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Single nucleotide polymorphism (SNP) set analysis aggregates both
common and rare variants and tests for association between phenotype(s) of
interest and a set. However, multiple SNP-sets, such as genes, pathways, or
sliding windows are usually investigated across the whole genome in which
all groups are tested separately, followed by multiple testing adjustments. We
propose a novel method to prioritize SNP-sets in a joint multivariate vari-
ance component model. Each SNP-set corresponds to a variance component
(or kernel), and model selection is achieved by incorporating either convex
or nonconvex penalties. The uniqueness of this variance component selection
framework, which we call VCSEL, is that it naturally encompasses multivari-
ate traits (VCSEL-M) and SNP-set-treatment or -environment interactions
(VCSEL-I). We devise an optimization algorithm scalable to many variance
components, based on the majorization-minimization (MM) principle. Simu-
lation studies demonstrate the superiority of our methods in model selection
performance, as measured by the area under the precision-recall (PR) curve,
compared to the commonly used marginal testing and group penalization
methods. Finally, we apply our methods to a real pharmacogenomics study
and a real whole exome sequencing study. Some top ranked genes by VCSEL
are detected as insignificant by the marginal test methods which emphasizes
formal inference of individual genes with a strict significance threshold. This
provides alternative insights for biologists to prioritize follow-up studies and
develop polygenic risk score models.

1. Introduction. The limited success of genome-wide association studies (GWAS) has
diverted attention away from common genetic variants, usually denoted by minor allele fre-
quency (MAF) > 0.05. Instead, rare variants (MAF < 0.05) are believed to play an important
role in elucidating many common diseases and complex traits (Bansal et al. (2010), Bodmer
and Bonilla (2008), Gibson (2012), Gudmundsson et al. (2012), Lee et al. (2014), Manolio
et al. (2009), Rivas et al. (2011), Zuk et al. (2014)). Although association test for common
variants in a GWAS analysis is often conducted one variant at a time, this approach results in
low statistical power in rare-variant association studies, due to their prevalence and extremely
low frequency (Li and Leal (2008), Madsen and Browning (2009), Zuk et al. (2014)). As a
remedy, many have proposed single nucleotide polymorphism (SNP) set analysis, also known
as gene set, pathway, or region-based analysis (Dering et al. (2011), Wu et al. (2010)). In
these analyses, variants are binned into a biologically relevant unit, such as a gene, pathway,
or sliding window, and tested for association with complex traits. Compared to the classical
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single-variant-based approach, SNP-set analysis enjoys increased power, as it reduces multi-
ple comparison burden and aggregates weak signals (Rivas and Moutsianas (2015)).

In addition to the high polygenicity, influenced by a large number of genetic variants with
small effects, many complex traits are inherently multi-phenotypic. For example, blood pres-
sure is evaluated by both systolic and diastolic pressure measurements. Obesity is determined
not only by body mass index but also by waist circumference and body fat percentage. As one
indicator may reveal one susceptibility gene over other indicators, it is important to jointly an-
alyze multiple phenotype data in the analysis (Suo et al. (2013)). In addition, GWAS have un-
veiled that many loci affect more than one trait or disease, a phenomenon known as pleiotropy
(Sivakumaran et al. (2011), Solovieff et al. (2013)). Testing one phenotype at a time, albeit
simple and intuitive, fails to exploit the underlying shared genetic architecture of multiple
phenotypes, and is also subject to multiple testing penalties. On the other hand, multitrait
analyses can increase statistical power to detect association and provide important insights
into pathways that certain traits or diseases share (Hackinger and Zeggini (2017), Suo et al.
(2013)).

A plethora of marginal test based methods are available to detect associations of a SNP-
set with multiple traits which are termed cross-phenotype associations. For example, Maity,
Sullivan and Tzeng (2012); Lee et al. (2017); Wu and Pankow (2016); Broadaway et al.
(2016); Zhan et al. (2017); Dutta et al. (2019) take region-based approaches in which variants
are grouped based on prespecified criteria and tested for cross-phenotype effects. Notably,
Multi-SKAT (Dutta et al. (2019)) provides a general mixed-effect model-based framework
for joint analysis of multiple continuous phenotypes, unlike most methods that make specific
assumptions about the effects of the variants on multiple phenotypes. However, to our best
knowledge, no existing methods investigate sets of genetic variants simultaneously.

Here, we propose a method for jointly modeling multiple SNP-sets and selecting groups
that are relevant to multiple traits while adjusting for covariates. Suppose we have observa-
tions from n individuals with d continuous phenotypes, represented by n x d matrix and m
SNP-sets. Multivariate response model with n x d response matrix Y and n x p covariate
matrix X assumes a multivariate normal model

(1) vecY ~N(vec(XB), 21 @V i+ -+, 0V, +Z0®1,),

where B is the unknown p x d fixed effects parameters matrix, X; are unknown d x d
positive semidefinite variance component matrices, and V; are known n x n kernel matrices
for genotypes. The vec Y operator in (1) creates an nd x 1 vector from a matrix Y by stacking
its column vectors, and ® indicates Kronecker product.

As our interest lies in estimating variance components, we adopt the restricted (or residual)
maximum likelihood estimation (REML) approach (Harville (1977), Khuri and Sahai (1985),
Patterson and Thompson (1971), Robinson (1987), Searle, Casella and McCulloch (1992),
Thompson (1962)). In the notation of (1), REML first projects Y to the null space of X
and then estimates variance components based on the projected responses. If the columns
of the matrix A span the null space of X7 and AT A = I, then REML estimates parameter
Y = (X9, X1,..., Xp) by maximizing the log-likelihood of the redefined response matrix
Y = ATY whose distribution is as follows:

) vecY ~NO0, 2 ®Vi+-+X,0V,+2X0®1,_)),

where V; = AT ‘7,~A, i =1,...,m. Note that fixed effects have been eliminated.

