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ABSTRACT

Digital games featuring programmable agents are popular tools for
teaching coding and computational thinking skills. However, to-
day’s games perpetuate an arguably obsolete relationship between
programmable agents and human operators. Borrowing from the
field of human-robotics interaction, we argue that collaborative
robots, or cobots, are a better model for thinking about computa-
tional agents, working directly with humans rather than in place of
or at arm’s length from them. In this paper, we describe an initial
design inquiry into the design of “cobot games”, programmable
agent scenarios in which players program an in-game ally to assist
them in accomplishing gameplay objectives. We detail three ques-
tions that emerged out of this exploration, our present thinking
on them, and plans for deepening inquiry into cobot game design
moving forward.
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1 INTRODUCTION AND BACKGROUND

In the 21st century, computational knowledge and skills are power.
K-12 school districts have increasingly recognized the importance
of computing education, with many now making it a required topic
across grades (e.g., Chicago Public Schools). Digital games and
game-based experiences have a long track record as flagship CS
and STEM learning experiences. Some of the earliest tools for teach-
ing what we might now call computational thinking were playful
and digital. Logo [6] served as a programming language for youth
to playfully learn mathematics and computing concepts together
by giving instructions to a turtle to draw shapes. Its descendant
Scratch [16] is a cornerstone of programming education today. Hour
of Code [17] and Code.org [18], among the most popular platforms
for computing education, make heavy use of playful programming
scenarios, such as programming virtual characters to dance to child-
friendly hit songs. More recognizably “game”-shaped experiences
like CodeCombat [19] leverage video game tropes (here, adventur-
ing and fighting) to encourage the player to explore and fight in a
fantastical world by programming a protagonist character.

Many of these experiences center around programmable agents.
This is a sensible choice: an on-screen agent provides immediate
visual feedback on the effects of the player’s code [12]. However, in
our review of relevant literature and online curriculum, we noted
that programmable agents in coding games always seem to maintain
the same fundamental relationship between the player/programmer
and the programmed agent. Programmers write code, and onscreen
agents run it to accomplish game objectives with no further inter-
action with the player. The relationship is always unidirectional
and arm’s length. Once the player gives the rabbit instructions in
Google’s Coding for Carrots [20], their exchange is done; the agent
simply executes the directions, and the player wins or loses on that
basis. Likewise Apple’s Swift Playgrounds [21], Cartoon Network’s
Glitch Fixers [22], and so on. We propose that the time has come to
re-examine this relationship.

1.1 Co-robotics

For context, we turn to the field of robotics for both analogical
and practical reasons. One of the primary justifications for the
importance of teaching computer science skills is their relevance to
the job market. The rapid growth of automation will force as many
as 375 million workers globally (14% of the workforce) to transition
to new occupations and learn new skills [10]. In the U.S., 73 million
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existing jobs will be eliminated, and an estimated 60% of those that
remain could have up to 30% of their activities automated.

However, the robots of the coming generation will not look like
those that replaced factory labor in the 20th and early 21st centuries.
Instead, co-robotics applications in which robots work alongside
humans in a meaningful, intuitive, and safe manner are now recog-
nized by industry [7] and academia [14] as a primary direction for
the growth of robotics technologies. Cooperative manufacturing
robots work side-by-side with human workers, with tasks allocated
based on whether they are more easily solved by human or machine
intelligence. Outside of industry, socially assistive robots reduce
isolation in seniors [1], support the learning of social behaviors
for children with autism spectrum disorder [4], provide students
with additional one-on-one educational opportunities at school [3],
and support the needs of special needs populations [9]. Domestic
service robots perform household tasks well with minimal inter-
vention, and without any expectation of maintenance by a robot
technician.

Co-robotic capabilities fall along a sliding scale of sophistication.
While individual frameworks vary based on field, they generally
take into account two critical factors: (1) whether the cobots share
physical space with humans, and (2) how intertwined their respec-
tive tasks are. Michaelis, et al. [13] describe four steps along this
scale, ranging from “No Interaction” where the robot is totally sep-
arated from humans by physical fencing, to “Collaborative” where
the robot and human work in the same space at the same time
while the robot learns from and adjusts to the human’s behavior. E1
Zaatari, et al. [15] consider different manufacturing scenarios, rang-
ing from “independent”, where humans and robots never touch the
same parts; or “simultaneous”, where the cobot maneuvers around
the human while working in a shared space; to “sequential”, where
one hands off work to the other; and ultimately highly interactive
“supportive” workflows where the cobot and human perform mutu-
ally dependent tasks at the same time, e.g., the operator fastening
screws that the cobot holds in place.

