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GWAS of longitudinal trajectories at biobank scale
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Summary

Biobanks linked to massive, longitudinal electronic health record (EHR) data make numerous new genetic research questions feasible.
One among these is the study of biomarker trajectories. For example, high blood pressure measurements over visits strongly predict
stroke onset, and consistently high fasting glucose and Hb1Ac levels define diabetes. Recent research reveals that not only the mean level
of biomarker trajectories but also their fluctuations, or within-subject (WS) variability, are risk factors for many diseases. Glycemic vari-
ation, for instance, is recently considered an important clinical metric in diabetes management. It is crucial to identify the genetic factors
that shift the mean or alter the WS variability of a biomarker trajectory. Compared to traditional cross-sectional studies, trajectory anal-
ysis utilizes more data points and captures a complete picture of the impact of time-varying factors, including medication history and
lifestyle. Currently, there are no efficient tools for genome-wide association studies (GWASs) of biomarker trajectories at the biobank
scale, even for just mean effects. We propose TrajGWAS, a linear mixed effect model-based method for testing genetic effects that shift
the mean or alter the WS variability of a biomarker trajectory. It is scalable to biobank data with 100,000 to 1,000,000 individuals and
many longitudinal measurements and robust to distributional assumptions. Simulation studies corroborate that TrajGWAS controls the
type I error rate and is powerful. Analysis of eleven biomarkers measured longitudinally and extracted from UK Biobank primary care
data for more than 150,000 participants with 1,800,000 observations reveals loci that significantly alter the mean or WS variability.

Introduction

Biomarker trajectories are important phenotypes that
reflect the evolution of an individual’s health or disease
progression.” With the increasing use of electronic
health records (EHRs) linked with biobanks, large scale
and repeatedly measured EHR-based quantitative labora-
tory-derived phenotypes are becoming highly influential
in genetic studies of human health.*° For example, a
recent LabWAS tool demonstrates the broad impact of us-
ing such “real world” measurements for genetic association
studies.” LabWAS summarizes longitudinal measurements
by taking the mean for analyses. Although proven to be
robust, this approach may lose power by ignoring the
many rich features in the whole trajectories. Identifying
genetic and clinical factors associated with these longitudi-
nal trajectories can quantify the susceptibility to the onset
of disease and disease progression, which ultimately offers
new opportunities for early clinical prevention.'*°
Besides mean level trajectory patterns, the biomarker
fluctuations may also differ between individuals; some
individuals show higher levels of variation around
their mean than others (Figure 1). This intra-individual
variability or within-subject (WS) variability'""'* has been
shown to be an important risk factor for disease. For
example, among diabetes patients, visit-to-visit intra-indi-
vidual fasting glucose variability is a risk factor for the

development of vascular complications,'*"'® independent
of the glycemic control of the mean; blood pressure vari-
ability has been associated with the increased risk of heart
failure'® and stroke.'' Experimental research has revealed
the biological basis of glycemic variability and diabetic kid-
ney injury.'” WS variability in reaction times has also been
suggested as a leading endophenotype for neurocognitive
disorders, such as attention deficit hyperactivity disorder
and schizophrenia.'®'? As the wearable devices gain
more and more popularity, WS variability becomes a
clinical metric of disease management, such as the glucose
coefficient of variability output from the continuous
glucose monitoring (CGM) device report.””**

WS variability differs from the between-subject (BS) vari-
ability, which also has recently attracted much attention.
Variance quantitative trait loci (vQTLs) analysis seeks
to identify loci that show different trait variances
among groups of individuals with different variant
genotypes.””>> Such phenotypic variance heterogeneity
can be caused by gene-by-environment interaction,
selection, epistasis, or phantom vQTLs. vQTL analysis is
typically performed on a cross-sectional cohort, while
TrajGWAS requires longitudinal data. In contrast to vQTL,
TrajGWAS investigates genetic contributions to the WS
variability instead of BS variability. Thus, TrajGWAS and
vQTL analyses can provide complementary insights into
the etiology of a disease. As an interesting example, we
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Figure 1. lllustration of TrajGWAS
TrajGWAS identifies the genetic factors that
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(WS) variability of a biomarker trajectory
(e.g., blood pressure measurements over
visits), which changes with time-varying co-
variates (e.g., medication history) or time-
invariant covariates (e.g., sex).
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both time-varying (e.g.,, medication
use or adherence to the treatment
regime) and time-invariant features
(e.g., sex and genes). Regressing the
subject-level variability summaries on
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find that the well-known FTO (MIM: 610966) vQTL for
body mass index (BMI)*° (p value = 1.16 X 10~192) is not
associated with the WS variability (p value = 1.18 x 107%)
at the genome-wide significance level.

