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A B S T R A C T   

Organic micropollutants (OMPs) are contaminants of global concern and have garnered increasing attention in 
Africa, particularly in urban and urbanizing areas of Sub-Saharan Africa (SSA). In this work, we coupled suspect 
screening enabled by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) with multivariate 
analysis to characterize OMPs in wastewater, surface water, and groundwater samples collected from Kampala, 
the capital and largest city of Uganda. Suspect screening prioritized and confirmed 157 OMPs in Kampala 
samples for target quantification. Many OMPs detected in Kampala samples occurred within concentration 
ranges similar to those documented in previous studies reporting OMP occurrence in SSA, but some have never or 
rarely been quantified in environmental water samples from SSA. Hierarchical cluster analysis established the 
source-related co-occurrence profiles of OMPs. Partial least squares regression and multiple linear regression 
analyses further pinpointed the concentration of nitrate and the content of a fluorescent organic matter 
component with excitation/emission maxima around 280/330 nm as predictors for the sample-specific cumu
lative concentrations of OMPs, suggesting the likely contribution of diffuse runoff and wastewater discharges to 
OMP occurrence in the aquatic environment of Kampala. Parallel calculations of exposure-activity ratios and 
multi-substance potentially affected fractions provided insights into the potential for biological effects associated 
with OMPs and highlighted the importance of expanded analytical coverage for screening-level risk assessments. 
Overall, our study demonstrates a versatile database-driven screening and data analysis methodology for the 
multipronged characterization of OMP contamination in a representative SSA urban center.   

1. Introduction 

Organic micropollutants (OMPs) refer to a broad spectrum of current 
use and emerging anthropogenic compounds (e.g., pharmaceuticals, 
pesticides, household chemicals, industrial additives) and their trans
formation products (TPs) that typically occur at ng/L to μg/L levels in 
aquatic systems (Escher and Fenner 2011; Schwarzenbach et al., 2006). 
Globally, the widespread occurrence of OMPs presents an ongoing 
challenge to water resources management due to concerns over their 
adverse impacts on environmental and human health (aus der Beek 
et al. 2016; Lukač Reberski et al. 2022; Malaj et al., 2014; Stehle and 
Schulz 2015; Wilkinson et al., 2022). Such concerns have become 

increasingly relevant in regions experiencing rapid population growth 
along with intensification of chemical production and use (Weiss et al., 
2016) such as urban and urbanizing areas of Sub-Saharan Africa (SSA). 
Over the past decade, a growing number of studies have sought to 
characterize the occurrence, sources, and ecotoxicological risks of OMPs 
in Africa (Fekadu et al., 2019; Gwenzi and Chaukura 2018; K’Oreje 
et al., 2020; Madikizela et al., 2017; Ssebugere et al., 2020). Many OMPs 
identified in the African aquatic environment occur at concentrations 
comparable to those reported in North America, Europe, and 
Asia-Pacific (K’Oreje et al., 2020), but certain categories of OMPs (e.g., 
antivirals, anthelmintics, antimalarials, estrogens) have been detected at 
elevated levels (Adeola and Forbes 2022; Belew et al., 2021; Fekadu 
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et al., 2019; Wilkinson et al., 2022) due to differences in the prevailing 
public health conditions, substance consumption patterns, and waste 
management practices among regions. Collectively, these earlier in
vestigations establish a sound knowledge base regarding the types and 
levels of OMPs commonly found in African waters and advocate for 
collaborative research initiatives and capacity building to inform miti
gation strategies in regions at risk. 

To date, the majority of OMP occurrence studies in Africa have 
focused their efforts on the application of target analysis to quantify a 
preselected set or specific groups of OMPs informed by local monitoring 
priorities and available historical data. Very few studies have incorpo
rated database-driven screening approaches enabled by high-resolution 
mass spectrometry (HRMS) to broaden the analytical coverage for a 
more holistic assessment of OMP contamination status in African 
aquatic systems. To the best of our knowledge, K’oreje and colleagues 
(K’Oreje et al., 2012) were among the first to combine drug consumption 
data with liquid chromatography-HRMS (LC-HRMS) for suspect 
screening of pharmaceuticals in water samples collected from the Nai
robi River basin of Kenya. More recently, (Kandie et al., 2020; Madiki
zela et al., 2022) applied suspect screening using self-curated compound 
lists to complement their target quantification of OMPs in water samples 
collected from the Lake Victoria South Basin in Kenya and the Klip River 
catchment in South Africa, respectively. Wood et al., 2017; Hu et al., 
2021; Huff Chester et al. 2022, on the other hand, leveraged 
vendor-supplied compound databases to pursue suspect or nontarget 
screening of OMPs in water samples from South Africa, Nigeria, and 
Ghana, respectively. Such studies shed light on the potential of HRMS 
screening for prioritization and identification of less targeted OMPs in 
the African environment beyond those routinely flagged for target 
analysis. However, only a handful of suspect or nontarget OMPs iden
tified in these studies were ultimately quantified by authentic reference 
standards, thus preventing further evaluation of their environmental 
impacts. 

This work aims to combine suspect screening enabled by LC-HRMS 
with multivariate analysis to support source identification and risk 
assessment of OMPs in the aquatic environment of a representative SSA 
urban center – Kampala, Uganda. Like other cities in the African Great 
Lakes region, Kampala has witnessed fast population growth and sig
nificant urban expansion (Forget et al., 2021; Richmond et al., 2018) 
and is facing complex environmental challenges that are further exac
erbated by socioeconomic disparities and climate variability (Li et al., 
2021; Twinomuhangi et al., 2021). For example, only a small fraction of 
the population in Kampala is served by sewage treatment plants, 
whereas the remaining population relies on onsite sanitation facilities 
such as septic tanks and pit latrines or open drainage channels for do
mestic waste disposal (McConville et al., 2019; O’Brien et al., 2017). 
Furthermore, the population in high-income neighborhoods typically 
has access to piped water supply, but the population residing in informal 
settlements has a high reliance on groundwater from springs or har
vested rainwater for domestic (e.g., drinking and cooking) and other 
uses (Byrne et al., 2021; Nayebare et al., 2014). Several recent studies 
have documented the occurrence of perfluoroalkyl substances (Ari
naitwe et al., 2021; Dalahmeh et al., 2018), pharmaceuticals (Dalahmeh 
et al., 2020; Nantaba et al., 2020; Twinomucunguzi et al., 2021), and 
other OMPs such as pesticides, personal care products, plasticizers, and 
flame retardants (Nantaba et al., 2021; Twinomucunguzi et al., 2021) in 
Kampala, although the number of OMPs quantified in each study was 
limited. 

