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Abstract—GPU acceleration of hash tables in high-volume
transaction applications such as computational geometry and
bio-informatics are emerging. Recently, several hash table
designs have been proposed on GPUs, but our analysis shows
that they still do not adequately factor in several important
aspects of a GPU’s execution environment, leaving large room
for further optimization.

To that end, we present a dynamic, cache-aware, concurrent
hash table named DACHash. It is specifically designed to
improve memory efficiency and reduce thread divergence
on GPUs. We propose several novel techniques including a
GPU-friendly data structure & sizing, a reorder algorithm,
and dynamic thread-data mapping schemes that make the
operations of hash table more amendable to GPU architecture.
Testing DACHash on an NVIDIA GTX 3090 achieves a peak
performance of 8.65 billion queries/second in static searching
and 5.54 billion operations/second in concurrent operation
execution. It outperforms the state-of-the-art SlabHash by
41.53% and 19.92% respectively. We also verify that our
proposed technique improves L2 cache bandwidth and L2
cache hit rate by 9.18x and 2.68 x respectively.
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I. INTRODUCTION

GPUs have become the platform of choice for many
compute and data intensive applications in various fields.
Traditionally CPU centric data structures are finding GPU
solution. Hash table algorithms offering fast data access in
near constant time are important for the fields of computa-
tional geometry and bio-informatics, but not well researched.
Designing a high-performance hash table on massively
multi-threaded GPUs is a challenging task. Tens of thou-
sands of active threads attempting simultaneous hash table
access can cause severe performance degradation unless
carefully designed. Traditional lock-based implementations
suffer from high thread contention [1], leaving non-blocking
methods a better choice for the GPU environment [2],
[3], [4]. Nonetheless, any approach must accommodate and
address the fact that GPUs are very sensitive to memory
access patterns and thread divergence [5].

In this paper, we present a hash table specifically designed
and optimized for a GPU architecture. We propose several
novel techniques to address two major sources of GPU
inefficiency - memory access patterns and thread divergence.
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First, we introduce a GPU-friendly chaining structure to
support hash collisions. This enables mutability via dynamic
memory management for new data to be stored or old data
to be deleted, while avoiding the need for repeated rebuilds
from scratch. We optimize the chaining structure into a
GPU-friendly linked-list of super nodes, where each super
node is a small array of key-value pairs. Our cache-aware
super node sizing improves memory access patterns, which
is an important design consideration for a GPU’s SIMT
(Single Instruction Multiple Threads) execution model.

Second, we improve the efficiency of dynamic memory
management by pre-allocating a large memory pool and
using a concurrent stack to manage memory buffer allo-
cation and deallocation dynamically. This helps reduce the
overhead of searching candidates to delete, and the cost of
memory allocation and deallocation on GPUs.

Third, we reorder input data elements based on their hash
values to improve cache performance. Rather than using
expensive traditional sorting, our proposed reorder algorithm
efficiently groups operations on the fly, increasing the like-
lihood of data reuse and coalesced memory transactions. To
our knowledge, this is the first attempt to study and improve
the locality of hash table data structures on GPUs.

Lastly, we design a novel dynamic mapping scheme
that can switch between two different thread-data mapping
schemes depending on the shape of hash table: A one-to-one
mapping scheme maps each thread to a key so that threads
process their keys individually; and a many-to-one mapping
scheme maps each thread to a key, but an entire warp (32
threads) cooperatively processes 32 keys sequentially. Our
proposed dynamic mapping scheme automatically switches
between these two mapping schemes to achieve better per-
formance.

Our experiments show that on a latest NVIDIA GPU,
GTX 3090, our proposed DACHash achieves a static
searching throughput and concurrent operations through-
put of 8.65 billion queries/second and 5.54 billion opera-
tions/second respectively. It outperforms the state-of-the-art
SlabHash [6] (7.55 billion queries/second and 4.41 billion
operations/second) with all overheads included. On average,
DACHash is 41.53% and 19.92% faster than SlabHash
under these two categories. We also profile and verify the



cache performance of DACHash using the NVIDIA Visual
Profiler. It shows our proposed technique improves L2 cache
bandwidth and hit rate by 9.7/8x and 2.68 <, demonstrating
that the improved cache performance can yield a significant
overall performance boost.

II. RELATED WORKS

Several hash table designs and implementations have
recently been reported for GPUs in the literature.