Identifying genome-wide genetic contributions to
longitudinal trajectories, including both mean and WS
variability, is both methodologically and computationally
challenging. Despite recent efforts,”’ *° no existing
software is able to analyze massive longitudinal traits at
the biobank scale. The linear mixed effect model (LMM)
is a powerful and popular method for longitudinal data
analysis. Generalizations such as the mixed-effects loca-
tion scale model®® allow for simultaneous modeling of
the mean and variability of the longitudinal measurement,
increase power, and reduce bias. It leverages information
across individuals to produce more precise estimates.®’
However, the expensive numerical integration required
in each iteration prohibits many modern data applica-
tions. For example, the run times of the full likelihood
approach with MixWILD software®”** on two simulated
datasets with 1,000 individuals and ten observations
per individual ranged from 40 min to 10+ h depending
on the different modeling assumptions being made.
MLwiN,** a multi-level model (a type of mixed effect
model), has been used to estimate the mean trajectories
while accounting for the change in scale and variance
of measures over time.' However, none of these tools
were designed for modern genome-wide scans. The heuris-
tic strategies being employed in practice involve a two-
stage model: (1) summarize a subject-level measure of the
variation of the longitudinal measurement such as stan-
dard deviation (SD), average real variability (ARV), or the
coefficient of variation (CV); (2) model those as the re-
sponses with covariates.'>*>*® This framework makes an

predictors leads to serious bias.’’ The
simulation study in supplemental
methods, section C, shows that,
without properly adjusting for time-
varying covariates, the heuristic method can seriously
inflate the type I error.

Building upon our recent methods, within-subject vari-
ance estimator by robust regression (WiSER),*” we derive
an ultra-fast score test, which only requires fitting one
null model across the whole genome-wide set. This testing
strategy scales linearly in the number of individuals. We
also develop and implement a saddlepoint approximation
(SPA) for our score test to ensure well-controlled type I error
rates for single rare variant testing with minor allele fre-
quencies (MAFs) as low as 0.001.

Material and methods

An LMM framework for testing genetic effects on the
trajectory mean and WS variability

Our modeling assumptions are as follows. Assume there are m inde-
pendentindividuals, individual i has n; longitudinal measurements
of abiomarker, and n = 37" n; is the total number of observations.
Consider an LMM for modeling different sources of variation in a

biomarker in the longitudinal setting

Vi=Xj 8+ 8By + Zjv; + €, (Equation 1)
where yj; is individual i’s measurement at occasion je {1,2,...,n;},
x; is the pXx1 vector of regressors with corresponding regression
coefficients 3, g; is the genotype dosage of individual i with corre-
sponding genetic mean effect 8,, and z; is the gx 1 vector of cova-
riates with corresponding random effects v;. The WS variability is
captured by the random terms ¢; with mean zero and inhomoge-
neous variance

2

ey = €XP (Wﬁ“' +8iTy + wi) ; (Equation 2)

where w; is the 2X 1 vector of covariates with corresponding fixed
effects 7, 7, is the genetic effect on the WS variability, and w; is a
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random intercept. We assume that the random effects (v, w;)" are
independent of ¢;;, have mean zero, and have covariance
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Covariates x;, z;;, and wjy; typically contain an intercept and can
include both time-invariant covariates, e.g., sex and baseline mea-
surements, and time-varying covariates, e.g., age at measurement,
medication history, and life-style indicators. Individuals can have
varying numbers of observations, which do not need to be
aligned.

Given a longitudinal biomarker of interest, our primary goal is
to test (1) the mean effect of genotype, Hy : 8, = 0, i.e., whether
a genotype shifts the mean of the biomarker trajectory; (2) the
WS variance effect of genotype, Hy : 7, = 0, i.e., whether a geno-
type changes the WS variation of the biomarker trajectory around
its mean; and (3) the joint effect, Ho : 8, = 73 = 0, i.e., whether a
genotype affects either the mean, or the WS variation, or both.
Although for the models in Equation 1 and Equation 2 we use
scalar g to represent a single genotype, our method and
software can also test a group of genotypes or gene-by-environ-
ment (G X E) effects.

The modelsin Equation 1 and Equation 2 are similar to a multiple
location scale model considered by Dzubur et al.,** who assume
normality of the random effects (y7, cu,-)T and g;; and resort to the
maximum likelihood estimation (MLE). Because each iteration of
the MLE algorithm requires expensive numerical integration, it is
not only distributionally restrictive but also computationally
prohibitive. Both limitations prevent its application to genome-
wide association studies (GWASs) of biobank data. Instead, we
employ our recent estimation method, WiSER,*” which is robust
to the misspecification of the trait distribution (conditional on
random effects) and the random effects distribution. The estima-
tion algorithm is free of numerical integration and scales linearly
in the total number of longitudinal measurements. For example,
the run times of the full likelihood approach with the MixWILD
software®*>*® on two simulated datasets with 1,000 individuals
and ten observations per individual range from 40 min to 10+ h
according to the different modeling assumptions being made,
while WiSER takes less than half a second.

Briefly, the WiSER estimator is defined as

3

N 1 1
BB —argminy > (v, XiB—5:8)" (VI") (v, X - 56,)

i

I
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\Te f‘., = arg migi Ztr((VEO))71R,»(V§0))71R,-),
i1
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Q)

(Equation 3)

where R; = (y; — XiB — 8iB,)(y; — XiB — giB,)" — Vi(7,74,Z,),

exp(wy 7 + 8i7g)
V; (7, Tg, 27) =
exp (w;; + g,-rg)
+72,7],
(Equation 4)

and v\ = Vi(r(o),réo),E(yo)) is an initial estimator of Var(Y;).