While there is imperfect agreement about the precise tiering
of co-robotic capabilities, it is no coincidence that non-interactive
scenarios are universally placed at the bottom. Such scenarios rep-
resent the past state of robotics, especially in manufacturing, where
mass automation was the great industrial advance of the 1980s and
1990s. Robots were programmed once and left to run their tasks effi-
ciently and separately from human workers. “Hands-off automation”
is also a perfect — and unflattering — analogy for the human-robot
interaction paradigm baked into nearly every programmable agent
game in use today. If one of the goals of computing education is to
build skills and understandings relevant to the job market of today,
then it is time to consider modernizing the human-robotic interac-
tion relationship embedded in computing education products. But
how?

2 DESIGN EXPLORATION

Our work aims to address the gap in design knowledge around
how cobots should be integrated into programming games. Since
little is known about the design of cobot games at present, our first
step was to explore the bounds of the design space. We launched
two simultaneous design probes with the objective of creating
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coherent, functional cobot games via different design methods. The
first probe used a traditional expert-driven game design approach
in which multidisciplinary teams of game design and subject matter
experts convened to ideate and produce games using conventional
methods, including prototype user testing. The second probe used
a participatory collaborative design (codesign) approach in which
participants from the intended learner population were recruited
to an 18-week afterschool game design program where they gave
design input, direction, and feedback. This codesign activity also
doubled as data collection for a broader research project, e.g., around
prior programming experience and preconceptions of cobots.

2.1 Design Exploration 1: Expert-Driven
Design

Our team of game design and robotics education experts employed
conventional methods to rapidly generate, prototype, and consider
a broad array of cobot game concepts. We call products of this
approach Expert-Designed Games (EDGs).

2.1.1 First lteration. Our expert-driven design approach began
with members of our team brainstorming responses to the prompt
“The Robot is a(n) to the Player”. This process generated 381
unique relationships, which were then grouped using an affinity
clustering approach [11]. This produced categories of relationships
such as “The Robot is a Teammate to the Player”, which contained
relationships like magician’s assistant and band member, and “The
Robot is a Protector to the Player”, which contained relationships
like shield and lifeguard.

The team then held an internal game jam to generate initial
design concepts using these relationships. Members of our team
were paired off, and each pair was randomly assigned a set of
three design prompts consisting of a cobotic relationship and two
gameplay verbs, one that the player would do and one that the
cobot would do. Pairs were given approximately half an hour to
design a game pitch for each of their prompts. Pitches were shared,
remixed, and downselected through group scoring over several
rounds. The game jam produced dozens of concepts, three of which
were selected for production as technical and conceptual prototypes.
Two were ultimately produced. These jam prototypes explored
intentionally different visions of gameplay, cobot roles, and coding
interactions.

2.1.2  Second Iteration. With the experience and technical founda-
tion gained from the game jam iteration, we began a second devel-
opment cycle toward a full-sized EDG. As before, the cycle began
with brainstorming. Members of the team individually generated
and pitched 10 game ideas with the goal of creating a transforma-
tional game [5] that would facilitate identity transformation from
non-programmer to programmer, impart programming knowledge,
and support socio-emotional learning. Pitches were analyzed and
inductively coded [2] using a set of themes generated during discus-
sion and agreed upon by all team members: mechanics, gameplay
themes, transformations, playspace, barriers overcome, aesthetic,
programming type, game genre, and cobot-player relationship (“The
Robot is a(n) ____ to the Player”). Promising codes within each
dimension (e.g., Aesthetic = Hopepunk) were voted on by group
members and used to construct a second round of remixed pitches.
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Ultimately, one concept from this second round was selected for
full development.

2.2 Design Exploration 2: Participatory
Codesign

In parallel with the expert-driven exploration, we developed a sec-
ond cobot game through a participatory codesign process with
youth at site-based afterschool programs. Codesign allows for in-
corporation of valuable and diverse insights from childrens’ knowl-
edge of childhood, understanding of their interests and enjoyment,
domain knowledge, etc., in ways that adult designers are unlikely
to replicate.

2.2.1  Codesign Process. Our research team partnered with a site-
based afterschool club network located in the mid-Atlantic region of
the United States, with around a dozen clubhouses spread through-
out demographically diverse areas of the city. For our codesigned
game, we worked with three urban and suburban clubhouses. A
total of 36 students ages 6-10 participated in our program: 12 girls
and 24 boys. Students were from diverse racial backgrounds includ-
ing Caucasian (58%), African American (28%), and middle eastern
and Latin American descent (14%).

