
DACHash: A Dynamic, Cache-Aware and Concurrent Hash Table on GPUs

Hao Zhou, David Troendle, Byunghyun Jang

Computer and Information Science
The University of Mississippi

University, MS USA
hzhou3@go.olemiss.edu, {david, bjang}@cs.olemiss.edu

Abstract—GPU acceleration of hash tables in high-volume
transaction applications such as computational geometry and
bio-informatics are emerging. Recently, several hash table
designs have been proposed on GPUs, but our analysis shows
that they still do not adequately factor in several important
aspects of a GPU’s execution environment, leaving large room
for further optimization.

To that end, we present a dynamic, cache-aware, concurrent
hash table named DACHash. It is specifically designed to
improve memory efficiency and reduce thread divergence
on GPUs. We propose several novel techniques including a
GPU-friendly data structure & sizing, a reorder algorithm,
and dynamic thread-data mapping schemes that make the
operations of hash table more amendable to GPU architecture.
Testing DACHash on an NVIDIA GTX 3090 achieves a peak
performance of 8.65 billion queries/second in static searching
and 5.54 billion operations/second in concurrent operation
execution. It outperforms the state-of-the-art SlabHash by
41.53% and 19.92% respectively. We also verify that our
proposed technique improves L2 cache bandwidth and L2
cache hit rate by 9.18× and 2.68× respectively.

Keywords-hash table; GPGPU; concurrent data structure

I. INTRODUCTION

GPUs have become the platform of choice for many

compute and data intensive applications in various fields.

Traditionally CPU centric data structures are finding GPU

solution. Hash table algorithms offering fast data access in

near constant time are important for the fields of computa-

tional geometry and bio-informatics, but not well researched.

Designing a high-performance hash table on massively

multi-threaded GPUs is a challenging task. Tens of thou-

sands of active threads attempting simultaneous hash table

access can cause severe performance degradation unless

carefully designed. Traditional lock-based implementations

suffer from high thread contention [1], leaving non-blocking

methods a better choice for the GPU environment [2],

[3], [4]. Nonetheless, any approach must accommodate and

address the fact that GPUs are very sensitive to memory

access patterns and thread divergence [5].

In this paper, we present a hash table specifically designed

and optimized for a GPU architecture. We propose several

novel techniques to address two major sources of GPU

inefficiency - memory access patterns and thread divergence.

First, we introduce a GPU-friendly chaining structure to

support hash collisions. This enables mutability via dynamic

memory management for new data to be stored or old data

to be deleted, while avoiding the need for repeated rebuilds

from scratch. We optimize the chaining structure into a

GPU-friendly linked-list of super nodes, where each super

node is a small array of key-value pairs. Our cache-aware

super node sizing improves memory access patterns, which

is an important design consideration for a GPU’s SIMT

(Single Instruction Multiple Threads) execution model.

Second, we improve the efficiency of dynamic memory

management by pre-allocating a large memory pool and

using a concurrent stack to manage memory buffer allo-

cation and deallocation dynamically. This helps reduce the

overhead of searching candidates to delete, and the cost of

memory allocation and deallocation on GPUs.

Third, we reorder input data elements based on their hash

values to improve cache performance. Rather than using

expensive traditional sorting, our proposed reorder algorithm

efficiently groups operations on the fly, increasing the like-

lihood of data reuse and coalesced memory transactions. To

our knowledge, this is the first attempt to study and improve

the locality of hash table data structures on GPUs.

Lastly, we design a novel dynamic mapping scheme

that can switch between two different thread-data mapping

schemes depending on the shape of hash table: A one-to-one
mapping scheme maps each thread to a key so that threads

process their keys individually; and a many-to-one mapping
scheme maps each thread to a key, but an entire warp (32

threads) cooperatively processes 32 keys sequentially. Our

proposed dynamic mapping scheme automatically switches

between these two mapping schemes to achieve better per-

formance.

Our experiments show that on a latest NVIDIA GPU,

GTX 3090, our proposed DACHash achieves a static

searching throughput and concurrent operations through-

put of 8.65 billion queries/second and 5.54 billion opera-
tions/second respectively. It outperforms the state-of-the-art

SlabHash [6] (7.55 billion queries/second and 4.41 billion
operations/second) with all overheads included. On average,

DACHash is 41.53% and 19.92% faster than SlabHash

under these two categories. We also profile and verify the

1

2021 IEEE 33rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

2643-3001/21/$31.00 ©2021 IEEE
DOI 10.1109/SBAC-PAD53543.2021.00012

cache performance of DACHash using the NVIDIA Visual

Profiler. It shows our proposed technique improves L2 cache

bandwidth and hit rate by 9.18× and 2.68×, demonstrating

that the improved cache performance can yield a significant

overall performance boost.