Alcantara et al. [7] built a hash table on GPUs, which
performs parallel insertions and retrievals. Their work is
based on Cuckoo Hashing [8] and relies on atomic oper-
ations during multi-threads table construction. The authors
use a set of hash functions to find a key in multiple candidate
locations for insertion as Cuckoo Hashing does. Evicted
keys need to be inserted into another location until no more
evicted keys exist. A careful design of a set of hash functions
is required since hash functions determine the frequency of
rebuilding from scratch. The order of hash functions also
matters.

Garcia et al. [9] presented a parallel hashing method
where their hashing could reach high load factor but with a
low rebuilding failure rate. The authors designed a coherent
hash function to leverage coherence in memory and further
increase locality in memory. In addition, coherent hashing
also makes groups of threads execute consistent paths.

Khorasani et al. [10] proposed a hashing method called
Stadium Hashing (Stash) and Stash with collaborative lanes
(cIStash). Stash Hashing has two basic structures: a table
for keeping all keys and values, and a compact auxiliary
structure called a ticket-board to maintain a ticket (consists
of the availability bit and the info bits) for every bucket
in the table. The availability bit determines if the bucket
is occupied and the info bits store information of the key.
This design reduces unnecessary accesses to the actual table
content according to the availability bit and the info bits,
which speeds up retrievals. By solving collisions via double-
hashing (primary and secondary hash functions), Stash al-
lows concurrent execution of mixed insertions and retrievals.
The secondary hash function generates a step size that could
hurt the memory performance on GPUs. clStash improves
warp execution efficiency by redistributing tasks to early-
finished threads in a warp.

SlabHash [6] proposes further improvements to the ef-
ficiency of warp execution and memory coalescing. The
authors proposed a warp-cooperative work-sharing (WCWS)
strategy, where all threads in a warp process one operation
at a time by utilizing warp-synchronous programming and
warp-wide communications. This design presents less thread
divergence when compared to other hash tables. The authors
also take advantage of array and linked-list structures to
further serve their WCWS strategy. The SlabHash designs
slabs which are arrays with key-value pairs stored. Each slab
has the size of 128 bytes that matches the size of a cache line
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Figure 1: Basic structure of DACHash. Bucket 0 (By) has
two super nodes and other buckets have one super node.
Each super node has a small array of key-value pairs as
well as a next pointer.

on GPUs. The SlabHash also designs a specialized memory
pool to implement dynamic allocation.

Gao et al. [11] adopted a structure similar to SlabHash. In
addition, the paper discusses the throughput of the WCWS
strategy. They show that when the number of elements stored
in the table is large, it could achieve higher throughput.
Otherwise, the throughput is relatively low. Gao et al. solves
the problem by proposing an adaptive model. In addition, the
authors present a reader-writer lock based synchronization
and bucket-level synchronization to ensure atomicity of hash
operations (individual hash operations or groups of hash
operations).

WarpCore [12] proposed a fast hash table on GPUs. They
proposes a memory-compact bucket list to support flexible
multi-value storage, a hashing scheme to improve global
memory access patterns by leveraging CUDA cooperative
groups, and an efficient techniques to support multi-GPUs.

III. BASIC DESIGN AND IMPLEMENTATION

In this section, we introduce the basic design and imple-
mentation of DACHash, including base data structure, orga-
nization, supported operations, and memory management.

A. Base data structure and organization

Each DACHash bucket is designed as a linked-list of small
arrays consisting of key-value pairs as shown in Fig. 1.
The array offers contiguous, linear memory access patterns,
while a linked-list chain offers easy, concurrent modification.

In our design, each node in the linked-list chain holds
multiple interleaved key-value pairs. We call these nodes
super nodes. The first super node connected to a bucket head
is pre-allocated. Subsequent super nodes are dynamically
allocated or deallocated at run time as needed.

The base data structure and organization of DACHash
offer several optimization opportunities. First, the combined
array/linked-list structure enables a natural way to support
collisions. Second, a chaining technique allows dynamic
allocation, instead of needing to rebuild the hash table
from scratch. Third, array structures achieve GPU-friendly
memory access patterns compared to a linked-list’s scattered



memory accesses. Fourth, super nodes offer flexible thread-
data mapping scheme options, e.g., one-to-one or many-to-
one mapping schemes.