Model parameters are the mean fixed effects 8 and 8, WS variance
fixed effects 7 and 7,, and the random effects covariance X, . In the

special case VEO) = I,,,, WiSER reduces to a method of moments

(MoM) estimate because the objective functions in Equation 3
are simply the least-squares losses for the first two moments of
Y;. Using an initial estimate VEO) improves the estimation effi-
ciency of WiSER. In practice, we set the initial VEO) according to
a least-squares estimator of = and X,. WiSER enjoys a double
robustness property. It is robust to the misspecification of both
the distribution of random effects (7,.T7a),-)T and the distribution
of Y; conditional on random effects. In TrajGWAS, we
employ a score test that only requires fitting one null model,
with g, = 7, = 0, across the genome-wide tests. Compared with
the Wald test proposed by German et al.,*” which requires fitting
WISER for each genotype, it is much faster and enables fast longi-
tudinal trajectory GWAS analysis at biobank scale.

Robust and scalable score testing

Let 1€ R be the genetic effect 8, or 7,. We are interested in testing
the null hypothesis §; = 0. Let 6, RF*+4(@+1)/2 collect all param-
eters in the null model. We first derive the score (gradient of the
WIiSER loss function) ¢y, under the full model and tAhen evalllate
it under the null model, i.e., ¢, (6), where 6 = (0, 62) and 0 is
the estimate under the null model. The generalized score test
statistic®® is

T
1 m ~ = m _

realSu, ,,w)} v, [w ‘,-w)} ,

where V,, is the variance of score 4. The score test statistic T is

asymptotically distributed as x? under the null model. In supple-

mental methods, section A, we show that the scores for testing

By =0 and 7y =0 are

m

S, = Z [1; (V§()))71?i}gi = chg

i=1

and

T

8i= €8

respectively. The quantities 7; = y, — X,-E, ﬁi, 7, and V§0> are
readily available from the fitted null model. Calculation of each
score involves linear combination of the genotype dosages with
the coefficient vector ¢g, or ¢;, pre-computed and cached. In sup-
plemental methods, section A, we show that the calculation of
variance IA/,,, costs O(1) flops. Therefore, forming each score test
statistic costs O(m) flops, where m is the number of individuals,
usually much smaller than the total number of longitudinal
measurements n. This extreme computational efficiency makes
TrajGWAS easily scalable to biobank data with 105 ~ 10° samples
and millions of SNPs.

Saddlepoint approximation for rare variant testing

It is well-known that asymptotic score tests may yield deflated or
inflated type I errors at stringent significance levels for rare vari-
ants with MAF < 0.01.°%*° Figures 2A and 2B show that, when
testing a null variant with MAF = 0.01, the score test shows defla-
tion in testing 8, and inflation in testing 7,. To calibrate the null
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Score test for 8y =0

Score test for 74 = 0

Figure 2. Quantile-quantile (QQ) plots of
p values for simulation studies

£

Observed (- log,, p-value)
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Observed (- log, p-value)

(A and B) Quantile-quantile (QQ) plots of
: p values from the score test for testing g,
e (A) and for testing 7, (B), where m = 6,000,
r n; = 6 to 10, and minor allele frequency
(MAF) = 0.01, based on 10° replicates.
(Cand D) QQ plots of SPA-corrected p values
for testing g, (C) and for testing 7, (D); sim-
ulations are based on m = 6,000, n; = 6 to
10, and minor allele frequency (MAF) =
0.01. SPA corrects the deflation or inflation
that occurs in the score test at low MAFs.
QQ plots for all simulation scenarios are
shown in Figures S2-S5.
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umns, a time-invariant standard normal
variable in their third columns, and a
time-varying standard normal variable in
their fourth columns. The true regression
coefficients are ﬂ:(10.0,5.0,0.5,70.3)T
and (0.25,0.3,-0.15,0.1)".  We
generate the random effects (v;,w;)
from the multivariate normal distribution
with mean zero and covariance ZX,, =

2.0 0.0
00 0.1

T =

2 4 6 8 2
Expected (-log,, p-value)

distribution for score statistics when testing rare variants, we
apply a saddlepoint approximation (SPA).>’"** This approach
uses the entire cumulant generating function (CGF) to approxi-
mate the null distribution instead of the first two moments as in
the normal approximation and Satterthwaite method,** resulting
in superior performance. For testing a single variant, we directly
use the score, Sg, Or Sy, as the test statistic. Since the CGFs of S,
and S, do not have a simple closed-form expression, we use the
empirical CGF based on the empirical moment generating func-
tion (MGF). Details are provided in the supplemental methods,
section B. Because the normal approximation of the score test per-
forms well near the mean of the distribution, to save on computa-
tion, we only apply SPA when the observed score statistic is large.

Following Bi et al.,** SPA is applied when ’Sgg ‘ > r,/Var(cg,)Var(g)
and |S;,| > r,/Var(c,, )Var(g) for testing 8, and 7, respectively. In

this paper, we use r = 0.75 for all analyses. A smaller value of r
leads to more tests having SPA applied and increased computa-
tional time. For the joint test of null hypothesis 7, = 8, = 0, we
compute p values for both §; and Sg and then take their har-
monic mean.*’

Simulations

We carry out simulations to evaluate type I error rates and power
of TrajGWAS. For each subject, we generate the response accord-
ing to the models in Equation 1 and Equation 2. In our simula-
tions, the random mean effect v; is intercept only so Z; is a single
column of 1’s. X; and W; contain a random time-invariant

4

Expected (-log;, p-value)

For both type I error and power simula-
tions, we consider 12 scenarios with
different combinations of (1) sample sizes:
m = 6,000 and m = 100,000, (2) number
of repeated-measurements: 1n; = 6 to 10 and n; = 10 to 30, and
(3) MAF: 0.01, 0.05 and 0.3 for m = 6,000 and 0.001, 0.05 and
0.3 for m = 100,000. Results of both the score test and SPA are
reported.

