A *MUC5B* Gene Polymorphism, rs35705950-T Confers Protective Effects Against COVID-19 Hospitalization but not Severe Disease or Mortality

Anurag Verma PhD^{1,2†}, Jessica Minnier PhD^{3,4,5†}, Emily S Wan MD, MPH^{7,8†}, Jennifer E Huffman PhD⁶, Lina Gao PhD^{9,10}, Jacob Joseph MBBS, MD^{11,12}, Yuk-Lam Ho MPH¹³, Wen-Chih Wu MD, MPH^{14,15}, Kelly Cho PhD, MPH^{16,17}, Bryan R Gorman PhD¹⁸, Nallakkandi Rajeevan PhD^{19,20}, Saiju Pyarajan^{21,22}, Helene Garcon MD⁶, James B Meigs MD, MPH²³, Yan V Sun PhD^{24,25}, Peter D Reaven MD^{26,27}, John E McGeary PhD^{28,29}, Ayako Suzuki MD, PhD, MSc^{30,31}, Joel Gelernter MD^{32,33}, Julie A Lynch PhD, RN^{34,35}, Jeffrey M Peterson MD^{36,37}, Seyedeh Maryam Zekavat BS^{38,39}, Pradeep Natarajan MD, MMSc^{40,39,41}, Sharvari Dalal MD^{43,37}, Darshana N Jhala MD, B Mus^{44,45}, Mehrdad Arjomandi MD⁴⁶, Elise Gatsby MPH⁴⁷, Kristine E Lynch MS PhD^{47,48}, Robert A Bonomo⁴⁹, Mat Freiberg⁵⁰, Gita A Pathak PhD^{51,52}, Jin J Zhou PhD^{53,54}, Curtis J Donskey MD⁵⁵, Ravi K Madduri MS⁵⁶, Quinn S Wells MD, PharmD⁵⁷, Rose DL Huang MS⁶, Renato Polimanti PhD^{51,52}, *Million Veteran Program COVID-19 Science Initiative*, Kyong-Mi Chang MD⁵⁸, Katherine P Liao MD, MPH⁵⁹, Philip S Tsao PhD⁶⁰, Peter W.F. Wilson MD^{25,61}, Adriana Hung⁶², Christopher J O'Donnell MD, MPH⁶³, John M Gaziano⁶⁴, Richard L Hauger MD^{65,66}, Sudha K. Iyengar PhD^{67,68*} and Shiuh-Wen Luoh MD PhD^{69*}

¹Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA, ²Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA, ³OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, 97239, USA, ⁴Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, 97239, USA, ⁵VA Portland Health Care System, OR, 97239, USA, ⁶MAVERIC, VA Boston Healthcare System, Boston, MA, 02130, USA, ⁷Department of Medicine, Pulmonary, Critical Care, Sleep, and Allergy Section, VA Boston Healthcare System, Boston, MA, 02115, USA, ⁸Channing Division of Network Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA, ⁹Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, ¹⁰VA Portland Health Care System, ¹¹Department of Medicine, VA Boston Healthcare System, Boston, MA 02115, USA, ¹²Brigham & Women's Hospital, ¹³MAVERIC, VA Boston Healthcare System, Boston, MA, 2130, USA, ¹⁴Department of Medicine, Cardiology, Providence VA Healthcare System, Providence, RI, 02908, USA, ¹⁵Alpert Medical School & School of

Public Health, Brown University, Providence, RI, 02903, USA, ¹⁶MAVERIC, VA Boston Healthcare System, 150 S Huntington Ave, Boston, MA, 02130, USA, ¹⁷Medicine, Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02130, USA, ¹⁸VA Boston Healthcare System, 150 S Huntington Ave, Boston, MA, 02131, USA, ¹⁹Yale Center for Medical Informatics, Yale School of Medicine, New Haven, CT, 06511', USA, ²⁰Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT, 06516', USA, 21VA Boston Healthcare System, Boston, MA, 2115, ²²Department of Medicine, Harvard Medical School, ²³Medicine, General Internal Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02115, USA, ²⁴Epidemiology, Emory University School of Public Health, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA, 25Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA, ²⁶Deptartment of Medicine, Phoenix VA Healthcare System, Phoenix, AZ, 85012, USA, 27Univ. of AZ, 28Department of Psychiatry and Human Behavior, Providence VA Medical Center, Providence, RI, 2908, USA, ²⁹Brown University Medical School, ³⁰Department of Medicine, Gastroenterology, Durham VA Medical Center, 508 Fulton St, Durham, NC, 27705, USA, 31Department of Medicine, Gastroenterology, Duke University, Durham, NC, 27710, USA, ³²Psychiatry, Human Genetics, Yale Univ. School of Medicine, 950 Campbell Avenue, West Haven, CT, 06516, USA, 33VA CT Healthcare Center, 34VA Informatics & Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA, 35 Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, ³⁶Pathology and Laboratory Medicine, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA, ³⁷Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA, ³⁸Computational Biology & Bioinformatics, Yale School of Medicine, 333 Cedar St, New Haven, CT, 6510, USA, 39 Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA, 40 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA, ⁴¹Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA, ⁴³Pathology and Laboratory Medicine, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA, ⁴⁴Pathology and Laboratory Medicine, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, ⁴⁵Perelman School of Medicine, University of Pennsylvania, 19104, ⁴⁶Medicine, Pulmonary and Critical Care, San Francisco VA Healthcare System; University of California San Francisco, San Francisco, CA, 94121, USA, ⁴⁷VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, 48Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, 49Case

Western Reserve University, Cleveland, OH, 50 Vanderbilt University Medical Center, Nashville, TN, 51 Department of Psychiatry, Division of Human Genetics, Yale School of Medicine, New Haven, CT, 06511, USA, 52VA Connecticut Healthcare System, West Haven, CT, 06516, USA, 53 Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA, ⁵⁴Epidemiology and Biostatistics, University of Arizona, AZ, 85724, USA, ⁵⁵Infectious Disease Section, Louis Stokes Cleveland VA and Case Western Reserve University, Cleveland, OH, 44106, USA, ⁵⁶Data Science and Learning, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, ⁵⁷Departments of Medicine, Biomedical Informatics, and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA, ⁵⁸Corporal Michael J Crescenz VA Medical Center, ⁵⁹Medicine, Rheumatology, VA Boston Healthcare System, Boston, MA, 02130, ⁶⁰Precision Medicine, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA, 61Emory University School of Medicine, Atlanta, GA, 30322, USA, 62(No affiliation data provided), ⁶³Medicine, Cardiology, VA Boston Healthcare System, 1400 VFW Parkway, Boston, MA, 2132, USA, ⁶⁴VA Boston Healthcare System, Boston, MA, ⁶⁵Center of Excellence for Stress & Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA, 66Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, CA, 92093, USA, ⁶⁷Case Western Reserve University, Cleveland, OH, 44106, USA, ⁶⁸Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA, ⁶⁹VA Portland Health Care System, Portland, OR, 97239, USA

Joint Authorship

[†]These authors contributed equally to this work

*These authors jointly supervised this work

Supported by MVP035 award from the Million Veteran Program, Office of Research and Development, Veterans Health Administration, MVP008 (1101BX004188-01) (S-W L), Veteran Affairs of the United States Government BX 004831 (P.W./K.C.), National Institute of Health grant R01GM138597 (A.V.), National Heart, Lung, and Blood Institute grant R01HL142711 and

R01HL127564 (P.N.). This publication does not represent the views of the Department of Veteran

Affairs of the United States Government.

Author contributions: A.V, J.E.H, S.I, S.L, L.G and J.M and E.S.W. analyzed data. J.E.H., A.V., L.G.,

E.S.W., S.I., S.L. supervised data collection. A.V., J.E.H, L.G., J.M., E.S.W., S.I. and S.L. wrote the

manuscript. A.V., J.E.H, L.G. J.M., E.S.W., S.I., and S.L. conceived the study design, supervised data

collection and analysis, and wrote and edited the manuscript. All authors revised and approved

the final version to be published.

Correspondence should be addressed to Shiuh-Wen Luoh (Shiuh-Wen.Luoh@va.gov), Sudha K

Iyengar (ski@case.edu)

Manuscript word count: 3500

Some of the results of these studies have been previously reported in the form of a preprint

(medRxiv, [29 September 2021] https://doi.org/10.1101/2021.09.28.21263911).

This article has an online data supplement, which is accessible from this issue's table of content

online at www.atsjournals.org.

This article is open access and distributed under the terms of the Creative Commons Attribution

Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-

nd/4.0/). For commercial usage and reprints please contact Diane Gern (dgern@thoracic.org).

At a Glance Commentary

Scientific knowledge on the subject

Parenchymal fibrosis, a late feature of severe COVID-19 disease, shares characteristics with idiopathic pulmonary fibrosis (IPF). The impact of rs35705950-T, a functional polymorphism upstream of the MUC5B gene and an established risk factor for IPF, on COVID-19 outcomes in an ancestrally diverse population is unclear.

What this study adds to the field

Rs35705950-T was associated with fewer COVID-19 hospitalizations in a trans-ancestry meta-analysis conducted in the Million Veteran Program (MVP, ntotal=511,965; OR=0.89 [0.82-0.97]) and in joint meta-analysis with the Host Genetics Initiative (ntotal=506,174; OR=0.90 [0.86-0.95]). In subgroup analyses of MVP participants of European ancestry, rs35705950-T was associated with fewer post-COVID-19 pneumonia events, with evidence supportive of a protective dose-response relationship for each copy of the rs35705950-T allele. These results support a potentially protective effect of rs35705950-T against COVID-19 hospitalizations and post-infection pneumonia events.

Abstract

Rationale: A common *MUC5B* gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis (IPF), but its role in SARS-CoV-2 infection and disease severity is unclear.

Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated with COVID-19 infection among participants in the Million Veteran Program (MVP).

Methods: The *MUC5B* rs35705950-T allele was directly genotyped among MVP participants; clinical events and comorbidities were extracted from the electronic health records.

Associations between the incidence or severity of COVID-19 and rs35705950-T were analyzed within each ancestry group in the MVP followed by trans-ancestry meta-analysis. Replication and joint meta-analysis were conducted using summary statistics from the COVID-19 Host Genetics Initiative (HGI). Sensitivity analyses with adjustment for additional covariates (BMI, Charlson comorbidity index, smoking, asbestosis, rheumatoid arthritis with interstitial lung disease and IPF) and associations with post-COVID-19 pneumonia were performed in MVP subjects.

Measurements and Main Results: The rs35705950-T allele was associated with fewer COVID-19 hospitalizations (N_{cases} =4,325/, $N_{controls}$ =507,640; OR=0.89 [0.82-0.97], p=6.86 x 10⁻⁰³) in transancestry meta-analysis within MVP and joint meta-analyses with the HGI (N_{cases} =13,320, $N_{controls}$ =1,508,841; OR=0.90 [0.86-0.95], p=8.99 x 10⁻⁰⁵). The rs35705950-T allele was not associated reduced COVID-19 positivity in transancestry meta-analysis within MVP (N_{cases} =19,168/ $N_{controls}$ =492,854; OR=0.98 [0.95-1.01], p=0.06) but was nominally significant (p

< 0.05) in the joint meta-analysis with HGI (N_{cases}=44,820/N_{controls}=1,775,827; OR=0.97 [0.95-1]; p=0.03). We did not observe associations with severe outcomes or mortality. Among MVP individuals of European ancestry, rs35705950-T was associated with fewer post-COVID-19 pneumonia events (OR=0.82 [0.72-0.93], p=0.001).

Conclusions: The *MUC5B* variant rs35705950-T may confer protection in COVID-19 hospitalizations.

Keywords: coronavirus disease 2019; severe acute respiratory syndrome coronavirus 2; idiopathic pulmonary fibrosis; electronic health records; genetic association

Introduction

A respiratory disease caused by a novel coronavirus, now known as SARS-CoV-2, was first reported towards the end of 2019. Despite massive public health measures and vaccination initiatives, the coronavirus disease-2019 (COVID-19) pandemic remains a major global health threat. By February 2022, the COVID-19 pandemic had caused more than 424 million confirmed infections resulting in more than 5.8 million deaths worldwide(1).

