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Detection of Stroke-Induced Visual Neglect and
Target Response Prediction Using Augmented

Reality and Electroencephalography
Jennifer Mak*, Deniz Kocanaogullari*, Xiaofei Huang*, Jessica Kersey, Minmei Shih, Emily Grattan, Elizabeth

Skidmore, George F. Wittenberg, Sarah Ostadabbas, Murat Akcakaya

Abstract—We aim to build a system incorporating electroen-
cephalography (EEG) and augmented reality (AR) that is capable
of identifying the presence of visual spatial neglect (SN) and
mapping the estimated neglected visual field. An EEG-based
brain-computer interface (BCI) was used to identify those spa-
tiospectral features that best detect participants with SN among
stroke survivors using their EEG responses to ipsilesional and
contralesional visual stimuli. Frontal-central delta and alpha,
frontal-parietal theta, Fp1 beta, and left frontal gamma were
found to be important features for neglect detection. Additionally,
temporal analysis of the responses shows that the proposed
model is accurate in detecting potentially neglected targets. These
targets were predicted using common spatial patterns as the
feature extraction algorithm and regularized discriminant anal-
ysis combined with kernel density estimation for classification.
With our preliminary results, our system shows promise for
reliably detecting the presence of SN and predicting visual target
responses in stroke patients with SN.

Index Terms—spatial neglect, stroke, augmented reality, EEG,
machine learning

I. INTRODUCTION

V ISUAL spatial neglect (SN) is a syndrome characterized
by inattention to contralesional stimuli after stroke [1].

Stroke patients with SN usually display inattention to one
side of themselves or the environment, neglecting to shave
one side of the face or dress one side of the body. SN is
heavily associated with intrahemispheric disconnections of the
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white matter attention networks, specifically in the frontal-
parietal superior longitudinal fasciculus, and some association
with interhemispheric disconnections as well [2]–[5]. Some
research has also correlated lesions in the ventral frontal lobe,
right inferior parietal lobe or superior temporal lobe to the
manifestation of SN [6], [7]. Left-sided SN following damage
to the right hemisphere (with neglect in 26.2% of stroke cases)
is most common and more severe, compared to right-sided
SN (in 2.4% of stroke cases) [1]. This is most likely due
to the lateralization of bilateral attention processing domains
to the right hemisphere of the brain [8], [9]. A diagnosis
of SN is associated with extended hospitalization [10], an
increased risk of falling [11], and overall poor functional
recovery [12]. Current assessments of SN are insufficient to
fully identify and measure the syndrome. Here, we discuss
the recent developments in such assessments and present the
preliminary results to our approach.

A. Related Work

The gold standard for SN assessment is the Behavioral
Inattention Test (BIT). The Conventional BIT (BIT-C) consists
of 6 pen-and-paper tests (line crossing, star cancellation, letter
cancellation, figure and shape copying, line bisection, and
representational drawing) [13]. While it is a simple and inex-
pensive assessment, the test is limited in its ability to account
for compensatory head or body movements that patients may
have developed post-stroke to adapt to their condition, such
as turning the body or tilting the head to see their screens.
Some subtests, like the representational drawing, may also be
subjectively scored. While quantitative scores are given for
each subtest, the ultimate outcome is pass/fail, rather than a
grading indicating the severity of neglect. These tests also do
not assess patients in a realistic and dynamic environment.

Many developments in improving the efficacy of classic
pen-and-paper tests have investigated computerized methods
of assessing SN. Computer-based methods have been shown
to be more sensitive in detecting the presence of SN than
the BIT-C [14]. Reaction time has been shown to be a reliable
assessor of SN in these methods and slower reaction times are
correlated with impairments to the frontal-parietal attentional
networks in SN patients [15]. The Starry Night Test was
successful in detecting SN in putative recovered patients, as
previously determined in the BIT-C, using reaction times to
visual targets among distractors [16]. The reaction times from
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a computerized version of the classic Posner cueing test has
also been used to screen for even subtle SN [17]. However,
these studies still lack a method to counteract compensatory
strategies, do not estimate the field of view (FOV), and
produce only a binary detection result.