HCI researchers with extensive adult-child codesign experience
met students at each site for one hour weekly, either online or
in-person per each site’s COVID-19 protocols at the time. A second
member of the research team took notes remotely. Sessions typically
included snacks, an ice breaker question of the day, planned code-
signed activities, and students playing video games from a curated
selection to give them a more diverse game playing experience.

Each session’s codesign activity prompted and collected student
ideas, beliefs, or feedback on relevant concepts, such as what cobots
might look like or do, what gameplay features students felt were
most important, or how a prototype build might be improved. Ideas
and suggestions were elaborated on by robotics and game design
experts to ensure playability and congruence with subject matter,
then integrated into subsequent pitches or builds on a weekly basis.
Altogether, we engaged in 52 hours of codesign across the three
sites. Written consent was obtained from the families of each at-
tending student, and our research was approved by our institution’s
Institutional Review Board (IRB).

3 PRELIMINARY RESULTS AND DISCUSSION

Five unique game designs were produced to the playable prototype
stage. Comparison across the designs and the experience of having
produced them pointed to three focal areas in which we felt we had
made progress, either answering or raising important questions.

3.1 How should cobots be integrated with the
in-game narrative?

In all of our prototypes, the cobot was presented as diegetically
ubiquitous. That is, inhabitants of the game world always treated
cobots as if they were commonplace in those worlds. This design
choice was deliberate, so that players would feel that even if pro-
gramming the cobot was difficult, they would ultimately be able
to succeed. In one game, an overarching narrative is established
in which the player is coming of age aboard a multi-generational
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spaceship. Receiving, using, and learning to program the cobot are
presented as expected activities tied to the player’s coming of age.
In a second game where much of the narrative is left implicit, play-
ers’ families simply have cobots as pets, and programming them is
implied to be a normal and expected behavior through inclusion as
an unremarkable part of the character selection process. Diegetic
ubiquity is sensible from a contextual perspective — the robot’s
role in the world, its available primitive commands, and others’
reactions to it all follow internally consistent context cues.

However, the assumption that diagetic ubiquity is superior to
having the cobot stand out as unique, is testworthy. It could in-
deed be more powerful to introduce the cobot’s programmability
and complementary gameplay as high-profile focal aspects that
emphasize the importance and value of collaborative robotic ar-
rangements.

3.2 What kinds of tasks should cobots be given
in cobot games?

A large number of possible cobot-to-player relationships were pro-
posed, suggesting that in principle, nearly any task characterization
is possible. However, in practice, three of the five prototypes co-
alesced around cobots whose functionality was strongly aligned
with the player’s own existing goal structure, while the two that
did not - i.e., that left the player to try and figure out what the
cobot was for — suffered for it. Ultimately, both final prototypes
directly used the verb structure of the player’s character to define
the verbs available to the cobot.

In the final prototype of the Expert-Designed Game pathway, for
instance, the player is tasked to clear out boxes from a cargo bay
aboard a large spacecraft. Gameplay starts with a tutorial explain-
ing the keyboard controls (WASD+E) to pick up, move, and drop
boxes by hand. The cobot is then introduced, along with point-and-
click commands that allow it to perform Pick Up, Move, and Drop
actions — the same as the player has just done manually. Program-
ming is then introduced, featuring the same Pick Up, Move, and
Drop commands but in the context of a block-based programming
environment (Figure 1). This sequence cues the player toward an
understanding of the cobot as a programmable agent capable of
automating the player’s own tasks using familiar command verbs
in an identical context.

The second (codesign) exploration produced Super Slime Battle,
a Halloween-themed base defense game in which players must stop
waves of enemies from reaching the player’s base (a pile of candy).
Defeated enemies drop powerups that the player or cobot can collect
by walking over them. The cobot’s verbs, like the player’s, stemmed
naturally from its ability to move around the map, attack enemies,
or pick up powerups. The implicit alignment of verbs served a
larger purpose in Super Slime Battle. Simple commands with obvious
mappings to in-game actions maintained a low cognitive load cost
for reading, interpreting, and modifying code. This low friction was
instrumental in lowering the barrier to code modification as part
of a Use-Modify-Create [8] strategy described in Section 3.3.

