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The bacterium Myxococcus xanthus forms both developmental and vegetative types
of biofilms. While the former has been studied on both agar plates and submerged
surfaces, the latter has been investigated predominantly on agar surfaces as swarming
colonies. Here we describe the development of a microplate-based assay for the
submerged biofilms of M. xanthus under vegetative conditions. We examined the
impacts of inoculation, aeration, and temperature to optimize the conditions for the
assay. Aeration was observed to be critical for the effective development of submerged
biofilms by M. xanthus, an obligate aerobic bacterium. In addition, temperature plays
an important role in the development of M. xanthus submerged biofilms. It is well
established that the formation of submerged biofilms by many bacteria requires both
exopolysaccharide (EPS) and the type IV pilus (T4P). EPS constitutes part of the
biofilm matrix that maintains and organizes bacterial biofilms while the T4P facilitates
surface attachment as adhesins. For validation, we used our biofilm assay to examine
a multitude of M. xanthus strains with various EPS and T4P phenotypes. The results
indicate that the levels of EPS, but not of piliation, positively correlate with submerged
biofilm formation in M. xanthus.

Keywords: Myxococcus xanthus, vegetative biofilms, exopolysaccharide (EPS), type IV pilus (T4P), microplate
assay

INTRODUCTION

Biofilms are surface-associated multicellular microbial communities that are prevalent in the
natural environment (Flemming et al., 2016; Flemming and Wuertz, 2019). There are three types of
bacterial biofilms that have been investigated (Mikkelsen et al., 2007; Armitano et al., 2014; Kovacs
and Dragos, 2019; Sanchez-Vizuete et al., 2022). These include the colony-type biofilms (CBFs)
that form on agar surfaces, the pellicle-type biofilms (PBFs) that form at liquid-air interfaces and
the submerged-type biofilms (SBFs) that form on solid surfaces under aqueous submersion. Most
widely studied among them is the SBF, thanks in no small part to the availability of a microplate-
based assay for such biofilms (Christensen et al., 1985). This streamlined assay has facilitated the
mechanistic study of many facets of SBF development, including cell attachment and regulation
(Genevaux et al., 1996; O’Toole and Kolter, 1998; Lei et al., 2018). In this assay, biofilms are
first allowed to develop on the submerged surface of a microwell. Afterward, the total biomass
of the SBFs are stained with crystal violet (CV) and quantified by CV absorbance (Acv) measured
by microplate readers. Such CV-retention assays can be performed in a high throughput format,
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greatly facilitating the analysis and studies of SBF formation
of many bacterial species. These studies revealed that there are
four distinct stages in the formation of bacterial SBFs (Costerton
et al., 1995). Initially, planktonic cells in an aqueous environment,
whether passively adrift or actively motile, recognize and begin
to attach to a submerged surface using adhesins including
the bacterial Type IV pilus (T4P) (Landini et al., 2010; Li
et al., 2012; Ellison et al., 2017). Attached cells may propagate
to form microcolonies on the surface with the simultaneous
production of exopolysaccharide (EPS) and other biofilm matrix
materials (Maunders and Welch, 2017). At this stage, bacterial
species capable of active motility may cease their locomotion
and transition to a state of sessility (Landini et al., 2010). As
cell density and EPS production increase, microcolonies grow
and eventually develop into mature SBFs wherein cells are
afforded increased protection against desiccation, predation, and
antimicrobial compounds (Flemming et al., 2016; Flemming
and Wuertz, 2019). Lastly, cells within biofilms may disperse
or escape and re-enter the planktonic state for dissemination
(Guilhen et al., 2017). Given the advantages of life within a
biofilm against the elements, it is no surprise that 80% or more of
all bacterial cells on Earth are estimated to reside within biofilms
(Flemming and Wuertz, 2019).

Myxococcus xanthus is a surface-motile and developmental
bacterium that has evolved to live and move on damp or wet
surfaces of soil particles (Zusman et al., 2007; Konovalova et al.,
2010; Zhang et al., 2012). Its gliding motility allows the bacterium
to move or translocate on moist solid surfaces (Mauriello et al.,
2010). Under nutrient rich conditions, M. xanthus cells on
agar surfaces form vegetative biofilms that grow and spread
as moving carpets with a killer instinct (Mauriello et al.,
2010; Munoz-Dorado et al., 2016). This is because M. xanthus
is a predatory bacterium that consumes other bacteria by
swarming over them as social groups (Berleman and Kirby,
2009; Thiery and Kaimer, 2020; Sydney et al., 2021). When
nutrients or prey become limiting, M. xanthus initiates a well-
orchestrated developmental program, leading to the formation
of multicellular fruiting bodies wherein cells differentiate into
non-motile and metabolically dormant myxospores (Bretl and
Kirby, 2016; Munoz-Dorado et al., 2016; Popp and Mascher,
2019). Integral to this program are inter- and intra-cellular signal
transduction systems that allow the coordinated movement of
M. xanthus to form mound-like aggregates, each containing
hundreds of thousands of cells (Shimkets, 1986; Velicer and
Vos, 2009; Bretl and Kirby, 2016; Mercier and Mignot, 2016;
Kroos, 2017). These aggregates eventually maturate into fruiting
bodies with differentiated myxospores. The sporulation process
is accomplished through regulated gene expression accompanied
by cellular morphogenesis such that rod-shaped vegetative cells
become spherical myxospores within fruiting bodies (O’Connor
and Zusman, 1991a,b; Cao et al., 2015; Kroos, 2017).