Type | error

To evaluate type I error rates at genome-wide significance level « =
5% 1078, for each scenario we generate 1,000 datasets each with
10° variants following Hardy-Weinberg equilibrium, yielding 10°
total replicates.” We report type I error rates for testing the genetic
contribution to both the mean, 8;, and the WS variance, 7.
Power

To evaluate the power for testing 7, and ,, we generate 100 data-
sets under the alternative model for each scenario. In each dataset,
the alternative model uses the parameters in simulations and con-
tains ten causal variants each with the same effect size, selected
specific to each scenario in order to show the spread of power.
We compare power of the score test and SPA at the significance
level « = 5% 1078,

6 8

Application to the UK Biobank study

We conduct TrajGWAS analysis by using longitudinal biomarker
measures extracted from the UK Biobank primary care data,
including systolic blood pressure (SBP), diastolic blood pressure
(DBP), pulse pressure (PP), high-density lipoprotein (HDL) choles-
terol, low-density lipoprotein (LDL) cholesterol, total cholesterol
(TC), triglycerides, glucose (fasting and random), hemoglobin
A1C (HbAlc), and body mass index (BMI). Record-level access to
primary care data is obtained by requesting field 42040 (“GP clin-
ical event records”) from the UK Biobank showcase. We combine
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Table 1.

Empirical type | error rates for the simulation studies

Simulation conditions

Empirical type | error rate (standard error) x 10°%

Sample size m n; MAF B, score B, SPA Tg SCOre 7¢ SPA Joint score Joint SPA
6,000 6to 10 0.01 0.30 (0.17) 4.00 (0.63) 138.50 (3.72) 3.50 (0.59) 80.80 (2.84) 4.10 (0.64)
6,000 6 to 10 0.05 3.30 (0.57) 4.10 (0.64) 34.50 (1.86) 6.30 (0.79) 22.90 (1.51) 5.90 (0.77)
6,000 6 to 10 0.3 4.10 (0.64) 4.20 (0.65) 4.80 (0.69) 4.30 (0.66) 4.80 (0.69) 4.40 (0.66)
6,000 10 to 30 0.01 0.40 (0.20) 6.00 (0.77) 42.70 (2.07) 4.00 (0.63) 23.20 (1.52) 4.20 (0.65)
6,000 10 to 30 0.05 4.00 (0.63) 4.90 (0.70) 20.50 (1.43) 5.10 (0.71) 12.80 (1.13) 5.50 (0.74)
6,000 10 to 30 0.3 4.50 (0.67) 5.20 (0.72) 6.60 (0.81) 6.00 (0.77) 5.20 (0.72) 6.00 (0.77)

100,000 6 to 10 0.001 1.20 (0.35) 4.80 (0.69) 136.80 (3.70) 4.40 (0.66) 80.90 (2.84) 3.90 (0.62)
100,000 6 to 10 0.05 5.00 (0.71) 5.00 (0.71) 6.20 (0.79) 5.10 (0.71) 5.80 (0.76) 5.60 (0.75)
100,000 6 to 10 0.3 4.10 (0.64) 4.00 (0.63) 5.30 (0.73) 5.50 (0.74) 5.40 (0.73) 5.30 (0.73)
100,000 10 to 30 0.001 2.40 (0.49) 5.80 (0.76) 50.80 (2.25) 4.80 (0.69) 28.50 (1.69) 5.40 (0.73)
100,000 10 to 30 0.05 5.40 (0.73) 5.10 (0.71) 7.60 (0.87) 6.50 (0.81) 7.20 (0.85) 6.20 (0.79)
100,000 10 to 30 0.3 6.30 (0.79) 6.10 (0.78) 4.00 (0.63) 3.90 (0.62) 5.40 (0.73) 5.70 (0.75)

Empirical type | error rates (standard error) for the score test and SPA ( x 10-8) at a significance level 5% 10~ based on 107 simulation replicates. The score test
shows inflated type | error at low minor allele frequencies (MAFs) for testing 7, where SPA (saddlepoint approximation) has proper type | error rates. Joint score and

joint SPA are based on the harmonic means of the respective 8, and 74 p values.

a previously reported and validated semi-supervised approach™®
and in-house extraction criteria to create clinical biomarker phe-
notypes. We matched and compared empirical cumulative distri-
butions of extracted lab values from the primary care database
and those provided through the UK Biobank assessment center
to infer the measurement units and for further quality control
(Figure S16). Detailed data extraction, unit conversion, and quality
control procedures are documented in the supplemental methods,
section D.

For each GWAS, we use the standardized biomarker phenotypes
for TrajGWAS analysis by subtracting the overall mean from each
measurement and dividing by the standard deviation and we
adjust for ten principal components (PCs) on the mean compo-
nent. Using the PCs to adjust both the mean and WS variance
makes no differences for the final results. Each biomarker uses a
different covariate adjustment scheme, which is detailed in
supplemental methods, section E. In general, we adjust for sex,
age, age?, and age X sex for both mean and WS variability; age
and age? are treated as time-varying covariates. The selection of
covariates is guided by previous GWAS analyses™*”** and the
mean profile plots are shown in the Figure S15. Non-significant co-
variates in the null model are then removed from the GWAS anal-
ysis. In addition, we include self-reported diabetes status as a time-
fixed covariate for glycemic measures (HbAlc and random and
fasting glucose). Diabetes status included as a time-varying indica-
tor is also explored (supplemental methods, section F). Summary
of the covariates included and adjustments made for medication
is summarized in supplemental methods, section E.