II. RELATED WORKS

Several hash table designs and implementations have

recently been reported for GPUs in the literature.

Alcantara et al. [7] built a hash table on GPUs, which

performs parallel insertions and retrievals. Their work is

based on Cuckoo Hashing [8] and relies on atomic oper-

ations during multi-threads table construction. The authors

use a set of hash functions to find a key in multiple candidate

locations for insertion as Cuckoo Hashing does. Evicted

keys need to be inserted into another location until no more

evicted keys exist. A careful design of a set of hash functions

is required since hash functions determine the frequency of

rebuilding from scratch. The order of hash functions also

matters.

Garcia et al. [9] presented a parallel hashing method

where their hashing could reach high load factor but with a

low rebuilding failure rate. The authors designed a coherent

hash function to leverage coherence in memory and further

increase locality in memory. In addition, coherent hashing

also makes groups of threads execute consistent paths.

Khorasani et al. [10] proposed a hashing method called

Stadium Hashing (Stash) and Stash with collaborative lanes

(clStash). Stash Hashing has two basic structures: a table

for keeping all keys and values, and a compact auxiliary

structure called a ticket-board to maintain a ticket (consists

of the availability bit and the info bits) for every bucket

in the table. The availability bit determines if the bucket

is occupied and the info bits store information of the key.

This design reduces unnecessary accesses to the actual table

content according to the availability bit and the info bits,

which speeds up retrievals. By solving collisions via double-

hashing (primary and secondary hash functions), Stash al-

lows concurrent execution of mixed insertions and retrievals.

The secondary hash function generates a step size that could

hurt the memory performance on GPUs. clStash improves

warp execution efficiency by redistributing tasks to early-

finished threads in a warp.

SlabHash [6] proposes further improvements to the ef-

ficiency of warp execution and memory coalescing. The

authors proposed a warp-cooperative work-sharing (WCWS)

strategy, where all threads in a warp process one operation

at a time by utilizing warp-synchronous programming and

warp-wide communications. This design presents less thread

divergence when compared to other hash tables. The authors

also take advantage of array and linked-list structures to

further serve their WCWS strategy. The SlabHash designs

slabs which are arrays with key-value pairs stored. Each slab

has the size of 128 bytes that matches the size of a cache line

Figure 1: Basic structure of DACHash. Bucket 0 (B0) has

two super nodes and other buckets have one super node.

Each super node has a small array of key-value pairs as

well as a next pointer.

on GPUs. The SlabHash also designs a specialized memory

pool to implement dynamic allocation.

Gao et al. [11] adopted a structure similar to SlabHash. In

addition, the paper discusses the throughput of the WCWS

strategy. They show that when the number of elements stored

in the table is large, it could achieve higher throughput.

Otherwise, the throughput is relatively low. Gao et al. solves

the problem by proposing an adaptive model. In addition, the

authors present a reader-writer lock based synchronization

and bucket-level synchronization to ensure atomicity of hash

operations (individual hash operations or groups of hash

operations).

WarpCore [12] proposed a fast hash table on GPUs. They

proposes a memory-compact bucket list to support flexible

multi-value storage, a hashing scheme to improve global

memory access patterns by leveraging CUDA cooperative

groups, and an efficient techniques to support multi-GPUs.

III. BASIC DESIGN AND IMPLEMENTATION

In this section, we introduce the basic design and imple-

mentation of DACHash, including base data structure, orga-

nization, supported operations, and memory management.

A. Base data structure and organization

Each DACHash bucket is designed as a linked-list of small

arrays consisting of key-value pairs as shown in Fig. 1.

The array offers contiguous, linear memory access patterns,

while a linked-list chain offers easy, concurrent modification.

In our design, each node in the linked-list chain holds

multiple interleaved key-value pairs. We call these nodes

super nodes. The first super node connected to a bucket head

is pre-allocated. Subsequent super nodes are dynamically

allocated or deallocated at run time as needed.

The base data structure and organization of DACHash

offer several optimization opportunities. First, the combined

array/linked-list structure enables a natural way to support

collisions. Second, a chaining technique allows dynamic

allocation, instead of needing to rebuild the hash table

from scratch. Third, array structures achieve GPU-friendly

memory access patterns compared to a linked-list’s scattered

2

memory accesses. Fourth, super nodes offer flexible thread-

data mapping scheme options, e.g., one-to-one or many-to-
one mapping schemes.

B. Operations supported

We implement five basic hash table operations on unique

keys. CUDA atomic funtions ensure correctness. Note that,

although not implemented, duplicate keys can be accom-

modated without significant design changes. The supported

operations are:

Search is responsible for finding a key in the hash table

and returning its value. If no key is found, it returns null.