The process of M. xanthus fruiting body formation,
considered an elaborate form of bacterial biofilm development
(O’Toole et al., 2000; van Gestel et al., 2015), has been observed
and analyzed extensively for over a century (Thaxter, 1892, 1897;
Bretl and Kirby, 2016; Munoz-Dorado et al., 2016; Kroos, 2017).
These developmental biofilms have been studied both on agar

plates as well as on submerged surfaces (Kuner and Kaiser, 1982;
Shimkets, 1986; Bretl and Kirby, 2016; Keane and Berleman,
2016). In contrast, the vegetative biofilms of M. xanthus have
been investigated almost exclusively as swarming colonies
or CBFs with a heavy focus on motility and taxis (Zusman
et al., 2007; Islam and Mignot, 2015; Munoz-Dorado et al.,
2016; Wadhwa and Berg, 2021). These studies have uncovered
that M. xanthus possesses two genetically distinct forms of
locomotion known as the social (S) and the adventurous (A)
gliding motility (Hodgkin and Kaiser, 1979). It is known that S
motility is powered by the recurrent cycles of T4P extension and
retraction like twitching motility in other bacteria (Kaiser, 1979;
Lu et al., 2005; Zusman et al., 2007; Yang et al., 2014; Wadhwa
and Berg, 2021). The mechanism for this form of motility is
sometimes referred to as the “grappling hook” mechanism (Merz
and Forest, 2002). In the current model, the distal end of an
extended T4P attaches to a solid anchor, the ensuing retraction
of the pilus then pulls the cell forward (Zusman et al., 2007;
Mauriello et al., 2010; Yang et al., 2014; Wadhwa and Berg, 2021).
In M. xanthus, the EPS deposited on substratum or associated
with other cells is the preferred anchor for T4P attachment,
explaining the social nature of T4P-mediated motility in
M. xanthus (Li et al., 2003; Nudleman and Kaiser, 2004; Yang
et al., 2014; Zhou and Nan, 2017). That is, EPS produced by
other cells enhance or facilitate the movement of their kin
cells in physical proximity. In contrast, the A motility system
enables individual and isolated cells to translocate without the
requirement of a neighboring cell (Hodgkin and Kaiser, 1979;
Islam and Mignot, 2015; Nan and Zusman, 2016). The proposed
mechanism for A motility involves a supramolecular motility
machinery extending from the cytoplasm to the exterior (Nan
et al., 2014; Jakobczak et al., 2015; Faure et al., 2016). On the
cytoplasmic side, this machinery is connected to and travels on
a prokaryotic cytoskeleton (Fu et al., 2018). On the outside, it
can be anchored to a gliding surface at stationary focal adhesion
sites (FASs) for force generation to move cells forward (Islam
and Mignot, 2015; Faure et al., 2016; Nan and Zusman, 2016;
Wadhwa and Berg, 2021). There is no doubt that the studies of
swarming CBFs have led to significant insights into the motility
mechanisms of M. xanthus. On the other hand, the nearly
exclusive focus on motility in these studies has left the SBFs of
vegetative M. xanthus to be an understudied area of research.

Formation of bacterial SBFs can be conveniently analyzed by a
microtiter plate-based assay that has been applied to numerous
bacterial species (Christensen et al., 1985; O’Toole and Kolter,
1998; Merritt et al., 2005; Kwasny and Opperman, 2010; Coffey
and Anderson, 2014). In such assays, cell cultures are first
inoculated into wells of a microtiter plate. SBFs are then allowed
to develop on the submerged surfaces of the microwells under
static conditions. Biofilms are subsequently quantified by CV
staining after the removal of unattached cells that are not part
of the SBF. Previously, a microplate-based protocol was used to
study SBF formation of yellow and tan variants of M. xanthus
(Dahl et al., 2011). In this protocol, henceforth referred to as
the Dahl protocol, M. xanthus cells suspended in growth media
at a high cell density were used to inoculate a microtiter plate
which was then incubated overnight to seed the wells under
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static conditions. After this overnight incubation, the microwells
were washed and replenished with fresh media to allow SBF
development for 24 h before the CV-based quantification.
Overnight seeding is generally not included in biofilm assays
for other bacteria (Christensen et al., 1985; O’Toole and Kolter,
1998; Merritt et al., 2005; Kwasny and Opperman, 2010; Coffey
and Anderson, 2014). Among other considerations, we wondered
if the more conventional assay without an extra seeding step
could be applied to analyze M. xanthus biofilm formation under
vegetative conditions.

Here we report the development and adaptation of a 96-
well microplate-based assay for the studies of vegetative SBFs
of M. xanthus. We show that M. xanthus biofilms can be
analyzed without the overnight seeding in the Dahl protocol
(Dahl et al., 2011). During the optimization of the protocol,
we uncovered that aeration is critical for the formation of
SBFs by M. xanthus, which is an obligate aerobe. That is,
SBF formation by M. xanthus is greatly enhanced by rotary
shaking over static conditions. We applied our assay to selected
strains with altered T4P and EPS phenotypes as a means
of validation. Our results demonstrate that the formation of
vegetative SBFs tightly correlates with the level of EPS but
not of T4P in M. xanthus. The availability of this assay
may facilitate the mechanistic studies of SBF formation in
M. xanthus, a surfaced-adapted and obligate aerobe that is
uniquely motile on and adherent to solid surfaces in its
natural environment.