Parenchymal fibrosis is a late complication of severe respiratory infections due to COVID-19(2–4). Among chronic lung diseases, idiopathic pulmonary fibrosis (IPF)(5), a disorder characterized by progressive pulmonary scarring which is associated with a median survival of 2-3 years in the absence of lung transplantation(6), shares several risk factors with those for severe COVID-19 disease, including advanced age(7), cardiovascular disease, diabetes, and a history of smoking(5). Thus, common pathological processes may be shared between the fibrotic response towards COVID-19 infection and those underlying IPF.

IPF likely develops from a multifaceted interaction between genetic and environmental factors, age-related mechanisms, and epigenetic profibrotic reprogramming(8, 9). One of the most robust genetic risk factors identified for IPF susceptibility is rs35705950-T, a common G to T transversion located approximately 3 kb upstream of the mucin 5B, oligomeric mucus/gelforming (*MUC5B*) gene(10, 11). Laboratory evidence supports that rs35705950-T is: 1) a functional variant located within an enhancer subject to epigenetic programming and 2) contributes to pathologic mis-expression in IPF(12). Notably, while rs3705950-T has been robustly associated with increased susceptibility, the same allele has also been associated with

decreased mortality in IPF (13), though whether this paradoxical effect is attributable to pleiotropy or index event bias remains controversial(14).

Given the high minor allele frequency (MAF) of rs35705950-T (~11% among individuals of European ancestry) and possible shared pathophysiological pathways between IPF and severe COVID-19 disease, we examined the association between rs35705950-T and the clinical outcomes of COVID-19 infection in the Million Veteran Program (MVP), a multi- ancestry cohort of over 650,000 U.S. Veterans with detailed electronic health record (EHR) and genotyping data(15). Following our primary analysis in the MVP, we validated our results with a comparable analysis conducted in the Host Genetics Initiative (HGI), a global collaboration of over 160 genetic studies assembled to facilitate rapid discovery and dissemination of COVID-19 related science(16).

Methods

Data Sources

Data from the MVP, a multi- ancestry genetic biobank sponsored by the United States Veterans Affairs (VA), were analyzed(15). All protocols were approved by the VA Central Institutional Review Board and all participants provided written informed consent. Genotyping was performed using a custom Thermo Fisher Axiom genotyping platform (MVP 1.0) which included direct genotyping of rs35705950-T. Ancestry was defined using harmonized ancestry, race, and ethnicity (HARE) derived from self-report and genetic ancestry data(17). Individuals from three major ancestry groups: European (EUR), African (AFR), Hispanic (HIS) were included.

Demographic and pre-existing comorbidity data were collected from questionnaires and the VA EHR; "pre-COVID" data was from the time of enrollment into the MVP to September 30, 2019. The cohort demographics and a description of the clinical conditions for all genotyped MVP participants and COVID-19 positive MVP participants(18) that were evaluated in this study are shown in **Table 1**.

COVID-19 outcome definitions

COVID-19 infection status from 02/2020 - 04/2021 was assessed by either self-report (if testing was performed outside the VA) or by a positive polymerase chain reaction (PCR)-based test(19, 20) performed within the VA health system. The *index date* was defined as a COVID-19 diagnosis date, i.e., specimen date; and for a hospitalized patient, the admission date up to 15 days prior to the COVID-19 diagnosis date.

Our primary analyses used harmonized definitions with the COVID-19 HGI to maximize sample sizes, examine consistent endpoints, and facilitate meta-analyses. In accordance with the HGI phenotype definitions, the following three analyses were performed: (1) COVID-19 Susceptibility: individuals who tested positive for COVID-19; (2) COVID-19 Hospitalization: individuals who were hospitalized due to symptoms of COVID-19; (3) COVID-19 Severe: individuals who were hospitalized and required respiratory support beyond nasal cannula oxygen or died. For each phenotype, population controls were selected i.e., all the MVP participants who were not defined as a case were assigned as control. Controls also include individuals with unknown COVID-19 infection exposure. Additionally for the study of COVID-19 hospitalization, a fourth analysis comprised COVID-19 positive individuals that were

hospitalized were compared with COVID-19 positive individuals that were not hospitalized.

Separate sensitivity analyses were conducted within the MVP cohort to evaluate the effect of possible confounding variables that were not evaluated in the HGI. To ensure complete capture of relevant clinical information, we included only individuals who were tested for COVID-19 at one of the VA sites; individuals who did not have COVID testing within the VA were excluded. The four phenotypes evaluated included COVID-19 testing positive rate, COVID-19 hospitalization, severe COVID-19 infection or death, and COVID-19 death (Modified from the WHO Working Group criteria(21) (Supplemental Methods)). All models were adjusted for additional possible confounders, including body mass index (BMI), Charlson comorbidity index (CCI), smoking history, asbestosis(22), rheumatoid arthritis with interstitial lung disease (RA-ILD)(23) and idiopathic pulmonary fibrosis (IPF)diagnosis(24). These variables were derived from the data within two years prior to the index date of diagnosis (Table E1).

Post-index pneumonia definition

Post-index pneumonia was defined from ICD codes within 60 days after the index date.

Association with COVID-19 pneumonia events (pneumonia60d) were performed among patients who received COVID-19 PCR testing at VA sites (**Table E2**). The ICD codes used to define pneumonia events within 60 days COVID-19 infection (pneumonia60d) are presented in **Table E3**.

Statistical analysis

Meta-analysis with HGI

The analysis recommendations from the COVID-19 HGI were utilized to test for associations

between the rs35705950-T allele and COVID-19 outcomes. First, we conducted analyses within

MVP by each ancestry group using plink2a. Inverse-variance weighted meta-analyses were then

performed with summary statistics from Release 5 (01/18/2021) of the HGI using GWAMA (18)

(Additional details in supplemental methods).

Sensitivity analysis

Firth logistic regression as implemented in the R (v3.6.1) package "brglm2" (version 0.7.1) was

used in the sensitivity analyses as it provides a bias-reduced estimate in the setting of small

sample sizes and is most powerful for analyses of genetic mutations. This was relevant since

adjustment for multiple variables can lead to small sample sizes within covariate categories.

Associations between COVID-19 outcomes and rs35705950-T were performed separately by

ancestry, with adjustment for age, age², sex, BMI, CCI, smoking history, asbestosis, RA-ILD and

IPF (Table E1), and first 20 principal components. The meta-analyses were performed using

random-effects models in "metafor" (version 2.4-0).

Post-index pneumonia

Interactions between COVID-19 infection status and rs35705950-T on the outcome of COVID-19

pneumonia within 60 days (pneumonia60d) were assessed using a multiplicative interaction

term followed by stratified analyses by COVID-19 infection status. The Firth logistic model for

interaction included the independent variables of interest: COVID-19 infection status, rs35705950-T, and their multiplicative interaction term, adjusted for pre-index pneumonia (yes/no, within 2 years pre-index), age, age², sex, BMI, CCI, smoking history, asbestosis, RA-ILD and IPF diagnosis, and first 20 ancestry-specific principal components (PC1-20). The SNP rs35705950-T was modeled as a continuous variable (additive genetic model with values 0,1,2) so that the interaction odds ratio (OR) is equal for heterozygous vs homozygous WT and homozygous mutation vs heterozygous. The additive interaction of COVID-19 and rs35705950-T (for every increase in one allele, i.e., 0 to 1, or 1 to 2 copies) was also assessed with the estimate of excess risk due to interaction (RERI) and the 95% confidence interval estimated with the Delta Method.

Phenome-wide and Laboratory-wide association studies (PheWAS and LabWAS)

Associations between rs35705950-T and pre-existing comorbid conditions and laboratory values were examined using clinical data prior to the COVID-19 pandemic (Sept 2019). Individuals with \geq 2 Phecodes(25) were defined as cases. Phecodes with <200 cases within each ancestry group were excluded, resulting in 1618 (EUR, 1289 (AFR), 994 (HIS) Phecodes. LabWAS was conducted for 69 clinical tests; for individuals with repeated measures, the median of the individuals' EHR record was used. Logistic/Firth regression and linear regression were used for Phecodes and laboratory measurements, respectively. A Bonferroni-adjusted p-value threshold of 1.2×10^{-05} (0.05/3901) accounted for all the models tested across three ancestries for significance. Analyses were performed using PLINK2(26) (Additional details in **Supplemental Methods**).

Results

Association between rs35705950-T with COVID-19 positivity and outcome severity

Our study included 19,168 COVID-19 positive patients from three major ancestry groups (EUR, AFR, HIS). The minor allele frequency for rs35705950-T was 9% among the entire MVP and 8% among COVID-19 positive individuals (**Table 1**); among these 14.4% (n=2,758) and 0.7% (n=138) were carriers of 1-copy and 2-copies of MUC5B rs35705950-T, respectively (Table 1, Figure E1). Associations between rs35705950-T and clinical outcomes by ancestry group within MVP, transancestry meta-analysis within MVP (MVP-ALL), and joint meta-analysis with HGI (META) are shown in Figure 1 and Table 2. In the joint meta-analysis, the most significant association was between rs35705950-T and fewer hospitalization events compared with population controls $(OR = 0.90 [0.86-0.93], p=8.99 \times 10^{-5}, Figure 1 and Table 2)$. The MUC5B rs35705950-T allele was not associated with reduced COVID-19 positivity in transancestry meta-analysis within MVP (OR=0.98 [0.95-1.01], p=0.06) but was nominally significant (p<0.05) in the joint metaanalysis with HGI (OR=0.97 [0.95-1]; p=0.02). The MUC5B rs35705950-T allele was not associated with severe COVID-19 disease (critically ill).

To further evaluate the robustness of our findings from the primary analyses, we performed sensitivity analyses among MVP participants from 3 ancestry groups (EUR, AFR, HIS) who had COVID-19 testing performed within the VA (n=136,164). Associations between rs35705950-T and COVID-19 positivity and outcomes with adjustment for additional covariates, including BMI, smoking status, CCI, asbestosis, RA-ILD and IPF diagnosis, which were not available in HGI, were performed in MVP participants. We observed similar effect sizes as the

primary analyses (**Table E4**), with the association between rs35705950-T allele and reduced risk of hospitalization, compared with non-hospitalization, due to COVID-19 remaining robust (OR= 0.86 [0.77, 0.95], P=0.004, **Table E4**). The OR and 95% CI were very similar to the primary analyses (OR=0.88 [0.81, 0.96]. Notably, rs35705950-T was associated with a reduced risk of testing positive for COVID-19 (OR=0.95 [0.90, 0.99], P=0.03) in this MVP sub-population. The *MUC5B* rs35705950-T allele was not associated with severe outcomes plus mortality (OR = 0,89 [0.67-1.20], p= 0.45) or mortality alone (OR = 0.93 [0.74-1.17], p=0.56; **Table E4**).

Association between rs35705950-T and pneumonia events within 60 days of COVID-19 infection

Among MVP participants of European ancestry who tested positive for COVID-19 (n=8541), the adjusted odds ratio for post-index pneumonia was 18% less with each additional *MUC5B* rs35705950-T allele (OR = 0.82 [0.72, 0.93], p=0.001). Among COVID-19 negative MVP participants, the adjusted odds for post-index pneumonia non-significantly increased with each additional *MUC5B* rs35705950-T allele (OR=1.06 [0.98, 1.15], p=0.13). Increasing copy numbers of the *MUC5B* rs35705950-T allele were associated with progressive reduction of the post-index pneumonia risk, with adjusted ORs of 10.9 [10.2, 11.7], 8.41 [7.36, 9.61], and 6.47 [4.93, 8.48] in patients with 0, 1, and 2 copies of MUC5B rs35705950-T respectively among COVID-19 positive relative to negative subjects (p < 0.0001, **Table 3**). This differential effect of an additional *MUC5B* rs35705950-T allele on post-index pneumonia in COVID-19 positive vs.