Controlling the effect of medication on the biomarkers is
important in the analysis. Most widely used methods for such
adjustments are (1) treatment modeled as an additional covariate
(“indicator”);**~>! (2) adding a sensible constant (“shifting”) to the
treated subjects;****> and (3) censored normal regression.>°
Shifting and censored normal regression are often recommended
for their superior performances over the indicator method.’® In
this paper, we use the shifting method if a sensible value for adjust-

ment is available through previous studies and use the indicator
method for others. We compare adjustment by shifting and
adjustment by an additional covariate in Figures S21-S24. For
blood pressures, we add 15 mmHg for SBP and 10 mmHg for
DBP*® for subjects taking blood-pressure-lowering medication
before standardization. For lipids, following previous GWAS
analysis,*” we add 0.208 mmol/L for triglycerides, 1.347 mmol/L
for total cholesterol, 1.290 mmol/L for LDL cholesterol, and
subtract 0.060 mmol/L for HDL cholesterol for participants
on lipid-controlling treatments. For glycemic measures (HbAlc
and random and fasting glucose), a sensible value for adjustment
was not available, so they are adjusted with the indicator method.

To evaluate and compare the genetic association of trajectory
means, i.e., §,, we create lists of previously reported genetic
associations for each analyzed trait by using the GWAS Catalog®’
queried by the R package gwasrapidd®® (curated on 7/8/2021).
We search the catalog for phenotypes matching our analyzed
biomarkers by using syntax, “efo_trait=,” and keep SNPs with p
value less than genome-wide significance level < 5 x 1078.

Results

Simulation

Table 1 reports the empirical type I error rates of the score
test and SPA at an « = 5108 threshold, based on 10°
simulation replicates. At lower MAFs, the score test for 7¢
has substantially inflated type I errors, whereas SPA leads
to well-calibrated type I error rates. Inflation in the score
test for 7, at less common alleles (MAF = 0.05) is large
for smaller sample sizes and fewer repeated measures.
The amount of type I error inflation decreases as the MAF
and the number of repeated measures increase. For g,
the score test is conservative at lower MAFs and SPA cor-
rects the type I error in the right direction. For common
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Figure 3.

Empirical powers of testing 8, with score test and SPA

Each row contains the same sample size m and number of observations per individual n;. Power is evaluated at the significance level &« =

5% 1078, Each scenario is based on 1,000 replicates.

alleles such as MAF = 0.3, score test and SPA do not differ
much in the type I error rates for either 7, or 8. Overall SPA
has appropriate type I error at the « = 5x10~8 significance
level across all scenarios. Figure 2 illustrates how SPA cor-
rects type I error in both directions by displaying QQ plots
from a random sample of 100 million replicates of the m =
6000,n; = 6 to 10, MAF = 0.01 scenario. Additional QQ
plots are presented in Figures S2-S5.

Power curves for testing 7, and @, across 12 scenarios are
displayed in Figure 3 and Figure S6, respectively. Although
the score test is unable to adequately control type I error for
rare variants, we still report power based on the nominal
power at the a = 5x1078 significance level. Using the
empirical significance levels estimated from the type I error
simulations would result in even lower power for the score
test than what is shown in the figure. SPA achieves higher
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Table 2.
Biobank primary care data

Sample size m, the number of repeated-measurements n;, and summary statistics for eleven biomarkers extracted from the UK

m n; Yij Female Age BMI

Biomarker Sample size Median (IQR) Mean (SD) % Mean (SD) Mean (SD)
SBP (mmHg) 148,870 12 (6, 24) 135.0 (15.3) 54.1 56.0 (8.7) 27.5 (4.8)
DBP (mmHg) 148,870 12 (6, 24) 81.0 (8.7) 54.1 56.0 (8.7) 27.5 (4.8)
PP (mmHg) 148,870 12 (6, 24) 53.9 (9.6) 54.1 56.0 (8.7) 27.5 (4.8)
HDL (mmol/L) 129,069 4(2,8) 1.5 (0.4) 53.1 59.5 (7.8) 27.7 (4.8)
LDL (mmol/L) 98,556 3(1,6) 3.2(0.9) 52.3 59.3 (7.8) 27.8 (4.8)
Total cholesterol (mmol/L) 133,590 5(2, 10) 5.4 (0.9) 53.3 58.7 (7.9) 27.6 (4.8)
Triglycerides (mmol/L) 124,092 4(2,8) 1.6 (1.0) 48.1 60.6 (7.8) 28.6 (5.0)
Fasting glucose (mmol/L) 55,949 2(1,3) 5.5(1.4) 47.7 60.4 (7.6) 28.7 (5.1)
Random glucose (mmol/L) 97,162 21,4 5.7 (2.1) 51.9 59.8 (8.2) 28.5(5.1)
HbAlc (%) 70,589 2(1,4) 6.7 (1.4) 43.4 62.4 (7.8) 30.4 (5.7)
BMI 144,414 53,9 28.3 (5.7) 54.9 57.3 (9.9) -

The eleven biomarkers are as follows: SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure = SBP — DBP; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; total cholesterol; triglycerides; random glucose; fasting glucose; HbA1c, hemoglobin A1C; and BMI, body mass index.

power at the o = 5% 108 significance level than the score
test when the MAF is low, but the power of the two
methods are nearly identical for common variants and
large sample sizes. In conjunction with the type I error re-
sults, this indicates that SPA is able to better model the tail
of the test statistic distributions for rare variants. When the
variants are common, both approaches converge to the
same results.