MATERIALS AND METHODS

Strains, Growth Conditions, and
Chemicals
The M. xanthus strains used in this study are listed in Table 1.
Unless otherwise specified, all M. xanthus strains were grown
and maintained on Casitone-yeast extract (CYE) agar plates or
in CYE liquid media (Campos et al., 1978) at 32◦C on a rotary
shaker at 300 rotations per minute (RPM). A stock solution of 1%
(wt/vol) CV (ACROS Chemicals) was prepared in 20% (vol/vol)
ethanol (Decon Laboratories). Glacial acetic acid (Fisher) was
used to make a 30% (vol/vol) acetic acid solution. The MOPS
buffer contains 10 mM morpholinepropanesulfonic acid (pH 7.6)
and 2 mM MgSO4.

Biofilm Assays
The clear tissue culture (TC)-treated flat-bottom 96-well
microplates (Falcon) were used for the development of
M. xanthus SBFs per the Dahl protocol (Dahl et al., 2011) or
according to the procedures as described later in the manuscript.
For the Dahl protocol, M. xanthus cells in the logarithmic growth
phase were harvested and resuspended in CYE media to an
optical density at 600 nm (OD600) of 0.8. 100 µl aliquots of
the cell suspension in quadruplicate were added to the wells of
a microplate. After incubation at 28◦C for 12 h under static
conditions for overnight seeding, the media was removed and
the wells were washed with the MOPS buffer. For biofilm
development, 100 µl of fresh CYE was added to each well and

TABLE 1 | Myxococcus xanthus strains used in this study.

Strains Genotype Source/references

DK1622 WT Kaiser, 1979

DK10416 1pilB Wu et al., 1997

DK10409 1pilT Wu et al., 1997

YZ603 1difE Black and Yang, 2004

YZ604 1difG Black and Yang, 2004

YZ613 1difD Black and Yang, 2004

YZ641 1difD 1difG Black et al., 2006

YZ646 1difD 1difG 1pilA Black et al., 2006

YZ690 1pilA Black et al., 2017

the microplate was incubated under static conditions for 24 h at
32◦C. To develop our protocol, M. xanthus cells in logarithmic
growth were harvested and resuspended in CYE media to various
OD600 as indicated in the text. Aliquots of 75, 100, or 125 µl
of the cell suspensions were dispensed into the microwells in
quadruplicate. Biofilms were allowed to develop at 32 or 27◦C for
24 h under static conditions or on a rotary shaker at 230 RPM.

The SBFs developed above were quantified by the widely
adopted CV-based method (Christensen et al., 1985; Kwasny and
Opperman, 2010; Xi and Wu, 2010; Dahl et al., 2011; Redder
and Linder, 2012; Naher et al., 2014; Bordeleau et al., 2018).
Briefly, after the production of SBFs in microwells, the media and
unattached cells were gently removed by a multichannel pipette.
The wells were washed with equal volumes of MOPS buffer to the
culture volume. Staining was conducted with 150 µl of 1% CV
solution for 20 min before washing thrice with 175 µl of H2O.
After air drying, 200 µl of 30% acetic acid was added to each
well and incubated for 20 min. 125 µl of the acetic acid solution
was then transferred to the microwells of a clear polystyrene
96-well microplate (ExtraGene). The CV absorbance (Acv) was
measured at 600 nm using an Infinite F200 PRO plate reader
and the Acv values were used as the quantifier of SBF amounts
per well. For some experiments, the biofilm amounts (Acv values)
were normalized to either the total area of the submerged surfaces
or the final OD600 of the samples. The submerged surface area
for a given sample was calculated from the culture volume
in a microwell based on the specifications of the microtiter
plate by the manufacturer. The submerged surface areas for the
75 µl, the 100 µl, and the 125 µl samples were determined
to be 0.79, 0.95, and 1.10 cm2, respectively. To normalize SBF
amount to cell density in a microwell, the OD600 of the cell
culture after SBF development was measured 16 times by the
Multiple Reads function of the plate reader. The average of these
measurements was given as the final OD600. In some instances,
Grubbs’ test identified one of the quadruple samples as an outlier
which was expunged from the dataset. Statistical differences were
determined using the Student’s t-test.

The linear range of the F200 PRO under our experimental
conditions was determined by the measuring Acv of serial
dilutions of a CV solution. In total, 15 concentrations from 0 to
100 ppm were analyzed in quadruplicates in a 96-well microplate
(Supplementary Figure 1). This analysis showed the linearity of
Acv vs. CV concentration extends up to 60 ppm of CV and Acv
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values above 3.0. The coefficient of determination or R2 values are
0.9977 and 0.9999 for the CV concentration range of 0–60 ppm
and of 0–30 ppm, respectively. When CV concentrations were
higher than 60 ppm and the Acv values went above 3.5, the linear
relationship no longer holds (data not shown).