B. Operations supported

We implement five basic hash table operations on unique
keys. CUDA atomic funtions ensure correctness. Note that,
although not implemented, duplicate keys can be accom-
modated without significant design changes. The supported
operations are:

Search is responsible for finding a key in the hash table
and returning its value. If no key is found, it returns null.
The operation starts by hashing a key to a bucket. Searching
begins at the bucket’s first super node. If no key matches,
it continues traversing the bucket’s super nodes until a
matching key is either found or it reaches the end of the
bucket list.

Insert adds a key-value pair to the hash table. Since keys
must be unique, we must first ensure the key exists in the
hash table. If it does, the operation acts as update, replacing
the old value with a new value. If it does not exist, it is
inserted into the hash table. A new super node may be
dynamically allocated if needed. When inserting a new key-
value pair into the table, it first looks for an empty slot in
the first super node of the bucket. If an empty slot exists, an
atomicCAS() (a CUDA atomic function) ensures a correct
insertion. If the first super node is full, the thread traverses
the super node list until it finds an empty slot. If it reaches
the last node in the bucket, the thread dynamically allocates a
new super node and connects the new node after the bucket’s
last super node using an atomicCAS(). Although multiple
threads may try to connect their super nodes after the last
super node simultaneously, only one thread will succeed.
The failing threads deallocate their nodes and retry until
they succeed. Once successful, the threads redo their insert
operation using the bucket’s new last super node.

Update finds the key to update its value. If the key is
found, it replaces its value with the new value using an
atomicExch(). Otherwise, the new pair is inserted.

Delete is similar to the search operation, but returns no
value. It starts its traversal at the first super node in the
bucket the key maps to. If found, it marks the key as
logically deleted. If not, it continues traversing super nodes
looking for the matching key until it reaches the last super
node in the bucket. This operation does not deallocate empty
super node. Deallocation is done by the clean operation (see
below).

Clean compacts the bucket’s super node linked-list, en-
suring only the last super node has any empty slots. We
implement the clean operation as a separate kernel, so no
other operations interfere when cleaning the hash table.
Deallocated super nodes are pushed back to our memory
stack for later use. The clean operation is only required when
the memory stack is empty.

toallocate() and t deallocate(SNs) simultaneously
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Figure 2: DACHash uses a concurrent stack to support
dynamic memory allocation. All pre-allocated super nodes
are pushed into the stack at the beginning. Two threads to
and t; compete for the same stack fop index in this example.

C. Memory stack

The insert, update, delete and clean operations may
require dynamic super node allocation or deallocation. To
support this, we pre-allocate a large number of super nodes
and place them on a concurrent stack. A pop allocates a
super node and a push deallocates a super node concurrently
as shown in Fig. 2. This is a simple, fast, GPU friendly
alternative to a CPU-side malloc() or free().

IV. REORDER

Input keys are hashed to different buckets. When they
are mapped to threads, a warp suffers from poor locality
because the super nodes within and across buckets are likely
scattered in memory. Memory requests from threads in a
warp are highly likely to reside in different cache lines
(uncoalesced) rather than a single line (coalesced). Such
poor spatial locality causes multiple memory transactions,
which in turn, significantly increases memory traffic. Slab-
Hash [6] proposed a work-sharing strategy within warps to
increase coalesced memory accesses. However, it still suffers
repeated linked-list traversals, which is another source of
poor locality. Suppose a warp processes a list of query keys
{0, 3, 7, 8} and the size of warp is 4, as visualized in Fig. 3.
The warp processes key 0, finds the key in bucket 0, and
loads the first super node. With this access, other keys stored
in that super node are loaded together but not used. The same
issue occurs for key 3 and key 7. In the mean time, the
super node loaded for key 0 may have been evicted from
the cache. When processing key 8, the warp starts over from
the beginning, and loads the first super node of bucket O,
then it loads the second super node that contains key 8. In
this case, the first super node is loaded twice. Even if the
warp issues coalesced memory requests, it may not end up
being an efficient use of data as it can still cause extra global
memory transactions and waste potential use of other keys
in the loaded super nodes.