Computational efficiency

With careful implementation, each iteration of the optimi-
zation algorithm for fitting the WiSER null model scales
linearly in the total number of observations n. For testing
a single SNP, our score test with SPA scales linearly with
the sample size m. Therefore, our TrajGWAS analysis based
on WiSER can be applied to longitudinal genetic associa-
tion analysis at biobank scale. For example, analyzing
SBP for 10,805,717 imputed variants on all autosomal
chromosomes takes about 150 central processing unit
(CPU) h with SPA and 139 CPU h without SPA. The compu-
tation is split into 16 chunks per chromosome, resulting in
352 separate computational jobs that can run simulta-
neously on computing clusters. Under these conditions,
each job runs within an hour with and without SPA.

Real data analysis

About 44% of the 500,000 UK Biobank participants are
linked to their primary care EHR data. These EHR data are re-
corded with four controlled clinical terminologies: (1) Read
version 2 (Read v2); (2) Clinical Terms Version 3 (CTV3); (3)
British National Formulary (BNF); and (4) the Dictionary of
Medicines and Devices (DM+D). Only Read v2 and CTV3
are relevant for biomarker extraction. Using previously vali-
dated algorithms,*®>? we generate unified lists of Read v2
and CTV3 clinical terms, and extract measurements for all

biomarkers from the clinical event records (gp_clinical ta-
ble). Terms used for extraction are shown in Table S2. Ten
longitudinal clinical measurements are extracted: blood
pressures (SBP and DBP), HDL, LDL, total cholesterol,
triglycerides, blood glucose (fasting and random), HbAlc,
and BMI (supplemental methods, section D). Extracted
records cover 55,000 to 150,000 participants. The flow-
charts for creating the cohort for each biomarker are dis-
played in Figures S7-S14. There are more repeated-measures
of SBP and DBP (median (IQR) = 12 (6, 24)) than of the lipid
values (e.g., median (IQR) =4 (2, 8) for HDL). See Table 2 for
details. Taking blood pressure as an example, we exclude ob-
servations with no date or invalid date information, or
missing BMI measures at recruitment, resulting in
2,598,484 observations. The sample size for GWAS analysis
ranges from 55,949 (fasting glucose) to 148,870 (blood pres-
sure). Patterns of the mean profile over age groups vary
across different biomarker groups (Figure S15). DBP, LDL,
and total cholesterol show strong non-linear, age-depen-
dent trends.

We then apply TrajGWAS to UK Biobank imputed ge-
netic data among European ancestry for these ten longitu-
dinal clinical measures and one derived phenotype pulse
pressure (PP = SBP — DBP). SNPs with MAF greater than
0.002 and imputation quality score (infoscore or r?)
greater than 0.3 are included in the analyses. The Manhat-
tan plots (Figure 4 for 7, and Figure S17 for 8,) and quan-
tile-quantile (QQ) plots (Figures S18 and S19) show that
TrajGWAS successfully identifies a large number of loci.
Concordant with the simulation study, the QQ plots sug-
gest that SPA controls type I error rates well. Highly poly-
genic traits with a larger number of associated variants
have, on average, larger genomic control factor (Agc)
values (Figures S18 and S19). Additionally, since SPA is
not applied when the score statistics are close to the
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Figure 4. Manhattan plots for testing 7, for longitudinal markers in the UK Biobank study
Manbhattan plots for testing ,, the effects of the WS variability, for 11 longitudinal biomarkers in the UK Biobank study. The blue line

represents the genome-wide significance level, 5 x 1078,

mean, the median p values used for calculation of the
genomic control factor may be miscalibrated.*® Thus,
even though many QQ plots appear normal for 7, the re-
ported Agc is inflated for some traits. To give a complete
picture, we report Ag¢ calculated at different p value quan-
tiles for each trait in Table S3.

Next, we compare associations identified by TrajGWAS
with those reported in the GWAS Catalog. We extract asso-
ciation results from the GWAS Catalog by using the Exper-
imental Factor Ontology (EFO) trait labels and keep the
unique associations, i.e., SNPs, with p value < 5x 1078,
The number of associations from TrajGWAS analysis is
shown in the second and third columns of Table 3. Data
in the GWAS Catalog are mapped to genome assembly
GRCh38, while UK Biobank SNPs are mapped to
GRCh37. We remove the queried SNPs with no genomic
coordinates and convert GWAS Catalog associations to
genome assembly GRCh37. The numbers of associated
SNPs are shown in the fourth column of Table 3. Using
the associations reported in the GWAS Catalog as positive
controls, we evaluate whether SNPs associated with the

mean from our TrajGWAS analysis can replicate previous
findings (fifth column of Table 3). For eight out of eleven
markers, we have replication rates higher than 80%, vali-
dating high quality of EHR-based biomarker phenotyping
and TrajGWAS analysis. The analysis of HbAlc has the
lowest replication rate 59.65%. This may be due to the
relatively small sample size among all biomarkers and
the differences in distribution of HbAlc measures from
EHR (see Figure S16). The last column of Table 3 lists the
numbers of SNPs TrajGWAS identifies as “novel,” i.e., not
in linkage disequilibrium (LD) with the existing SNPs
in the GWAS Catalog (defined as being greater than one
megabase from any SNP in the GWAS Catalog). Tables
S4-S11 provide additional annotations for these “novel”
SNPs. As an example, for total cholesterol, there are 177
and 209 SNPs associated with mean and WS variability
that are at least 1 Mb away from the existing reported
GWAS Catalog SNPs, respectively. Additional annotations
shown in Table S8 demonstrate that the majority of
SNPs reported to be “novel” for total cholesterol are rele-
vant to lipids traits as well as psychiatric disorders. These
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Table 3. Summary of TrajGWAS results