COVID-19 negative patients was statistically significant (multiplicative scale interaction OR = 0.77 [0.66, 0.89], p=0.0004) in EUR (**Table 3**). There was also evidence of a negative additive interaction, with the relative excess risk due to interaction (RERI) corresponding to an increase

of one copy of rs35705950-T allele estimated as -2.07 (95% CI -3.24, -0.9). This suggests that the relative risk for pneumonia in COVID-19 positive patients is -2.07 less for each increase in one copy of MUC5B rs35705950-T allele than if there were no interaction between COVID-19 and *MUC5B* rs35705950-T. The number of post-COVID-19 pneumonia events in HIS or AFR was too low to permit further analysis.

To explore clinical conditions and biomarkers associated with the *MUC5B* rs35705950-T allele which may impact the susceptibility and severity of COVID-19, PheWAS and LabWAS using pre-COVID-era data (through Sept 2019) were performed. The sample sizes for MVP participants included in PheWAS and COVID-19 association studies are shown in **Table 1** (**Figure E1**). The results of the PheWAS are shown in **Figure 2** with full summary statistics presented in **Table E5**.

Exploring shared pathobiology with the MUC5B rs35705950-T through PheWAS and LabWAS

In PheWAS analyses between rs35705950-T and PheCodes with > 200 cases, significant associations were identified exclusively with pulmonary processes. Increased risk for "other alveolar and parietoalveolar pneumonopathy" (Phecode 504, OR = 2.64 [2.50 - 2.78], P = 7.07 x 10^{-289}) and "post-inflammatory pulmonary fibrosis" (Phecode 502, OR = 2.85 [2.65 - 3.05], P = 8.90×10^{-186}) were significantly associated ($P_{bonferroni} < 1.2 \times 10^{-5}$) with rs35705950-T in all three ancestry groups (EUR, AFR, HIS). Among the EUR and AFR groups, rs35705950-T was also associated with increased risk for idiopathic fibrosing alveolitis (Phecode 504.1). Notably, there were no significant associations identified between rs35705950-T and influenza infection (Phecode 481) or bacterial pneumonia (Phecode 480.1) in any of the ancestry groups. The power to detect a difference with these conditions was >95% as there were 4,728 cases of

influenza and 10,579 cases of bacterial pneumonia in EUR cohort. There were also no significant associations between rs35705950-T and non-pulmonary conditions potentially relevant to COVID-19 outcomes, including pulmonary embolism/deep vein, systemic inflammatory syndrome / sepsis, or acute renal failure (Figure E2 and Table E5).

The LabWAS of *MUC5B* rs35705950-T with median values of pre-COVID clinical laboratory tests is shown in **Table E6** and **Figure E3**. Among EUR participants, 10 laboratory tests were significant after Bonferroni adjustment, with the majority belonging to white blood cell counts or fractions, with an increase in monocyte count also significant in the HIS subgroup. There were no significant associations among the AFR subgroup.

Discussion

Our study supports that the "T" allele of rs35705950 in *MUC5B*, which has been associated with an *increased* risk for the development of IPF, confers a *decreased* risk for COVID-related hospitalization among MVP participants; among participants of European descent, a decreased incidence of pneumonia following COVID-19 infection was also observed. The protective effect of the rs35705950-T may appear to contradict previous work demonstrating an increased risk for acute respiratory distress syndrome (ARDS) in the pre-COVID era(27) as well as the increased risk of severe COVID-19 disease observed for other well-established causal variants of IPF located in the *TERC*, *DEPTOR*, and *FAM13A(28)* genes. However, our findings are consistent with previous studies conducted in European cohorts(29) and in the HGI(28) which support that pathophysiological changes due to rs35705950-T may result in distinct interactions with SARS-COV-2 which confer the differential risks observed.

The rs35705950 polymorphism is located within an enhancer region of the *MUC5B* gene, the protein product of which is a major gel-forming mucin in the lung that plays a key role in mucociliary clearance and host defense(30–33). Consistent with this, mouse knockout models for *Muc5b* demonstrate increased susceptibility towards bacterial infections of the respiratory tract and persistent inflammation. In contrast to the loss-of-function of knockout models, the "T" allele of rs35705950 results in a gain-of-function and is associated with enhanced expression of the *MUC5B* transcript in lung tissue from human subjects (24)without clinical IPF. Notably, while excess MUC5B protein is observed in the epithelial cells of respiratory bronchioles and honeycomb cysts (31, 32, 34) of individuals with IPF, differential expression in lung tissue by rs35705950 genotype has not been consistently observed in patients with advanced disease and may be attributable to the universally elevated MUC5B protein levels in IPF patients regardless of their rs35 705950 allelic configuration(24, 32, 34).

The functional impact of increased *MUC5B* expression on clinical outcomes in populations both with and without IPF remains incompletely understood. In a study which antedated the COVID-19 pandemic, a modestly increased risk for the development of ARDS, a major feature of severe SARS-CoV-2 infection, was observed among homozygotes for rs35705950-T who were >50 years old, none of whom had clinical or radiographic evidence of IPF on post-hoc chart review(27). It should be noted, however, that the underlying etiologies for ARDS in the population examined were heterogeneous, with over half of cases attributed to either trauma or non-pneumonia-related sepsis. In contrast to the increased risk for pre-COVIDera ARDS, the rs35705950-T allele was associated with decreased risk for acute respiratory exacerbation events among non-Hispanic white ever-smokers with interstitial lung

abnormalities (ILA), defined as non-dependent parenchymal infiltrates which are frequently considered subclinical precursors to clinically-apparent interstitial lung disease (ILD), in the COPDGene study(35). Whether increased mucin production confers protection against viral infections(36), which are believed to contribute to a substantial proportion of acute respiratory exacerbation events in chronic lung disease(37), should be explored in future studies.

Our analyses suggest that the decreasing risk of post-index pneumonia associated with rs35705950-T may be specific to COVID-19. First, to our knowledge, there have been no previously published reports of differential susceptibility or clinical outcomes in non-COVID-19 respiratory viral or bacterial infections by rs35705950-T genotype. Within our own MVP data, there were no associations between pre-pandemic influenza infection or bacterial pneumonia and rs35705950-T allele. Second, although rs35705950-T carrier status or number of allele copies did not impact testing rates for COVID-19 (which were 22.2%, 22.3%, and 22.4% for individuals of European descent with 0, 1, and 2 copies of rs35705950-T, respectively), individuals with the "T" allele demonstrated a trend towards decreasing rates of testing positive in MVP, supporting that rs35705950-T may modulate an individual's susceptibility to infection by SARS-CoV-2. Third, in addition to attenuating the risk for post-index pneumonia exclusively among COVID-19 positive individuals, differential risk by rs35705950-T copy number was observed, supporting a dose-response relationship for this outcome.

We did not observe associations between rs35705950 and severe COVID-19 illness or mortality. This may be due to the low incidence and/or multifactorial causes of these severe outcomes which may include non-respiratory disorders, such as shock and multi-system organ

failure. This is supported by the PheWAS analysis, which found nearly exclusive associations between rs35705950-T with pulmonary processes, with no evidence of association (with >80% power to detect differential effects) with other processes potentially relevant to severe COVID-19 disease, including thromboembolic disease, septic shock, and acute renal failure.

The COVID-19 pandemic amplified healthcare disparities due to socioeconomic factors and likely contributed to differences in outcomes(40). However, heterogeneity in the magnitude of disparities between healthcare systems exists, with numerous studies demonstrating *reduced* levels of disparities and relatively equitable access to care among VA healthcare users (relative to non-VA healthcare users)(41–43); thus, differences in outcomes attributable to socioeconomic factors within the VA may be less than those in the general population. Consistent with this, a study by Trivedi et al(44), reported minimal changes in 30-day mortality rates for heart failure and pneumonia hospitalizations following adjustment for a comprehensive panel of socioeconomic factors, including poverty, housing, education, and rurality. Within our cohort, access to care was uniformly high, with >98% of individuals having ≥ 1 primary care visit within the preceding 18 months and comparable numbers of patients with ≥ 1 clinical encounter or admission in the preceding year. However, due to the complexities of socioeconomic factors and their potential impact on and interactions with rs35705950-T, we acknowledge that future studies in this area are needed.

Strengths & Limitations

The strengths of our study include a large, ethnically- and geographically- diverse cohort with harmonized prospective outcomes data, directly genotyped rs35705950 data, and the use of

robust statistical approaches. In addition to interrogating the relationships between rs35705950-T and clinical outcomes, the availability of rich clinical phenotyping data permitted exploration of the underlying pathobiological mechanisms through PheWAS and LabWAS and support that the differential risks observed by rs35705950-T are likely mediated by pulmonaryspecific processes. Despite these strengths, we acknowledge the following limitations. First, although the MVP is one of the largest and most diverse genomic medicine databases established to date, participants are predominantly male and of European ancestry; this, and the lower minor allele frequency of rs35705950-T among non-European populations may have impacted our power to detect associations between rs35705950-T genotype and clinical outcomes among females and racial/ethnic minorities. Second, due to the timing of the data freeze for our analysis, only short-term outcomes were captured. F uture studies with extended follow-up to explore the potential relationship between rs35705950-T and post-COVID syndromes, including lung fibrosis, are needed. Third, although our analyses were adjusted for critical variables, residual confounding and bias may still exist. Given the association between rs35705950-T and an increased incidence of subclinical ILA and respiratory symptoms(45), individuals harboring the MUC5B variant may exhibit behavior modifications (increased testing or more stringent self-isolation) which could have introduced biases not be captured or adjusted for in our analyses (28). Fourth, viral subtypes, vaccination status and treatment approaches evolved with time which may have impacted severity outcomes. Fifth, we acknowledge that the effect estimates associated with rs35705950-T in our study are modest and may limit its application in clinical or predictive algorithms. However, despite these limitations, we assert our results, which identify a potentially protective role of rs35705950-T in COVID-19 outcomes, support that this functional polymorphism confers pleiotropic effects

which may be modulated by epistasis and environmental interactions; longer term follow-up

and future analyses into these complex relationships are warranted.

Acknowledgments

This research is based on data from the Million Veteran Program, Office of Research and

Development, Veterans Health Administration, and was supported in part by MVP035 and

MVP008 (1101BX004188-01). This publication does not represent the views of the Department

of Veteran Affairs of the United States Government.

We are grateful to our Veterans for their contribution to MVP. Full acknowledgments for the VA

Million Veteran Program COVID-19 Science Initiative can be found in the supplemental

methods.

Conflict of Interest

CJO is an employee of Novartis Institute for Biomedical Research. PN reports grant support

from Amgen, Apple, AstraZeneca, Boston Scientific, and Novartis, personal fees from Apple,

AstraZeneca, Blackstone Life Sciences, Genentech, and Novartis, and spousal employment at

Vertex, all unrelated to the present work.

References

- Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1.
 Epub 2020 Feb 19. Erratum in: Lancet Infect Dis. 2020 Sep;20(9):e215. PMID: 32087114;
 PMCID: PMC7159018. "Accessed on Feb 16th, 2021"
- Zhao Y-M, Shang Y-M, Song W-B, Li Q-Q, Xie H, Xu Q-F, Jia J-L, Li L-M, Mao H-L, Zhou X-M, Luo H,
 Gao Y-F, Xu A-G. Follow-up study of the pulmonary function and related physiological
 characteristics of COVID-19 survivors three months after recovery. *EClinical Medicine* 2020;
- 3. Yan X, Huang H, Wang C, Jin Z, Zhang Z, He J, Yin S, Fan M, Huang J, Chen F, Zeng Y, Han X, Zhu Y. Follow-up study of pulmonary function among COVID-19 survivors 1 year after recovery. *J Infect* 2021;doi:10.1016/j.jinf.2021.05.034.
- 4. McGroder CF, Zhang D, Choudhury MA, Salvatore MM, D'Souza BM, Hoffman EA, Wei Y, Baldwin MR, Garcia CK. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. *Thorax* 2021;doi:10.1136/thoraxjnl-2021-217031.
- King CS, Nathan SD. Idiopathic pulmonary fibrosis: effects and optimal management of comorbidities. *Lancet Respir Med* 2017;5:72–84.
- George PM, Patterson CM, Reed AK, Thillai M. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med 2019;7:271–282.
- 7. Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2011;183:431–440.