Our specific objectives of this study were (i) to perform suspect 
screening and target quantification of OMPs in wastewater, surface 
water, and groundwater samples collected from Kampala; (ii) to 
compare the concentration ranges of OMPs measured in Kampala sam
ples to those previously reported for SSA; (iii) to explore the strength of 
water quality variables as predictors for the overall level of OMPs; and 
(iv) to evaluate the potential for biological effects associated with OMPs 
using two screening-level risk assessments. 

2. Materials and methods 

2.1. Field sampling 

Over the course of this study (January 2018-July 2019), a total of 
106 grab samples (2 L each; Table S2) were collected using pre-cleaned 
sampling bottles from sites within the urban and peri‑urban areas of 
Kampala, Uganda (Fig. 1). Surface water samples were collected from 
the catchments of drainage channels (e.g., Nakivubo, Lubigi, Mayanja, 
Nalukolongo, Kinawataka, Kansanga) in Kampala (n = 45) and near
shore sites in the Murchison Bay of Lake Victoria (n = 13). Groundwater 
samples (n = 33) were collected from springs located in densely popu
lated neighborhoods or informal settlements. Lastly, wastewater sam
ples (n = 15) were collected from sites near the inlets and outlets of the 
two sewage treatment plants administered by the National Water and 
Sewerage Corporation. Care was taken to minimize unintended 
contamination during sample collection in compliance with trace-level 
sampling protocols (U.S. Geological Survey, 2006). Samples were 
transported to the laboratory at Makerere University on the same day of 
collection and stored under −20 ◦C until extraction. Field blanks (i.e., 
deionized water poured into sampling bottles, opened in the field, and 
brought back to the laboratory) were prepared for each sampling trip. 

2.2. Sample analysis 

Within 48 h of collection, thawed samples (duplicate; 500 mL each) 
were spiked with a mixture of isotope-labeled internal standards (ILIS; 
200 ng/L each; Table S5), filtered through 0.7-µm glass fiber filters 
under vacuum, and extracted by preconditioned solid-phase extraction 
(SPE) cartridges packed with Sepra ZT (200 mg; Phenomenex), Sepra 
ZT-SAX (100 mg; Phenomenex), Sepra ZT-SCX (100 mg; Phenomenex), 
and ISOLUTE ENV+ (150 mg; Biotage) sorbents as the top layer and 
Enviro-Clean graphitized nonporous carbon (200 mg; United Chemical 
Technologies) as the bottom layer (Wang et al., 2020). SPE cartridges 
were wrapped in aluminum foil and shipped together with additional 
100-mL filtered sample aliquots to Syracuse University for further pro
cessing within a week to minimize analyte losses. Upon arrival at the 
laboratory in Syracuse, filtered sample aliquots were analyzed for water 
quality-related physicochemical and optical properties (Table S3). SPE 
cartridges were eluted sequentially with 6 mL of methanol/ethyl acetate 
(50:50 v/v with 2% ammonia), 3 mL of methanol/ethyl acetate (50:50 
v/v with 1.7% formic acid), and 2 mL of methanol (Wang et al., 2020). 
Sample extracts were concentrated to 0.1 mL by rotary evaporation and 
N2 blowdown and reconstituted with methanol:water (10:90 v/v) to 1 
mL prior to injection onto a Dionex UltiMate 3000 high-performance 
liquid chromatograph interfaced with a Thermo Scientific LTQ XL 
hybrid ion trap-Orbitrap high-resolution mass spectrometer for OMP 
analysis (Table S4). Chromatographic separation of OMPs was per
formed on a Hypersil GOLD C18 column (100 × 2.1 mm, 1.9 µm; pre
ceded by a guard cartridge) running a binary gradient of water and 
methanol (modified with 0.1% v/v formic acid) at a flow rate of 200 
μL/min and a column temperature of 35 ◦C. Mass spectrometric analysis 
was conducted in positive and negative electrospray ionization modes in 
separate runs. Full scan mass spectra were first acquired over the m/z 
range of 100 to 1000 with a mass resolution of 60,000 at m/z 400. Full 
scan triggered data-dependent tandem mass (dd-MS2) spectra were then 
acquired upon reinjection of sample extracts with a mass resolution of 
7500 at m/z 400 using higher energy collision-induced dissociation 
while maintaining a full scan mass resolution of 30,000 at m/z 400. Field 
blanks were extracted by the same SPE method and analyzed with each 
batch of samples. 

2.3. Suspect screening and target quantification 

Suspect screening was conducted in TraceFinder 4.1 (Thermo Scien
tific) using an in-house suspect database detailing compound-specific 
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information (Table S14) for 1677 OMPs curated from the National Drug 
Register (National Drug Authority, 2019) and Agricultural Chemical 
Register of Uganda (Ministry of Agriculture Animal Industry and Fish
eries, 2019) as well as prior studies reporting OMP occurrence in SSA 
aquatic systems. Compounds with a predicted LogP beyond the range of 
−2.0 to 6.0, containing only carbon and hydrogen atoms but no het
eroatoms, or containing metallic or metalloidic elements were removed 
from the database. Full scan mass spectra were processed by TraceFinder 
with optimized peak picking parameters (Table S6) for suspect database 
matching to prioritize peaks for the acquisition of dd-MS2 spectra. Full 
scan triggered dd-MS2 spectra of suspect compounds were processed by 
Compound Discoverer 3.3 (Thermo Scientific) for mass spectral library 
searching via mzCloud (HighChem LLC, 2022) and MassBank (Mass
Bank-consortium and its contributors, 2020) using a node-based work
flow (Table S7). Suspect compounds with a spectral match factor of >70 
(n = 285; Table S8) were selected for further evaluation against 
authentic reference standards, among which 157 were confirmed by 
verification of their chromatographic retention times and dd-MS2 
spectra. 