We observed that such inefficiencies are caused by the
randomly arranged input data list. Reordering can improve
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Figure 3: Example of poor data reuse. A warp of 4 threads processes keys 0, 3, 7, 8. The shaded nodes indicate the visiting

super nodes by the warp.

the data locality and cache performance (i.e., hit rate and
bandwidth). Sorting is the traditional way of reorganizing
data. However, not only is a sort expensive on GPUs, but
also a strictly ordered sort is not required for our purpose.
We need only group the keys with the same hash value
together. To this end, we propose a reorder algorithm. In
our reorder algorithm, we take advantage of a pre-allocated
memory buffer on GPUs to partition data according to their
hash values. Keys with the same hash value compute their
indexes in this pre-allocated memory buffer so that keys
with the same hash value are physically close and adjacent
to each other in memory. By doing so, when each thread
claims its key, the adjacent threads are more likely mapped
to the same bucket. In this way, when traversing bucket’s
super nodes, threads in a warp probably request the same or
nearby super nodes, resulting in fewer memory transactions.
Compared to scattered memory requests, the total number of
global memory transactions can decrease significantly. Since
the input keys are partitioned based on their hash values,
when warps process these keys, the same or nearby super
nodes are likely loaded from the cache directly, so that the
cache performance increases as well.

Algorithm 1 details our proposed reorder algorithm. It
utilizes a pre-allocated GPU memory buffer named Reorder-
Space with the same or larger size than keysList but with an
additional dimension. Note that the size of ReorderSpace is
B * M, where B is the number of buckets and M is calculated
by [N/B] (line 1-4) where N is the total number of keys in
keysList, and the size of Record is B in order to keep track
of the latest index of buckets. The row index is defined by
bucket (hash) value, and an atomicAdd() is used to find the
corresponding index of that key in that row (line 8). By
doing so, keys with the same hash value will be mapped
to the same row in ReorderSpace. However, for our input
keys, we cannot ensure that keys have a perfect uniform
distribution across buckets. In this case, we have to arrange
keys with the indexes that are greater than M to a nearby
location (line 9-11). It checks whether the next row has an
empty spot to add. If so, it updates index. If not, check the
row after the next row until an empty spot is found. Lastly,
we add keys to ReorderSpace (line 12). Since the size of

Algorithm 1: Pseudocode for the proposed reorder
algorithm.

input: ReorderSpace
keysList
Record
N = lengthOf(keysList);
B = totalNumberOfBucket();
/I B = totalNumberOfBucket() /
lengthOfCombinedBuckets;
4 M = [N/BJ;
5 key = keysList[threadld];
6 bucket = hash(key);
7
8
9

W N -

// bucket = hash(key) / lengthOfCombinedBuckets;
index = atomicAdd(Record[bucket], 1);
while index >= M do
10 index = atomicAdd(Record[(++bucket) mod B],
D);
11 end
12 ReorderSpace[bucket][index] = key;

ReorderSpace is equal to or greater than the size of keysList,
it guarantees all keys will have a spot to be added.

However, the reorder algorithm delays operations until
the reorder process completes. This causes a synchroniza-
tion problem. To this end, we utilize host-side device-
synchronization via CUDA API. In order to speed up the
reorder algorithm, we also improve the algorithm. Instead
of grouping keys with the same hash value, we group keys
with nearby hash values. Originally, B is equal to the total
number of buckets in our hash table. By decreasing B (line
3), we can group the keys with nearby hash values into one
row. For instance, if we decrease B to B/4, every four hash
values will be grouped together, e.g., 0, 1, 2 and 3 (4 values).
In keysList, the probability of adjacent data elements that can
be mapped to the same row of ReorderSpace increases, so
the throughput of reorder is further improved.

V. DYNAMIC MAPPING SCHEMES

There are two common thread-data mapping schemes used
in hash table design: 1) a one-to-one mapping scheme, which



maps each thread to a single key so that threads can process
their 32 keys individually. Note that threads in a warp
could possibly exit at different times due to the different
operations they may have. The threads tend to have scattered
memory access patterns when reading from or writing to
GPU memory; and 2) a many-to-one mapping scheme,
which maps a warp to 32 keys but 32 threads in a warp work
and communicate with each other to cooperatively process a
single key at a time. Threads in a warp will converge at the
same time because all 32 threads in the warp will execute
the same low-level instructions and the memory access
pattern is likely to be coalesced. In general, each scheme
shows different performance characteristics. The one-to-one
mapping scheme outperforms when thread divergence is
not an issue (e.g., threads in a warp process same type
of operations), while the many-to-one mapping scheme is a
better choice when execution efficiency matters (e.g., threads
within a warp process different types of operations).

