stat.” means that it does not satisfy the first-order local optimality condition
(2.3).

m SNR CLrate Method MSE Time (sec) Iters Classification

100 00 0.9990 PBA 0.0000 0.0582 14  global opt.

SDPLR  0.0000 1.3764 - global opt.

1 0.9442 PBA 0.0010 0.0309 13 global opt.

SDPLR  0.0010 0.8879 - global opt.

1/2 0.8275 PBA 0.0148 0.0392 13 global opt.

SDPLR  0.0148 0.8510 - global opt.

1/4 0.6048 PBA 0.1253 0.0333 15  global opt.

SDPLR  0.1253 0.8089 - global opt.

1/8 0.3628 PBA 0.6646 0.0635 29  global opt.

SDPLR  0.6646 0.9883 - global opt.

1/16 0.1834 PBA 2.1363 0.2265 110  stationary
SDPLR  1.7991 1.3070 - not stat.

500 9] 0.9994 PBA 0.0000 0.6996 14  global opt.

SDPLR  0.0000 2.9501 - global opt.

1 0.8899 PBA 0.0038 0.6890 12 global opt.

SDPLR  0.0038 2.3761 - global opt.

1/2 0.7250 PBA 0.0338 0.7755 14  global opt.

SDPLR  0.0338 3.1371 - global opt.

1/4 0.4860 PBA 0.1959 0.9834 16  global opt.

SDPLR  0.1959 5.4611 - global opt.

1/8 0.2678 PBA 0.7366 1.0938 20  global opt.

SDPLR  0.7366 13.1841 - global opt.

1/16 0.1263 PBA 1.6252 1.5513 30 global opt.

SDPLR  1.6252 11.2194 - global opt.

1000 0o 0.9994 PBA 0.0000 2.5524 13 global opt.

SDPLR  0.0000 10.1951 - global opt.

1 0.9177 PBA 0.0017 2.5475 13 global opt.

SDPLR  0.0017 9.7137 - global opt.

1/2 0.7889 PBA 0.0188 2.4491 13 global opt.

SDPLR  0.0188 19.7047 - global opt.

1/4 0.5686 PBA 0.1297 2.6885 14  global opt.

SDPLR  0.1297 34.6575 - global opt.

1/8 0.3365 PBA 0.5384 3.8236 20  global opt.

SDPLR  0.5384 67.5752 - global opt.

1/16 0.1687 PBA 1.3403 6.6967 35  stationary

SDPLR  1.3403 102.6977 - stationary

workstation with two Intel Xeon E5-2680v2@2.80GHz CPUs (256GB RAM) and eight
Nvidia GTX 1080 GPUs (8GB VRAM/GPU).

The results are collected in Table 5. Except for the extremely challenging case
with a low number of measurements (m = 100) and SNR (1/16), Algorithm 4.1
produced solutions of the same quality as ASPIRE/SDPLR in much shorter time
(recall that ASPIRE was run on a much more powerful workstation), which, in turn,
are certified to be globally optimal except the case m = 1000 and SNR = 1/16. Hence
these solutions cannot be further improved under the least squares regime. In case
the two methods disagree, the solution computed by using an SDP relaxation of the
orthogonal least squares method failed to be even first-order stationary, possibly due
to the rounding procedure of the SDP solution to SO(3), even though the resulting
MSE was lower.
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Ezample 5.4 (generalized CCA). Our second real-world data example considers
gene-level interaction analysis based on genotype data [27,41]. Let A; € {0,1,2}n*
be the genotype matrix of gene i, where n is the number of individuals and d; is the
number of single nucleotide polymorphisms (SNPs) in gene i. To test the interaction
between m genes, the maximal canonical correlations among m genes, i.e., (OTSM),
were computed. To demonstrate the scalability of the proximal block relaxation al-
gorithm (Algorithm 4.1), we computed the top r € {1,2,3} generalized canonical
correlations using the MAXDIFF criterion among the first m € {2,...,100} genes
on chromosome 1 of n = 488,377 samples from the UK Biobank [29]. (In contrast,
conventional analyses [27,41] are restricted to m = 2 and » = 1.) The numbers of
SNPs d; range from 10 to 271 with mean 34.33 in these genes. Figure 2 displays the
run times, all under 15 seconds, of Algorithm 4.1 using the same convergence criteria
as in section 5.1, together with the histogram of d;’s of the 100 genes. Among the 297
local solutions, 107 (36%) of them were certified to be globally optimal using Theorem
3.3.