- 8. Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. *Am J Respir Crit Care Med* 2014;189:1161–1172.
- 9. Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. *Cell Signal* 2020;66:109482.
- 10. Zhang Y, Noth I, Gibson KF, Ma S-F, Richards TJ, Bon JM, Lindell KO, Branch RA, Nicolae D, Sciurba F, Garcia AN, Kaminski N. A Variant In The Promoter Of MUC5B Is Associated With Idiopathic Pulmonary Fibrosis And Not Chronic Obstructive Pulmonary Disease. *B102 INTERSTITIAL LUNG DISEASE: NOVEL MANAGEMENT AND OUTCOME STRATEGIES* 2011;doi:10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a6395.
- 11. Moore C, Blumhagen RZ, Yang IV, Walts A, Powers J, Walker T, Bishop M, Russell P, Vestal B, Cardwell J, Markin CR, Mathai SK, Schwarz MI, Steele MP, Lee J, Brown KK, Loyd JE, Crapo JD, Silverman EK, Cho MH, James JA, Guthridge JM, Cogan JD, Kropski JA, Swigris JJ, Bair C, Kim DS, Ji W, Kim H, et al. Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019;200:199–208.
- 12. Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. *JCI Insight* 2021;6.:
- 13. Peljto AL, Zhang Y, Fingerlin TE, Ma S-F, Garcia JGN, Richards TJ, Silveira LJ, Lindell KO, Steele MP, Loyd JE, Gibson KF, Seibold MA, Brown KK, Talbert JL, Markin C, Kossen K, Seiwert SD, Murphy E, Noth I, Schwarz MI, Kaminski N, Schwartz DA. Association between the MUC5B promoter

- polymorphism and survival in patients with idiopathic pulmonary fibrosis. *JAMA* 2013;309:2232–2239.
- 14. Dudbridge F, Allen RJ, Sheehan NA, Schmidt AF, Lee JC, Jenkins RG, Wain LV, Hingorani AD, Patel RS. Adjustment for index event bias in genome-wide association studies of subsequent events. *Nat Commun* 2019;10:1561.
- 15. Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, Whitbourne S, Deen J, Shannon C, Humphries D, Guarino P, Aslan M, Anderson D, LaFleur R, Hammond T, Schaa K, Moser J, Huang G, Muralidhar S, Przygodzki R, O'Leary TJ. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. *Journal of Clinical Epidemiology* 2016;
- 16. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. *Nature* 2021;doi:10.1038/s41586-021-03767-x.
- 17. Fang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, Vujkovic M, Damrauer SM, Pyarajan S, Gaziano JM, DuVall SL, O'Donnell CJ, Cho K, Chang K-M, Wilson PWF, Tsao PS, VA Million Veteran Program, Sun YV, Tang H. Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in Genome-wide Association Studies. *Am J Hum Genet* 2019;105:763–772.
- 18. Peloso GM, Tcheandjieu C, McGeary JE, Posner DC, Ho Y-L, Zhou JJ, Hilliard AT, Joseph J, O'Donnell CJ, Efird JT, Crawford DC, Wu W-C, Arjomandi M, Sun YV, Assimes TL, Huffman JE, VA Million Veteran Program COVID-19 Science Initiative. Genetic loci associated with COVID-19 positivity and hospitalization in White, Black, and Hispanic veterans of the VA Million Veteran Program. *Front Genet* 2022;12.:
- 19. Ioannou GN, Locke E, Green P, Berry K, O'Hare AM, Shah JA, Crothers K, Eastment MC, Dominitz JA,

- Fan VS. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection. *JAMA Netw Open* 2020;3:e2022310.
- Obeidat M, Frank AR, Icardi MS, Klutts JS. VA-Wide, Multicenter Verification Study of the Cepheid
 Xpert SARS-CoV-2 Assay. *Acad Pathol* 2021;8:23742895211011911.
- 21. WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis* 2020;20:e192–e197.
- 22. Platenburg MGJP, Wiertz IA, van der Vis JJ, Crestani B, Borie R, Dieude P, Kannengiesser C, Burgers JA, Grutters JC, van Moorsel CHM. The promoter risk allele for idiopathic pulmonary fibrosis predisposes to asbestosis. *Eur Respir J* 2020;55.:
- 23. Juge P-A, Lee JS, Ebstein E, Furukawa H, Dobrinskikh E, Gazal S, Kannengiesser C, Ottaviani S, Oka S, Tohma S, Tsuchiya N, Rojas-Serrano J, González-Pérez MI, Mejía M, Buendía-Roldán I, Falfán-Valencia R, Ambrocio-Ortiz E, Manali E, Papiris SA, Karageorgas T, Boumpas D, Antoniou K, van Moorsel CHM, van der Vis J, de Man YA, Grutters JC, Wang Y, Borie R, Wemeau-Stervinou L, et al. MUC5B Promoter Variant and Rheumatoid Arthritis with Interstitial Lung Disease. N Engl J Med 2018;379:2209–2219.
- 24. Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, Fingerlin TE, Zhang W, Gudmundsson G, Groshong SD, Evans CM, Garantziotis S, Adler KB, Dickey BF, du Bois RM, Yang IV, Herron A, Kervitsky D, Talbert JL, Markin C, Park J, Crews AL, Slifer SH, Auerbach S, Roy MG, Lin J, Hennessy CE, Schwarz MI, Schwartz DA. A common MUC5B promoter polymorphism and pulmonary fibrosis. *N Engl J Med* 2011;364:1503–1512.

- 25. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. *Bioinformatics* 2010;26:1205–1210.
- 26. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* 2015;
- 27. Rogers AJ, Solus JF, Hunninghake GM, Baron RM, Meyer NJ, Janz DR, Schwartz DA, May AK, Lawson WE, Blackwell TS, Ware LB. MUC5B Promoter Polymorphism and Development of Acute Respiratory Distress Syndrome. *Am J Respir Crit Care Med* 2018;198:1342–1345.
- 28. Fadista J, Kraven LM, Karjalainen J, Andrews SJ, Geller F, COVID-19 Host Genetics Initiative, Baillie JK, Wain LV, Jenkins RG, Feenstra B. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. *EBioMedicine* 2021;65:103277.
- 29. van Moorsel CHM, van der Vis JJ, Duckworth A, Scotton CJ, Benschop C, Ellinghaus D, Ruven HJT, Quanjel MJR, Grutters JC. The Promoter Polymorphism Associates With Severe COVID-19 in the European Population. *Front Med* 2021;8:668024.
- 30. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease.

 Physiol Rev 2006;86:245–278.
- 31. Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, Brown KK, Schwarz MI, Schwartz DA, Reynolds SD. The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary pseudostratified epithelium. *PLoS One* 2013;8:e58658.
- 32. Nakano Y, Yang IV, Walts AD, Watson AM, Helling BA, Fletcher AA, Lara AR, Schwarz MI, Evans CM, Schwartz DA. MUC5BPromoter Variant rs35705950 Affects MUC5B Expression in the Distal Airways

- in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine 2016;
- 33. Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kurche J, Warg L, Yang IV, Schwartz DA. Idiopathic Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral Airways. *Physiol Rev* 2016;96:1567–1591.
- 34. Conti C, Montero-Fernandez A, Borg E, Osadolor T, Viola P, De Lauretis A, Stock CJ, Bonifazi M, Bonini M, Caramori G, Lindahl G, Blasi FB, Nicholson AG, Wells AU, Sestini P, Renzoni E. Mucins MUC5B and MUC5AC in Distal Airways and Honeycomb Spaces: Comparison among Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia, Fibrotic Nonspecific Interstitial Pneumonitis, and Control Lungs. *Am J Respir Crit Care Med* 2016;193:462–464.
- 35. Ash SY, Harmouche R, Putman RK, Ross JC, Martinez FJ, Choi AM, Bowler RP, Regan EA, Curtis JL, Han MK, Boucher RC, O'Neal WK, Hatabu H, Lynch DA, Rosas IO, Hunninghake GM, San Jose Estepar R, Washko GR, COPDGene Investigators. Association between acute respiratory disease events and the promoter polymorphism in smokers. *Thorax* 2018;73:1071–1074.
- 36. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM, Tuvim MJ, Adachi R, Romo I, Bordt AS, Bowden MG, Sisson JH, Woodruff PG, Thornton DJ, Rousseau K, De la Garza MM, Moghaddam SJ, Karmouty-Quintana H, Blackburn MR, Drouin SM, Davis CW, Terrell KA, Grubb BR, O'Neal WK, Flores SC, *et al.* Muc5b is required for airway defence. *Nature* 2014;505:412–416.
- 37. Sapey E, Bafadhel M, Bolton CE, Wilkinson T, Hurst JR, Quint JK. Building toolkits for COPD exacerbations: lessons from the past and present. *Thorax* 2019;74:898–905.
- 38. Mukae H, Iiboshi H, Nakazato M, Hiratsuka T, Tokojima M, Abe K, Ashitani J, Kadota J, Matsukura S,

- Kohno S. Raised plasma concentrations of alpha-defensins in patients with idiopathic pulmonary fibrosis. *Thorax* 2002;57:623–628.
- 39. Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang Y, Dhir R, Bisceglia M, Gilbert S, Yousem SA, Song JW, Kim DS, Kaminski N. Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2009;180:167–175.
- 40. Magesh S, John D, Li WT, Li Y, Mattingly-App A, Jain S, Chang EY, Ongkeko WM. Disparities in COVID-19 Outcomes by Race, Ethnicity, and Socioeconomic Status: A Systematic-Review and Meta-analysis. *JAMA Netw Open* 2021;4:e2134147.
- 41. Silva GC, Jiang L, Gutman R, Wu W-C, Mor V, Fine MJ, Kressin NR, Trivedi AN. Racial/Ethnic Differences in 30-Day Mortality for Heart Failure and Pneumonia in the Veterans Health Administration Using Claims-based, Clinical, and Social Risk-adjustment Variables. *Med Care* 2021;59:1082–1089.
- 42. Kovesdy CP, Norris KC, Boulware LE, Lu JL, Ma JZ, Streja E, Molnar MZ, Kalantar-Zadeh K.

 Association of Race With Mortality and Cardiovascular Events in a Large Cohort of US Veterans.

 Circulation 2015;132:1538–1548.
- 43. Sheehan CM, Hayward MD. Black/white differences in mortality among veteran and non-veteran males. *Soc Sci Res* 2019;79:101–114.
- 44. Trivedi AN, Jiang L, Silva G, Wu W-C, Mor V, Fine MJ, Kressin NR, Gutman R. Evaluation of Changes in Veterans Affairs Medical Centers' Mortality Rates After Risk Adjustment for Socioeconomic Status. *JAMA Netw Open* 2020;3:e2024345.
- 45. Hunninghake GM, Hatabu H, Okajima Y, Gao W, Dupuis J, Latourelle JC, Nishino M, Araki T, Zazueta

OE, Kurugol S, Ross JC, San José Estépar R, Murphy E, Steele MP, Loyd JE, Schwarz MI, Fingerlin TE, Rosas IO, Washko GR, O'Connor GT, Schwartz DA. MUC5B promoter polymorphism and interstitial lung abnormalities. *N Engl J Med* 2013;368:2192–2200.

Tables and Figures

Table 1. Demographics for COVID-19 tested positive and all MVP participants examined in this study.

Characteristics	Million Veteran Program Number (%)	COVID-19 Positive Number (%) 19,168	
Total Patients	658,582 ^Ψ		
Male	592,516 (90)	17,151 (89)	
Genetic Ancestry			
European	464,961 (70)	11,778 (61)	
African	123,120 (19)	4,893 (26)	
Hispanic	52,183 (8)	2,497 (13)	
Asian*	8,329 (1)	N/A	
Other*	9,989 (2)	N/A	
<i>MUC5B</i> rs35705950-T			
GG	547,846(83.2)	16,272 (84.9)	
GT	104,834(15.9)	2,758 (14)	
TT	5,902(0.9)	138 (0.7)	
Comorbidities			
Obesity (phecode = 278)	283,197 (43)	10,844 (56)	
Hypertension (phecode = 401.1)	451,998 (69)	14,036 (73)	
Type 2 Diabetes (phecode = 250.2)	227,575 (34)	8,190 (43)	
Coronary Artery Disease (phecode = 411.4)	152,136 (23)	4,664 (24)	
Chronic Kidney Disease (phecode = 585.2)	100,46 (1.5)	335 (2)	
Outcomes			
Hospitalized	-	4,234 (22)	
Severe/ Deceased	-	947 (5)	

MVP participants who died before March 2020 were excluded from the analysis described in Table 2.