The operation starts by hashing a key to a bucket. Searching

begins at the bucket’s first super node. If no key matches,

it continues traversing the bucket’s super nodes until a

matching key is either found or it reaches the end of the

bucket list.

Insert adds a key-value pair to the hash table. Since keys

must be unique, we must first ensure the key exists in the

hash table. If it does, the operation acts as update, replacing

the old value with a new value. If it does not exist, it is

inserted into the hash table. A new super node may be

dynamically allocated if needed. When inserting a new key-

value pair into the table, it first looks for an empty slot in

the first super node of the bucket. If an empty slot exists, an

atomicCAS() (a CUDA atomic function) ensures a correct

insertion. If the first super node is full, the thread traverses

the super node list until it finds an empty slot. If it reaches

the last node in the bucket, the thread dynamically allocates a

new super node and connects the new node after the bucket’s

last super node using an atomicCAS(). Although multiple

threads may try to connect their super nodes after the last

super node simultaneously, only one thread will succeed.

The failing threads deallocate their nodes and retry until

they succeed. Once successful, the threads redo their insert
operation using the bucket’s new last super node.

Update finds the key to update its value. If the key is

found, it replaces its value with the new value using an

atomicExch(). Otherwise, the new pair is inserted.

Delete is similar to the search operation, but returns no

value. It starts its traversal at the first super node in the

bucket the key maps to. If found, it marks the key as

logically deleted. If not, it continues traversing super nodes

looking for the matching key until it reaches the last super

node in the bucket. This operation does not deallocate empty

super node. Deallocation is done by the clean operation (see

below).

Clean compacts the bucket’s super node linked-list, en-

suring only the last super node has any empty slots. We

implement the clean operation as a separate kernel, so no

other operations interfere when cleaning the hash table.

Deallocated super nodes are pushed back to our memory

stack for later use. The clean operation is only required when

the memory stack is empty.

Figure 2: DACHash uses a concurrent stack to support

dynamic memory allocation. All pre-allocated super nodes

are pushed into the stack at the beginning. Two threads t0
and t1 compete for the same stack top index in this example.

C. Memory stack

The insert, update, delete and clean operations may

require dynamic super node allocation or deallocation. To

support this, we pre-allocate a large number of super nodes

and place them on a concurrent stack. A pop allocates a

super node and a push deallocates a super node concurrently

as shown in Fig. 2. This is a simple, fast, GPU friendly

alternative to a CPU-side malloc() or free().

IV. REORDER

Input keys are hashed to different buckets. When they

are mapped to threads, a warp suffers from poor locality

because the super nodes within and across buckets are likely

scattered in memory. Memory requests from threads in a

warp are highly likely to reside in different cache lines

(uncoalesced) rather than a single line (coalesced). Such

poor spatial locality causes multiple memory transactions,

which in turn, significantly increases memory traffic. Slab-

Hash [6] proposed a work-sharing strategy within warps to

increase coalesced memory accesses. However, it still suffers

repeated linked-list traversals, which is another source of

poor locality. Suppose a warp processes a list of query keys

{0, 3, 7, 8} and the size of warp is 4, as visualized in Fig. 3.

The warp processes key 0, finds the key in bucket 0, and

loads the first super node. With this access, other keys stored

in that super node are loaded together but not used. The same

issue occurs for key 3 and key 7. In the mean time, the

super node loaded for key 0 may have been evicted from

the cache. When processing key 8, the warp starts over from

the beginning, and loads the first super node of bucket 0,

then it loads the second super node that contains key 8. In

this case, the first super node is loaded twice. Even if the

warp issues coalesced memory requests, it may not end up

being an efficient use of data as it can still cause extra global

memory transactions and waste potential use of other keys

in the loaded super nodes.

We observed that such inefficiencies are caused by the

randomly arranged input data list. Reordering can improve

3

Initial state Process key 0 Process key 3 Process key 7 Process key 8

Figure 3: Example of poor data reuse. A warp of 4 threads processes keys 0, 3, 7, 8. The shaded nodes indicate the visiting

super nodes by the warp.

the data locality and cache performance (i.e., hit rate and

bandwidth). Sorting is the traditional way of reorganizing

data. However, not only is a sort expensive on GPUs, but

also a strictly ordered sort is not required for our purpose.

We need only group the keys with the same hash value

together. To this end, we propose a reorder algorithm. In

our reorder algorithm, we take advantage of a pre-allocated

memory buffer on GPUs to partition data according to their

hash values. Keys with the same hash value compute their

indexes in this pre-allocated memory buffer so that keys

with the same hash value are physically close and adjacent

to each other in memory. By doing so, when each thread

claims its key, the adjacent threads are more likely mapped

to the same bucket. In this way, when traversing bucket’s

super nodes, threads in a warp probably request the same or

nearby super nodes, resulting in fewer memory transactions.