As there are no closed-form expressions for the REML, we rely on numerical techniques.
There are several iterative optimization methods for finding MLE and REML, including New-
ton’s method (Lindstrom and Bates (1988)), Fisher’s scoring algorithm, and the expectation-
maximization (EM) algorithm (Dempster, Laird and Rubin (1977), Laird and Ware (1982),
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Laird, Lange and Stram (1987), Lindstrom and Bates (1988), Bates and Pinheiro (1998)). De-
spite their respective advantages, they suffer from either numerical instability, high compu-
tational cost, or slow convergence. Zhou et al. (2019) address this issue with a minorization-
maximization (MM) algorithm that is simple to implement and numerically efficient. Zhai
et al. (2018) implements an MM algorithm for penalizing variance components in micro-
biome data analysis, but it is limited to lasso penalty and a univariate response. The recent
paper (Schaid et al. (2020)) applies a similar method as Zhai et al. (2018) to the genetic
association setting but still restricted to the univariate response setting.

Since SNPs within a gene/pathway/moving window are treated as a unit, this can be con-
sidered a group selection problem with each set being a group and SNP being a variable.
Several methods have been proposed to take advantage of grouping structures in variables.
Group lasso method (Bakin (1999), Yuan and Lin (2006)) allows group selection by either
including or excluding all variables in the group in the model. Bi-level selection or sparse
group method (Breheny and Huang (2009), Huang et al. (2009), Simon et al. (2013), Zhou
et al. (2010)) enables both groupwise and within group sparsity. However, these approaches
are designed for selecting mean or fixed effects, hence inappropriate when genetic effects are
modeled as random effects.

There exists a considerable body of literature on random effect selection. Lin (1997) pro-
poses score tests to detect the significance of individual variance components. To select im-
portant random effects, each component is tested separately, followed by some stepwise pro-
cedures. Chen and Dunson (2003), Bondell, Krishna and Ghosh (2010), Fan and Li (2012),
and Peng and Lu (2012) consider random effect selection for longitudinal models where
observations are divided into independent subjects with a vector of random effects corre-
sponding to each subject. The vectors of random effect are independent and identically dis-
tributed with a covariance matrix which could be a function of one variance component. For
these methods, selecting important random effects is essentially limited to within one vari-
ance component, as it removes rows or columns of covariance matrix or selects components
within random effect vectors. No existing method performs a simultaneous selection of ran-
dom effects at group level to our best knowledge.

Our contributions herein are three-fold. First is developing a novel penalization method
for group selection where each group is treated as random effects. Our second contribution
is that we devise a general MM-based optimization framework that incorporates both con-
vex and nonconvex penalties into variance component models and applies to the analysis of
univariate and multivariate traits, respectively. Lastly, we outline an algorithm to incorpo-
rate SNP-set-by-treatment or SNP-set-by-environment interaction terms in a univariate trait
variance component model, motivated by pharmacogenomic studies.

The remainder of this paper is organized as follows: Section 2 introduces the multivari-
ate response variance component model. In Section 3 we present the VCSEL algorithm that
selects variance components in the realm of multivariate response (VCSEL-M). Section 4
extends the algorithm to incorporate interaction terms (VCSEL-I) for a univariate response
model. We illustrate the performance of our methods with simulation studies in Section 5
for VCSEL-M and VCSEL-I methods and defer the details for the univariate response VC-
SEL methods to the Supplementary Material (Kim et al. (2021)). In Section 6 the proposed
methods are applied to two real datasets—a U.K.-biobank whole exome sequencing study
data and a pharmacogenomic study data. We conclude the paper with a discussion and future
research directions in Section 7.

2. Multivariate response variance component model. Consider the model (2) where
Vi,..., V, are known positive semidefinite matrices. Here, V; is a genotype kernel matrix
for the ith variance component. Different choices of kernels can be readily incorporated in
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V. As defined in Dutta et al. (2019), one popular choice would be G; W; WiGiT where G; is
a genotype matrix corresponding to ith SNP group and W; = diag(wy, ..., wy) contains the
weights of ¢ variants in G;. It corresponds to SKAT and implies that the effects of SNPs in
ith SNP-set are independent. Another choice is G W;11Tw; GiT which corresponds to the
Burden test and implies that the effects of SNPs in ith SNP set are in the same direction. Note
that 1 denotes a vector of ones. In our simulation studies and real data analysis, we adopt the
SKAT genotype kernel and/or the Burden test genotype kernel.
We denote the overall covariance matrix in the model by €2, that is,

9(2)=21®V1++Zm®vm+20®1n—p;

and assume it to be positive definite. To find estimates of X = (Xg, X1, ..., X;;), we take a
penalization approach by minimizing the penalized negative log-likelihood function

—L(Z0, Z1,.... Zw) + Y_ PA(Vir(Z)))
3) 1 1 = N
=5 Indet 2 + 5(vec V'@ vecY + ) P(V(T))),

i=l

where P, is a penalty term imposing sparsity on variance components for a given tuning pa-
rameter A. Below, we derive iterative procedures for lasso (Tibshirani (1996)) and minimax
concave penalty (MCP) (Zhang (2010)); only a slight modification is needed to accommo-
date other penalty functions. In practice, we normalize V; to have unit Frobenius norm to
put the kernel matrices on the equal footing in penalty because the varying number of vari-
ants involved in each V; leads to higher magnitude for sets with a large number of variants
compared to those with a small number of variants.

While V; measures genetic similarity between subjects in the ith SNP group and is as-
sumed fully known, it is worthwhile noting that no assumptions have been made about
¥, which resides in the phenotype space and reflects how effect sizes of each variant
on each phenotype are correlated. Different choices of X; have been proposed in Dutta
et al. (2019). If one does have a priori knowledge about phenotype structure, the algo-
rithm simplifies to the univariate case. For example, if effect sizes of each variant in a
SNP-set on different phenotypes are assumed homogeneous, we may write X; = al-z 1417,
where crl-z is a scalar-valued ith variance component and 1; is a d x 1 vector of 1’s. Then,
Q=" 021417 ® Vi) + 031417 ® 1,,_)), where o is a scalar-valued residual vari-
ance component. Since (14 laT, ® V) is a known covariance matrix for ith group, the problem
amounts to estimating ol-z, i=0,1,...,m.