Target quantification of 157 confirmed OMPs in samples was per
formed retrospectively using 12-point calibration curves. Twelve cali
bration standards (i.e., prepared in triplicate using 500 mL of ultrapure 
water spiked with the mixture of 157 OMPs at concentrations ranging 
from 0.1 to 3000 ng/L followed by the mixture of ILIS at 200 ng/L) were 
extracted and analyzed following the same SPE-LC-HRMS method 
described above. Calibration curves (R2 = 0.995±0.005; n = 157; 
Table S9) were constructed in TraceFinder by the non-weighted linear 
least squares regression algorithm. Concentrations of OMPs were 
determined by comparing the peak area ratios of OMPs to their assigned 
ILIS (i.e., structurally identical ILIS or ILIS with the closest chromato
graphic retention times) in samples to the corresponding ratios in cali
bration standards. Calibration standards (for continuous verification) 

and solvent blanks (for carryover checks) were run with each sample 
sequence. Method reproducibility was monitored by the percent relative 
standard deviations (5.4 ± 3.5%; n = 101; Table S5) of the ILIS peak 
areas of calibration standards from all sample sequences. For each target 
OMP, the absolute SPE recovery, ion suppression or enhancement, ma
trix factor, and limits of quantification (Table S9) were determined as 
detailed in our previous work (Wang et al., 2020). 

2.4. Data analysis 

Following the screening and quantification of OMPs, hierarchical 
cluster analysis was performed using the ComplexHeatmap package (Gu 
et al., 2016) in R 4.0.3 to visualize the source-related clustering patterns 
of OMPs based on their z-score standardized median quantifiable con
centrations. Partial least squares regression (PLSR) analysis was per
formed with SIMCA 17.0.2 (Umetrics) using the sample-specific 
cumulative concentrations of OMPs (Σ[OMPs]) as the response variables 
and a suite of water quality parameters (i.e., the concentrations of dis
solved organic carbon, nitrate, chloride, bromide, and fluoride, the 
specific UV absorbance at 254 nm, and the maximum fluorescence in
tensity of four fluorescent organic matter components extracted by 
deconvoluting the excitation-emission matrices of samples with parallel 
factor analysis) as the predictor variables to rank their predictive power 
for Σ[OMPs]. Multiple linear regression was performed by stepwise 
variable selection to identify a subset of PLSR-prioritized water quality 
parameters that could best predict Σ[OMPs] with minimal multi
collinearity. Two screening-level risk assessment methods were applied 
to evaluate potential for biological effects associated with OMPs. 
Exposure-activity ratios (EARs) were calculated for single OMPs with 
reliable exposure-effects relation data in the ToxCast database (U.S. 
Environmental Protection Agency’s Center for Computational Toxi
cology and Exposure, 2021) using the toxEval package (De Cicco et al. 

Fig. 1. Map of the sampling sites in Kampala, 
Uganda. The red circles represent the sampling 
sites on drainage channels. The gray squares 
represent the nearshore sampling sites in the 
Murchison Bay of Lake Victoria. The blue tri
angles represent the sampling sites at protected 
and unprotected springs. The brown diamonds 
represent the sampling sites near the inlets and 
outlets of the two sewage treatment plants 
(STPs) serving Kampala. Sampling dates and 
site coordinates are summarized in Table S2. 
Satellite Image Source: Esri, Maxar, GeoEye, 
Earthstar Geographics, CNES/Airbus DS, USDA, 
USGS, AeroGRID, IGN, and the GIS User Com
munity.(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   
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2020) in R. Potentially affected fractions (PAFs) of species for single 
OMPs were calculated by the species sensitivity distributions approach 
(de Zwart and Posthuma 2005) based on the log-transformed acute 
median toxicity (EC50) values for Multiple species and OMP combina
tions (Posthuma et al., 2019). For each sample, the sample-specific cu
mulative EARs (ΣEARs) and multi-substance potentially affected 
fraction (msPAF) for the mixture of OMPs were calculated by assuming 
concentration addition (Backhaus and Faust 2012; Blackwell et al., 
2017) and response addition (de Zwart and Posthuma 2005), respec
tively. Other statistical analyses (e.g., Spearman’s rank correlation 
analysis) were performed using GraphPad Prism 8.4. 

3. Results and discussion 

3.1. Occurrence patterns of OMPs in Kampala samples 

Overall, 157 OMPs prioritized by suspect screening were confirmed 
and quantified in Kampala water samples with concentrations spanning 
the range of 10 to 27,300 ng/L (Table S10). Of the 157 OMPs quantified 
herein, 85 can be broadly classified as pharmaceuticals, 28 as pesticides, 
20 as household chemicals and industrial additives, and 24 as TPs. One 
hundred of these OMPs occurred in both wastewater and drainage 
channel water samples, among which 26 were also detected at least once 
in nearshore lake water and groundwater samples, indicating the near- 
ubiquity of these OMPs in different aquatic compartments of Kampala. 
On average, the cumulative detections of OMPs in wastewater (n = 96 
±15) and drainage channel water samples (n = 70±15) were markedly 
higher than those in lake water (n = 33±7) and groundwater samples (n 
= 12±6). Similarly, the median Σ[OMPs] in wastewater (102,000 ng/L) 
and drainage channel water samples (27,600 ng/L) were at least one to 
two orders of magnitude higher than those measured in lake water 
(3540 ng/L) and groundwater samples (534 ng/L). Lastly, the sample- 
specific cumulative detection of OMPs (ranging from 5 to 124 with a 
median count of 52) exhibited a strong correlation (Spearman’s 
ρ=0.959; p<0.0001) with Σ[OMPs] (ranging from 211 to 171,000 ng/L 
with a median value of 20,600 ng/L), which supports the relevance of 
both metrics for assessing the magnitude of OMP contamination. 
Furthermore, the concentrations of the six most frequently detected 
OMPs (i.e., caffeine, carbamazepine, efavirenz, fluconazole, nevirapine, 
and sulfamethoxazole) all showed strong positive correlations (Spear
man’s ρ=0.901–0.965; p<0.0001) with Σ[OMPs] and may serve as an 
abbreviated list of indicator compounds to infer the extent of OMP 
occurrence in Kampala samples. 