Compared to scattered memory requests, the total number of

global memory transactions can decrease significantly. Since

the input keys are partitioned based on their hash values,

when warps process these keys, the same or nearby super

nodes are likely loaded from the cache directly, so that the

cache performance increases as well.

Algorithm 1 details our proposed reorder algorithm. It

utilizes a pre-allocated GPU memory buffer named Reorder-
Space with the same or larger size than keysList but with an

additional dimension. Note that the size of ReorderSpace is

B * M, where B is the number of buckets and M is calculated

by �N/B� (line 1-4) where N is the total number of keys in

keysList, and the size of Record is B in order to keep track

of the latest index of buckets. The row index is defined by

bucket (hash) value, and an atomicAdd() is used to find the

corresponding index of that key in that row (line 8). By

doing so, keys with the same hash value will be mapped

to the same row in ReorderSpace. However, for our input

keys, we cannot ensure that keys have a perfect uniform

distribution across buckets. In this case, we have to arrange

keys with the indexes that are greater than M to a nearby

location (line 9-11). It checks whether the next row has an

empty spot to add. If so, it updates index. If not, check the

row after the next row until an empty spot is found. Lastly,

we add keys to ReorderSpace (line 12). Since the size of

Algorithm 1: Pseudocode for the proposed reorder

algorithm.

input: ReorderSpace

keysList

Record

1 N = lengthOf(keysList);

2 B = totalNumberOfBucket();

3 // B = totalNumberOfBucket() /

lengthOfCombinedBuckets;

4 M = �N/B�;
5 key = keysList[threadId];

6 bucket = hash(key);

7 // bucket = hash(key) / lengthOfCombinedBuckets;

8 index = atomicAdd(Record[bucket], 1);

9 while index >= M do
10 index = atomicAdd(Record[(++bucket) mod B],

1);

11 end
12 ReorderSpace[bucket][index] = key;

ReorderSpace is equal to or greater than the size of keysList,
it guarantees all keys will have a spot to be added.

However, the reorder algorithm delays operations until

the reorder process completes. This causes a synchroniza-

tion problem. To this end, we utilize host-side device-

synchronization via CUDA API. In order to speed up the

reorder algorithm, we also improve the algorithm. Instead

of grouping keys with the same hash value, we group keys

with nearby hash values. Originally, B is equal to the total

number of buckets in our hash table. By decreasing B (line

3), we can group the keys with nearby hash values into one

row. For instance, if we decrease B to B/4, every four hash

values will be grouped together, e.g., 0, 1, 2 and 3 (4 values).

In keysList, the probability of adjacent data elements that can

be mapped to the same row of ReorderSpace increases, so

the throughput of reorder is further improved.

V. DYNAMIC MAPPING SCHEMES

There are two common thread-data mapping schemes used

in hash table design: 1) a one-to-one mapping scheme, which

4

maps each thread to a single key so that threads can process

their 32 keys individually. Note that threads in a warp

could possibly exit at different times due to the different

operations they may have. The threads tend to have scattered

memory access patterns when reading from or writing to

GPU memory; and 2) a many-to-one mapping scheme,

which maps a warp to 32 keys but 32 threads in a warp work

and communicate with each other to cooperatively process a

single key at a time. Threads in a warp will converge at the

same time because all 32 threads in the warp will execute

the same low-level instructions and the memory access

pattern is likely to be coalesced. In general, each scheme

shows different performance characteristics. The one-to-one
mapping scheme outperforms when thread divergence is

not an issue (e.g., threads in a warp process same type

of operations), while the many-to-one mapping scheme is a

better choice when execution efficiency matters (e.g., threads

within a warp process different types of operations).

In order to better utilize two different schemes, we pro-

pose our dynamic mapping schemes where DACHash selects

one scheme over the other based on, so-called expected
length. The expected length ε, is defined as the average

number of super nodes per buckets. Therefore the selection

of the proposed dynamic mapping schemes D, is expressed

as the following.

D =

{
O if ε < τ

M otherwise

where O is one-to-one mapping scheme, M is many-to-one
mapping scheme, and τ is a threshold.

Algorithm 2: Pseudocode for one-to-one mapping
scheme.

1 key = keysList[threadId];

2 value = valuesList[threadId];

3 bucket = hash(key);

4 superNode = getNextSuperNode(bucket);

5 do
6 for i← 0 to NODE SIZE-1 do
7 if superNode[i].key == key then
8 SEARCH();

9 or DELETE();

10 or UPDATE();

11 end
12 end
13 superNode = getNextSuperNode(superNode);

14 while superNode != nullptr;

15 if UPDATE() failed && isUPDATE then
16 INSERT();

17 end

Algorithm 3: Pseudocode for many-to-one mapping
scheme.