In contrast, one of the early game jam prototypes we developed
had an opaque set of commands and usage goals for the cobot. In
iSuffer (So You Don’t Have To), the player’s objective was to get
through a maze shrouded in darkness and filled with enemies. The
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Figure 1: A screenshot of the box-moving game’s programming view.
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Figure 2: Super Slime Battle in progress. The player avatar (blue, top) is fighting to defend the candy pile base (left) from an
enemy in the top right, while the cobot (cat, center right) uses its programmed attack to fight off two enemies at a crossroad.

cobot allowed the player to see by acting as a light source, but
it could also be used as a distraction, as enemies would chase it
instead of the player. This second use-having the cobot act as bait
and frequently die-was almost totally hidden from the player at
first and felt like an exploit when discovered. We suspect this owed
in part to the goal dissonance between the player’s character (who
must live) and the cobot being sent to die intentionally.
Ultimately, the alignment of cobot verbs to player goals and
verbs makes sense, as any game needs to ensure that players can
comprehend the cobot as a mechanic. Thus, our preliminary con-
clusion is that cobot tasks will always “inherit” domains of action
from the game worlds they inhabit, but that player understanding
may benefit when cobot goals and verbs overlap the player’s own.
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3.3 How can games get players to engage with
cobot programming?

The two main prototypes took distinctly different approaches to-
ward getting players to program the cobot. The final prototype
of the Expert-Designed Game used a didactic tutorial approach,
which included mandatory programming steps. It included forcing
functions such as automatically fullscreening the programming
view at certain points in the tutorial, which shrinks the view of the
player’s surroundings down to a small picture-in-picture window.
Even allowing for the presence of interface bugs, this approach was
immensely unsuccessful. Few players wrote meaningful programs
afterward, many did not even complete the required on-screen
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steps, and a substantial number of playtesters ignored the pro-
gramming window in its entirety and continued to play in the tiny
picture-in-picture window for the remainder of the session.

The Codesigned Game, on the other hand, adopted a high-level
framing that cobot program editing and selection would be treated
as a step analogous to character selection, which we knew to be
popular based on codesign feedback. This was supported by a Use-
Modify-Create progression [8] embedded in the game’s replay cycle.
As players played (and lost, and replayed) the game, over 60% even-
tually tried editing the cobot code as a way of improving their
performance in the next round.

In addition, players’ cobots came seeded with deliberately in-
adequate default program options to encourage modification. We
observed some students emphatically adding, e.g., a dozen “Attack”
commands in a row to their program, echoing a codesign demand
they had made earlier that “spam click” weapons be included in
the game. We interpret this similarity as signifying the beginning
of personal ownership and investment in upgrading the cobot’s
program in their own way.

We do not yet have strong evidence to conclude that a gameloop-
embedded Use-Modify-Create design will always result in superior
engagement compared to tutorialized instruction, but our prelim-
inary results suggest that the former does work and is neither
confusing nor off-putting to players. In short, it is an excellent
candidate for future use.

4 LIMITATIONS AND FUTURE WORK

Our exploratory work to date has begun to suggest answers to
some questions about the design of educational cobot games while
raising new questions and uncovering new avenues for design.
There is a need to collect outcomes data from an unbiased sample
of players, so that the impressions and effects of gameplay can be
separated from the effects of codesign participation. This effort is
underway through the development of public online versions of the
games with enhanced surveying and telemetry capability as well
as creating new cobotic games with additional codesign cohorts,
which will be released in the Fall of 2021.

One particularly important aspect we are also exploring is the
reception of the games by minoritized youth in low-status set-
tings, as well as the alternative cobot games they codesign. The
cohort that codesigned the first CDG described in this paper is
decidedly different from the students we are now working with
at rural and majority-minority afterschool clubs. Not only have
these students expressed a different relationship to STEM, but also
different expectations and social pressures around video games.
When asked to playtest the EDG and CDG prototypes, they de-
scribed them as “trash” and “weak”, confirming that these (or other
yet unidentified) differences have major implications for the de-
sign of acceptable cobot games for these crucial populations. By
extension, cobot games may also be of interest to older (even adult)
non-programmer groups, who may similarly be put off by aesthetic,
thematic, or mechanics choices designed in collaboration with 6-10
year olds.

A related observation that may provide some hope is that even
within sites, there is tremendous diversity in which games indi-
vidual students want and enjoy. Even though nearly all students
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report liking a handful of popular games at first, observation of their
free play reveals that individuals gravitate toward a wide variety
of games in different genres. This means that if we could design
and produce enough games that appeal to different sub-audiences,
we may succeed in reaching even those players who disliked our
first few prototypes. It also broaches a broader topic worth explor-
ing within cobot game design, which is whether there are genres
that are more, less, or completely unsuitable for cobots. We are in-
vestigating this to a limited extent now through our second-round
codesign efforts and will put the challenge before groups of talented
game design students through our Fall courses.
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