To further explore the co-occurrence profiles of OMPs in relation to 
their potential sources, hierarchical cluster analysis was applied to the z- 
score standardized median quantifiable concentrations of 157 OMPs 
(Fig. 2), which revealed three clusters of OMPs based on Euclidean 
distance with Ward’s method. Cluster A contains 29 OMPs that occurred 
at comparatively high median concentrations in drainage channel water 
samples, among which 21 are agricultural and mixed-use pesticides such 
as chloroacetanilides (e.g., dimethachlor and metolachlor), phenylureas 
(e.g., isoproturon and monuron), s-triazines (e.g., atrazine and prome
tryn), organophosphates (e.g., dichlorvos and malathion), and plant 
growth regulators (e.g., abscisic acid and indole-3-butyric acid). Eight 
remaining cluster A OMPs were pesticide TPs derived from chlor
oacetanilides and s-triazines (e.g., atrazine-2‑hydroxy and metolachlor 
oxanilic acid), carbendazim (i.e., 2-aminobenzimidazole), and amitraz 
(i.e., N-(2,4-dimethylphenyl)formamide). Of the 29 cluster A OMPs, 
atrazine featured the highest detection frequency (i.e., 73%) and 
occurred at a median concentration (i.e., 27 ng/L) similar to that of 
atrazine-2‑hydroxy (i.e., 30 ng/L), a TP with the second highest detec
tion frequency (i.e., 64%). Atrazine and atrazine-2‑hydroxy were 
detected in all sample matrices; however, other cluster A pesticides and 
pesticide TPs only occurred at varying concentrations in drainage 
channel water samples, indicating that these OMPs primarily originated 
from diffuse sources within the catchments of Kampala drainage 

networks. 
Cluster B contains 70 OMPs that occurred at the highest median 

concentrations in wastewater samples. Fifty-four cluster B OMPs were 
various pharmaceuticals such as analgesics (e.g., antipyrine and deto
midine), anesthetics (e.g., lidocaine and ketamine), antiallergics (e.g., 
cetirizine and fexofenadine), antibacterials (e.g., sulfamethoxazole and 
trimethoprim), antidepressants (e.g., desvenlafaxine and fluoxetine), 
antidiabetics (e.g., metformin and sitagliptin), antiepileptics (e.g., car
bamazepine and phenytoin), antifungals (e.g., fluconazole and griseo
fulvin), antihypertensives (e.g., losartan and irbesartan), anti- 
inflammatories (e.g., diclofenac and naproxen), antivirals (e.g., nevira
pine and efavirenz), and immunosuppressants (e.g., cyclophosphamide 
and mycophenolic acid). Fifteen of these pharmaceuticals (i.e., carba
mazepine, cetirizine, desvenlafaxine, efavirenz, fluconazole, griseo
fulvin, irbesartan, lidocaine, losartan, metformin, metronidazole, 
nevirapine, sulfamethoxazole, trimethoprim, and zidovudine) had a 
relatively high detection frequency (i.e., 79±14%) and occurred at a 
wide range of median concentrations (i.e., 19–930 ng/L). Seven other 
cluster B OMPs were pharmaceutical TPs, including four (i.e., 10,11- 
dihydro-10‑hydroxy carbamazepine, 4-formylamino antipyrine, 
α‑hydroxy trimethoprim, and N4-acetylsulfamethoxazole) that co- 
occurred with their parent compounds at lower concentrations. Nine 
remaining cluster B OMPs were industrial additives (i.e., benzotriazole, 
benzothiazole, phthalates, and tris(2-chloroethyl) phosphate) and 
household chemicals (i.e., sucralose, galaxolidone (a TP of galaxolide), 
and propylparaben) that occurred at median concentrations (i.e., 
29–880 ng/L) with a detection frequency (i.e., 79±7%) comparable to 
those measured for the 15 most frequently detected cluster B pharma
ceuticals. Thirty cluster B pharmaceuticals and pharmaceutical TPs only 
occurred in wastewater samples, suggesting that they were exclusively 
derived from wastewater. Other 40 cluster B OMPs also occurred in 
drainage channel water, lake water, and/or groundwater samples, 
corroborating the high variability in OMP mixture composition among 
sample matrices and the contribution of both point and non-point source 
wastewater discharges in Kampala to OMP occurrence in receiving 
aquatic compartments. 