3. Estimation algorithm. The MM principle involves majorizing the objective function
f(#) by a surrogate function g (0 | 0®) around the current iterate 8 of a search (Hunter and
Lange (2004), Lange (2016), Lange, Hunter and Yang (2000)). The superscript ¢ indicates the
iteration number. Majorization is defined by the following two conditions:

FO0) =50 10),
f6)<g(0107),0£6".

In other words, the surface § — g (0 | 0! )) lies above the surface § — f(0) and is tangent to
it at the point 8 = 8. Construction of the majorizing function g(@ | ")) constitutes the first
M of the MM algorithm. The second M of the algorithm minimizes the surrogate g(8 | ")
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rather than f(0). If 0+ denotes the minimizer of g0 | 6®), then this action forces the
descent property f @U+D) < £(0"). This fact follows from the inequalities:

f(o(H-l)) < g(o(t-l-l) | o(t)) < g(o(t) | o(t)) — f(o(t))’

reflecting the definition of #Y*1 and the tangency condition. Monotonicity of MM iterates
obliterates the need for line search and lends itself to the remarkable numerical stability of
the MM algorithm.

We derive a majorizing function of the penalized loss function (3) by working on its three
individual terms separately. For the penalty term we first specialize to the lasso penalty then
indicate the generalizations to other penalties:

1. Log-determinant term. The concavity of the map X — Indet X and the supporting hy-
perplane inequality establish the majorization

4) Indet 2 + [~ (2 — 2")] > Indet Q.

2. Quadratic form term. When V; for all i are positive definite, hence invertible, convexity
of the matrix function (X,Y) — X7Y !X where Y > 0 implies

L - 50 RS TS o
—1 t t
IRkY) sz@:m(ZZz,. ®V,-)<Z§O>:i®vi> (;Z‘% ®V,->

i=0 i=0

1
% EPoVv)Eie vy (Z e V)

S Z

Z (t)z Z(t) ®Vl’

or, equivalently,

m
(6) Q<@ ® [Z(zl@zilz;’)) ® V,}ﬂ_(’).

i=0
For symmetric matrices A and B, A < B means B — A is positive semidefinite. The equality
(5) follows from the identities (A ® B) "' = A~! ® B~! and (A ® B)(C ® D) = (AC) ®
(BD). The nonsingularity assumption on V; can be relaxed by substituting V. ; =V; +¢€l,
for V; and sending € to 0.

3. Lasso penalty term. The majorization on the lasso penalty

1
(7) Juz? g ——
2,/rz?

follows from the concavity of the map x — /x and the support hyperplane inequality.

(rx; — trZ‘Et)) > /trY;

Merging (4), (6), and (7) generates the overall majorizing function
l m
g(Z 12V = ;. Y {u[@ OE; V)]

®) + (vee R)[(Z"Z7'Z") © Vi] (vec R))

A
trX; + C(t),
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where vec R = @~® vec(Y) with R® being a matrix of size n x d and ¢® is a constant
impertinent to the parameters ¥ ;. Parameters X; are nicely separated in (8), so we only need
to minimize m individual functions

1
g (z) = —{tr[SZ_(’)(Zi @ V)] +u(RVTV, ROV e 15" +

2
©)

A
trx @)

1

tr):i}

1
- E{tr[ﬂ_(t)():i V)] +u(EPROTYV, RO Vs 4 tr ):i}

g%

trx l@

to update X;. The first equation follows from the Kronecker identities (vec A)T vec B =
tr(A” B) and vec(CDE) = (ET ® C) vec(D). The first trace in the second equation of (9) is
linear in X; with the coefficient of entry (X;) jx equal to

w(@, Vi) =11 (Vo 2;)1,

where Sl;k(t) is the (j, k)th n x n block of Q= and O is the Hadamard (elementwise)
product. The matrix M; of these coefficients can be written as

M;=U;01,) [117 @ V)o@ VI, ®1,).

Setting the derivative of (9) to zeros yields the stationarity condition

A
(10) Mi+——1,=%'s"ROTY, ROz,
,/trEEZ)

which is a Riccati equation admitting the explicit solution,
D) _ g =OTry OT (52 () p(OT Oyy O1/2 5 =)
2 =L; (L7 (% RY ViR(l)):i )L L

in terms of the Cholesky factor Lgt) of the matrix on the left-hand side of (10).

Algorithm 1 summarizes the MM algorithm for lasso penalized multivariate variance
components model (VCSEL-M-lasso). Each iteration computes m + 1 Cholesky factoriza-
tions and symmetric square roots of d x d positive semidefinite matrices. In most applica-
tions, d is a small number. Our convergence criteria are based on the change in objective
function (3) (the penalized negative log-likelihood function) values. The procedure is re-
peated until the relative change in the objective function value is less than a tolerance value
(10~%x[|objective function value at the current iterate| + 1] by default). For tuning param-
eters we first locate the tuning parameter A value, after which all the variance component
estimates turn zero, which we denote the maximum A. Then, we create a solution path using
a set number of equidistant tuning parameter values from 0 to the maximum A.

Nonconvex penalties reduce the bias by applying less shrinkage to the large nonzero com-
ponents. As an example, we illustrate with the MCP. An extra tuning parameter y > 1 con-
trols the concavity of the penalty. In our case, where /tr(X;) is nonnegative, MCP is defined
as

irEy) — TED) e ED <y
(11) P, (Vir(Z,); 1) = 2y

_)/)\.2 if Vtr(X;) > yA.