RESULTS AND DISCUSSION

Direct Inoculation for Myxococcus
xanthus Submerged Biofilm
Development
We first examined if the conventional microplate-based biofilm
assay (O’Toole and Kolter, 1998) without the overnight seeding
step (Dahl et al., 2011) could be applied to M. xanthus SBFs under
vegetative growth. For this, we compared the results from two
sets of experiments. The first set was conducted according to the
Dahl protocol such that a microwell was inoculated with 100 µl
of M. xanthus cells at OD600 of 0.8 and incubated overnight. The
microwell was then washed and replenished with fresh media to
allow SBF development for 24 h at 32◦C. For the second set, each
well of the microtiter plate was inoculated with 100 µl of a cell
suspension at OD600 of 0.1 and SBFs were allowed to develop
directly for 24 h at 32◦C. Three M. xanthus strains were used for
the initial experiments: the wild type (WT) DK1622, the EPS−

strain YZ603 (1difE) and the T4P− strain YZ690 (1pilA). It
should be noted that the T4P− strain is also deficient in EPS
production because T4P is required for wild-type levels of EPS
production in M. xanthus (Black et al., 2006). As shown in
Figure 1, these two sets of experiments yielded similar trends
of SBF formation for these strains. In both protocols, the WT
produced significantly more biofilms than the EPS− and T4P−

strains as reflected by CV absorbance (Acv). These trends were
expected because both EPS and T4P have been demonstrated
to be critical for biofilm formation in multiple bacteria (Bahar
et al., 2009; Colvin et al., 2011; Maunders and Welch, 2017;
Fiebig, 2019). Moreover, the amounts of SBFs as quantified by
CV retention were comparable for the two protocols for all
three strains. The Acv values for the WT were 0.34 ± 0.03
and 0.31 ± 0.04 in these two protocols, respectively. Those
for the 1difE strains were 0.08 ± 0.01 and 0.07 ± 0.01, and
the 1pilA strain, 0.13 ± 0.01 and 0.15 ± 0.01, respectively.
These observations indicate that a protocol without the seeding
step performed comparably with the Dahl protocol. Overnight
seeding was therefore eliminated from experimental procedures
for the remainder of this study.

Static Conditions May Limit Oxygen
Availability to Impact Myxococcus
xanthus Submerged-Type Biofilm
Formation
We next examined the effects of culture volume and cell density
on SBF formation in the microplate-based assay under static
conditions as above (Figure 1). M. xanthus cells from an
overnight culture were harvested and resuspended in fresh CYE
at OD600 from 0.1 to 0.8. Aliquots of 75, 100, or 125 µl of these cell

FIGURE 1 | Myxococcus xanthus SBFs with or without overnight seeding.
Shown are the SBF amounts represented by average Acv values with
standard deviations from three independent experiments, each conducted in
quadruplicates. SBFs were formed with (+) or without (-) overnight seeding.
The strains were DK1622 (WT), YZ603 (1difE), and YZ690 (1pilA).

suspensions were placed into the microwells for SBF development
for 24 h at 32◦C under static conditions, followed with analysis
by CV retention. The results as shown in Figure 2A indicated
a general trend of increasing SBF amounts with increasing cell
density up to a certain point or threshold, beyond which this
trend is lost. For the 75 µl samples, the OD600 threshold was
0.5 as the amounts of biofilm dropped precipitously at OD600
of 0.6 or higher (Figure 2A). For the samples with 100 µl and
125 µl culture, the reduction in biofilms occurred at OD600 of 0.5
or higher (Figure 2A). Upon further examination, the decrease
in SBFs at high cell density was found to coincide with the
appearance of biofilms at the liquid-air interface under these
experimental conditions (Supplementary Figure 2). These PBFs
were removed with the culture media during the washing step
before analysis by CV retention. Significant numbers of cells
developed into PBFs rather than SBFs under these conditions.
This explains the drastic decrease in SBF amount at higher cell
densities (Figure 2A).

The formation of PBFs at the liquid-air interface has
been observed and investigated for many bacteria including
Escherichia coli and Bacillus subtilis (Yamamoto et al., 2011;
Holscher et al., 2015; Kovacs and Dragos, 2019; Arnaouteli et al.,
2021; Golub and Overton, 2021). PBFs are commonly observed
on the surface of a liquid culture under static conditions in
response to oxygen depletion in the liquid media (Armitano et al.,
2014; Holscher et al., 2015; Kovacs and Dragos, 2019). Evidence
suggests that cells may float to form aggregates at the liquid-air
interface where the concentration of oxygen is the highest under
these conditions (Yamamoto et al., 2011; Armitano et al., 2013,
2014; Holscher et al., 2015). These cells and their aggregates may
further develop into mature PBFs by increasing the production
of EPS and other biofilm matrix materials (Armitano et al., 2014;
Holscher et al., 2015). As an obligate aerobe, it is perhaps not
surprising that M. xanthus forms PBFs under static condition
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FIGURE 2 | Impact of culture volume and cell density on static SBF formation. Different volumes of DK1622 (WT) cells at starting OD600 as indicated were inoculated
into microwells for biofilm development at 32◦C under static conditions. The amount of SBF per microwell was represented either by Acv (A) or by Acv/cm2 (B) which
is normalized to the submerged surface area as described in section “Materials and Methods.” Samples with starting OD600 of 0.5 or higher are not included in panel
(B) due to the formation of PBFs (see text and Supplementary Figure 2 for more information).

at high cell density. The consumption of dissolved oxygen in
the media is expected to result in oxygen limitation and thus
the formation of PBFs at the liquid-air interface where oxygen
is more readily available. The formation of visible PBFs can
therefore explain the observed reduction in M. xanthus SBFs at
high cell densities (Figure 2A).