In order to better utilize two different schemes, we pro-
pose our dynamic mapping schemes where DACHash selects
one scheme over the other based on, so-called expected
length. The expected length €, is defined as the average
number of super nodes per buckets. Therefore the selection
of the proposed dynamic mapping schemes D, is expressed
as the following.

D_ O ife<r
| M otherwise

where O is one-to-one mapping scheme, M is many-to-one
mapping scheme, and 7 is a threshold.

Algorithm 2: Pseudocode for one-to-one mapping
scheme.

1 key = keysList[threadld];

2 value = valuesList[threadld];

3 bucket = hash(key);

4 superNode = getNextSuperNode(bucket);

5 do

6 for i < 0 to NODE_SIZE-1 do

7 if superNode[i].key == key then

8 SEARCHY();

9 or DELETE();

10 or UPDATE();

11 end
12 end
13 superNode = getNextSuperNode(superNode);

14 while superNode != nullptr;

15 if UPDATE() failed && isUPDATE then
16 | INSERT();

17 end

Algorithm 3: Pseudocode for many-to-one mapping
scheme.
key = keysList[threadld];
value = valuesList[threadld];
bucket = hash(key);
operation = operationsList[threadId];
superNode = getNextSuperNode(bucket);
tile =
tiled_partition(C'G_SIZ E)(this_thread_block());
laneld = tile.thread_rank();
7 for lane < 0 to CG_SIZE-1 do
8 /I a tile processes operations from 0 to
CG_SIZE-1;
9 share data in the lane'® of tile by tile.shfl();
10 do

A N A W N

11 tile reads superNode and finds target key by
tile.ballot();

12 if found then

13 SEARCH();

14 or DELETE();

15 or UPDATE();

16 else

17 ‘ share the next superNode by tile.shfl();

18 end

19 while superNode != nullptr;

20 if UPDATE() failed && isUPDATE then
21 | INSERT();

22 end

23 end

Our implementations of these mapping schemes are
shown in Algorithm 2 and 3 respectively. In the one-to-
one mapping scheme, groups of threads may have different
operations to perform and their finishing times are likely to
be different, resulting in low execution efficiency. The many-
to-one mapping schemes partitions thread blocks into tiles
and the size of tile is specified by CG_SIZE which can be {1,
2,4, 8 16, 32}. 1t enables threads communication by using
CUDA primitives such as shfl() and ballot(), and lastly tiles
would perform different hash operations, i.e., search, delete,
update, and insert. In the many-to-one mapping scheme, tiles
are more likely to execute the same low-level instructions so
that thread divergence is minimized, and the memory access
pattern is also improved.

VI. PERFORMANCE EVALUATION

We evaluated our proposed DACHash on an NVIDIA
GTX 3090, which is based on the AMPERE microarchi-
tecture [13] with compute capability of 8.6, 10496 CUDA
cores, and 24 GB off-chip global memory (Our experiments
on older NVIDIA GPU architectures showed very similar
performance behavior therefore those are not included in



this paper). We compiled our code with the CUDA 11.2
compiler. We divide our performance evaluation into three
parts. First, we show the performance impact of various
parameter values for the super node size, the length of
combined buckets in our proposed reorder algorithm, and
the threshold 7 for dynamic mapping schemes. Second,
we demonstrate the effectiveness of our reorder algorithm.
Lastly, we compare our results using the state-of-the-art
SlabHash [6] as a baseline for different categories, such as
build rate, static search throughput, and concurrent operation
throughput. In our experiments, we assume all keys are
unique. All overheads such as data copy and reordering are
included in our performance metrics. Experiments on other
GPU architectures with OpenCL implementation remain as
future work.

A. Impact of Parameters

1) Super node size: We measured the impact of the
number of elements per super node! on performance while
keeping the total input keys size fixed. We built a hash
table with randomly generated keys and different super node
sizes. Then we created the shuffled query list with the same
keys existing in the hash table to perform search operations.
We kept our reorder algorithm enabled for this experiment.
Fig. 4 shows the results of super node sizes of 4*4, 8*4,
16*4, and 32*4 bytes.