2

MCP converges to lasso penalty, as y — 00. Derivation of the majorization for MCP is de-
scribed in detail in the Supplementary Material S.1 (Kim et al. (2021)). Algorithm 2 summa-
rizes the MM algorithm for MCP penalized multivariate response variance component model
(VCSEL-M-MCP).

p—
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Input : I[ VJ""’ VAm,A

Output: Xg, X,..., X,
1 Initialize 21(0) positive definite, i = 1,...,m
2 repeat
3| @0y VeV, +32V eI

4 R® « reshape(2~ ) vecY, n,d)

5 fori=1,...,mdo

6 Cholesky Li"Li"" « (14 @ 1)"1A1] ® V) 0@ VI ® 1) + - 14
X

7 ZEH—I) - LI_(I)T[LI(I)T(ZZ(I)RU)TV!R(t)zl(t))Ll(f)]l/ZLl_(t)

8 end

9 | Cholesky LY LY « (1,®1,)7[(141] ® 1,) 0 2" O1(1,®1,)
10 E(()H—l) - La(t)T[L(()l)T(E(()t)R(t)TR(t)Z(()t))Lg)]l/ZLa(t)
11 until objective value converges;

Algorithm 1: VCSEL algorithm for lasso penalized multivariate response variance com-
ponent model (3) (VCSEL-M-lasso)

4. Interaction model. Genomic differences among people place some individuals at
grave risk of harm from certain medications while others may benefit from the same drug.
For that reason, detecting those genetic variants that contribute to variability in treatment re-
sponses is the main objective in pharmacogenetic (PGx) studies. Several methods have been

Input :Y, Vi, ....Vu A,y
Output: Xg, X¢,..., X,

1 Initialize 21(0) positive definite, i =1, ..., m;
2 repeat
3] @0y 2P0V +2VeI;
4 R® « reshape(2~ @ vecY, n,d);
5 fori=1,...,mdo
6 if \/tr(Z") < y 2 then
7 Cholesky
® 5y OT T T ) —(t) A 1
Ll' Li (_(Id®1n) [(ldla' ®Vz)®sz ( ](Id®1n)+(\/m_?)ld
else

| Cholesky LOLOT — (1, @ 1,)T[(1415 @ Vi) © D114 ® 1,):;
10 end

@+1) =Ty (DT 5 (@) Oy @® —(1)
1 Zi <« Li [Li (Zi R(I)TVI.R(!)EI_ )Li ]l/zLi
12 end
13 | Cholesky LY LYT — (I, ®1,)T (1417 @ I,,) © D114 ® 1,.);
14 Z(()t+l) <« L(;(t)T[L(()I)T(Zg)R(t)TR(I)Z(()t))L(()t)]l/zL(;(t)

15 until objective value converges;

Algorithm 2: VCSEL algorithm for MCP penalized multivariate response variance com-
ponent model (3) (VCSEL-M-MCP)
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proposed to test the interaction effect or jointly test the genetic main effect and the interaction
effect (Broadaway et al. (2015), Chen, Meigs and Dupuis (2014), Yang et al. (2019), Zhang
etal. (2020), Zhao et al. (2019)). However, they are limited to testing a single SNP-set. Hence,
in this section we illustrate the VCSEL method that incorporates interaction terms between
gene and treatment in the univariate response setting (d = 1).

If there are m genes under consideration, we have 2m + 1 variance components in to-
tal, including the residual variance component, because each gene is associated with two
variance components, one for the gene itself and the other for the interaction between gene
and treatment. For the ith SNP-set, o;1 and o;2 denote the genetic effect and interaction
effect variance components, respectively. Let G; be the corresponding genotype matrix
and T = diag(t,...,t,) be a diagonal matrix, where #; € {0, 1} indicates treatment sta-
tus. Then, linear weighted kernels associated with o;; and o, are V;; = G,-W,-GiT and
Vio=TG; W,-Gl»TT T respectively. The matrix W; = diag(wy, ..., w,) contains the weights
of the ¢ variants in the ith SNP-set. We remind readers that linear weighted kernels can be
readily replaced by other choices of kernels. Note that T matrices are not limited to binary
values. For example, one can swap diagonal entries in 7 matrix with environmental vari-
able values which are often continuous. Simulation studies 5.2 demonstrate this option of
continuous values.

For a given response vector y, the penalized log-likelihood, augmented by group penalty
on two variance components of each gene, can be written as

1 1
(12) f(a)zilogdetﬂ(o)JrEy [R@)] y+ZPA(o,1 0i2),

i=l1

where (o) = l’-”zl(aiz1 Vil + O'i22V,'2) + agl,, and o0 = (09, 01,0i2,i = 1,...,m) collects
all 2m + 1 variance components. We introduce two routes to constructing interaction mod-
els: (1) include/exclude main effects and interaction term together as a pair (VCSEL-I) and
(2) enforce hierarchy restriction that only allows interaction term into the model when the
corresponding main effect is included (VCSEL-Ih).

4.1. All-in/all-out (VCSEL-I). Often in the discovery phase, genetic main effect and
gene-treatment interaction effect are jointly tested. This approach examines the association
between the trait of interest and genetic marker while accounting for gene-treatment inter-
action. To majorize the group lasso penalty on a pair of variance components, we apply the
support hyperplane inequality to the concave map x > /x

A 02 —}—O’Z
Py (0i1,012) = A St ),
% (011, 0i2) \/allT 2 [Lo2 02 e

0i1 +012

where ¢) is an irrelevant constant. Combining with the univariate case of inequalities (4)
and (6), the surrogate function, given rth iterate o), is
1 0'.4.0) 02.
g(oloe®) = Z Z[ ” 1ROV + < 5 Lyl Oy Wy 4p——2L ]
i=1j=1 Oij 2y o +0?
+ % (V) 4 - : 03:) yla=20y,

2 200

Then, the update ol-(th) fori=1,...,mand j=1,21is
S0+ _ (r)[ yrervv,e Wy ]1/4

l] ij
w(@ OV +1/ o +03?
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Input : y, Vi, Viz, .o Vil Vina, A

LAD A2 AD 2 A2
Output 00,011,012,---9 ml’sz

11n1t1ahzeo(§), (J)>Oz—1 m,j=1,2
2 repeat

3] Q0 0 Vi +03" Vi) + 0T
oD (®) y'eo <’)V 2 Wy 1/4
Oij < 0jj w(@ OV, )+A/\/ 02, (t)z

(t+1) 1) YR 2Dy 174
5 0y <0 (t(s2 (,)))/

6 until objective value converges;

4

Ji=1,....m,j=1,2;

Algorithm 3: VCSEL algorithm with lasso penalty for selecting main effect and inter-
action effect variance components as a pair (VCSEL-I-lasso)

Algorithm 3 summarizes the VCSEL algorithm for the all-in/all-out interaction with lasso
penalty (VCSEL-I-lasso). A similar algorithm for MCP penalty (VCSEL-I-MCP) is sum-
marised in Supplementary Material S.2 (Kim et al. (2021)).