Indeed, the trend of SBF quantity with varying volumes
of culture appeared consistent with an oxygen effect when
normalized to the submerged surface areas for a sample. SBF
amount (Acv) per cm2 of submerged surface area showed
a seemingly decreasing trend with increasing culture volume
(Figure 2B). At the same starting cell density, the higher the
culture volume, the lower the Acv/cm2 value. For example, at
the starting OD600 of 0.1, the Acv/cm2 values are 0.33 ± 0.01,
0.31 ± 0.00, and 0.27 ± 0.02 for wells with the 75, 100, and
125 µl of samples, respectively. At OD600 of 0.4, the values
for these wells are 0.64 ± 0.06, 0.60 ± 0.02, and 0.52 ± 0.02,
respectively. It can be assumed that when the depth of liquid in
a microwell increases with increasing culture volumes, cells at
or near the bottom of the well experience more severe oxygen
limitations under static conditions. This explains the formation
of PBFs at high cell density (Figures 2A,B and Supplementary
Figure 2) and suggests that oxygen availability greatly influences
the formation of SBFs by M. xanthus.

Rotary Shaking Significantly Increases
Myxococcus xanthus Submerged-Type
Biofilms
The impact of oxygen availability on the formation of SBFs
by M. xanthus was investigated next. Here we conducted
experiments wherein cultures in the microtiter plates were
aerated on a rotary shaker. For these experiments, samples
were prepared as in Figure 2, except that the microtiter plates

were incubated with rotary shaking. Under these conditions,
the amount of SBFs per well increased steadily with increasing
cell density (Figure 3A and Supplementary Figure 3). This is
in stark contrast to those under static conditions where the
amount of SBFs showed drastic decreases when the starting
OD600 was equal to or greater than 0.6 (Figure 2A). Under this
aerating condition, the amount of SBF continued a positive trend
with increasing cell density up to OD600 of 0.8, the highest in
our experiments (Figure 3A and Supplementary Figure 3). In
addition, no PBF was observed for any of the samples, suggesting
that M. xanthus PBF formation is sensitive to oxygen levels in the
culture (Figures 2, 3).

Recall that the amounts of SBFs normalized to submerged
surface areas decreased with increasing culture volume under
static conditions (Figure 2B). This trend no longer holds when
cultures are aerated on a rotary shaker. For wells with the same
starting cell density, the amounts of SBF/cm2 showed no decrease
as culture volume increased (Figure 3B). For example, at the
starting OD600 of 0.1, the 75, 100, and 125 µl samples had
Acv/cm2 values of 0.33, 0.41, and 0.45, respectively. At OD600 of
0.3, these samples gave values of 0.77, 0.77, and 0.91, respectively.
In some cases, there are statistically significant increases at higher
volumes (100 and 125 µl) over the 75 µl cultures. At OD600 of
0.2 and 0.6, for instance, the 100 and 125 µl samples produced
significantly more SBFs than the 75 µl cultures (Figure 3B).
The amounts of SBFs for the two higher volumes are generally
not statistically different after normalization to submerged area.
Although the relationship between SBF formation and culture
volume under aerating conditions has yet to be fully investigated,
it is clear that the inverse relationship seen under static conditions
(Figure 2B) disappears when cultures are aerated through rotary
shaking (Figure 3B).

Most importantly, there are significant increases in M. xanthus
SBF when cultures are aerated in comparison with the static
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FIGURE 3 | SBF formation with aeration. Experiments were conducted with DK1622 (WT) similarly as in Figure 2, except that the microplates were incubated with
rotatory shaking instead of under static conditions. The amounts of SBFs were represented either by Acv (A) or by Acv/cm2 (B). Asterisks represent the initial OD600

values that result in statistically significant differences in normalized SBF formation between the 75 µl samples and both the 100 and 125 µl samples. Significance
was determined by Student’s t-test, *P < 0.005.

condition (Table 2). It is not surprising that when their
counterparts formed PBFs under static conditions (shaded wells
in Table 2), the corresponding samples formed significantly
greater amounts of SBFs under shaking conditions. The
remaining samples may be divided into two categories by
culture volume. The first category includes those with 75 µl
of cultures; for these samples, there does not appear to be
significant differences between shaking vs. static conditions. For
those with higher culture volumes (100 and 125 µl), there
are generally significant increases in SBF/cm2 under shaking
conditions (Table 2). For the 100 µl cultures, when the starting
OD600 increased from 0.1 up to 0.4, the increases under shaking
conditions ranged from 85 to 97%. For the 125 µl cultures, the
increases ranged from 67% to over 160%. These results indicate
that aeration through rotary shaking significantly enhanced
M. xanthus SBF formation and it was adopted for M. xanthus SBF
development for the remainder of the study.