^{*} Due to small sample size, individuals from Asian and other ancestry group were not included

Table 2. Association between rs35705950-T in MUC5B with COVID-19 clinical outcomes.

Analysis	Population	Group	Case Controls	Sample Size	EA: EAF	OR 95% CI	Р
COVID-19 Positive Vs Population Controls	MVP	AFR	4,893 94,556	99,449	T: 0.021	0.96 [0.83-1.11]	0.572
		EUR	11,778 357,198	368,975	T: 0.109	0.96 [0.92-1]	0.076
		HIS	2,497 41,100	43,597	T: 0.074	0.97 [0.86-1.08]	0.555
		META	19,168 492,854	512,021	T: 0.089	0.96 [0.93-1]	0.060
	HGI	META	25,652 128,2973	1,308,625	T: 0.111	0.98 [0.95-1.01]	0.134
	MVP + HGI	META	44,820 1,775,827	1,820,646	T: 0.105	0.97 [0.95-1]	0.019
	MVP	AFR	1,300 98,129	99,429	T: 0.021	0.84 [0.63-1.13]	0.259
		EUR	2,417 366,449	368,865	T: 0.109	0.89 [0.81-0.98]	0.015
COVID-19 Hospitalized		HIS	517 43,062	43,579	T: 0.074	0.93 [0.73-1.19]	0.562
Vs Population Controls		META	4,234 507,640	511,873	T: 0.089	0.89 [0.82-0.97]	6.86 x 10 ⁻⁰³
r opulation controls	HGI	META	9,086 1,001,201	1,010,287	T: 0.106	0.91 [0.85-0.97]	4.12 x 10 ⁻⁰³
	MVP + HGI	META	13,320 1,508,841	1,522,160	T: 0.1	0.9 [0.86-0.95]	8.99 x 10 ⁻⁰⁵
		AFR	1,300 3,573	4,873	T: 0.02	0.84 [0.6-1.19]	0.327
COVID-19 Hospitalized Vs	MVP	EUR	2,417 9,251	11,668	T: 0.106	0.9 [0.81-1.01]	0.063
		HIS	517 1,962	2,479	T: 0.071	0.91 [0.68-1.2]	0.493
vs COVID-19 Not-Hospitalized		META	4,234 14,786	19,020	T: 0.079	0.9 [0.81-0.99]	0.030
COVID 13 NOT HOSPITAILECT	HGI	META	4,420 11,093	15,513	T: 0.162	0.97 [0.88-1.08]	0.575
	MVP + HGI	META	8,654 25,879	34,533	T: 0.116	0.89 [0.82-0.97] 0.91 [0.85-0.97] 0.9 [0.86-0.95] 0.84 [0.6-1.19] 0.9 [0.81-1.01] 0.91 [0.68-1.2] 0.9 [0.81-0.99] 0.97 [0.88-1.08] 0.93 [0.87-1] 0.74 [0.38-1.44]	0.049
		AFR	284 99,165	99,449	T: 0.021	0.74 [0.38-1.44]	0.375
COVID-19 Severe Vs Population Controls	MVP	EUR	543 368,432	368,975	T: 0.109	0.97 [0.8-1.18]	0.774
		HIS	120 43,477	43,597	T: 0.074	0.88 [0.52-1.48]	0.620
		META	947 511,074	512,021	T: 0.089	0.94 [0.79-1.12]	0.509
	HGI	META	3,757 699,885	703,642	T: 0.108	0.81 [0.73-0.9]	6.69 x 10 ⁻⁰⁵
	MVP + HGI	META	4,704 1,210,959	1,215,663	T: 0.1	0.93 [0.79-1.1]	0.410

Odds ratio (OR) and 95% confidence interval (95% CI) reported for the minor (T) allele. Results are shown for VA Million Veteran Program (MVP) African Americans (AFR), European Americans (EUR), Hispanic/Latino Americans (HIS), and multi-ancestry meta-analysis (ALL), the COVID-19 Host Genetics Initiative (HGI) multi-ancestry round 5 meta-analysis excluding MVP and 23&Me, and the meta-analysis of MVP and HGI (META).

Table 3. Associations between *MUC5B* rs35705950-T allele and pneumonia within 60 days of COVID-19 testing among MVP participants of European ancestry.

Intervals) for Pneumonia within 6	0 days of COVID-19 test			
	OR 95% CI	Р		
COVID-19 Negative	1.06 (0.98, 1.15)	0.13		
COVID-19 Positive Copy number = 0	0.82 (0.72, 0.93)	0.001		
Copy number = 0	10.9 (10.2, 11.7)	< 0.0001		
Copy number=1	8.42 (7.36, 9.61)	< 0.0001		
Copy number=2	6.47 (4.93, 8.48)	< 0.0001		
raction between COVID-19 and M	UC5B allele			
0.77 (0.66, 0.89) p=0.0004				
-2.07 (-3.24, -0.9)				
	COVID-19 Negative COVID-19 Positive Copy number = 0 Copy number=1 Copy number=2 raction between COVID-19 and M 0.77 (C	COVID-19 Negative 1.06 (0.98, 1.15) COVID-19 Positive 0.82 (0.72, 0.93) Copy number = 0 10.9 (10.2, 11.7) Copy number=1 8.42 (7.36, 9.61) Copy number=2 6.47 (4.93, 8.48) raction between COVID-19 and MUC5B allele 0.77 (0.66, 0.89) p=0.0004		

Odds ratios and 95% confidence intervals are estimated from Firth logistic regression adjusting for pre-index pneumonia, age, age², sex, BMI, CCI, smoking, IPF, asbestosis, RA-ILD, and principal components PC1-20, including a multiplicative interaction between additive MUC5B rs35705950-T allele and COVID-19 infection. An estimate of the relative excess risk due to interaction (RERI) and 95% confidence interval (Delta method) corresponding to an additive interaction effect is estimated from the logistic regression model.

Figure Legends

Figure 1. Forest plot association of rs35705950-T in MUC5B with (i) COVID-19 Positive vs

Population Controls, (ii) COVID-19 Positive, Hospitalized vs Population Controls, (iii) COVID-19

Positive, Hospitalized vs COVID-19 Positive, not Hospitalized, and (iv) Hospitalized for COVID-19

with high-flow oxygen or died of COVID-19 vs Population Controls. Odds ratio (OR) and 95%

confidence interval (95% CI) is reported for the minor (T) allele, and results are shown for VA

Million Veteran Program (MVP) African Americans (AFR), European Americans (EUR),

Hispanic/Latino Americans (HIS), and multi- ancestry meta-analysis (ALL), the COVID-19 Host

Genetics Initiative (HGI) multi- ancestry round 5 meta-analysis excluding MVP and 23&Me,

and the meta-analysis of MVP and HGI (META).

Figure 2. Phenome-Wide Association Study (PheWAS) of *MUC5B* rs35705950-T allele in the Million Veteran Program. A PheWAS plot shows associations of rs35705950-T and phenotypes derived from the electronic health records data prior to COVID-19 in MVP participants from European ancestry. The phenotypes are shown on the x-axis and organized by disease categories. The p-value (-log10) of each association is shown on the y-axis the direction of the triangle represents the direction of effect of the associations - with the upward triangle as increased risk and the downward triangle as reduced risk. The red line indicates the significance threshold based on the Bonferroni correction. The forest plot of Bonferroni significant associations are shown on the right top corner of the PheWAS plot.

Figure 1

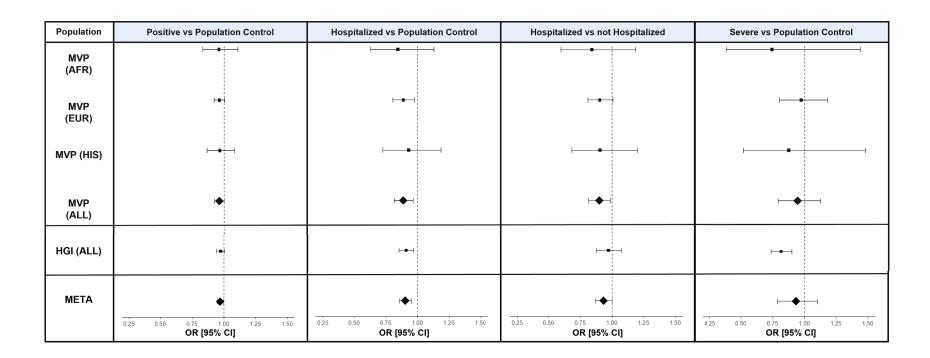
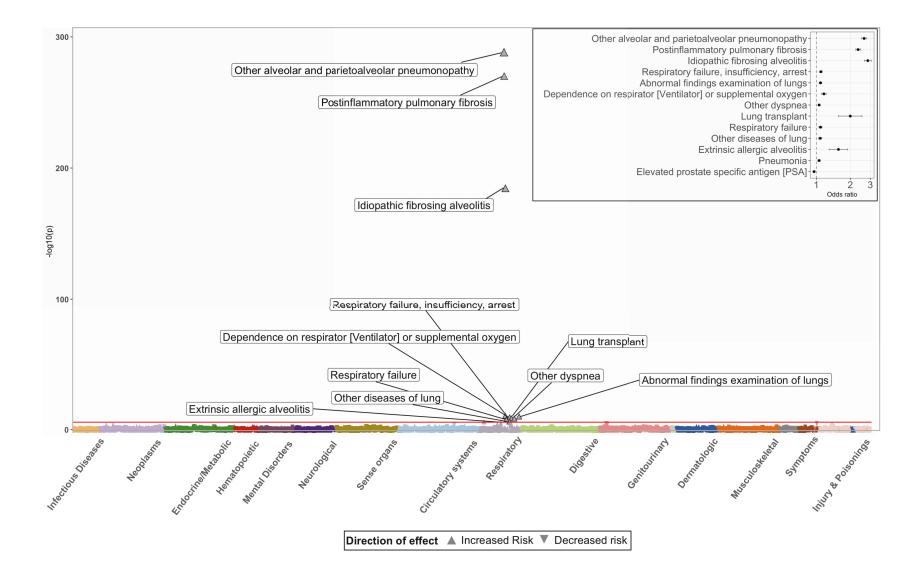



Figure 2

Supplemental Materials

A MUC5B Gene Polymorphism, rs35705950-T Confers Protective Effects Against COVID-19

Hospitalization but not Severe Disease or Mortality

Supplemental Methods.

• Figure E1. Overview of genetic association of MUC5B allele and COVID-19 phenotypes as well as

phenome-wide association study.

Figure E2. Phenome-Wide Association Study (PheWAS) of MUC5B rs35705950-T allele in three

Million Veteran Program ancestry groups. A PheWAS plot shows associations of rs35705950-T

and phenotypes derived from the electronic health records data prior to COVID-19 in MVP

participants from A) European ancestry B) African ancestry and C) Hispanic ancestry.

• Figure E3. Laboratory-Wide Association Study (PheWAS) of MUC5B rs35705950-T allele in the

Million Veteran Program. A LabWAS plot shows associations of rs35705950-T and median

values of laboratory measures extracted from electronic health records data prior to COVID-19

in MVP participants. The bottom panel shows the -log10 (p-value) on the y-axis and laboratory

test descriptions on the x-axis. Triangles points up have increasing effects and points down have

decreasing effects. The colors represent the different ancestry groups. The top panel shows beta

from the regression model for each laboratory measure. The significant results are highlighted in

the color corresponding to ancestry groups and other results are plotted in grey.