4.2. Hierarchical interactions (VCSEL-Ih). In the confirmation phase of gene-drug test-
ing, interest lies in detecting gene-treatment interaction. Choi, Li and Zhu (2010) argue that
for easier interpretability, interaction terms should be included, only if all corresponding main
effects are in the model. We integrate this idea by assuming interaction effect variance com-
ponent to be a constant multiple of genetic effect counterpart, that is, o*iz2 =y cri21. Whenever
the variance component for ith gene o;; is equal to 0O, the interaction variance component
o;2 1s automatically set to 0. Following Choi, Li and Zhu (2010), we penalize both variance
component o;| and interaction parameter y;. Then, our objective function with lasso penalty
becomes

1
~y'e y+MZm+kzZm,

1
flo)= —logdetSZ+
2 i=1 i=1

where =" 1(‘711th + o 2V,2) +0021 > 1(‘711‘/11 + y,allV,z) —i—crozl Both A; and
Ap are tuning parameters controlling the strength of the penalty terms.
The already familiar majorizations (4), (6), and (7) yields the surrogate function

" ro? Yio? 150
glo|a®)= Z[%tr(ﬂ_(’)vil)—l—T’ltr(ﬂ_(’)viz)—}—2 iy Oy, @ 0y

P o}
2(r) _4(1)
1y~ o _ _ 1
%yTﬂ (I)Vizﬂ (’)y + 0 O,i21 +)\2Vij|
2 yioj 207,
02 4(1)
+ (@) 5y TR0y,

2
200

We adopt the block update strategy to decrease the objective value of g(o | o). Given

Vi = Vi(t)’ we update ;1 by

i=1,...,m.

S 20+ _ 20 YR OV, @ Oy 4y 0yTe-0y -0y
1 1 9
7 % (@ OV +y @ OVi) + 4 /0
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(t+1)

Given 0;1 =0, ', we first update the covariance matrix
m
Sz(t) _ Z 2(z+1) i(r)gil‘l(zﬂ)viz) +J()2(z+1)l’

then update the ith interaction parameter by

S~ ()
LD 0 yre Vo Uy
’ w(@ OVip) + 20, /0 20D

Summary of the algorithm for this hierarchical interaction selection method with lasso
penalty (VCSEL-Ih-lasso) is left to Supplementary Material S.2 (Kim et al. (2021)).

S. Simulation studies. We conduct simulation studies to examine the selection perfor-
mance of the proposed methods. We compare with R packages Multi-SKAT (Dutta et al.
(2019)) and rareGE (Chen, Meigs and Dupuis (2014)) for multivariate response and inter-
action model, respectively. Both Multi-SKAT and rareGE are marginal approaches that test
one SNP-set at a time and make a formal inference. This contrasts with our method that en-
compasses multiple SNP-sets in a joint model and provides rankings. For readers interested
in the results on a univariate response, we summarize the results in Supplementary Material
S.4 (Kim et al. (2021)) in which we compare the selection performance of VCSEL to the
group lasso. The group lasso is a group selection method designed for selecting fixed effects.
Interestingly, the proposed penalized variance component model outperforms group lasso,
even when the data is generated from a fixed effects model, not to mention under a variance
component model (see Supplementary Material S.4 (Kim et al. (2021))).

Both the lasso and MCP penalties are demonstrated for multivariate trait and interaction
models. Unless otherwise specified, y = 2.0 is used for the MCP penalty. We use the area
under precision-recall curve (auPRC) to evaluate performance. Similar to receiver operator
characteristic (ROC) curves, precision-recall (PR) curves (recall on the x-axis and precision
on the y-axis) illustrate the tradeoff between precision and recall for varying cutoff values
(Manning and Schiitze (1999), Raghavan, Bollmann and Jung (1989)). Precision is defined
as the number of true positives over the total number of declared positives, while recall is
defined as the number of true positives over the number of true positives plus the number
of false negatives. A PR curve closer to the upper-right corner, which corresponds to 100%
precision and 100% recall, generally represents a better classifier. Since we want to take the
influence of all cutoff values into account, we report auPRC which is an aggregate measure of
performance across all tuning parameter values and has a range of [0, 1]. An auPRC close to
1 indicates that the classifier returns accurate results (high precision) and most of all positive
results (high recall).

Although ROC curves are the most popular metric for binary classifiers, PR curves are
more suitable when the class distribution is highly skewed, usually negative instances out-
numbering positive instances (Davis and Goadrich (2006), Saito and Rehmsmeier (2015)).
In fact, PR curves have been cited as an alternative in unbalanced datasets (Bunescu et al.
(2005), Craven and Bockhorst (2005), Davis et al. (2005), Goadrich, Oliphant and Shavlik
(2004), Kok and Domingos (2005), Singla and Domingos (2005)). As we expect the number
of positive variance components to be greatly exceeded by that of zero variance components,
we deem auPRC to be an appropriate metric.

For the marginal testing methods—Multi-SKAT and rareGE—we calculate the auPRC by
ranking all genes by their p-values and assuming that each gene enters the solution path from
the smallest to largest. For example, the gene with the smallest p-value enters the solution
path first, and the gene with the largest value would be the last one to enter the solution path.
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For a sample of size n, we form genotype matrix G by randomly pairing 2n haplotypes
drawn from a haplotype pool (SKAT.haplotypes in the SKAT R-package). The genotype val-
ues in matrix G are coded as 0, 1, and 2, representing the number of minor alleles while an
additive genetic model is assumed. Assuming that there are m SNP-sets, we partition G into
m submatrices of prespecified window length

G =[Gi1|Gz|---|Gn],

where G; e R"*% j =1, ..., m, represents the ith SNP-set.

We fix the number of positive variance components, excluding the residual variance com-
ponent, to be five. We calculate each auPRC over 100 tuning parameter values and report the
average auPRCs along with their standard errors across 20 replicates.