Optimizing Conditions for Analyzing
Vegetative Submerged-Type Biofilms of
Myxococcus xanthus
Myxococcus xanthus grows optimally at 32◦C in aerated liquid
culture (Janssen et al., 1977). Yet, we have observed that this
bacterium produced higher levels of EPS on agar surfaces at
27◦C or at room temperature (Black et al., 2017; Dye et al.,
2021; unpublished data). Since EPS is a major component of
the bacterial biofilm matrix, we compared the amount of SBF
developed at 27 and 32◦C. Here, two identical sets of experiments
were initiated as in Figure 3, except one was incubated at
27◦C while the other at 32◦C. As shown in Figure 4A and
Supplementary Figure 4A, differences in SBFs per microwell at
these two temperatures are generally not statistically significant.
However, because M. xanthus grows slower at 27◦C than 32◦C,
the samples at 27◦C were anticipated to have less growth and

fewer cells. It therefore remained a possibility that a higher
percentage of cells might be in SBFs at 27◦C than 32◦C relative
to the planktonic population. We measured the optical density
of the culture after biofilm development as described in section
“Materials and Methods.” As expected, the OD600 of the culture
was significantly higher at 32◦C than at 27◦C (Figure 4B and
Supplementary Figure 4B). When SBF was normalized to the
OD600 of the culture, it is clear that the proportion of cells in
SBFs is significantly higher at 27◦C than at 32◦C (Figure 4C
and Supplementary Figure 4C). For example, for the wells with
starting OD600 of 0.4, the biofilm amounts by this measure are
between 40 to 60% more at 27◦C than at 32◦C for all samples
at the three volumes examined (Figure 4C). These observations
indicate that M. xanthus cells form SBFs more readily at 27◦C.
Based on these analyses and previous observations, 27◦C was
selected as the temperature for the development of M. xanthus
vegetative SBFs in our assay moving forward.

To finalize the remaining parameters for our microplate-
based assay, we chose to use 100 µl of culture per microwell
with the starting OD600 of 0.4. The 100 µl volume was chosen
for three reasons. First, this is the most common volume in
similar assays for other bacteria (Merritt et al., 2005; Kwasny
and Opperman, 2010). Second, this is the volume used by
Dahl et al for the analysis of M. xanthus SBFs previously
(Dahl et al., 2011). Lastly, the difference in culture volumes
per well generally did not translate into significant differences
in SBF amounts under aerating condition when normalized to
submerged surface area (Table 2). For the starting cell density, we
took into consideration the linear range of the instrumentation
(Supplementary Figure 1), aiming for an Acv of ∼1.0 for DK1622
(WT) (Supplementary Figure 4). We anticipate that mutations
may either enhance or diminish biofilm formation. An Acv
reading of ∼1.0 for the wild-type would leave room for analysis
of mutants with either an increase or a decrease in biofilms
formation. With 100 µl sample volume at 27◦C, the starting
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TABLE 2 | Comparison of SBFs under static and shaking conditions.

OD600 0.1 0.2 0.3 0.4 0.5 0.6

75 µ l Static 0.33 ± 0.01 0.45 ± 0.02 0.48 ± 0.03 0.64 ± 0.06 0.70 ± 0.03 0.37 ± 0.08

Shaking 0.33 ± 0.01 0.44 ± 0.02 0.77 ± 0.16α 0.83 ± 0.18 1.08 ± 0.22α 1.14 ± 0.03

100 µ l Static 0.31 ± 0.00 0.41 ± 0.01 0.42 ± 0.00 0.60 ± 0.02 0.28 ± 0.03 0.30 ± 0.03

Shaking 0.41 ± 0.07 0.76 ± 0.08β 0.77 ± 0.20α 1.18 ± 0.21α 1.44 ± 0.06 1.81 ± 0.03

125 µ l Static 0.27 ± 0.02 0.38 ± 0.04 0.40 ± 0.01 0.52 ± 0.02 0.24 ± 0.02 0.22 ± 0.01

Shaking 0.45 ± 0.04α 0.88 ± 0.05β 0.90 ± 0.13α 1.37 ± 0.12γ 1.70 ± 0.06 1.90 ± 0.04

The datasets shown here are from Figures 2A, 3A. The unit for SBF shown in the table is Acv/cm2. The first row indicates the OD600 of the starting culture. Shaded
cells indicate PBF formation under static condition. Statistical significance between static and shaking samples are denoted with markings in the shaking cell. Statistical
comparisons were made by Student’s t-test. αP < 0.05, βP < 0.005, γP < 0.0005.

FIGURE 4 | SBF formation at 27 and 32◦C. The full dataset and its analysis are shown in Supplementary Figure 4. Here shows the analysis of the 75, 100, and
125 µl samples with a starting OD600 of 0.4 only. (A) SBF (Acv ) at 27 or 32◦C. (B) Final optical density (OD600) of the culture after SBF development. (C) Ratio of SBF
amount (Acv ) to final OD600 with the values for 32◦C normalized to 1. The asterisk (*) indicate significant differences between the two temperatures (P-value < 0.05).