Cluster C contains 58 OMPs that occurred at higher median con
centrations in wastewater and drainage channel water samples than in 
lake water and groundwater samples. Thirty-one cluster C OMPs were 
pharmaceuticals such as analgesics (e.g., levorphanol and acetamino
phen), anthelmintics (e.g., albendazole and levamisole), antibacterials 
(e.g., clarithromycin and sulfadoxine), antiepileptics (e.g., lamotrigine 
and levetiracetam), antiparasitics (e.g., pyrimethamine and quinine), 
antivirals (e.g., atazanavir and darunavir), bronchodilators (e.g., 
theophylline and albuterol), contraceptives (e.g., levonorgestrel and 
medroxyprogesterone), and stimulants (e.g., methamphetamine and 
caffeine). Eight other cluster C OMPs were pharmaceutical TPs derived 
from anthelmintics (e.g., albendazole), caffeine, cocaine, and nicotine, 
including four (i.e., 1-methylxanthine, paraxanthine, albendazole sulf
oxide, and albendazole-2-aminosulfone) that co-occurred with their 
parent compounds. Nineteen remaining cluster C OMPs were seven 
pesticides (i.e., neonicotinoids, 2,4-D, carbaryl, carbendazim, and 
diuron) that are widely applied in urban and agricultural settings, eight 
industrial additives such as tire-derived chemicals (e.g., 1,3-diphenyl
guanidine, caprolactam, N-cyclohexyl-N-methylcyclohexanamine, N- 
cyclohexyl-N’-phenylurea), insect repellents (i.e., DEET, icaridin, and 
ethyl butylacetylaminopropionate), and benzophenone. Eleven cluster C 
OMPs (i.e., caffeine, methamphetamine, theophylline, cotinine, acet
amiprid, imidacloprid, 2,4-D, diuron, 1,3-diphenylguanidine, methyl- 
1H-benzotriazole, and DEET) featured a comparatively high detection 
frequency (i.e., 73±9%) and occurred at median concentrations varying 
over an order of magnitude (i.e., 23–1510 ng/L). Five of these OMPs (i. 
e., caffeine, acetamiprid, imidacloprid, 2,4-D, and DEET) occurred in all 
sample matrices, whereas the remaining six OMPs were not detected in 
groundwater samples. Other less frequently detected cluster C OMPs 
occurred in wastewater and drainage channel water samples over a 
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narrower range of median concentrations. Such heterogenous occur
rence patterns further support the hypothesis that a large portion of 
OMPs enters the aquatic environment of Kampala from mixed sources 
such as wastewater discharges, urban development, and agricultural 
activities. 

3.2. Comparative evaluation of OMP occurrence in Kampala and SSA 

Over the past decade, the environmental occurrence data of OMPs 
have become increasingly available for SSA countries, including those 
historically underrepresented in OMP research (K’Oreje et al., 2020; 
Wilkinson et al., 2022). To place results from this work in the context of 
existing literature, the geometric mean concentrations of OMPs quan
tified in Kampala samples were evaluated against data curated from 
prior studies reporting OMP occurrence in SSA wastewater, surface 
waters, and groundwater. Only data from studies that quantified OMP 
concentrations in aquatic matrices using liquid or gas 
chromatography-mass spectrometry were selected for comparison. 
Studies that extracted sludge, sediment, or biota samples, deployed 
passive sampling devices, or applied non-mass spectrometric methods 
for OMP analysis were excluded from further consideration. With these 
criteria, the mean concentrations of OMPs reported by 68 studies pub
lished up to March 2022 were compiled, resulting in a total of 1912 data 
entries (Table S11). To our knowledge, this is by far the most compre
hensive OMP occurrence database ever assembled for aquatic samples 
from SSA. Seven of these 68 studies reported OMP concentrations in 
Ugandan samples, while the remaining collected data from 23 other SSA 
countries. Together, these 68 studies documented the occurrence of 349 
unique OMPs in various types of environmental water samples (e.g., 
wastewater influent and effluent, river and stream water, lake and 
reservoir water, estuarine and coastal water, groundwater and drinking 
water) from SSA, among which 91 were also detected in samples from 
Kampala and the Ugandan waters of Lake Victoria (Arinaitwe et al., 
2021; Dalahmeh et al., 2020; Dalahmeh et al., 2018; Nantaba et al., 
2020, 2021; Twinomucunguzi et al., 2021). Over 90% of the data entries 
were mean concentrations reported for wastewater and surface waters 
(Figure S5), suggesting that the occurrence of OMPs in SSA groundwater 
only received limited attention. 

Comparing the spectrum of OMPs quantified in this work to those 
reported in previous studies reveals that 69 of the 157 OMPs (i.e., 42 
pharmaceuticals and pharmaceutical TPs, 15 pesticides and pesticide 
TPs, 9 industrial additives, and 3 household chemicals) have never been 
quantified in environmental water samples from SSA. Some of these 
OMPs have been widely (e.g., oxcarbazepine, isoproturon, sucralose, 
benzothiazole, melamine, methyl-1H-benzotriazole,) or increasingly (e. 
g., tire-derived chemicals) detected in wide-scope screening studies 

(caption on next column) 

Fig. 2. Hierarchical clustering of 157 OMPs by their z-score standardized me
dian quantifiable concentrations in Kampala samples based on Euclidean dis
tance with Ward’s method. The color scale (red to blue) measures the detection 
frequency of OMPs. OMPs are grouped into three clusters (i.e., cluster A, B, and 
C, respectively). Cluster A is operationally designated as diffuse-source OMPs. 
Cluster B is operationally designated as wastewater-derived OMPs. Cluster C is 
operationally designated as mixed-source OMPs. The row annotations corre
spond to the quantifiable concentration ranges of OMPs (in the logarithmic 
scale). Each box extends from the 25th to 75th percentiles. The whiskers extend 
down to the 25th percentile minus 1.5 times of the interquartile range and up to 
the 75th percentile plus 1.5 times of the interquartile range. The centerline in 
each box marks the median. Points plotted beyond the whiskers are outliers. 
The column annotations correspond to specific sample matrices. “WW” repre
sents wastewater samples (n = 15), “DC” represents drainage channel water 
samples (n = 45), “LW” represents nearshore Lake Victoria water samples (n =
13), and “GW” represents groundwater samples (n = 33), respectively. Con
centration data of OMPs quantified in wastewater, surface water, and ground
water samples from Kampala are summarized in Table S10. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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conducted on other continents (Angeles et al., 2021; Carpenter and 
Helbling 2018; Emadian et al., 2021; Fabregat-Safont et al., 2021; Peter 
et al., 2018), whereas several are rarely studied compounds (e.g., 
benazepril, detomidine, maprotiline, albendazole sulfoxide, 
albendazole-2-aminosulfone, mebendazole-amine) with potentially 
high environmental relevance (Belew et al., 2021; Petrovic 2014). 
Sixty-one additional OMPs (i.e., 39 pharmaceuticals and pharmaceutical 
TPs, 18 pesticides and pesticide TPs, 2 industrial additives, and 2 
household chemicals) have been detected at least once in other regions 
of SSA but not in Uganda. On average, the cumulative concentration of 
OMPs never quantified in Ugandan and/or SSA studies constituted 
20–71% of Σ[OMPs] measured in Kampala wastewater, surface water, 
and groundwater samples, again demonstrating the added value of 
suspect screening for capturing less frequently detected or previously 
overlooked OMPs. 