5.1. Simulation studies for multiple traits. Here, we compare selection performance of
Algorithm 1 and MultiSKAT (Dutta et al. (2019)) package in R. We generate three pheno-
types (n = 2000, d = 3) from the following:

(13) vec(Y) =vec(XB) + Loe, €~N(0,1,,),

where Lg is the lower triangular Cholesky factorof  =3""" | X, Q V; + Lo ® ﬁl n- De-

pending on the genotype kernel, V; equals to %Giwi W;GT (SKAT genotype
1GiW:W;G; lIr !

1 T . .
GWATTW,GTTr G; WillTWiGi (b test genotype kernel), where W; is diagonal

matrix whose entry equals to the weights wy = Beta(MAFy; 1, 25) with MAF;, being the mi-
nor allele frequency of the kth genetic variant (Wu et al. (2011)). We use this weight since
it is the default version in MultiSKAT package. We set X to be a n x 1 matrix of 1 s and
B to be a 1 x d matrix of 0.5 s. For nonzero variance components X;, we incorporate two
structures proposed in Dutta et al. (2019). The first choice is X; = ldlg which implies that
effect sizes of a variant on d different phenotypes are homogeneous, hence, it is called ho-
mogeneous kernel. The second structure is X; = I, also known as heterogeneous kernel,
which assumes that effect sizes of a variant on different phenotypes are heterogeneous or
independent. Nonzero variance component matrices are spread across all m groups to create
a scenario of low linkage disequilibrium (LD) between causal SNP-sets or variance compo-
nents,

kernel) or

141  or I, ifi=1,10,20,30,40(m = 40),
ifi =1,25,50,75,100(m = 100),

14 ifi =0,

0 else.

In this case, causal genes or signal variance components are dispersed, hence, there is little
correlation among causal genes. One notable difference between VCSEL-M and Multi-SKAT
is that Multi-SKAT does not estimate X; while VCSEL-M estimates X;. In fact, Multi-SKAT
requires one to provide phenotype kernel structure, which is X; in our notation, for testing
association between a SNP-set and multiple phenotypes. In our simulations we supply the
ground truth X;, whether it be 1, 15 or 14, when calling Multi-SKAT, hence giving an ad-
vantage to the Multi-SKAT method.

Figure 1 and Table 1 describe simulation results. Overall, our methods perform as well as
Multi-SKAT, if not better. Despite having the ground truth ¥; as an input argument, Multi-
SKAT does not perform well when phenotype kernel has a homogeneous structure, as seen
in the left panel of Figure 1.
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FI1G. 1. The auPRCs of VCSEL-M-lasso, VCSEL-M-MCP, and Multi-SKAT under 40 and 100 genes and different
genotype kernels for models with six nonzero variance components and three simulated traits (d = 3), using
haplotype data from the SKAT R-package. The left and right panels assume X; = 14 15 and X; = 1 4, respectively,
for nonzero variance components.

5.2. Simulation studies for interaction models. Here, we compare selection performance
of Algorithm 3 (VCSEL-I-lasso), Algorithm S.2.1 in Supplementary Material S.2 (Kim et al.
(2021)) (VCSEL-I-MCP), and rareGE (Chen, Meigs and Dupuis (2014)) package in R. We
generate a phenotype from

y=XB+Lge, €e~N(0,1,),

where n = 500. Here, covariate matrix X is a 500 x 3 matrix whose first column is a vector

of 1’s, second column is generated from N (50, 52), and third column from N (25, 42) which

mimic covariate matrix in simulation studies of Chen, Meigs and Dupuis (2014). Lg is the
2

lower triangular Cholesky factor of £ = Z%:] > al% Vij + j/_()ﬁl n. Following the default

option of rareGE package, we set

_ 1
IGiWiG]Ir
. 1
 IEGiWG[Eillr

where W; diagonal matrix whose entry equals to to the commonly used weights ,/w; =
Beta(MAFy; 1, 25) with MAF; being the MAF of the kth genetic variant (Wu et al. (2011)).

Vi G;W;G,

Via EG,W,G'E,

TABLE 1
The auPRCs of VCSEL-M-lasso, VCSEL-M-MCP, and Multi-SKAT across varying size and number of genes,
using SKAT.haplotypes data from the SKAT R-package. In parentheses are standard deviation/./no. replicates

Genotype kernel Phenotype kernel ~ No. genes  VCSEL-M-lasso VCSEL-M-MCP MultiSKAT

GiWl, 1L W, Gl (Burden)  %;=1,41] 100 (kb/gene) 0.82(0.019)  0.82(0.020) 0.52 (0.032)
40 (Skb/gene)  0.82 (0.020)  0.82(0.021)  0.48 (0.034)

T, =1I; 100 (2kb/gene) 0.84 (0.021)  0.84 (0.021) 0.65 (0.035)

40 (5kb/gene)  0.87 (0.012)  0.88(0.012)  0.63 (0.029)

5. _1,q7 100(2Kkbigene) 0.86(0.017)  0.86(0.017) 048 (0.041)
I =% 40 (5kb/gene) 0.87 (0.018)  0.87 (0.018)  0.42 (0.030)
¥, =1; 100 (2kb/gene) 0.88 (0.008)  0.88 (0.009) 0.62 (0.031)
40 (5kb/gene)  0.90 (0.005)  0.90 (0.005)  0.48 (0.038)

G;W;I,,W;GI' (SKAT)
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FI1G. 2. The auPRCs of VCSEL-I-lasso, VCSEL-I-MCP, and rareGE under 40 and 100 genes for models with six
nonzero variance components, using haplotype data from the SKAT R-package. True variance component values
in the left panel mimic low LD scenario (14) while those in the right panel mimic high LD scenario (15).