Our experiment results show that super node size sig-
nificantly affects the performance of our hash table. When
super node size is small, the traversal speed is faster as
each thread in the operation may need to traverse the entire
bucket to find its target. When a bucket holds more than
one super node, the performance impact of super node
size decreases relatively due to dynamic memory allocation
overhead and the bucket traversal time. In the following
experiments, we choose 16*4 bytes to be our super node size
for the following reasons. First, the way that we optimize
the reorder algorithm (e.g., combining keys with nearby hash
values) leaves smaller super node more reasonable. Suppose
that the size of the super node is 32*4 bytes (e.g., the
size of a cache line), when some threads in a warp load a
super node, other threads are not likely to be mapped to the
same super node, which results in more global loads. With a
smaller super node (e.g., 16¥4 bytes), the reorder algorithm
decreases the repeated global loads because threads in a warp
may load their super nodes directly from the cache. Second,
smaller super nodes (e.g., 4*4 or 8*4 bytes) may trigger
more dynamic allocations as the number of total key-value
pairs stored in the hash table increases, which decreases the
performance.

Note that the choices of super node sizes are guided by CUDA coop-
erative groups [14] where cooperative groups only allow finer granularity
at level {1, 2,4, 8 .16, 32}. Expected length indicates how many super
nodes exist per bucket.

® Expected length = 0.5
¥ Expected length = 1

¢
!

billion elements/second

3
y
3
X
3
y
;

8*4 16*4

Super Node Size (bytes)

Figure 4: The performance impact of super node size. Ex-
pected lengths 0.5 and 1 indicate that there are 1 and 2 super
nodes per bucket respectively. Note that when each bucket
owns more than one node, dynamic memory allocation is
necessary.

2) Length of combined buckets in the reorder algorithm:
The objective of our reorder algorithm is to combine nearby
buckets and partition data elements based on those combined
buckets (line 7 in Algorithm 1). We measured the efficiency
of our reorder algorithm on various lengths of combined
buckets using search operations. Fig. 5 shows the experi-
mental results. When the reorder algorithm is disabled (i.e.,
length of combined buckets is 0), we form a baseline for
our search operation where the keys in the query list are
randomly organized. Note that the total time consists of two
components - the search and the reorder time. As we increase
the number of combined buckets, the total time decreases
because our reorder algorithm makes searching more cache-
friendly. However, from the figure one can see that when
too few or too many buckets are combined, the efficiency of
our reorder algorithm diminishes. We observed two reasons
for that. When there are too few combined buckets, the
reorder algorithm suffers from poor cache performance as
analyzed in Section IV. The input query list for reorder
resides in contiguous memory but the data elements are
randomly located. So, every time a cooperative group or a
warp reads memory (e.g., 128 bytes), it achieves coalesced
memory access. But when writing to different buckets (line
12 in Algorithm 1), the threads in the same warp or group are
more likely to write to different cache lines, which results
in an inefficient memory access pattern. When there are too
many combined buckets, contention becomes an issue even
though writing to memory could be efficient. This causes
many threads to modify the same memory unit (line 8 and
line 10 in Algorithm 1). In Fig. 5, when the number of
combined buckets is roughly between 32 and 256, our hash
table shows best performance with the total 2'° buckets. In
general, we find the ratio between total buckets and the
number of combined buckets, 1/256 (i.e., combining 256
buckets for the different number of total buckets), is a good



18
16
1.4
12

0.8
0.6
0.4
0.2

earch Time(ms)
SBWEBHBE Reorder Time(ms)
------ Total Time(ms)

Total Time (ms)

& R P R P I
$ESPFE

Length of combined buckets

Figure 5: The performance impact of the length of combined
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choice.

3) Threshold for dynamic mapping schemes: We con-
ducted this experiment to determine when we should switch
between the one-to-one mapping and the many-to-one map-
ping schemes. Note that the many-to-one mapping scheme
is designed to solve the thread divergence issue. So in order
to better understand the difference of two schemes on the
thread divergence issue, we conducted the experiment on
two different settings. In the uniform operation setting (e.g.,
all searches), Fig. 6a shows that the one-fo-one mapping
and many-to-one mapping schemes have no performance
crossover point, which indicates that one-to-one mapping
scheme consistently outperforms when all threads perform
the same operation. In the mixed operation setting (e.g.,
searches and updates) of Fig. 6b, however, we see a per-
formance crossover point roughly at an expected length of
0.6. We believe that before the crossover point, the one-to-
one mapping scheme wins due to its higher throughput, and
after the crossover point, the many-to-one mapping scheme
presents less thread divergence by having threads in warps
work together to finish an operation at a time so that the
threads possibly converge at the same time. Based on our
experiment, we chose an expected length of 0.6 as the value
of the threshold 7 for our dynamic mapping schemes. Note
that the dynamic mapping schemes go in effect only when
a setting of the mixed operations is required.