1 key = keysList[threadId];

2 value = valuesList[threadId];

3 bucket = hash(key);

4 operation = operationsList[threadId];

5 superNode = getNextSuperNode(bucket);

6 tile =

tiled partition〈CG SIZE〉(this thread block());

laneId = tile.thread rank();

7 for lane← 0 to CG SIZE-1 do
8 // a tile processes operations from 0 to

CG SIZE-1;

9 share data in the laneth of tile by tile.shfl();
10 do
11 tile reads superNode and finds target key by

tile.ballot();
12 if found then
13 SEARCH();

14 or DELETE();

15 or UPDATE();

16 else
17 share the next superNode by tile.shfl();
18 end
19 while superNode != nullptr;

20 if UPDATE() failed && isUPDATE then
21 INSERT();

22 end
23 end

Our implementations of these mapping schemes are

shown in Algorithm 2 and 3 respectively. In the one-to-
one mapping scheme, groups of threads may have different

operations to perform and their finishing times are likely to

be different, resulting in low execution efficiency. The many-

to-one mapping schemes partitions thread blocks into tiles

and the size of tile is specified by CG SIZE which can be {1,
2, 4, 8, 16, 32}. It enables threads communication by using

CUDA primitives such as shfl() and ballot(), and lastly tiles

would perform different hash operations, i.e., search, delete,

update, and insert. In the many-to-one mapping scheme, tiles

are more likely to execute the same low-level instructions so

that thread divergence is minimized, and the memory access

pattern is also improved.

VI. PERFORMANCE EVALUATION

We evaluated our proposed DACHash on an NVIDIA

GTX 3090, which is based on the AMPERE microarchi-

tecture [13] with compute capability of 8.6, 10496 CUDA

cores, and 24 GB off-chip global memory (Our experiments

on older NVIDIA GPU architectures showed very similar

performance behavior therefore those are not included in

5

this paper). We compiled our code with the CUDA 11.2

compiler. We divide our performance evaluation into three

parts. First, we show the performance impact of various

parameter values for the super node size, the length of

combined buckets in our proposed reorder algorithm, and

the threshold τ for dynamic mapping schemes. Second,

we demonstrate the effectiveness of our reorder algorithm.

Lastly, we compare our results using the state-of-the-art

SlabHash [6] as a baseline for different categories, such as

build rate, static search throughput, and concurrent operation

throughput. In our experiments, we assume all keys are

unique. All overheads such as data copy and reordering are

included in our performance metrics. Experiments on other

GPU architectures with OpenCL implementation remain as

future work.

A. Impact of Parameters

1) Super node size: We measured the impact of the

number of elements per super node1 on performance while

keeping the total input keys size fixed. We built a hash

table with randomly generated keys and different super node

sizes. Then we created the shuffled query list with the same

keys existing in the hash table to perform search operations.

We kept our reorder algorithm enabled for this experiment.

Fig. 4 shows the results of super node sizes of 4*4, 8*4,

16*4, and 32*4 bytes.

Our experiment results show that super node size sig-

nificantly affects the performance of our hash table. When

super node size is small, the traversal speed is faster as

each thread in the operation may need to traverse the entire

bucket to find its target. When a bucket holds more than

one super node, the performance impact of super node

size decreases relatively due to dynamic memory allocation

overhead and the bucket traversal time. In the following

experiments, we choose 16*4 bytes to be our super node size

for the following reasons. First, the way that we optimize

the reorder algorithm (e.g., combining keys with nearby hash

values) leaves smaller super node more reasonable. Suppose

that the size of the super node is 32*4 bytes (e.g., the

size of a cache line), when some threads in a warp load a

super node, other threads are not likely to be mapped to the

same super node, which results in more global loads. With a

smaller super node (e.g., 16*4 bytes), the reorder algorithm

decreases the repeated global loads because threads in a warp

may load their super nodes directly from the cache. Second,

smaller super nodes (e.g., 4*4 or 8*4 bytes) may trigger

more dynamic allocations as the number of total key-value

pairs stored in the hash table increases, which decreases the

performance.

1Note that the choices of super node sizes are guided by CUDA coop-
erative groups [14] where cooperative groups only allow finer granularity
at level {1, 2, 4, 8 ,16, 32}. Expected length indicates how many super
nodes exist per bucket.

Figure 4: The performance impact of super node size. Ex-

pected lengths 0.5 and 1 indicate that there are 1 and 2 super

nodes per bucket respectively. Note that when each bucket

owns more than one node, dynamic memory allocation is

necessary.