Num. of sig. Num. of sig. SNPs for
Num. of sig. Num. of sig. SNPs in GWAS Replication Bg/7g > 1 Mb from
Biomarker® loci for §4/75"° SNPs for (3, /74 Catalog® rate 3, GWAS Catalog SNPs’
SBP 269/8 4,720/32 1,738 82.48% 0/1
DBP 368/3 7,374/5 917 79.65% 615/0
PP 371/8 6,895/32 876 89.34% 93/0
HDL 1,443/0 14,068/0 1,953 88.62% 24/0
LDL 826/23 8,160/434 1,654 83.57% 0/0
Total cholesterol 1,356/92 16,002/1,525 1,270 95.06% 177/209
Triglycerides 1,172/55 11,796/820 1,693 87.57% 2/0
Fasting glucose 166/2 1,540/2 110 86.67% 144/2
Random glucose 81/0 824/0 256 73.63% 10/0
HbAlc 73/1 1,820/4 651 59.65% 11/0
BMI 220/0 3,651/0 3,507 86.95% 1/0

2Experimental Factor Ontology (EFO) trait labels (see web resources) used for query are as follows: SBP, “systolic blood pressure (EFO_0006335)"; DBP, “diastolic
blood pressure (EFO_0006336)"; PP, “pulse pressure measurement (EFO_0005763)"; HDL, “high-density lipoprotein cholesterol measurement (EFO_0004612)";
LDL, “low-density lipoprotein cholesterol measurement (EFO_0004611)"; total cholesterol, “total cholesterol measurement (EFO_0004574)"; triglycerides, “tri-
glyceride measurement (EFO_0004530)”; HbATlc, “HbAlc measurement (EFO_0004541)"; fasting glucose, “fasting blood glucose measurement
(EFO_0004465)"; random glucose, “glucose measurement (EFO_0004468)"; BMI, “body mass index (EFO_0004340)" and “longitudinal BMI measurement
(EFO_0005937).”

BSignificant SNPs for each biomarker are clumped via PLINK 1.9.°" Index variants are chosen greedily starting with the SNPs with lowest p value among those SNPs
having p value <5 x 1078. Sites that are < 250 kb away from an index variant and 2 > 0.5 with the index variant are assigned to that index variant’s clump.

“The number of significant loci (after cIumplng)
%The number of significant SNPs (< 5 x1078) on B, and 74

*Number of GWAS Catalog SNPs with p value < 5><10 8 (aII SNPs are converted to genome build 37; the SNPs with no genomic coordinates are removed; and

GWAS Catalog stores the most significant SNP from each independent locus).

fPercent of significant SNPs from GWAS Catalog that are nominally significant in B, (p value < 0.05) in the TrajGWAS analysis.
9The number of SNPs at least 1 megabase (Mb) away from any previously reported SNP for the given biomarker in the GWAS Catalog.

findings are consistent with the possibility of a disease-
specific lipid pathway underlying the pathophysiology of
psychiatric disorders.®°

The majority of genes that affect WS variability of a tra-
jectory also affect mean, but not always. Figure 5 high-
lights the 235 SNPs that are significantly associated with
WS variability but not with mean levels with p values
and gene annotations. Consistent with our simulation,
with too few longitudinal measures, it is hard to detect 7
at genome-wide significance level, e.g., random glucose
(median n; = 2), fasting glucose (median n; = 2), and
HbA1c (median n; = 2). For traits with median n; > 4, there
are signals in 7g. In particular, TrajGWAS identifies a
genome-wide significant association between WS vari-
ability of total cholesterol and variants in the LPL gene
(MIM: 609708), whereas they are not associated with the
mean values. LPL is a protein-coding gene for lipoprotein
lipase, which is expressed in heart, muscle, and adipose tis-
sue. Severe mutations that cause LPL deficiency result in
type I hyperlipoproteinemia, while less extreme mutations
in LPL are linked to many disorders of lipoprotein meta-
bolism.®” Several GWASs have identified the association
of LPL with different lipid-related phenotypes.®*®*
Figure S20 displays a boxplot of within-sample variance
of residuals for subjects with 0, 1, and 2 copies of reference
allele of rs6993414, the most significant SNP in terms of 7,
on LPL. It shows there are big differences in the tail distri-

butions between them. Other examples include the associ-
ation between HbA1lc WS variability and the EIF5A2 gene
(MIM: 605782). EIF5A2 is a protein-coding gene associated
with type 2 diabetes and cancer.®® Interestingly, a variant,
1s8192675, and its proxies show the strongest association
with HbAlc response to metformin; its LD block covered
three genes and EIF5A2 is one of them.®°

TrajGWAS differs from the vQTL, which is predomi-
nantly used among cross-sectional studies and for G X E
interaction screening. For a BMI analysis adjusted for age,
sex, and ten PCs with the OSCA software (see web re-
sources), 13 of the 22 vQTLs previously reported in Wang
et al.>® have a significant vQTL on the same gene (p value
< 2 x 107?) in our cohort. One well-known vQTL for BMI
is the FTO gene, and variants in this gene are previously
found to be associated with BS variance of BMI with very
low p values.”> Our cohort yields the lowest p value of
1.16x1071%2 for vQTL analysis. However, 7, for WS vari-
ability of TrajGWAS minimum p value in the same region
is 1.18 x 107%, showing no significant SNP association
with WS variability.