E is a diagonal matrix whose entries coincide with that of the second column in X. G; is
a submatrix of genotype matrix we form from haplotypes data in the SKAT R-package, as
explained in the beginning of Section 5. We restrict G; to only include SNPs with MAF less
than 0.05 for fair comparison with rareGE method. This constraint leads to the number of
SNPs ranging from 18 to 51 with a median of 33 for groups with window length of five kb
and that ranging from three to 29 with a median of 13 for groups with window length of two
kb. We set the effect strength of nonzero variance components to be 2.236. Two scenarios are
simulated. The first is low LD setting,

2.236 i=1,11,20,30,40(m = 40),
i=1,26,50,75,100(m = 100),

1.0 i=0,

0.0 else.

(14) o1 =0j2 =

The second is high LD setting, where the first five variance components are set to be nonzero,

2236 i=1,2,3,4,5,
(15) oi1=02=1{1.0 i =0,
0.0 else.

In Supplementary Material S.5 (Kim et al. (2021)), we quantify the correlations between
SNP-sets in these high/low LD settings via the canonical correlation analysis. The true fixed
effects parameter values are set to be g = (0.5, 0.1, 0.05)7.

As seen in Figure 2, VCSEL-I method is competitive against rareGE. The outperformance
of VCSEL-I method is more dramatic under the low LD scenario, probably because the
marginal test rareGE is not able to jointly model the multiple SNP-sets.

6. Real data analysis. To test the multivariate response model, we apply our methods
to the genetic data from the U.K. Biobank exome sequencing study (Sudlow et al. (2015)).
By doing so, we aim to identify genes associated with two quantitative lipid traits, high-
density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).
For the analysis we only use measurements from the initial assessment visit. We regress each
phenotype separately on age, age?, sex, and the top five principal components and inverse
normal transform respective residuals. The transformed residuals are used as our response
variables. For our samples we extract selfreported white British individuals (data field 21000:
Ethnic background) with no genetic kinship to other participants (data field 22021: Genetic
kinship to other participants) and without any medication for cholesterol, blood pressure, di-
abetes, or exogenous hormones at baseline (data field 6153 and 6177: Medication for choles-
terol, blood pressure, diabetes, or take exogenous hormones). After removing individuals
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F1G. 3. Solution paths of VCSEL-M-lasso (left) and VCSEL-M-MCP (right) methods in the analysis of 200
genes and two lipid measurements (HDL-C, LDL-C). The y-axis is shown on the logarithmic scale to make lines
easily distinguishable.

with missing values, we have 18,020 samples and genotype information of 8,959,608 vari-
ants, which are grouped into 26,395 genes, based on the annotation information from SnpEff
software (Cingolani et al. (2012)) with GRCh38 human reference genome. We then remove
monoallelic variants, common variants with MAF > 0.05, variants in sex chromosome from
the analysis. Finally, we have the data of 18,020 individuals and genotype information of
4,312,036 low-frequency/rare (MAF < 0.05) variants in 25,460 genes with at least three of
those variants in each gene. Because the number of genes is too large, we first screen 25,460
genes down to 200 genes, according to their p-values, from Multi-SKAT omnibus approach
that combines results across three pre-specified phenotype kernels (homogeneous, hetero-
geneous, and phenotype covariance kernels). Then, we carry out a penalized estimation of
the 200 variance components in the joint model (1) using the burden test genotype kernel.
This is akin to the sure independence screening strategy by Fan and Lv (2008) which entails
large-scale screening accompanied by moderate-scale variable selection. Genes are ranked
according to the order they appear in the solution path. Figure 3 illustrates the solution paths
obtained from VCSEL-M-lasso and VCSEL-M-MCP methods along with their correspond-
ing lists of the top 10 genes in the order they appear in the solution path. Table 2 lists the top
10 genes together with their marginal p-values from Multi-SKAT. Most genes that are highly
ranked by VCSEL methods—PCSK9, PVR, LPL, APOC3, CELSR2, LIPG, CD300LG, and
APOB in the top 10 list—have their marginal test p-values under the false discovery rate
(FDR) < 5% threshold and/or are known to play a role in modulating lipid levels (Abifadel
et al. (2009), Benn et al. (2005), Cohen et al. (2005), Heid et al. (2008), Holmen et al. (2014),
Lange et al. (2014), Surakka et al. (2015), Tachmazidou et al. (2013), Wallace et al. (2008)).
VCSEL methods identify genes that are not deemed significant by marginal testing but have
association evidence in the literature. HAPLN4 has been shown significant association with
LDL-C and total cholesterol levels (Southam et al. (2017)) and APOC4 with HDL-C, LDL-C
(Hoffmann et al. (2018), Wojcik et al. (2019)).

Next, we apply our methods to the GWAS of Ezetimibe response in IMPROVE-IT (IM-
Proved Reduction of Outcomes: Vytroin Efficacy International Trial), which is a phase 3b,
multicenter, double-blind, randomized study, to establish the clinical benefit and safety of
Vytorin (Ezetimibe/Simvastatin tablet) vs. Simvastatin monotherapy in high-risk subjects
(Cannon et al. (2015)). In this PGx study using IMPROVE-IT clinical data, we are interested
in discovering genes associated with: (1) the efficacy of Vytorin treatment for 2808 European
patients who receive a greater benefit compared with the Simvastatin monotherapy and (2) the
joint efficacy of Ezetimibe/Simvastatin treatment and the Simvastatin monotherapy treatment
for 5661 European patients. The endpoint for this gene-based variance component selection
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TABLE 2
Top genes selected by the lasso and MCP penalized variance component model are tallied with their marginal
p-values from the Multi-SKAT omnibus test in an association study of 200 genes and bivariate trait: HDL-C and