B. Contribution of Reorder Algorithm

We performed experiments to show the effectiveness of
our proposed reorder algorithm by enabling and disabling
it, and measuring changes in cache hit rate and cache
bandwidth using the performance counters provided in the
NVIDIA Visual Profiler [14]%. When disabled, the keys in
the input query list are randomly arranged. As shown in
Fig. 7, reorder enabled always outperforms reorder disabled

Note that the data is retrieved from NVIDIA GTX 1070 since either the
visual profiler or the nvprof doesn’t support GTX 3090 yet with a compute
capability of 8.6 that is higher than that of 7.0.

across different expected lengths. The average speedup is
around 4.33X.

1) Effectiveness of reorder: We use search operations in
this experiment. When the reorder algorithm is disabled,
the keys in the input query list remain unchanged. As
shown in Fig. 7, given different expected lengths, enabling
the reorder algorithm always gives better performance. The
average speed up is around 4.33x. It is noteworthy that our
reorder algorithm achieves small speed ups only when the
expected length is short. This is because when it is short
(e.g., less than 0.2), the number of buckets is too many,
the total number of data that each row can hold is small (
ie., M = [N/B] in Algorithm 1). In this case, since the
key distribution across buckets is not perfectly uniform, the
reorder algorithm has to find available locations for some
keys in other rows, which decreases the performance of the
reorder algorithm.

2) Cache performance: We also conducted a search
experiment to measure the effectiveness of our reorder
algorithm on L2 cache performance (data provided by the
NVIDIA Visual Profiler) under different situations. From
Table I, one can see with reordering enabled, our proposed
DACHash boosts L2 cache bandwidth by 9./8x, and L2
cache hit rate by 2.68x. In short, as mentioned early
in Section IV, the effect of memory operations on GPU
performance cannot be ignored. By applying our proposed
reorder algorithm, we can improve data locality because
adjacent threads will possibly map to the same or nearby
buckets. Therefore, the overall performance is improved by
increasing L2 cache bandwidth and hit rate.

l [ Reorder enabled

L2 Cache Bandwidth 901.25 GB/s
L2 Cache Hit Rate 91.00 %

Reorder disabled H

98.196 GB/s
34.00 %

Table I: L2 cache performance comparison.

C. Build Rate Comparison

We compared the build rate of DACHash to those of
SlabHash. As shown in Fig. 8, our proposed DACHash
performs better than the state-of-the-art SlabHash when the
expected length roughly ranges from 0.1 to 0.6. The peak
building rate of DACHash is 3.42 billion elements/second,
compared to 2.9 billion elements/second in SlabHash with
the total number of buckets of 222. However, we noticed that
our hash table suffers when the expected length is very low
(e.g., 0.0625). We think this is due to the limitation of the
reorder algorithm as we mentioned in Section VI-B1. The
reorder algorithm has to update indexes for some data in
other rows. Also, our build rates are lower when expected
length is high (e.g., 0.6). We believe there are two reasons
for it. The first reason is that when we have larger expected
length, we also expect the time for traversing the super nodes
to find empty spots longer. Increased traversal times decrease
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ments inserted in the table is 2%2.

the overall build rate. The second reason is that when we
have fewer buckets, the contention on the same memory
unit ( line 8 in Algorithm 1) intensifies so that the overall
throughput decreases.

D. Static Search Comparison

For static search comparison, we have two different setups
as shown in Fig. 9. For both setups, we first build a hash
table with randomly generated key-value pairs, then create
a query list with the same keys but re-arranged to perform
search operations. The total number of elements varies in
Fig. 9a, while the expected length varies in Fig. 9b.