Run Time (seconds)
Count

LIIII“- 1 IH 1

m di

0 50 100

F1G. 2. Left panel displays the run times of the prozimal block relaxation algorithm (Algorithm
4.1) for finding the top r canonical correlations among the first m genes on chromosome 1 of
n = 488,377 UK Biobank samples. Right panel shows the distribution of d; (number of SNPs) in
the first 100 genes.

6. Conclusion. We have presented an in-depth analysis of the orthogonal trace-
sum maximization (OTSM) problem, which subsumes various linear and quadratic
optimization problems on a product of Stiefel manifolds. In a close analogy with
classical results on eigenvalue optimization, a fairly general condition for certifying
global optimality of a stationary point of the problem is derived. A practical algorithm
to reach a stationary point with a global convergence guarantee is also proposed.
We believe both are new to the literature. Numerical experiments show that the
combination of our algorithm and certificate, with initial value strategies “sb” and
“tb,” can reveal global optima of various instances of OTSM. A further analysis on the
probability of global optima of the algorithm, under some distributional assumption
on the data, is warranted.

Appendix A. Technical proofs.

Proof of Proposition 3.1. Let i € {1,...,m} be such that d; > r. Let 7; =
Amin(A;), the smallest eigenvalue of the symmetric matrix A;, and let v; € R" be
the associated unit eigenvector, i.e., Ajv; = 7v;. If Of‘ € Oy, 4;,—r fills out O; to
a fully orthogonal matrix, then for any z; € R4~ W; = Oj z;v] and W; = 0 for
j # i satisfy the tangency condition (3.6). Then, tr(WTSW) = tr(WIS;W;) =
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xZTOIJ‘TSmOZJ‘I‘“ and
tr(AiWiTWZ-) = tr(Aivix;fFOf‘TOf‘xiv;f) = tr(Aivix;?inv?) = ||a:i||2vlTAZ-vZ- = ||:£1H27'Z

Further, tr(A; W W;) = 0 for j # i. Thus the second-order condition (3.5) entails
VRS J

0 S tI‘(AZWZTWZ) - tI‘(WTSW) = m?(TiIdi—r — OzJ_TS”OZJ_)JZZ

I

Il
—

(2

Thus 7;1g,—r = OZ»J-TSZ-Z-OZ»J-. Since OiJ-TS“-Of- is positive semidefinite (recall S;; *= 0),
it follows that 7; > 0, proving the first claim.

Now suppose O = (O1,...,0,,) is a stationary point with A; % 0 for some i.
Denote the objective of (OTSM) by f(O). Let the full singular value decomposition
of A; be A; = PiDiQiT, where P;,Q; € O, and D; = 0 is diagonal. Then it must
be P; # @Q; since otherwise A; = 0. Now let ©; = OiPl-QlT € Og, r. Recall that
Ai = OzT ZT:l SijOj' It follows that

tr (@Z“ Z Sij0j> = tr (QZPZTO;T Z SUOJ> = tI‘(QiPiTAi) = tI‘(QiPiTPZ‘DiQZT)
j=1

Jj=1

Jj=1

Note the update O; < ©; corresponds to Algorithm 4.1 (line 6) with o = oo, or
the standard block ascent algorithm of section 4.1. By the ascent property of the
algorithm, if we let © = (O1,...,0;-1,0;,0;41,...,0y,), then we have f(O) < f(©).
Now if we run Algorithm 4.1 with o € (0,1/ max;=1,..m [Sii]|2), then the algorithm
will converge to a stationary point O by Theorem 4.1. Again by the ascent property
of Algorithm 4.1, we see f(O) < f(0) < f(O). If the associated Lagrange multipliers
A = OlT Z;”:l Sij Oj are not all positive semidefinite, then repeat the above procedure

with A; « A; until no strict progress is possible. Eventually, we arrive at a stationary
point with the desired property.

The above proof of the second claim also shows that A; > 0 for all 7 is a necessary
condition for global optimality.