• Table E1. The demographics and clinical conditions were documented within two years prior to

the index dates for MVP subjects used for association studies with severe outcomes of COVID-19

infection and post-index pneumonia events (pneumonia60d) in this study. See Excel Document

• Table E2. Sample sizes and rates of pneumonia within 60 days post index date for MVP subjects

- of European ancestry with no missing data for pre- or post- index pneumonia events <u>after</u> sensitivity analysis.
- Table E3. The ICD codes used for data pull of post-index pneumonia diagnosis (pneumonia60d)
 in this study. See Excel Document
- **Table E4.** Association of rs35705950-T allele with COVID-19 outcomes: 1) Testing positive, 2) hospitalization, 3) Severe COVID-19 + Death and 4) COVID-19 related Death in MVP participants after sensitivity analysis.
- Table E5. Full summary statistics of PheWAS associations with MUC5B rs35705950-T allele. See
 Excel Document
- Table E6. LabWAS reveals laboratory measurements associated with the presence of a MUC5B
 rs35705950-T allele. See Excel Document

Supplemental Methods

Data Sources

In this COVID-19 study, we used data from MVP, a large multi-ethnic genetic biobank at Veterans Affairs. MVP began enrolling veterans in 2011 and has now enrolled over 850,000 veterans and genotyped over 650,000. The Veterans' EHR data included diagnosis codes (ICD-9 and ICD-10), current procedural terminology codes (CPT), clinical laboratory measures, and demographic, lifestyle, and radiology reports (1). Pre-COVID EHR data were collected from participants from the time of enrollment to September 30, 2019.

The MVP cohort SNP data was generated using a custom Thermo Fisher Axiom genotyping platform named MVP 1.0. The MVP cohort quality control and genotyping imputation steps were previously reported(2). Ancestry of participants was defined using Harmonized ancestry, race, and ethnicity (HARE), a variable derived from self-reported survey data and genetically derived ancestry(3). Directly genotyped rs35705950-T information was extracted and utilized for association testing. Relatedness was estimated from Identity-by-descent probabilities and one individual from each related pair with kinship coefficient > 0.125 were dropped. We prioritize retained individuals for cases in post COVID-19 pneumonia, Muc5B rs35705950-T allele, covid death, severe covid outcome, covid hospitalization, and covid testing positive, in this order.

A VA-wide collective effort lead by the VA Informatics and Computing Infrastructure (VINCI) created a shared COVID-19 Shared Data Resource (SDR) during the April-August 2020 period, providing a new data domain related to COVID-19 for the VA. All metadata on documentation regarding conditions, laboratory measures, medications, and procedures pertaining to the COVID-19 pandemic and dissemination of information regarding SDR were provided by the VA Phenomics Library, Centralized

Interactive Phenomics Resource (CIPHER), to users across the VA healthcare systems. The VA COVID-19 SDR group including the VA National Surveillance Team provided researchers with curated data extracted from electronic health records (EHR) of Veterans, after stripping off identifiable elements, and ensuring data security by requiring restricted access to the data(4). This activity was undertaken centrally by an experienced VA research team in order to ensure consistent applications of dates across the EHR tables, as well as uniform definitions of events preceding and subsequent to COVID-19, in an effort to characterize the trajectory of COVID-19 and other diseases and conditions. VA-wide efforts describing these data are already in public domain(5). Structured data obtained via CPT and ICD9 or ICD10 codes, deposited in the VA Corporate Data Warehouse (CDW), was further enriched with rule-based unstructured events recorded in patient notes via natural language processing (NLP), as was done previously for other projects(6). The purpose of NLP-boosting was to fill gaps in knowledge about the severity of the disease, as well as extract specific dates when procedures (e.g. intubation and extubation) were performed. These curated data were then provisioned in the Million Veteran Program (MVP) study mart for COVID-19 in VINCI ensuring data security behind the VA firewall.

COVID-19 outcome definitions

The primary analysis *MUC5B* SNP rs35705950-T with COVID-19 infection and hospitalization included all the patients who were tested from Feb 2020 through April 2021 using RT-PCR based method(7, 8) or self-reported during primary care visit. These patients may have received their COVID-19 PCR testing inside as well as outside of the VA. However, for analysis of the outcome severity of COVID-19 infection such as ICU stay or death (more details below), we only included patients tested within VA. The *index date* was defined as a COVID-19 diagnosis date, i.e., specimen date, or a self-reported date of diagnosis; and for a hospitalized patient, the admission date up to 15 days prior to the COVID-19 case date. "*Pre-index*" and "*post-index*" are hereafter used to denote events and outcomes before and after this *index*

Severity Scale variable from WHO COVID-19 Disease Progression Scale(9). The current version of VA's adaptation of COVID-19 Severity Index classifies severity into mild, moderate, severe and death. The severity rating of COVID-19 infection for the MVP cohort was modified from the WHO criteria to classify into four groups: mild (testing positive for SARS-CoV-2 by PCR); moderate (SARS-CoV-2 positivity and hospitalization within 30 days of index dates); severe (SARS-CoV-2 positivity, hospitalized and having indication of treatment by noninvasive mechanical ventilation (NIV), high flow oxygen support, extracorporeal membrane oxygenation (ECMO), intubation, vasopressor support, and dialysis; and death within 30 days of index dates for COVID-19 infection (10)). All data and variables were provided by the MVP data core.

We applied two approaches to define COVID-19 outcomes. First, for the meta-analysis with HGI summary statistics, we synchronized the phenotype definitions as used by the consortium. The following binary COVID-19 outcomes were examined: (1) COVID Susceptibility: individuals who tested positive for COVID-19 (2) COVID Hospitalization: individuals who were hospitalized due to symptoms of COVID-19 (3) COVID-19 Critically ill: individuals who were hospitalized and required respiratory support.

Secondly, we conducted sensitivity analysis within VA cohort on further refined four binary outcomes using patients who received COVID-19 PCR testing at VA sites: 1) COVID-19 testing: individuals who tested positive vs individuals with negative results, 2) COVID-19 hospitalization: individuals who tested positive and required hospitalization due to COVID-19 vs individuals who tested positive but did not need hospitalization, 3) COVID-19 severity: individuals who tested positive and required respiratory support or died due to complication from COVID-19 vs individuals who were hospitalized due to COVID-19 but didn't require respiratory support 4) and COVID-19 mortality: death within 30 days of COVID-19 infection vs. all other COVID-19 test positives.

Phenotyping of pre- and post-index conditions for COVID-19

To determine pre-index conditions, we used NLP-boosted unstructured notes, ICD and CPT codes, and

medications taken 2 years prior. ICD and CPT codes and medications 60 days after the index date were

used to derive post-index conditions. Pre- and post-index conditions were obtained from the Shared

Data Resource's pre- and post-index tables (SDR). The study's post-index conditions' ICD codes are in the

supplemental materials. Post-index pneumonia (Pneumonia60d) was studied 60 days after COVID-19

index dates (Table E2).

For the 60-day post-index analysis, the SDR post-index tables were used. We included only patients

whose PCR testing was done at the VA. Additionally patients that were initially tested negative in the

Patient table but then turned positive in the post-index table were excluded from the post index

analysis. Participants who lost follow up in the post-index table were also excluded.

Meta-analysis with HGI

Results from the COVID-19 Host Genetics Initiative (HGI)(11) were utilized for replication and meta-

analysis with our results. Since MVP contributed to HGI, we used the "leave one out" results that were

available only to contributing cohorts. These are currently available only for Release 5 (available January

18, 2021), not the more recent Release 6 (June 15, 2021), and also excluded 23&Me, per their

agreement with HGI. Results for rs35705950-T were extracted for both the European-only and trans-

ethnic meta-analysis across all phenotype definitions.

Logistic regression was performed to determine the association of rs35705950-T with each of these

outcomes within each of three HARE AFR, HIS, and EUR ancestry) within plink2a(12) adjusting for age,

sex, sex², and the first 15 ethnicity-specific principal components. Inverse-variance weighted meta-

analysis was performed in GWAMA(13) to combine MVP with HGI.

Phenome-wide association study (PheWAS)

For the PheWAS analysis on the *MUC5B* rs35705950-T allele, we used Phecodes (14) and laboratory measures from the clinical data available prior to the onset of COVID-19 infection (Sept 2019). Individuals with two or more Phecodes were defined as cases, while those without were defined as controls. In our previous study, we found that cases under 200 provide >80% statistical power and low type I error therefore we excluded phecodes with fewer than 200 cases within each ancestry group. It yielded 1618 (EUR), 1289 (AFR), 994 (HIS) Phecodes. We also performed a laboratory-wide association study using 69 clinical labs extracted from the EHR of MVP participants. We used the median of each person's entire lab history. We used logistic regression for Phecodes and linear regression for laboratory measurements in PLINK2(15). When the logistic regression model failed to converge for binary outcomes, firth regression was used. Regression models were adjusted for sex, age (at the time of data freeze), quadratic term of age, and the first 20 principal components. We applied Bonferroni correction to each ancestry specific analysis to adjust for multiple hypothesis testing, and following threshold were use select significant associations: EUR = 3.09 x 10⁻⁰⁵ (0.05/1618), AFR = 3.8 x 10⁻⁰⁵ (0.05/1289), EUR = 5.03 x 10⁻⁰⁵ (0.05/994).

References

- Knight KE, Honerlaw J, Danciu I, Linares F, Ho Y-L, Gagnon DR, Rush E, Gaziano JM, Begoli E, Cho K,
 VA Million Veteran Program. Standardized Architecture for a Mega-Biobank Phenomic Library: The
 Million Veteran Program (MVP). AMIA Jt Summits Transl Sci Proc 2020;2020:326–334.
- 2. Hunter-Zinck H, Shi Y, Li M, Gorman BR, Ji S-G, Sun N, Webster T, Liem A, Hsieh P, Devineni P, Karnam P, Gong X, Radhakrishnan L, Schmidt J, Assimes TL, Huang J, Pan C, Humphries D, Brophy M, Moser J, Muralidhar S, Huang GD, Przygodzki R, Concato J, Gaziano JM, Gelernter J, O'Donnell CJ, Hauser ER, Zhao H, et al. Genotyping Array Design and Data Quality Control in the Million Veteran Program. Am J Hum Genet 2020;106:535–548.
- 3. Fang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, Vujkovic M, Damrauer SM, Pyarajan S, Gaziano JM, DuVall SL, O'Donnell CJ, Cho K, Chang K-M, Wilson PWF, Tsao PS, VA Million Veteran Program, Sun YV, Tang H. Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in Genome-wide Association Studies. *Am J Hum Genet* 2019;105:763–772.
- 4. COVID-19 Efforts. at https://www.hsrd.research.va.gov/covid19.cfm>.
- 5. Song RJ, Ho Y-L, Schubert P, Park Y, Posner D, Lord EM, Costa L, Gerlovin H, Kurgansky KE, Anglin-Foote T, DuVall S, Huffman JE, Pyarajan S, Beckham JC, Chang K-M, Liao KP, Djousse L, Gagnon DR, Whitbourne SB, Ramoni R, Muralidhar S, Tsao PS, O'Donnell CJ, Gaziano JM, Casas JP, Cho K, VA Million Veteran Program COVID-19 Science Initiative. Phenome-wide association of 1809 phenotypes and COVID-19 disease progression in the Veterans Health Administration Million Veteran Program. PLoS One 2021;16:e0251651.
- 6. Patterson OV, Jones M, Yao Y, Viernes B, Alba PR, Iwashyna TJ, DuVall SL. Extraction of Vital Signs

- from Clinical Notes. *Stud Health Technol Inform* 2015;216:1035.
- 7. Ioannou GN, Locke E, Green P, Berry K, O'Hare AM, Shah JA, Crothers K, Eastment MC, Dominitz JA, Fan VS. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection. *JAMA Netw Open* 2020;3:e2022310.
- 8. Obeidat M, Frank AR, Icardi MS, Klutts JS. VA-Wide, Multicenter Verification Study of the Cepheid Xpert SARS-CoV-2 Assay. *Acad Pathol* 2021;8:23742895211011911.
- WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A
 minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis
 2020;20:e192–e197.
- WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A
 minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis*2020;20:e192–e197.
- Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time.
 Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1. Epub 2020 Feb
 Erratum in: Lancet Infect Dis. 2020 Sep;20(9):e215. PMID: 32087114; PMCID: PMC7159018.
 "Accessed on Feb 16th, 2021"
- 12. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* 2015;
- 13. Mägi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. *BMC Bioinformatics* 2010;11:288.
- 14. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR,

Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. *Bioinformatics* 2010;26:1205–1210.

15. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* 2015;

Supplemental Tables

Table E1. The demographics and clinical conditions documented within two years prior to the index dates for MVP subjects used for association studies with severe outcomes of COVID-19 infection and post-index pneumonia events (pneumonia60d) in this study. **See Excel Document**

Table E2. Sample sizes and rates of pneumonia within 60 days post index date for MVP subjects of European ancestry with no missing data for pre- or post- index pneumonia events <u>after</u> sensitivity analysis.

	rs35705950-T _0 copy		rs3570595	0-Т _1 сору	rs35705950-T _2 copies							
HARE	Pneumonia_no	Pneumonia_yes	Pneumonia_no	Pneumonia_yes	Pneumonia_no	Pneumonia_yes						
COVID-19 Tested Positive												
EUR	4994	1854	1228	372	76	17						
COVID-19 Tested Negative												
EUR	62076	2593	15267	689	941	47						

Table E3. The ICD codes used for data pull of post-index pneumonia diagnosis (pneumonia60d) in this study. **See Excel Document**

Table E4. Association of rs35705950-T allele with COVID-19 outcomes: 1) Testing positive, 2) hospitalization, 3) Severe COVID-19 + Death and 4) COVID-19 related Death in MVP participants after sensitivity analysis

MVP Cohort Ancestry	Copy number_0		Copy number_1		Copy number_2		OR [95% CI]	P_value
COVID-19 Testing	COVID-19 Negative	COVID-19 Positive	COVID-19 Negative	COVID-19 Positive	COVID-19 Negative	COVID-19 Positive		
African	25992	3701	1126	151	18	2	0.98 [0.83, 1.16]	0.83
European	64759	6860	15981	1604	989	93	0.95 [0.90, 1.00]	0.05
Hispanic	9450	1654	1568	248	64	9	0.94 [0.82, 1.07]	0.34
Random Effect Meta-analysis		0.95 [0.90, 0.99]	0.03					
COVID-19 Hospitalization	COVID-19 Not-hospitalized	COVID-19 Hospitalized	COVID-19 Not- Hospitalized	COVID-19 Hospitalize d	COVID-19 Not- Hospitalize d	COVID-19 Hospitalized		
African	2322	1379	104	47	1	1	0.79 [0.55, 1.13)	0.21
European	4607	2241	1143	457	65	28	0.86 [0.77, 0.97]	0.015
Hispanic	1189	459	179	69	9	0	0.88 [0.65, 1.20]	0.49
Random Effect Meta-analysis							0.86 [0.78, 0.95]	0.004
COVID-19 Severe + Death	COVID-19 Not-Severe	COVID-19 Severe + Death	COVID-19 Not-Severe	COVID-19 Severe + Death	COVID-19 Not-Severe	COVID-19 Severe + Death		
African	3314	387	138	13	2	0	0.82 [0.46, 1.45]	0.46
European	6257	591	1463	137	87	6	1.01 [0.85, 1.21]	0.71
Hispanic	1502	146	232	16	9	0	0.69 [0.41, 1.17]	0.13
Random Effect Meta-analysis							0.92 [0.72, 1.16]	0.48
COVID-19 Related Death	COVID-19 Survivors	COVID-19 Deaths	COVID-19 Survivors	COVID-19 Deaths	COVID-19 Survivors	COVID-19 Deaths		
African	3547	154	143	8	2	0	1.41 [0.69, 2.89]	0.42
European	6530	318	1535	65	90	3	0.91 [0.71, 1.17]	0.59
Hispanic	1579	69	241	7	9	0	0.67 [0.32, 1.40]	0.30
Random Effect Meta-analysis	0.92 [0.74, 1.16)	0.50						

Table E5. Full summary statistics of PheWAS associations with *MUC5B* rs35705950-T allele. **See Excel Document**

Table E6. LabWAS reveals disease conditions associated with the presence of a *MUC5B* rs35705950-T allele. **See Excel Document**

Acknowledgements

VA Million Veteran Program COVID-19 Science Initiative Membership & Acknowledgements

VA Million Veteran Program COVID-19 Science Initiative

MVP COVID-19 Science Program Steering Committee

- Christopher J. O'Donnell, M.D., M.P.H. (Co-Chair)
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- J. Michael Gaziano, M.D., M.P.H. (Co-Chair)
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Philip S. Tsao, Ph.D. (Co-Chair)
 - VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304
- Sumitra Muralidhar, Ph.D.
 - US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420
- Jean Beckham, Ph.D.
 - Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705
- Kyong-Mi Chang, M.D.
 - Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
- Juan P. Casas, M.D., Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Kelly Cho, M.P.H., Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Saiju Pyarajan, Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Jennifer Huffman, Ph.D.

- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Jennifer Moser, Ph.D.
 - US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420

MVP COVID-19 Science Program Steering Committee Support

- Lauren Thomann, M.P.H. (P&P Committee Representative, Working Group Coordinator)

 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Helene Garcon, M.D. (Program Coordinator, Working Group Coordinator)
 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Nicole Kosik, M.P.H. (Working Group Coordinator)
 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

MVP COVID-19 Science Program Working Groups and Associated Chairs

- COVID-19 Related PheWAS
 - o Katherine Liao, M.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
 - o Scott Damrauer, M.D.
 - Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
- Disease Mechanisms
 - o Richard Hauger, M.D.
 - VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161
 - Shiuh-Wen Luoh, M.D., Ph.D.
 - Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239
 - o Sudha Iyengar, Ph.D.
 - VA Northeast Ohio Healthcare System, 10701 East Boulevard, Cleveland, OH 44106

- Druggable Genome
 - o Juan P. Casas, M.D., Ph.D.

VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

- Genomics for Risk Prediction, PRS, and MR
 - o Themistocles Assimes, M.D., Ph.D.

VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304

Panagiotis Roussos, M.D., Ph.D.

James J. Peters VA Medical Center, 130 W Kingsbridge Rd, Bronx, NY 10468

Robert Striker, M.D., Ph.D.

William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705

- GWAS & Downstream Analysis
 - o Jennifer Huffman, Ph.D.

VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

o Yan Sun, Ph.D.

Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033

- Pharmacogenomics
 - o Adriana Hung, M.D., M.P.H.

VA Tennessee Valley Healthcare System, 1310 24th Avenue, South Nashville, TN 37212

o Sony Tuteja, Pharm.D., M.S.

Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104

VA COVID-19 Shared Data Resource – Scott L. DuVall, Ph.D.; Kristine E. Lynch, Ph.D.; Elise
 Gatsby, M.P.H.

VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148

MVP COVID-19 Data Core – Kelly Cho, M.P.H., Ph.D.; Lauren Costa, M.P.H.; Anne Yuk-Lam Ho, M.P.H.; Rebecca Song, M.P.H.

VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

VA Million Veteran Program

MVP Executive Committee

- Co-Chair: J. Michael Gaziano, M.D., M.P.H.

VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

- Co-Chair: Sumitra Muralidhar, Ph.D.

US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420

- Rachel Ramoni, D.M.D., Sc.D., Chief VA Research and Development Officer

 US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420
- Jean Beckham, Ph.D.

Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705

- Kyong-Mi Chang, M.D.

Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104

Christopher J. O'Donnell, M.D., M.P.H.

VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

- Philip S. Tsao, Ph.D.

VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304

- James Breeling, M.D., Ex-Officio

US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420

- Grant Huang, Ph.D., Ex-Officio
 - US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420
- Juan P. Casas, M.D., Ph.D., Ex-Officio
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

MVP Program Office

- Sumitra Muralidhar, Ph.D.
 - US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420
- Jennifer Moser, Ph.D.
 - US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington, DC 20420

MVP Recruitment/Enrollment

- Recruitment/Enrollment Director/Deputy Director, Boston Stacey B. Whitbourne, Ph.D.;
 Jessica V. Brewer, M.P.H.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- MVP Coordinating Centers
 - Clinical Epidemiology Research Center (CERC), West Haven Mihaela Aslan, Ph.D.
 West Haven VA Medical Center, 950 Campbell Avenue, West Haven, CT 06516
 - Cooperative Studies Program Clinical Research Pharmacy Coordinating Center,
 Albuquerque Todd Connor, Pharm.D.; Dean P. Argyres, B.S., M.S.
 New Mexico VA Health Care System, 1501 San Pedro Drive SE, Albuquerque, NM 87108
 - Genomics Coordinating Center, Palo Alto Philip S. Tsao, Ph.D.
 VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304
 - MVP Boston Coordinating Center, Boston J. Michael Gaziano, M.D., M.P.H.
 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130

- MVP Information Center, Canandaigua Brady Stephens, M.S.
 Canandaigua VA Medical Center, 400 Fort Hill Avenue, Canandaigua, NY 14424
- VA Central Biorepository, Boston Mary T. Brophy M.D., M.P.H.; Donald E. Humphries, Ph.D.; Luis E. Selva, Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- MVP Informatics, Boston Nhan Do, M.D.; Shahpoor (Alex) Shayan, M.S.
 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- MVP Data Operations/Analytics, Boston Kelly Cho, M.P.H., Ph.D.
 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Director of Regulatory Affairs Lori Churby, B.S.
 VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304

MVP Science

- Science Operations Christopher J. O'Donnell, M.D., M.P.H.
 VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Genomics Core Christopher J. O'Donnell, M.D., M.P.H.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 Saiju Pyarajan Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 Philip S. Tsao, Ph.D.
 - VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304
- Data Core Kelly Cho, M.P.H, Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- VA Informatics and Computing Infrastructure (VINCI) Scott L. DuVall, Ph.D.
 VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148

- Data and Computational Sciences Saiju Pyarajan, Ph.D.
 - VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130
- Statistical Genetics Elizabeth Hauser, Ph.D.

Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705

Yan Sun, Ph.D.

Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033

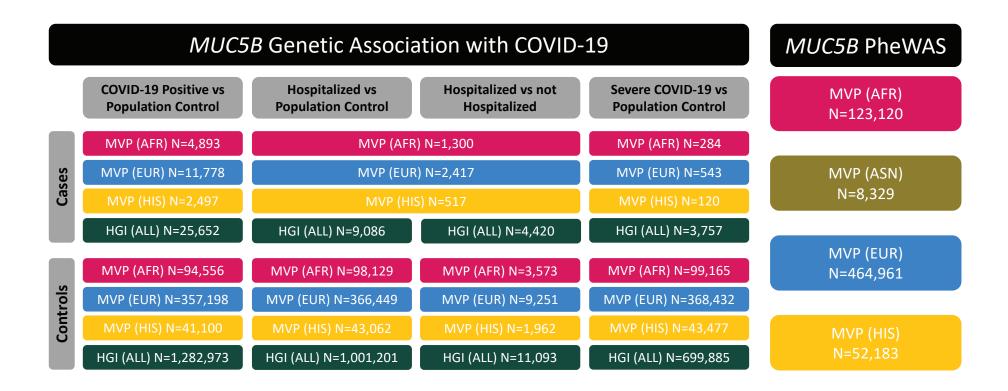
Hongyu Zhao, Ph.D.