2) Length of combined buckets in the reorder algorithm:
The objective of our reorder algorithm is to combine nearby

buckets and partition data elements based on those combined

buckets (line 7 in Algorithm 1). We measured the efficiency

of our reorder algorithm on various lengths of combined

buckets using search operations. Fig. 5 shows the experi-

mental results. When the reorder algorithm is disabled (i.e.,

length of combined buckets is 0), we form a baseline for

our search operation where the keys in the query list are

randomly organized. Note that the total time consists of two

components - the search and the reorder time. As we increase

the number of combined buckets, the total time decreases

because our reorder algorithm makes searching more cache-

friendly. However, from the figure one can see that when

too few or too many buckets are combined, the efficiency of

our reorder algorithm diminishes. We observed two reasons

for that. When there are too few combined buckets, the

reorder algorithm suffers from poor cache performance as

analyzed in Section IV. The input query list for reorder

resides in contiguous memory but the data elements are

randomly located. So, every time a cooperative group or a

warp reads memory (e.g., 128 bytes), it achieves coalesced

memory access. But when writing to different buckets (line

12 in Algorithm 1), the threads in the same warp or group are

more likely to write to different cache lines, which results

in an inefficient memory access pattern. When there are too

many combined buckets, contention becomes an issue even

though writing to memory could be efficient. This causes

many threads to modify the same memory unit (line 8 and

line 10 in Algorithm 1). In Fig. 5, when the number of

combined buckets is roughly between 32 and 256, our hash

table shows best performance with the total 219 buckets. In

general, we find the ratio between total buckets and the

number of combined buckets, 1/256 (i.e., combining 256

buckets for the different number of total buckets), is a good

6

Figure 5: The performance impact of the length of combined

buckets. The total number of buckets is 219.

choice.

3) Threshold for dynamic mapping schemes: We con-

ducted this experiment to determine when we should switch

between the one-to-one mapping and the many-to-one map-
ping schemes. Note that the many-to-one mapping scheme

is designed to solve the thread divergence issue. So in order

to better understand the difference of two schemes on the

thread divergence issue, we conducted the experiment on

two different settings. In the uniform operation setting (e.g.,

all searches), Fig. 6a shows that the one-to-one mapping
and many-to-one mapping schemes have no performance

crossover point, which indicates that one-to-one mapping
scheme consistently outperforms when all threads perform

the same operation. In the mixed operation setting (e.g.,

searches and updates) of Fig. 6b, however, we see a per-

formance crossover point roughly at an expected length of

0.6. We believe that before the crossover point, the one-to-
one mapping scheme wins due to its higher throughput, and

after the crossover point, the many-to-one mapping scheme

presents less thread divergence by having threads in warps

work together to finish an operation at a time so that the

threads possibly converge at the same time. Based on our

experiment, we chose an expected length of 0.6 as the value

of the threshold τ for our dynamic mapping schemes. Note

that the dynamic mapping schemes go in effect only when

a setting of the mixed operations is required.

B. Contribution of Reorder Algorithm

We performed experiments to show the effectiveness of

our proposed reorder algorithm by enabling and disabling

it, and measuring changes in cache hit rate and cache

bandwidth using the performance counters provided in the

NVIDIA Visual Profiler [14]2. When disabled, the keys in

the input query list are randomly arranged. As shown in

Fig. 7, reorder enabled always outperforms reorder disabled

2Note that the data is retrieved from NVIDIA GTX 1070 since either the
visual profiler or the nvprof doesn’t support GTX 3090 yet with a compute
capability of 8.6 that is higher than that of 7.0.

across different expected lengths. The average speedup is

around 4.33×.
1) Effectiveness of reorder: We use search operations in

this experiment. When the reorder algorithm is disabled,

the keys in the input query list remain unchanged. As

shown in Fig. 7, given different expected lengths, enabling

the reorder algorithm always gives better performance. The

average speed up is around 4.33×. It is noteworthy that our

reorder algorithm achieves small speed ups only when the

expected length is short. This is because when it is short

(e.g., less than 0.2), the number of buckets is too many,

the total number of data that each row can hold is small (

i.e., M = �N/B� in Algorithm 1). In this case, since the

key distribution across buckets is not perfectly uniform, the

reorder algorithm has to find available locations for some

keys in other rows, which decreases the performance of the

reorder algorithm.
2) Cache performance: We also conducted a search

experiment to measure the effectiveness of our reorder

algorithm on L2 cache performance (data provided by the

NVIDIA Visual Profiler) under different situations. From

Table I, one can see with reordering enabled, our proposed

DACHash boosts L2 cache bandwidth by 9.18×, and L2

cache hit rate by 2.68×. In short, as mentioned early

in Section IV, the effect of memory operations on GPU

performance cannot be ignored. By applying our proposed

reorder algorithm, we can improve data locality because

adjacent threads will possibly map to the same or nearby

buckets. Therefore, the overall performance is improved by

increasing L2 cache bandwidth and hit rate.