OD600 of 0.4 yielded the nearest Acv reading to 1.0 (Figure 4A
and Supplementary Figure 4A). The following is a summary of
the experimental parameters for our finalized assay for vegetative
SBF of M. xanthus. 100 µl of a cell suspension in CYE at OD600
of 0.4 is inoculated into a microwell of a 96-well microplate in
quadruplicates. The plate is incubated at 27◦C for 24 h with rotary
shaking for SBF development. The amounts of SBFs are then
analyzed by CV retention using a plate reader (Supplementary
Figure 1) as in similar assays for other bacteria (Christensen et al.,
1985; Merritt et al., 2005; Xi and Wu, 2010).

Exopolysaccharide, Not Type IV Pilus,
Correlates With Myxococcus xanthus
Vegetative Submerged-Type Biofilm
Formation
It is known that bacterial T4P and EPS play critical roles in
SBF development as adhesins and biofilm matrix materials.
In M. xanthus, the levels of T4P and EPS are known to be
intertwined in a mutual relationship. On one hand, piliation
levels have been demonstrated to positively modulate EPS levels.
pilA and pilB mutants, which are un-piliated, produces very low
levels of EPS in both liquid culture and on agar plates (Black
et al., 2006, 2009, 2017 Yang et al., 2010). pilT mutants, which
are hyperpiliated because they assemble non-retractable pili (Wu

et al., 1997), produces higher amounts of EPS than the wild-type
in liquid culture (Black et al., 2006). On the other hand, studies
suggest that EPS levels in turn can influence piliation levels.
Experimental evidence supports a model wherein the retraction
of T4P is triggered by interactions with EPS in M. xanthus (Li
et al., 2003; Nudleman and Kaiser, 2004; Zhou and Nan, 2017). In
other words, M. xanthus EPS is the preferred anchor and trigger
for T4P retractions. This explains the hyperpiliated phenotypes
of certain EPS− mutants (Bellenger et al., 2002; Li et al., 2003;
Black and Yang, 2004) because the pilus does not retract without
EPS as an anchor and trigger (Li et al., 2003). In addition, it is
known that EPS levels in M. xanthus are regulated in part by the
Dif chemotaxis-like pathway (Black and Yang, 2004; Black et al.,
2006, 2017; Yang et al., 2014). DifE, which resembles the CheA
kinase in bacterial chemotaxis pathways, is a positive regulator
of EPS. The deletion of difE leads to the lack of detectable EPS,
absence of S motility and increased piliation levels (Bellenger
et al., 2002; Li et al., 2003; Black et al., 2006). There are also
negative regulators of EPS in the Dif pathway, namely, DifD and
DifG, which are homologs to the chemotaxis proteins CheY and
CheC, respectively (Black and Yang, 2004; Black et al., 2006).
Deletions of difD or difG lead to EPS overproduction and their
mutations have additive effects such that a difD difG double
mutant produces more EPS than their respective single mutants
(Black and Yang, 2004; Black et al., 2006). It is known that the
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Dif pathway functions downstream of T4P in EPS regulation, in
part because a 1difD 1difG double mutation suppressed the EPS
defect resulting from a pilA deletion (Black et al., 2006, 2017).

We analyzed the amounts of SBFs of a few M. xanthus mutants
with altered levels of EPS and T4P using our assay. The strains
here included three that were used in in earlier experiments,
namely the 1difE (YZ603), the 1pilA (YZ690), and the WT
(DK1622) strains (Figure 1). We selected six additional mutants
with varying levels of EPS and T4P as established in multiple
studies under different experimental conditions previously (Wu
et al., 1997; Wall et al., 1998; Black et al., 2006, 2017; Wang
et al., 2011; Perez-Burgos et al., 2020). These include an un-
piliated 1pilB mutant (DK10416) and a hyperpiliated 1pilT
mutant (DK10409). We also included a 1difG (YZ604), a 1difD
(YZ613), and a 1difD 1difG double (YZ641) mutants. Finally,
we included the 1difD 1difG 1pilA triple mutant YZ646.
This strain is un-piliated but produces similar amounts of
EPS as the WT (Black et al., 2006). All of these strains were
allowed to form SBFs as specified in the preceding section at
27◦C, and the amounts of their SBFs were analyzed by CV
retention (Figure 5).

The analysis of these results shows that M. xanthus SBF
formation has no correlation with piliation levels under our
experimental conditions. For example, both the 1pilT and the
1difE mutants are hyperpiliated. Yet, the SBF of the former gave
a Acv of 1.51, more than 10-fold higher than 0.11 for the 1difE
mutant (Figure 5). Similarly, the 1pilA, the 1pilB and the 1difD
1difG 1pilA mutants are all un-piliated due to the deletion of
either pilA or pilB. Yet the Acv value for the triple mutant (1.21) is
significantly higher than those for the 1pilA (0.24) and the 1pilB
(0.18) mutants (Figure 5). Although the WT strain is piliated
and the 1difD 1difG 1pilA triple mutant is not, they produced
comparable levels of SBFs in this assay. These observations clearly

demonstrate that, under our experimental conditions, M. xanthus
SBF formation has no direct correlation with piliation levels.