Of the 157 OMPs quantified in Kampala samples, 51, 68, and 11 
overlapped with those previously detected in SSA wastewater, surface 

water, and groundwater samples, respectively (Fig. 3). Many of the 
overlapping OMPs occurred in Kampala samples at concentrations 
similar to those found in prior studies. For example, the geometric mean 
concentrations of 30 pharmaceuticals and pharmaceutical TPs (i.e., from 
31 ng/L for lamotrigine to 6820 ng/L for sulfamethoxazole), benzo
triazole (i.e., 649 ng/L), and propylparaben (i.e., 3840 ng/L) detected in 
100% Kampala wastewater samples fell within the mean concentration 
ranges (multiple t tests p = 0.537–0.591) of these 32 OMPs measured in 
SSA wastewater (i.e., 25–6150 ng/L). Likewise, the geometric mean 
concentrations of 12 pharmaceuticals and pharmaceutical TPs (i.e., from 
24 ng/L for lidocaine to 1650 ng/L for caffeine), 2,4-D (i.e., 240 ng/L), 
acetamiprid (i.e., 68 ng/L), and 3 phthalates (i.e., 43–1380 ng/L) 
detected in 100% drainage channel and nearshore lake water samples 
from Kampala also overlapped with the mean concentration ranges of 
these 17 OMPs reported for SSA surface waters (i.e., 10–1980 ng/L). 
Lastly, the geometric mean concentrations of carbamazepine (i.e., 26 
ng/L) and sulfamethoxazole (i.e., 60 ng/L), the two OMPs detected in 

Fig. 3. Comparison of OMP concentration data measured in this work versus data collected from 24 countries in SSA: (a) Concentration ranges of 68 overlapping 
OMPs quantified in Kampala wastewater samples superimposed on the ranges of mean concentrations reported for SSA samples. (b) Concentration ranges of 51 
overlapping OMPs quantified in Kampala surface water samples superimposed on the ranges of mean concentrations reported for SSA samples. (c) Concentration 
ranges of 11 overlapping OMPs quantified in Kampala groundwater samples superimposed on the ranges of mean concentrations reported for SSA samples. Each 
striped floating bar represents the quantifiable concentration range of a given OMP in Kampala samples. Each gray floating bar represents the range of mean 
concentrations of a given OMP reported for SSA samples in prior studies. Concentration data of OMPs reported for environmental water samples from 24 countries in 
SSA (i.e., Angola, Benin, Burkina Faso, Cameroon, Republic of the Congo, Democratic Republic of the Congo, Côte d’Ivoire, Ethiopia, Ghana, Kenya, Lesotho, Liberia, 
Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, South Sudan, Tanzania, The Gambia, Uganda, Zambia, and Zimbabwe) are summarized in 
Table S11. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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100% Kampala groundwater samples, were not statistically different 
(multiple t tests p = 0.537–0.591) from the mean concentrations 
observed in SSA groundwater (i.e., 18–42 ng/L). Considering the 
spatiotemporal extent of studies compiled for evaluation, the similarity 
in concentration ranges indicates some consistency in OMP recurrence 
patterns throughout the aquatic environment of SSA. 

Of the remaining overlapping OMPs detected in 100% Kampala 
samples, several occurred at concentrations above those measured in 
similar SSA sample matrices while others occurred at lower levels. For 
example, the geometric mean concentrations of medroxyprogesterone 
(i.e., 42 ng/L) and sulfapyridine (i.e., 247 ng/L) in Kampala wastewater 
samples far exceeded the mean concentrations measured in SSA waste
water (i.e., 3–5 ng/L); however, the geometric mean concentrations of 
emtricitabine (i.e., 543 ng/L), lopinavir (i.e., 194 ng/L), and sulfame
thazine (i.e., 51 ng/L) were at least one order of magnitude lower than 
the mean concentrations detected in SSA wastewater (i.e., 1080–33,500 
ng/L). Furthermore, the geometric mean concentrations of DEET (i.e., 
411 ng/L) and propylparaben (i.e., 810 ng/L) in Kampala surface water 
samples were substantially higher than those reported for SSA surface 

waters (i.e., 20–77 ng/L), whereas the geometric mean concentration of 
tris(2-chloroethyl) phosphate (i.e., 40 ng/L) was 10 times lower than the 
mean concentration observed in SSA surface waters (i.e., 419 ng/L). 
Such heterogeneous profiles reflect the mixture complexity of OMPs 
across regions and reinforce the necessity of establishing statistically 
robust baseline levels to support adaptive OMP monitoring in SSA. 

3.3. Water quality variables as predictors for OMP occurrence 

Measuring water quality parameters provides complementary met
rics for assessing site-specific OMP contamination status at the time of 
sample collection. For example, previous work characterizing the spatial 
distribution of pharmaceuticals in the Ugandan waters of Lake Victoria 
observed strong associations between pharmaceutical levels and water 
quality indicators such as turbidity (Nantaba et al., 2021). To evaluate 
the strength of water quality variables for predicting OMP occurrence in 
Kampala samples, PLSR analysis was performed using the 
sample-specific cumulative concentrations of cluster A, B, and C OMPs 
(i.e., Σ[OMPs]Cluster A, Σ[OMPs]Cluster B, and Σ[OMPs]Cluster C) as the 

Fig. 4. Comparison of the measured versus predicted sample-specific cumulative concentrations of OMPs (Σ[OMPs]) in Kampala samples: (a) Cross plot of 
Σ[OMPs]Cluster A measured in Kampala samples (with the subscript “measured”) versus Σ[OMPs]Cluster A predicted (with the subscript “predicted”) by Σ[OMPs]Cluster 