Fig. 9a shows the result of DACHash compared to Slab-
Hash when the total number of queries varies. The peak
performance of DACHash is 8.66 billion elements/second,
while the peak performance of SlabHash is only 7.55 billion
elements/second. On average, DACHash is improved by
7.1% compared to SlabHash. It is noteworthy that DACHash
under-performs when the total number of elements is small
or large while the expected length is fixed (e.g., 0.5). Recall
that we synchronize the reorder algorithm by adopting a
host-side CUDA API. So when the total number of elements
is small (e.g., 2'°), our reorder algorithm suffers from the
extra kernel launch and its extra synchronization time, which
increases the overall finishing time. When the total elements
ranges from 2% to 2%, our reorder algorithm suffers from
the situation where writing to different buckets in the reorder
algorithm results in an inefficient memory access pattern.
Also, one can see that DACHash outperforms SlabHash
when the total elements ranges from 220 to 22*. The reason
is that our reorder algorithm indeed finds a balance point at
which the benefits of reordering outweigh its drawbacks. In
addition, one may notice that in Fig. 9a, we have an extra
base line. This is a baseline measuring the performance of
purely one-to-one mapping scheme without any other tech-
niques involved. Note that when the total number is small
(e.g., 219), either DACHash or SlabHash under-performs the
baseline. We think this is due to the GPU characteristics of
latency hiding. When the total number of elements is small,
GPUs actually hide memory latency fairly well. This also
implies why we prefer to design a reorder algorithm instead



of using a sorting algorithm directly because sorting may
perform well on a small data scale but will suffer on a large
data scale.

Fig. 9b also demonstrates the searching performance
where the expected length varies. The experiment shows that
DACHash outperforms SlabHash and achieves a searching
throughput above 8.65 billion elements/second and improves
SlabHash by 41.53% on average. However, there are several
observations: First, the performance of our hash table de-
creases when the expected length increases. This is because,
in this experiment, we rely on the one-fo-one mapping
scheme so that when the expected length increases, the
bucket traversal time to find the matching key also increases,
and the contention on the same memory unit will increase
as well along with the increased expected length. Second,
when the expected length is small (e.g., <0.1), SlabHash
could perform better than DACHash. We believe the reason
is that our reorder algorithm is less efficient when mapping
to other rows.

E. Concurrent Operations Comparison

DACHash also supports concurrent execution of the
search, update, and delete operations. In the experiment,
we tested the performance in two groups. One is a mix of
80% search operations and 20% updates operations (10%
update and 10% delete operations respectively). The other
is a mix of 60% search operations and 40% updates opera-
tions (20% update and 20% delete operations respectively).
Fig. 10 shows the DACHash and SlabHash results. It is
clear that DACHash outperforms Slabhash by 79.92% on
average, and the peak performance of DACHash with the
dynamic mapping schemes is 5.54 billion operations/second,
while SlabHash has the peak performance of 4.41 billion
operations/second. We believe there are mainly three reasons
that account for the difference. First, the optimized structure
of DACHash enables each thread to traverse its target bucket
no matter what operations it has. This helps reduce thread
divergence and improve warp execution efficiency. Second,
our proposed reorder algorithm is more cache-friendly. Even
though GPUs hide memory latency by scheduling available
thread blocks, frequent memory operations still deteriorates
the efficacy of latency hiding. So in our reordered input
list, keys with the same or nearby hash values are grouped
together. This increases the likelihood of threads in a warp
being mapped to the same or nearby super nodes, so that
the cache hit rate improves. Third, our dynamic mapping
schemes, especially the many-to-one mapping scheme, min-
imizes the effect of thread divergence by making threads in
a group process operations cooperatively with the help of
CUDA primitives such as shfl() and ballot(), thus improves
the overall performance. Also, note that when there are more
update operations such as 20% update and 20% delete, the
throughput for them is lower than that of 10% update and
10% delete. We believe that updates operations (e.g., update

and delete) may trigger more memory operations so that they
are more expensive than search.

VII. CONCLUSIONS

In the past decade, rapidly growing data in numerous
fields such as computational geometry and bio-informatics
have given rise to research in high throughput hash ta-
bles. Hash table suffers from poor memory performance
and thread divergence on GPUs. We present a dynamic,
high throughput, GPU architecture-aware hash table in this
paper. Our proposed reorder algorithm and dynamic map-
ping schemes help improve the performance of hash table
significantly, and beats the state-of-the-art implementation
reported in the literature. We conducted experiments in three
different categories to compare against the state-of-the-art
solution SlabHash to verify our proposed DACHash. We
also demonstrated the effectiveness of our proposed reorder
algorithm by presenting the performance counters for L2
cache hit rate and bandwidth from the NVIDIA Visual
Profiler.
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