LDL-C
Lasso Rank MCP Rank Gene Marginal p-value # Variants
1 1 PCSK9 3.37 x 10720 353
2 2 PVR 3.56 x 10=20 111
3 4 LPL 573 x 10718 198
4 3 APOC3 2.04 x 1077 61
5 5 CELSR2 4.05x 10713 986
6 6 LIPG 236 x 10713 225
7 7 CD300LG 6.56 x 10710 189
8 9 HAPLN4 2.86 x 1073 141
9 8 APOB 5.33 x 10711 947
10 10 CATIP-ASI 2.81x1073 16
11 11 APOCH4 1.34 x 1074 74

analysis is LDL-C fold-change at one-month. The standard GWAS quality control and SNP
imputation are conducted. We focus on the low frequency variants (0.01 < MAF < 0.05) af-
ter imputation (with imputation quality scores r> > 0.5) and putatively functional variants
with consequences as nonsynonymous, splice-site, non-sense, and frameshift variants anno-
tated from the GEMINI software (Paila et al. (2013)). Missing genotypes are imputed by their
column mean. In total, there are 208,123 low frequency variants in 2572 genes with at least
two low frequency variants in each gene. The covariate matrix includes age, gender, prior
lipid lowering therapy, early acute coronary syndrome (ACS) trial, high risk ACS diagnosis,
and the top five principal components calculated from the GWAS data to adjust for popu-
lation structure. Because the number of genes is too large, we first screen the 2572 genes
down to 200 genes according to their marginal p-values from SKAT-O (Lee, Wu and Lin
(2012)) for the analysis of Vytorin treatment effect and the other 200 genes according to their
marginal p-values from the composite kernel association test (CKAT) (Zhang et al. (2020))
for the analysis of Ezetimibe/Simvastatin treatment and the Simvastatin monotherapy treat-
ment joint effects. Then, we analyze the two sets of the 200 genes by penalized estimation of
the 200 variance components respectively.

Figure 4 illustrates the solution paths from VCSEL-I-lasso and VCSEL-I-MCP methods
along with their corresponding lists of the top 10 genes in the order they appear in the solution
path for the analysis of Ezetimibe/Simvastatin treatment and the Simvastatin monotherapy
treatment joint effects. The top five genes selected by the VCSEL-I-lasso method are TTN,
MUCI6, CBLC, APOB, and TNXB, and those selected by the VCSEL-I-MCP method are
MUCI6, CBLC,APOB, TNXB, and OSBPL6. CBLC and TNXB are selected by both methods
and have been shown to associate with statins response in literature. More specifically, similar
as the BCAM gene, CBLC gene, close to BCAM gene, has been shown to associate with the
response to statins (LDL-C change) and multiple nondrug-response LDL-C related traits as
well (Deshmukh et al. (2012), Postmus et al. (2014); Supplementary Material Table S.10). In
addition, TNXB gene also shows a significant association with the nondrug-response LDL-
C trait in the literature (Supplementary Material Table S.10). We defer the analysis results
for studying the efficacy of Vytorian treatment to Supplementary Material S.6 (Kim et al.
(2021)).

The above analyses demonstrate that VCSEL methods can provide well-known and po-
tentially new association evidence between genes and the drug response LDL-C in the
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FI1G. 4.  Solution paths of VCSEL-I-lasso (left) and VCSEL-I-MCP (right) methods in the analysis of 200 genes
and the LDL-C response of all the patients receiving the Vytorin (Ezetimibe/Simvastatin tablet) treatment and
Simvastatin monotherapy in the IMPROVE-IT PGx study. The y-axis is shown on the logarithmic scale to make
lines easily distinguishable.

IMPROVE-IT PGx study and the lipid phenotypes in the UK.. Biobank whole exome se-
quencing study. More work is needed to further interpret both top-ranked genes with some
association evidence and without any literature support to identify causal genes.

7. Discussion. This article provides a variance component selection framework for iden-
tifying SNP-sets associated with quantitative traits, particularly for multivariate traits, and
SNP-set-treatment interactions. Simulation studies and real data analyses have testified to the
competitiveness of the proposed methods, compared to the traditional marginal tests.

Additionally, our methods can adjust for sample relatedness by augmenting the model with
a kinship matrix. More precisely, borrowing the notation of (2), the model becomes

vecY ~N@O, 2@V i+ +Z,0V,u+Z, 00+ %0 1,_,),

where @ is the kinship matrix and X, is a matrix describing the shared heritability between
the phenotypes. Along with the residual variance component X, coheritability variance com-
ponent X, would remain in the model without any regularization.

While chiefly motivated by association testing in genetics, we envision the analysis to be
applicable beyond genetics. For instance, in random effects ANOVA with many factors, each
represented by a variance component, one may wish to select factors that are relevant to the
response. This ANOVA scenario has been alluded in Supplementary Material S.4 (Kim et al.
(2021)).

There are some limitations to the proposed methods. First, it is difficult to conduct for-
mal inference on the selected SNP-sets. Second, it does not apply to biobank-scale data. We
recommend this method for datasets of size up to n x d = 50,000, where n is the number
of samples and d is the number of traits. This is because VCSEL methods involve inverting
the covariance matrix §2 in each iteration, which is computationally expensive. Additionally,
we do not suggest jointly fitting all 20,000-25,000 genes in the human genome using our
method. We recommend that the number of genes is reduced before fitting the model by the
sure independence screening strategy which has been extensively studied and investigated
(Fan and Lv (2008)).

In this paper we focus on the ranking of genes and report the overall selection perfor-
mance by auPRC. In practice, the tuning parameters can be chosen according to the extended
Bayesian information criteria (Chen and Chen (2008)). Future research should entail post-
selection inference and investigation of the algorithms’ theoretical properties and address
limitations mentioned above.
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8. Implementation. All our methods are implemented in the open source, high-
performance technical computer language Julia (Bezanson et al. (2017)), and the software
is freely available at https://github.com/juhkim111/VCSEL.jl.

Funding. This work is partially supported by National Institutes of Health (NIH) grants
T32 HG02536, RO1 HG006139 and R35 GM 141798 and National Science Foundation Grant
DMS-2054253.

SUPPLEMENTARY MATERIAL

Supplement to “VCSEL: Prioritizing SNP-set by penalized variance component se-
lection” (DOI: 10.1214/21-AOAS1491SUPPA; .pdf). We provide information about data sets
used in this paper and the supplemental results, for example, derivations, extra simulations,
tables, figures and result summaries.

Supplementary Table S.10 (DOI: 10.1214/21-A0AS1491SUPPB; .zip). We provide lit-
erature search results for the top genes identified by VCSEL-I-lasso and VCSEL-I-MCP in
the IMPROVE-IT real data analysis.
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