However, there is a clear correlation between EPS levels and
SBF amounts by the different strains we examined (Figure 5).
It is well established that 1difE, 1pilA, and 1pilB mutants
produce undetectable or significantly lower levels of EPS in
comparison with the wild-type strains (Black et al., 2006, 2017;
Yang et al., 2010). Both 1pilA and 1pilB mutants produced
more EPS than 1difE with the 1pilA mutant producing slightly
more ESP than a 1pilB mutant (Black et al., 2006; Yang et al.,
2010). It has also been demonstrated that a 1difD 1difG
double deletion is able to suppress and restore EPS production
to a 1pilA mutant to about the wild-type level (Black et al.,
2006). For mutants that overproduce EPS, the ascending order
is 1pilT, 1difG,1difD and finally the 1difD 1difG double
mutant (Black and Yang, 2004). To recap, previous studies
indicate that the order of strains used here going from low to
high EPS levels is YZ603 (1difE)ÔDK10416 (1pilB)ÔYZ690
(1pilA)ÔDK1622(WT)/YZ645(1difD 1difG 1pilA)ÔDK10409
(1pilT)ÔYZ604 (1difG)ÔYZ613 (1difD)ÔYZ641 (1difD
1difG). As shown in Figure 5, the amounts of SBFs formed
by these strains followed exactly the same order as their EPS
levels. These results collectively demonstrate that the level of
SBF formation in M. xanthus under our experimental conditions
tightly correlate with the amount of EPS produced by M. xanthus
under vegetative growth. We suggest that our newly developed
SBF protocol here may be utilized to conveniently and reliably
quantify the relative EPS levels in M. xanthus under vegetative
conditions in a high throughput format. Most importantly,
this assay will allow further studies of M. xanthus SBFs to
probe the mechanisms of SBF formation by an obligate aerobe
adapted to living and translocating on solid surfaces in its
natural environment.

FIGURE 5 | SBF formation by M. xanthus T4P and EPS mutants. 100 µl of a cell suspension with OD600 at 0.4 was placed into a microwell. SBF was develop at
27◦C with rotary shaking. Shown are the average Acv values with standard deviations from three independent experiments. Strains used were YZ603 (1difE),
DK10416 (1pilB), YZ690 (1pilA), DK1622 (WT), YZ645 (1difD 1difG 1pilA or 1DGA), DK10409 (1pilT ), YZ604 (1difG), YZ613 (1difD), and YZ641 (1difD 1difG or
1DG). Statistical difference from the WT is indicated by *P < 0.05, **P < 0.01, or ***P < 0.0001. Shown in the insert are the data for YZ603, DK10416, and YZ690
at an enlarged scale.
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CONCLUSION

Here we report a microplate-based assay to analyze SBFs of
M. xanthus under vegetative growth. This new assay has three
major modifications compared with the Dahl protocol (Dahl
et al., 2011). First, we demonstrated that overnight seeding in
the Dahl protocol is not essential and it is therefore omitted
from the new protocol for simplicity and convenience. Second,
the temperature of 27◦C is chosen for SBF formation because
the relative cell population in SBF is significantly higher at
27◦C than at 32◦C; this is consistent with the observation of
enhanced EPS production at 27◦C or at room temperature
with agar plate-based assays (Black et al., 2017; Dye et al.,
2021). In retrospect, this could be the reason that 28◦C was
used in the Dahl protocol for overnight seeding (Dahl et al.,
2011). Lastly, we introduced aeration by rotary shaking for the
development of SBFs by M. xanthus, which is an obligate aerobe.
We used our newly established protocol to examine vegetative
SBF formation of various M. xanthus T4P and EPS mutants. The
results demonstrated that the level of SBF tightly correlates with
that of EPS but not of T4P, showing strains with higher EPS levels
forming more SBF. Beside its use in SBF research, this assay can
be utilized additionally as a convenient alternative for analyzing
relative EPS levels for M. xanthus in a high throughput format.
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Supplementary Figure 1 | Linear range of Acv with CV concentrations. Acv of CV
solutions at indicated concentrations in parts per million (ppm) was measured by
an Infinite F200 PRO plate reader. Shown are the averages with standard deviation
from three independent experiments, each conducted in quadruplicates.
A trendline is shown with an R2 value of 0.9977 for CV concentrations up to
60 ppm. The inset shows the dataset with CV concentrations up to 30 ppm with
an R2 value of 0.9999 for the trend line.

Supplementary Figure 2 | Representative images of PBF formation at the
liquid-air interface. 125 µl of DK1622 (WT) cell suspension at indicated OD600 was
placed in the microwells of a 96-well microplate in triplicates per column. The plate
was incubated under static conditions at 32◦C. All microwells in the top row were
slightly disturbed by pipette tips to be more wrinkly to aid the visualization of PBFs.

Supplementary Figure 3 | SBF formation with aeration. Shown here is the full
dataset for Figure 3A.

Supplementary Figure 4 | SBF formation at 27 and 32◦C. The full dataset for
Figure 4. Culture volumes are indicated on the top for all panels with the starting
OD600 shown on the X-axis for all graphs. (A) SBF (Acv ) at 27 or 32◦C. (B) Final
optical density (OD600) of the culture after SBF development. (C) Ratio of SBF
amount (Acv ) to final OD600 with the values for 32◦C normalized to 1. The asterisk
(*) indicate significant differences between the two temperatures (P-value < 0.05).
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