A = 31.43(±0.58)×[NO3
−] (adjusted R2 

= 0.953) where Σ[OMPs]Cluster A is in the unit of ng/L and [NO3
−] is in the unit of mg/L. (b) Cross plot of Σ[OMPs]Cluster B 

measured in Kampala samples versus Σ[OMPs]Cluster B predicted by Σ[OMPs]Cluster B = 2800(±66)×C4 (adjusted R2 = 0.913) where Σ[OMPs]Cluster B is in the unit of 
ng/L and C4 is in the unit of water Raman unit. (c) Cross plot of Σ[OMPs]Cluster C measured in Kampala samples versus Σ[OMPs]Cluster C predicted by Σ[OMPs]Cluster C 
= 918(±26)×C4+179(±15)×[NO3

−] (adjusted R2 
= 0.945) where Σ[OMPs]Cluster C is in the unit of ng/L, C4 is in the unit of water Raman unit, and [NO3

−] is in the 
unit of mg/L. (d) Cross plot of Σ[OMPs] measured in Kampala samples versus Σ[OMPs] predicted by Σ[OMPs] = 3807(±97)×C4+126(±57)×[NO3

−] (adjusted R2 =

0.941) where Σ[OMPs] is in the unit of ng/L, C4 is in the unit of water Raman unit, and [NO3
−] is in the unit of mg/L. Error bars indicate the standard deviation of 

measured Σ[OMPs] or the 95% confidence interval of predicted Σ[OMPs]; where absent, bars fall within symbols. The dark gray dashed line represents the line of 
identity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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response variables and 11 physicochemical and optical properties of 
water samples as the predictor variables. Overall, the strength of 
explained variation (i.e., 95.4 ± 1.9%) and the goodness of 
cross-validated prediction (i.e., 92.9 ± 2.9%) for the PLSR model were 
high, suggesting that the predictor variables adequately captured the 
inter-sample variability in Σ[OMPs]. On the basis of the variable 
importance in the projection scores (Figure S6), the concentration of 
nitrate (i.e., [NO3

−]) and the maximum fluorescence intensity of a 
protein-like fluorescent organic matter component (i.e., C4; with exci
tation/emission maxima around 280/330 nm; Figures S3-S4) commonly 
present in wastewater or wastewater-impacted aquatic systems (Hud
son et al., 2007) were ranked as the two variables with the highest 
explanatory power. 

Recognizing the multicollinearity among predictor variables, step
wise multiple linear regression analysis was further performed to iden
tify the most parsimonious models for predicting Σ[OMPs]. Specifically, 
[NO3

−] and C4 were single variables that could effectively predict 
Σ[OMPs]Cluster A and Σ[OMPs]Cluster B, respectively, whereas C4 and 
[NO3

−] served as the best combination of predictors for Σ[OMPs]Cluster C 
(Fig. 4). Furthermore, the inclusion of additional predictor variables for 
Σ[OMPs] did not significantly improve model consistency with 
measured data. The fact that C4 emerged as a strong predictor for 
Σ[OMPs]Cluster B and Σ[OMPs]Cluster C reaffirms the vulnerability of 
Kampala surface waters and groundwater to OMP contamination asso
ciated with wastewater inputs. Interestingly, an earlier study assessing 
the occurrence of pharmaceuticals in the Nairobi River catchment in 
Kenya also attributed elevated pharmaceutical concentrations in surface 
waters to wastewater influence based on the concurrent measurements 
of protein-like organic matter content using fluorescence spectroscopy, 
although no direct quantitative relationships were identified (Bagnis 
et al., 2020). On the other hand, nitrate has long been viewed as a 
continental-scale diffuse source contaminant in Africa with a high po
tential to pollute surface waters and infiltrate shallow groundwater 
(Lapworth et al., 2017; Ouedraogo and Vanclooster 2016); thus, the 
strong correlation between Σ[OMPs]Cluster A and [NO3

−] implies that the 
prevalence of OMPs in Kampala surface waters and groundwater was 
also linked to upstream diffuse pollution such as those originating from 
urban and agricultural sources. Together, these analyses constitute 
compelling additional support for the hypothesized importance of 
wastewater discharges and diffuse runoff as drivers for OMP entry into 
the aquatic environment of Kampala. 

3.4. Potential for biological effects associated with OMPs 

Two screening-level risk assessments were performed in parallel to 
gain exploratory insights into possible ecologically relevant effects of 
OMPs measured in Kampala samples on aquatic life. To this end, the 
EAR approach was implemented to screen for the potential for in vitro 
vertebrate-centric sublethal effects associated with single OMPs or OMP 
mixtures based on exposure-response metrics derived from molecular 
bioassay endpoints (Blackwell et al., 2017). Of the 157 OMPs, 136 
(including their free and salt forms) had matched entries in the ToxCast 
high-throughput screening database (U.S. Environmental Protection 
Agency’s Center for Computational Toxicology and Exposure, 2021). 
Twelve of these OMPs had a median EAR above the precautionary 
effects-screening threshold of 0.001 (Corsi et al., 2019) under mean 
exposure conditions. Five cluster B OMPs (i.e., carbamazepine, pro
pylparaben, benzothiazole, fluconazole, and griseofulvin) and 7 cluster 
C OMPs (i.e., caffeine, 2,4-D, 1,3-diphenylguanidine, diuron, theoph
ylline, DEET, and carbaryl) showed a threshold exceedance in over 50% 
of the samples. Carbamazepine featured the highest frequency of ex
ceedance (i.e., 100%), followed by caffeine (i.e., 92%), 2,4-D (i.e., 83%), 
and propylparaben (i.e., 80%), respectively. Consistent with the pattern 
observed for Σ[OMPs], the median ΣEARs for wastewater and drainage 
channel water samples (i.e., 43.4 and 21.9, respectively) were two or
ders of magnitude higher than those for nearshore lake water and 

groundwater samples (i.e., 0.06 and 0.02, respectively; Figure S7). Two 
contraceptives (i.e., levonorgestrel and medroxyprogesterone), carba
mazepine, caffeine, 2,4-D, and propylparaben constituted the mixture of 
OMPs that dominated ΣEARs (i.e., 90±11%), but the relative contri
bution of individual OMPs to ΣEARs varied across sample matrices. For 
example, levonorgestrel alone contributed to 94±2% of ΣEARs for 
wastewater samples, whereas levonorgestrel, caffeine, medrox
yprogesterone, and carbamazepine collectively explained 88±18% of 
ΣEARs for drainage channel water samples. Carbamazepine, caffeine, 2, 
4-D, and propylparaben jointly accounted for 84±14% of ΣEARs for lake 
water and groundwater samples, with carbamazepine serving as the top 
contributing compound in the mixture of OMPs. 