Discussion

We provide a genome-wide trajectory analysis tool, TrajG-
WAS, for simultaneous testing of genetic effects on the
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Figure 5.

SNPs that significantly change the WS variability while not significantly shifting the mean

SNPs that significantly change the WS variability of longitudinal biomarkers (top) and total cholesterol (TC) trajectory (bottom) while
not significantly shifting the mean of their trajectories. Each dot is a SNP that passes the genome-wide significance level (dashed line) for

7¢ but not for £,.

mean and WS variability of a longitudinal biomarker for
biobank-scale studies. The method relies on a mixed-ef-
fects location scale model but has several advantages over
existing methods. For example, the likelihood-based
approach for fitting the mixed effect location scale model
requires computationally intensive numerical integration,
making it infeasible to implement for genome-wide scans
of biobank data.’***** TrajGWAS relies on M-estimation
asymptotics and is both computationally efficient
and robust to distributional assumptions. It also does not
assume the WS variability is constant and can capture
and control for the effects of time-varying covariates
such as medication usage and age. We use empirical SPA
to calibrate p values so that type I error rates can be well
controlled for rarer variants and when the number of
repeated measures is small. Through extensive simulation
studies and application to UK Biobank data, we demon-
strate that TrajGWAS scales well for millions of markers,
hundreds of thousands of individuals, and multiple
random effects while retaining well-controlled type I error
rates and power. One limitation of the SPA approach is that
its construction only works for a single univariate hypoth-
esis. Thus, for the joint test 8, = 7, = 0, we resort to the
less satisfactory harmonic mean approach,” which might
compromise power.

Although originally motivated by the study of longitudi-
nal biomarkers, TrajGWAS is also applicable to genome-
wide scans of multiple, correlated phenotypes. The flexible
LMM framework is apt to capture the correlations between
traits and yields correct and powerful inference. TrajGWAS
can also be used as a scanning tool by only testing SNPs
that pass a threshold with the much slower but more
powerful likelihood-based approaches. Although this
paper focuses on genetic effects for the mean and WS
variability, many studies are also interested in BS variance.
It is possible to adapt this framework for modeling BS
variability, but it comes at the cost of excluding random
slopes in the model that are important in many situations.

Our findings raise a potential red flag for some existing
Mendelian randomization (MR) analyses. A core assump-
tion in MR is that the genetic determinant used as an in-
strument, G, only affects the outcome, Y, through the
exposure, X (no horizontal pleiotropy). Many studies use
mean levels of measurements as the exposure (e.g., blood
pressure and cholesterol levels). This assumption may be
violated in cases where (1) the outcome is associated
with WS variability of the exposure independent of mean
levels, such as blood pressure and glucose variability,'**°
and (2) variants that affect both mean and WS variability
are used as instruments. In our TrajGWAS analysis, we
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find many SNPs that affect the mean also affect the WS
variability. This suggests that the causal effects of the expo-
sures on the outcomes estimated through these MRs may
be biased because of a failure to account for the effect of
the genetic determinant on the outcome acting through
a second exposure (WS variability). This application gap
may also provide an opportunity for new MR method
development by considering both exposures.

Our method can incorporate time-varying covariates
adjustment for both mean and WS variability. It makes
controlling for disease status and medication usage over
time possible, which sometimes increases the power (sup-
plemental methods, section F). However, caution must be
taken when considering disease and medication covariate
adjustment. As medications types or disease status may
be reversely correlated with biomarkers, the true genetic
susceptibility can be obscured. How to best account for
these effects remains an important question in future
EHR-based longitudinal biomarker studies. One possible
direction is a joint model that can model the biomarker tra-
jectory, while simultaneously learning the association be-
tween disease trajectory (e.g., comorbidity events).

In conclusion, we present an ultra-efficient biobank-
scale trajectories analysis tool that makes EHR-derived lon-
gitudinal traits analysis possible at very large scales. By
modeling both mean effects and within subject variability,
our method can provide insights that are not evident when
the effects of genetic variants are only considered for the
mean.
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ect ID: 48152. Data are available at https://www.ukbiobank.ac.uk
with the permission of the UK Biobank. The code generated during
this study are available at https://github.com/OpenMendel/
TrajGWAS.jl. GWAS summary statistics are available at https://
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Web resources

Experimental Factor Ontology,
logies/efo

GWAS Catalog, https://www.ebi.ac.uk/gwas/home

gwasrapidd R package, https://github.com/ramiromagno/gwasra
pidd

OSCA software, https://cnsgenomics.com/software/osca

UK Biobank, https://www.ukbiobank.ac.uk/

https://www.ebi.ac.uk/ols/onto
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