West Haven VA Medical Center, 950 Campbell Avenue, West Haven, CT 06516

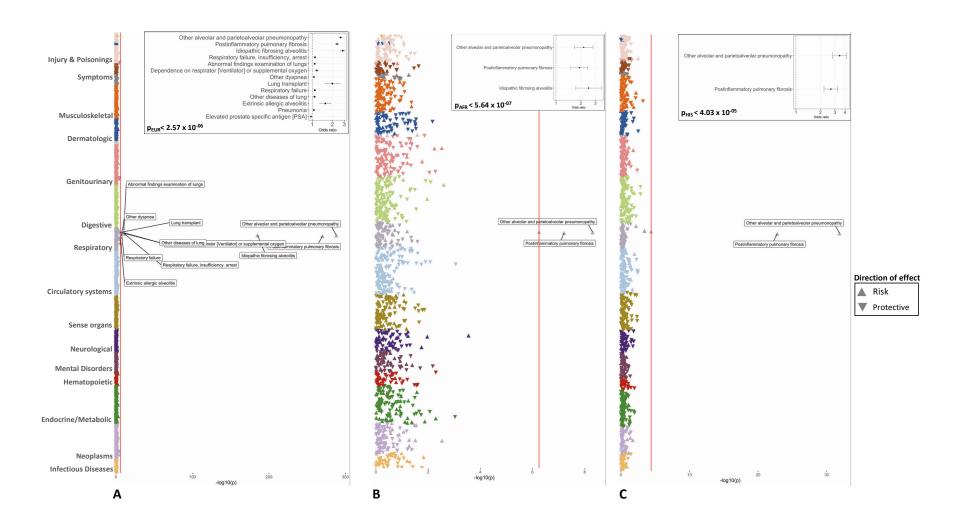
Current MVP Local Site Investigators

- Atlanta VA Medical Center (Peter Wilson, M.D.)
 - 1670 Clairmont Road, Decatur, GA 30033
- Bay Pines VA Healthcare System (Rachel McArdle, Ph.D.)
 - 10,000 Bay Pines Blvd Bay Pines, FL 33744
- Birmingham VA Medical Center (Louis Dellitalia, M.D.)
 - 700 S. 19th Street, Birmingham AL 35233
- Central Western Massachusetts Healthcare System (Kristin Mattocks, Ph.D., M.P.H.)
 - 421 North Main Street, Leeds, MA 01053
- Cincinnati VA Medical Center (John Harley, M.D., Ph.D.)
 - 3200 Vine Street, Cincinnati, OH 45220
- Clement J. Zablocki VA Medical Center (Jeffrey Whittle, M.D., M.P.H.)
 - 5000 West National Avenue, Milwaukee, WI 53295
- VA Northeast Ohio Healthcare System (Frank Jacono, M.D.)
 - 10701 East Boulevard, Cleveland, OH 44106
- Durham VA Medical Center (Jean Beckham, Ph.D.)

- 508 Fulton Street, Durham, NC 27705
- Edith Nourse Rogers Memorial Veterans Hospital (John Wells., Ph.D.)
 - 200 Springs Road, Bedford, MA 01730
- Edward Hines, Jr. VA Medical Center (Salvador Gutierrez, M.D.)
 - 5000 South 5th Avenue, Hines, IL 60141
- Veterans Health Care System of the Ozarks (Gretchen Gibson, D.D.S., M.P.H.)
 - 1100 North College Avenue, Fayetteville, AR 72703
- Fargo VA Health Care System (Kimberly Hammer, Ph.D.)
 - 2101 N. Elm, Fargo, ND 58102
- VA Health Care Upstate New York (Laurence Kaminsky, Ph.D.)
 - 113 Holland Avenue, Albany, NY 12208
- New Mexico VA Health Care System (Gerardo Villareal, M.D.)
 - 1501 San Pedro Drive, S.E. Albuquerque, NM 87108
- VA Boston Healthcare System (Scott Kinlay, M.B.B.S., Ph.D.)
 - 150 S. Huntington Avenue, Boston, MA 02130
- VA Western New York Healthcare System (Junzhe Xu, M.D.)
 - 3495 Bailey Avenue, Buffalo, NY 14215-1199
- Ralph H. Johnson VA Medical Center (Mark Hamner, M.D.)
 - 109 Bee Street, Mental Health Research, Charleston, SC 29401
- Columbia VA Health Care System (Roy Mathew, M.D.)
 - 6439 Garners Ferry Road, Columbia, SC 29209
- VA North Texas Health Care System (Sujata Bhushan, M.D.)
 - 4500 S. Lancaster Road, Dallas, TX 75216
- Hampton VA Medical Center (Pran Iruvanti, D.O., Ph.D.)


- 100 Emancipation Drive, Hampton, VA 23667
- Richmond VA Medical Center (Michael Godschalk, M.D.)
 - 1201 Broad Rock Blvd., Richmond, VA 23249
- Iowa City VA Health Care System (Zuhair Ballas, M.D.)
 - 601 Highway 6 West, Iowa City, IA 52246-2208
- Eastern Oklahoma VA Health Care System (Douglas Ivins, M.D.)
 - 1011 Honor Heights Drive, Muskogee, OK 74401
- James A. Haley Veterans' Hospital (Stephen Mastorides, M.D.)
 - 13000 Bruce B. Downs Blvd, Tampa, FL 33612
- James H. Quillen VA Medical Center (Jonathan Moorman, M.D., Ph.D.)
 - Corner of Lamont & Veterans Way, Mountain Home, TN 37684
- John D. Dingell VA Medical Center (Saib Gappy, M.D.)
 - 4646 John R Street, Detroit, MI 48201
- Louisville VA Medical Center (Jon Klein, M.D., Ph.D.)
 - 800 Zorn Avenue, Louisville, KY 40206
- Manchester VA Medical Center (Nora Ratcliffe, M.D.)
 - 718 Smyth Road, Manchester, NH 03104
- Miami VA Health Care System (Hermes Florez, M.D., Ph.D.)
 - 1201 NW 16th Street, 11 GRC, Miami FL 33125
- Michael E. DeBakey VA Medical Center (Olaoluwa Okusaga, M.D.)
 - 2002 Holcombe Blvd, Houston, TX 77030
- Minneapolis VA Health Care System (Maureen Murdoch, M.D., M.P.H.)
 - One Veterans Drive, Minneapolis, MN 55417
- N. FL/S. GA Veterans Health System (Peruvemba Sriram, M.D.)

- 1601 SW Archer Road, Gainesville, FL 32608
- Northport VA Medical Center (Shing Shing Yeh, Ph.D., M.D.)
 - 79 Middleville Road, Northport, NY 11768
- Overton Brooks VA Medical Center (Neeraj Tandon, M.D.)
 - 510 East Stoner Ave, Shreveport, LA 71101
- Philadelphia VA Medical Center (Darshana Jhala, M.D.)
 - 3900 Woodland Avenue, Philadelphia, PA 19104
- Phoenix VA Health Care System (Samuel Aguayo, M.D.)
 - 650 E. Indian School Road, Phoenix, AZ 85012
- Portland VA Medical Center (David Cohen, M.D.)
 - 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239
- Providence VA Medical Center (Satish Sharma, M.D.)
 - 830 Chalkstone Avenue, Providence, RI 02908
- Richard Roudebush VA Medical Center (Suthat Liangpunsakul, M.D., M.P.H.)
 - 1481 West 10th Street, Indianapolis, IN 46202
- Salem VA Medical Center (Kris Ann Oursler, M.D.)
 - 1970 Roanoke Blvd, Salem, VA 24153
- San Francisco VA Health Care System (Mary Whooley, M.D.)
 - 4150 Clement Street, San Francisco, CA 94121
- South Texas Veterans Health Care System (Sunil Ahuja, M.D.)
 - 7400 Merton Minter Boulevard, San Antonio, TX 78229
- Southeast Louisiana Veterans Health Care System (Joseph Constans, Ph.D.)
 - 2400 Canal Street, New Orleans, LA 70119
- Southern Arizona VA Health Care System (Paul Meyer, M.D., Ph.D.)


- 3601 S 6th Avenue, Tucson, AZ 85723
- Sioux Falls VA Health Care System (Jennifer Greco, M.D.)
 - 2501 W 22nd Street, Sioux Falls, SD 57105
- St. Louis VA Health Care System (Michael Rauchman, M.D.)
 - 915 North Grand Blvd, St. Louis, MO 63106
- Syracuse VA Medical Center (Richard Servatius, Ph.D.)
 - 800 Irving Avenue, Syracuse, NY 13210
- VA Eastern Kansas Health Care System (Melinda Gaddy, Ph.D.)
 - 4101 S 4th Street Trafficway, Leavenworth, KS 66048
- VA Greater Los Angeles Health Care System (Agnes Wallbom, M.D., M.S.)
 - 11301 Wilshire Blvd, Los Angeles, CA 90073
- VA Long Beach Healthcare System (Timothy Morgan, M.D.)
 - 5901 East 7th Street Long Beach, CA 90822
- VA Maine Healthcare System (Todd Stapley, D.O.)
 - 1 VA Center, Augusta, ME 04330
- VA New York Harbor Healthcare System (Scott Sherman, M.D., M.P.H.)
 - 423 East 23rd Street, New York, NY 10010
- VA Pacific Islands Health Care System (George Ross, M.D.)
 - 459 Patterson Rd, Honolulu, HI 96819
- VA Palo Alto Health Care System (Philip Tsao, Ph.D.)
 - 3801 Miranda Avenue, Palo Alto, CA 94304-1290
- VA Pittsburgh Health Care System (Patrick Strollo, Jr., M.D.)
 - University Drive, Pittsburgh, PA 15240
- VA Puget Sound Health Care System (Edward Boyko, M.D.)

- 1660 S. Columbian Way, Seattle, WA 98108-1597
- VA Salt Lake City Health Care System (Laurence Meyer, M.D., Ph.D.)
 - 500 Foothill Drive, Salt Lake City, UT 84148
- VA San Diego Healthcare System (Samir Gupta, M.D., M.S.C.S.)
 - 3350 La Jolla Village Drive, San Diego, CA 92161
- VA Sierra Nevada Health Care System (Mostaqul Huq, Pharm.D., Ph.D.)
 - 975 Kirman Avenue, Reno, NV 89502
- VA Southern Nevada Healthcare System (Joseph Fayad, M.D.)
 - 6900 North Pecos Road, North Las Vegas, NV 89086
- VA Tennessee Valley Healthcare System (Adriana Hung, M.D., M.P.H.)
 - 1310 24th Avenue, South Nashville, TN 37212
- Washington DC VA Medical Center (Jack Lichy, M.D., Ph.D.)
 - 50 Irving St, Washington, D. C. 20422
- W.G. (Bill) Hefner VA Medical Center (Robin Hurley, M.D.)
 - 1601 Brenner Ave, Salisbury, NC 28144
- White River Junction VA Medical Center (Brooks Robey, M.D.)
 - 163 Veterans Drive, White River Junction, VT 05009
- William S. Middleton Memorial Veterans Hospital (Robert Striker, M.D., Ph.D.)
 - 2500 Overlook Terrace, Madison, WI 53705

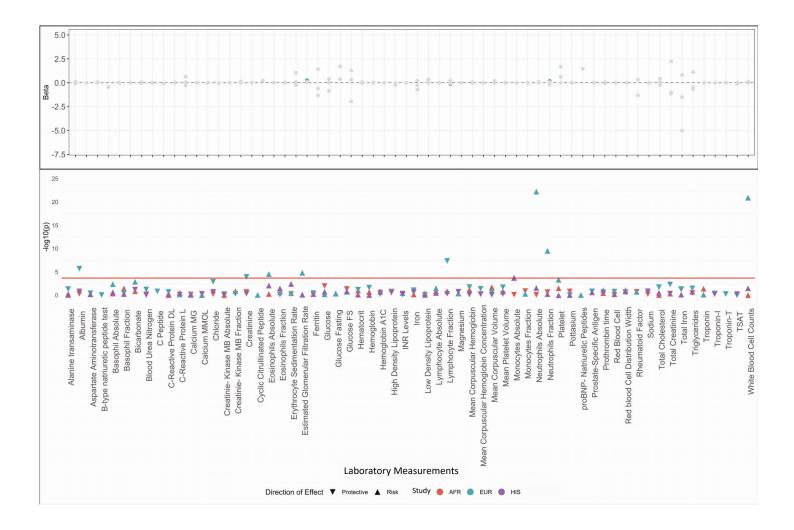

Figure E1

Figure E2

Figure E3