Reorder enabled Reorder disabled

L2 Cache Bandwidth 901.25 GB/s 98.196 GB/s
L2 Cache Hit Rate 91.00 % 34.00 %

Table I: L2 cache performance comparison.

C. Build Rate Comparison

We compared the build rate of DACHash to those of

SlabHash. As shown in Fig. 8, our proposed DACHash

performs better than the state-of-the-art SlabHash when the

expected length roughly ranges from 0.1 to 0.6. The peak

building rate of DACHash is 3.42 billion elements/second,

compared to 2.9 billion elements/second in SlabHash with

the total number of buckets of 222. However, we noticed that

our hash table suffers when the expected length is very low

(e.g., 0.0625). We think this is due to the limitation of the

reorder algorithm as we mentioned in Section VI-B1. The

reorder algorithm has to update indexes for some data in

other rows. Also, our build rates are lower when expected

length is high (e.g., 0.6). We believe there are two reasons

for it. The first reason is that when we have larger expected

length, we also expect the time for traversing the super nodes

to find empty spots longer. Increased traversal times decrease

7

(a) Uniform operations (b) Mixed operations

Figure 6: The performance impact of threshold across different settings. The total number of elements is fixed at 222 and

the expected length varies.

Figure 7: The performance impact of the proposed reorder

algorithm. The total number of elements stored in the table

is 222.

Figure 8: Build rate comparison. The total number of ele-

ments inserted in the table is 222.

the overall build rate. The second reason is that when we

have fewer buckets, the contention on the same memory

unit (line 8 in Algorithm 1) intensifies so that the overall

throughput decreases.

D. Static Search Comparison

For static search comparison, we have two different setups

as shown in Fig. 9. For both setups, we first build a hash

table with randomly generated key-value pairs, then create

a query list with the same keys but re-arranged to perform

search operations. The total number of elements varies in

Fig. 9a, while the expected length varies in Fig. 9b.

Fig. 9a shows the result of DACHash compared to Slab-

Hash when the total number of queries varies. The peak

performance of DACHash is 8.66 billion elements/second,

while the peak performance of SlabHash is only 7.55 billion
elements/second. On average, DACHash is improved by

7.1% compared to SlabHash. It is noteworthy that DACHash

under-performs when the total number of elements is small

or large while the expected length is fixed (e.g., 0.5). Recall

that we synchronize the reorder algorithm by adopting a

host-side CUDA API. So when the total number of elements

is small (e.g., 219), our reorder algorithm suffers from the

extra kernel launch and its extra synchronization time, which

increases the overall finishing time. When the total elements

ranges from 225 to 228, our reorder algorithm suffers from

the situation where writing to different buckets in the reorder

algorithm results in an inefficient memory access pattern.

Also, one can see that DACHash outperforms SlabHash

when the total elements ranges from 220 to 224. The reason

is that our reorder algorithm indeed finds a balance point at

which the benefits of reordering outweigh its drawbacks. In

addition, one may notice that in Fig. 9a, we have an extra

base line. This is a baseline measuring the performance of

purely one-to-one mapping scheme without any other tech-

niques involved. Note that when the total number is small

(e.g., 219), either DACHash or SlabHash under-performs the

baseline. We think this is due to the GPU characteristics of

latency hiding. When the total number of elements is small,

GPUs actually hide memory latency fairly well. This also

implies why we prefer to design a reorder algorithm instead

8

of using a sorting algorithm directly because sorting may

perform well on a small data scale but will suffer on a large

data scale.

Fig. 9b also demonstrates the searching performance

where the expected length varies. The experiment shows that

DACHash outperforms SlabHash and achieves a searching

throughput above 8.65 billion elements/second and improves

SlabHash by 41.53% on average. However, there are several

observations: First, the performance of our hash table de-

creases when the expected length increases. This is because,

in this experiment, we rely on the one-to-one mapping
scheme so that when the expected length increases, the

bucket traversal time to find the matching key also increases,

and the contention on the same memory unit will increase

as well along with the increased expected length. Second,

when the expected length is small (e.g., <0.1), SlabHash

could perform better than DACHash. We believe the reason

is that our reorder algorithm is less efficient when mapping

to other rows.

E. Concurrent Operations Comparison

DACHash also supports concurrent execution of the

search, update, and delete operations. In the experiment,

we tested the performance in two groups. One is a mix of

80% search operations and 20% updates operations (10%

update and 10% delete operations respectively). The other

is a mix of 60% search operations and 40% updates opera-

tions (20% update and 20% delete operations respectively).