To complement EAR screening, PAFs and msPAFs were calculated to 
assess the potential for in vivo lethal effects on aquatic species assem
blages associated with single OMPs or OMP mixtures based on log- 
normal species sensitivity distributions constructed from acute EC50 
data (Posthuma et al., 2019). Of the 157 OMPs quantified in Kampala 
samples, 125 had full species sensitivity distribution data available 
(Posthuma et al., 2019), but only 1 cluster B OMP (i.e., sulfamethoxa
zole) and 2 cluster C OMPs (i.e., acetamiprid and imidacloprid) had a 
median PAF of above 0.1%, indicating low predicted acute toxic pres
sure posed by individual OMPs. Like ΣEARs, the median msPAFs for 
wastewater and drainage channel water samples (i.e., 4.6% and 3.8%, 
respectively) were higher than those for nearshore lake water and 
groundwater samples (i.e., 0.84% and 0.01%, respectively; Figure S8), 
although the dominating mixture of OMPs for msPAFs did not overlap 
with that for ΣEARs. Notably, 40% of wastewater and drainage channel 
water samples featured high msPAFs (i.e., 5.3–30.6%) that exceeded the 
generally accepted effect threshold of 5% (Smetanová et al., 2014), 
suggesting that over 5% of the sensitive aquatic species at sites could 
potentially be affected by exposure to the mixture of OMPs. Together 
with norepinephrine and dichlorvos, sulfamethoxazole and two neon
icotinoids (i.e., acetamiprid and imidacloprid) explained 84±11% of 
msPAFs for wastewater and drainage channel water samples. Sulfa
methoxazole and the two neonicotinoids also accounted for 99±1% and 
88±33% of msPAFs for lake water and groundwater samples, respec
tively, further underlining their role as potential drivers for the acute 
toxic pressure posed by the mixture of OMPs. 

On average, the fractional contribution of ΣEARs and msPAFs for 
OMPs never quantified in environmental water samples from Uganda or 
SSA to those calculated for OMPs quantified in Kampala samples ranged 
from <1 to 99% and <1 to 88%, respectively. Thus, restricting the 
calculations of ΣEARs and msPAFs for only OMPs reported in prior work 
may lead to varying degrees of bias in both indices, particularly when 
assessing wastewater and drainage channel water samples (Fig. 5). 
Taken together, the EAR and the msPAF calculations provide qualitative 
evidence for probabilities of sublethal and acutely toxic effects associ
ated with both frequently detected (e.g., carbamazepine, sulfamethox
azole, imidacloprid) and less targeted OMPs (e.g., levonorgestrel, 
norepinephrine, dichlorvos), which underscores the benefit of applying 
suspect screening to improve risk-based prioritization of OMPs. 

4. Conclusions 

Our study combines LC-HRMS based suspect screening with multi
variate analysis to comprehensively characterize the occurrence pat
terns of OMPs and accompanying potential for biological effects in the 
aquatic environment of Kampala, an urban center in SSA. Our suspect 
screening approach prioritized and confirmed 157 OMPs, including 24 
TPs, in various water samples collected from Kampala. Many of these 
OMPs have never or rarely been investigated in environmental water 
samples from SSA. Most OMPs occurred in Kampala samples at con
centrations broadly comparable to the ranges reported in prior SSA 
studies, while others occurred at levels substantially higher or lower 
than those measured in similar SSA sample matrices, highlighting 
commonalities and differences in OMP occurrence patterns and the need 
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for concerted OMP monitoring in SSA. Moreover, the OMP concentra
tion database compiled for SSA, including data from this work, can 
facilitate quantitative comparisons of OMP levels in aquatic systems 
across continents when supplemented with relevant datasets. Our 
multivariate analysis established the co-occurrence profiles of major 
OMP clusters and identified the concentration of nitrate and the abun
dance of a wastewater-derived fluorescent organic matter component as 
two strong predictors for the sample-specific cumulative concentration 
of OMPs, which pointed to wastewater discharges and diffuse runoff as 
potentially important drivers of OMP prevalence in the aquatic envi
ronment of Kampala. Measurements of these two water quality param
eters can be adapted in resource-limited settings for inference of OMP 
contamination status but should not be misconstrued as a substitute for 
OMP analysis. Lastly, our screening-level calculations of EARs and 
msPAFs supported risk-based prioritization of OMP mixtures exhibiting 
heightened potential for vertebrate-centric molecular effects and acute 
toxic pressure; however, no direct extrapolations of these values to 

ecologically relevant effects on sensitive aquatic species can be made in 
that the chemical space investigated in this work was limited to polar 
and semi-polar OMPs amenable to our SPE-LC-HRMS method. Our work 
is inherently restricted to grab sampling with low spatiotemporal reso
lution in one SSA urban center due to logistical constraints, but it offers a 
promising methodological framework for addressing data gaps required 
for the regional impact assessment of OMPs in other similar settings. We 
envision growing applications of complementary sampling (e.g., auto
mated or passive sampling), screening (e.g., nontarget screening), and 
biomonitoring techniques to guide data-driven OMP monitoring and 
evidence-based ecotoxicological studies in SSA through collaborative 
research partnerships. 
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