Proof of Proposition 3.2. It suffices to show the constraints O; € Oy, , i =
1,...,m, are equivalent to the constraints of problem (3.8). From (3.7), clearly the
former implies the latter. To show the opposite, first note that U > 0 and rank(U) = r
if and only if mU = EET, E = [Ef,...,EL]T € RPX" for some E; € R4*"
i=1,...,m. Then mU; = E;EF < I, and tr(mU;) = tr(EI E;) = r jointly imply
that all r singular values of E; are 1. That is, E; € Og, ,.

Proof of Corollary 3.6. Suppose Si2 = S%, € R%X9 has a singular value
decomposition Sio = USVT with U € Ody.d; V € Ogy.q, and ¥ = diag(o1,...,04) €
S, where d = min{d;,ds} and o4 > --- > 04 > 0. Since 0,01 € R4 > has r unit
singular values and the rest are zero, the von Neumann—Fan inequality entails

tr(O{SmOg) = tr[(OlOg)TSm] S ZO’Z‘,
=1
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with equality if and only if Oy = U1 R (resp., Oy = ViR), where R € O,., and Uy
(resp., Uz) consists of the left (resp., right) singular vectors of Sy associated with
01,...,0 in this order. If we denote such orthogonal matrices by O; and Oy, then
OlTU [R 0] = OFV and (01,0_2) is a globally optimal stationary point. The
associate Lagrange multipliers are Ay = O S1205 = 0355;01 = Ay . Thus

A=A, =7y, =0TUSVTO, = RTY\ R = R diag(oy,...,0,)R,
and the diagonal blocks of the certificate matrix L* are
L;, = 01A0T 4+ 6,01 01T =UsU”, Lk, = 0,A0F + 06,0504 =VvEVT,

where 3 = diag(X, I4—r) = 2. It follows that

L* =

uxut  —uxnvT usuT  —uxvT) (U s[U TH)
—vxuT vsvT |~ |-vzuT vzvT |~ |-V -V =

Proof of Corollary 3.8. The following lemma extends Theorem 2 of [28] for

S =0,i=1,...,m, and is used to prove the claim of the corollary.
LemMmA AL IfS;; = ST R%xdi j 5 =1,...,m, has a singular value decompo-
sition S;; = U345 Vg with U € 04,4, Vij € Ou;,q, and ¥;; = diag(oy,...,0q) € sS4,

where d = mln{d,,d Yand oy > -+ > 04 > 0, then for X = diag(Xy,...,Xn)
with X; =Y UiyByUfs = Z;’;l(Sing;-)l/z, the symmetric matriz X — S, where
S = (Si;) is the data matriz, is positive semidefinite.

Proof. Since Sj; = UjX; VT = ST = V2, UL

350
3ij = ¥ji. Forany y = (yi,...,yL)" with y; € Rd let a = El/zU]yl and b =

1/2Vg Y = 1/2U 5iYj- Then from the fact 2aTb < aTa + bT'b,

we can set V;; = Uj; and

Qyi Sijlj = 2yz Uij%; Ulya <Y UZJEUU iYi +yg Ujid; Uzyj

Thus,

y' (X Z yi ZJyJ"'Zyz (Xi — Sii)y

i,j:j7#0
> _%Zy;‘rUijzw o ZyJ Ujii; Uzyj +Zyl Z 5755)1/2 — Sii | i
i=1 j=1
:722%5 ST 1/2yz+22y2 Susm %y; = 0. U
i=1 j#i i=1 j#i

Proof of Corollary 3.8. If S;; has a singular value decomposition S;; = V,-EijVjT,
where ¥;; = ¥;; is 7 X r nonnegative diagonal, then

X; = i Si; SV =V, izij Vi =vin. VT, zi,zizij.
j=1 j=1

Jj=1
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From Lemma A.1, X — § = diag(Xy,...,X,,) — S = 0. Furthermore,

i SijVj = i V;ZijVjTVj =V;%;
j=1

j=1

and X;. = Z;nzl V;TSijVj. Thus we can set O; = V; and A; = ¥,. in Theorem 3.3.

Let

7; be the smallest diagonal entry of ;.. Then,

diag (ViZ1. Vi + n Vi Vi T Vi S VE + 1, Vi Ve ') = diag (X, ..., Xon) = X,

henceL*tX—StO. 0
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