Fig. 10 shows the DACHash and SlabHash results. It is

clear that DACHash outperforms Slabhash by 19.92% on

average, and the peak performance of DACHash with the

dynamic mapping schemes is 5.54 billion operations/second,

while SlabHash has the peak performance of 4.41 billion
operations/second. We believe there are mainly three reasons

that account for the difference. First, the optimized structure

of DACHash enables each thread to traverse its target bucket

no matter what operations it has. This helps reduce thread

divergence and improve warp execution efficiency. Second,

our proposed reorder algorithm is more cache-friendly. Even

though GPUs hide memory latency by scheduling available

thread blocks, frequent memory operations still deteriorates

the efficacy of latency hiding. So in our reordered input

list, keys with the same or nearby hash values are grouped

together. This increases the likelihood of threads in a warp

being mapped to the same or nearby super nodes, so that

the cache hit rate improves. Third, our dynamic mapping

schemes, especially the many-to-one mapping scheme, min-

imizes the effect of thread divergence by making threads in

a group process operations cooperatively with the help of

CUDA primitives such as shfl() and ballot(), thus improves

the overall performance. Also, note that when there are more

update operations such as 20% update and 20% delete, the

throughput for them is lower than that of 10% update and

10% delete. We believe that updates operations (e.g., update

and delete) may trigger more memory operations so that they

are more expensive than search.

VII. CONCLUSIONS

In the past decade, rapidly growing data in numerous

fields such as computational geometry and bio-informatics

have given rise to research in high throughput hash ta-

bles. Hash table suffers from poor memory performance

and thread divergence on GPUs. We present a dynamic,

high throughput, GPU architecture-aware hash table in this

paper. Our proposed reorder algorithm and dynamic map-

ping schemes help improve the performance of hash table

significantly, and beats the state-of-the-art implementation

reported in the literature. We conducted experiments in three

different categories to compare against the state-of-the-art

solution SlabHash to verify our proposed DACHash. We

also demonstrated the effectiveness of our proposed reorder

algorithm by presenting the performance counters for L2

cache hit rate and bandwidth from the NVIDIA Visual

Profiler.

ACKNOWLEDGMENT

This research is supported by the National Science Foun-

dation under Grant 1907838.

REFERENCES

[1] Y. Xu, L. Gao, R. Wang, Z. Luan, W. Wu, and D. Qian,
“Lock-based synchronization for gpu architectures,” in Pro-
ceedings of the ACM International Conference on Computing
Frontiers, 2016, pp. 205–213.

[2] M. M. Michael, “High performance dynamic lock-free hash
tables and list-based sets,” in Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architec-
tures, 2002, pp. 73–82.

[3] P. Misra and M. Chaudhuri, “Performance evaluation of
concurrent lock-free data structures on gpus,” in 2012 IEEE
18th International Conference on Parallel and Distributed
Systems. IEEE, 2012, pp. 53–60.

[4] L. Verkleij, “Boosting shared hash tables performance on
gpu,” Ph.D. dissertation, University of Twente, Enschede, The
Netherlands, 2016.

[5] B. Lessley and H. Childs, “Data-parallel hashing techniques
for gpu architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 237–250, 2019.

[6] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic
hash table for the gpu,” in 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE,
2018, pp. 419–429.

[7] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher,
J. D. Owens, and N. Amenta, “Building an efficient hash
table on the gpu,” in GPU Computing Gems Jade Edition.
Elsevier, 2012, pp. 39–53.

9

(a) The expected length is 0.5. (b) The total number of elements is 222.

Figure 9: Static search comparison.

Figure 10: Concurrent operation comparison. The total num-

ber of operations is 222 and node size is 16*4 bytes. Note that

we use the dynamic mapping schemes in this experiment.

[8] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of
Algorithms, vol. 51, no. 2, pp. 122–144, 2004.

[9] I. Garcı́a, S. Lefebvre, S. Hornus, and A. Lasram, “Coherent
parallel hashing,” ACM Transactions on Graphics (TOG),
vol. 30, no. 6, pp. 1–8, 2011.

[10] F. Khorasani, M. E. Belviranli, R. Gupta, and L. N. Bhuyan,
“Stadium hashing: Scalable and flexible hashing on gpus,” in
2015 International Conference on Parallel Architecture and
Compilation (PACT). IEEE, 2015, pp. 63–74.

[11] L. Gao, Y. Xu, C. Xu, R. Wang, H. Yang, Z. Luan, and
D. Qian, “Towards a general and efficient linked-list hash
table on gpus,” in 2019 IEEE 21st International Confer-
ence on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2019, pp. 1452–1460.

[12] D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu,
and B. Schmidt, “Warpcore: A library for fast hash tables on
gpus,” arXiv preprint arXiv:2009.07914, 2020.

[13] NVIDIA. (2021) Nvidia ampere architecture. [Online].

Available: https://www.nvidia.com/en-us/data-center/ampere-
architecture/

[14] D. Guide, “Cuda c programming guide,” NVIDIA, July, 2013.

10