More recent computerized methods have used virtual reality
(VR) strategies to detect SN. The Virtual Reality Lateralized
Attention Test employs an obstacle-course-like paradigm with
different levels of targets and unrelated background activ-
ity/distractors and participants have to name the visual targets
[18]. However, these tests still only provides a binary result
of neglect/no neglect. VR has also been used to quantify the
volume of neglected space to determine the extent of neglect
[19], but this study did not include the use of distractors. In
reality, patients are often in dynamic backgrounds where many
environmental distractions compete for attention, making it
more difficult to isolate targets. Some patients with SN have
demonstrated a reduced ability to inhibit distractors [20]–[22].
Therefore, an SN assessment tool that includes distractions
amongst stimuli might better evaluate attention.

While VR may be advantageous in assessing neglect, these
tools may be difficult to use for rehabilitation as the patient
cannot see the real world while practicing their activities
of daily living (ADLs). In examining efforts to use VR in
stroke rehabilitation, it remains uncertain whether learning
in a completely immersive virtual environment necessarily
translates to learning in a real environment [23]. Additionally,
the immersion has also been commonly reported to elicit
motion sickness which could be due to a number of factors
including duration of use, user health, and prior experience
with VR [24]. As an alternative, augmented reality (AR) may
be more suited for a rehabilitation setting as patients can still
see their environment while tasks or alerts appear in their
visual field in an overlay fashion. This makes the environment
more comfortable and intuitive to control than an entirely
virtual space, which may improve the transfer of learning and
acceptance of the technology [25]. AR technologies in the
past few years have been employed in medical training and
condition diagnoses [26], [27] as well as in conjunction with
brain-computer interfaces (BCIs) [28], [29], however, AR has
not been implemented for SN evaluation or rehabilitation thus
far.

In more general studies on visual attention, functional mag-
netic resonance imaging (fMRI) has been a common modality
used to examine the functional neural correlates of visual
attention. One fMRI study found distinct brain activation
patterns in healthy participants performing a line bisection
task [30]. Lateralization of activation to the right hemisphere
was seen in the fMRI blood-oxygen-level-dependent (BOLD)
response when a visual stimulus was shown [31]. Variations
in the BOLD signal also differentiated between responses to
valid and invalid targets during a modified a Posner task [32].
While fMRI is a non-invasive imaging technique with high
spatial resolution, it has low temporal resolution and general
implementation issues.

Electroencephalography (EEG) is also a non-invasive brain
imaging method, but has very high temporal resolution and is
relatively inexpensive to use. Time-domain analysis is useful in

terms of analyzing EEG data and deep learning methodologies
have been used for EEG classification. Certain EEG features
were shown to be associated with SN: (i) on average there is an
increase in N100 and P200 responses in the EEG of perceived
targets compared to neglected targets in stroke patients, (ii)
the N100a EEG component, which is expected around 130-
160ms after a stimulus, does not exist in the EEG of neglect
patients in response to contralesional stimuli [33] and, (iii)
subcomponents of the P300 event involved in novelty stimuli
detection, P3a and P3b, were reduced in amplitude towards
contralesional targets in patients with SN compared to without
SN [34]. Even very small visual stimuli are able to elicit
measurable event-related potentials in EEG that are able to
control a BCI [35]. Bandpower analysis is a useful method
for analyzing EEG data in the spectral domain that calculates
the average contribution of five frequency bands, including
delta (0-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz),
and gamma (30-45Hz) bands to the power of the overall
signal. Directing attention to external visual stimuli has been
correlated with a decrease in alpha power, particularly in the
parieto-occipital areas [36]. A study of non-stroke participants
found an increase in alpha power in the parieto-occipital space
contralateral to unattended visual stimuli [37]. After stroke,
however, alpha power may fail to decrease when the eyes
are open [38]. There have been few studies using bandpower
analysis in stroke patients with SN. One previous study found
that alpha power increased in the stroke hemisphere in patients
with SN in the baseline period and during cue-orienting peri-
ods [39]. The same study showed a similar increase in stroke
patients without SN but less asymmetry between hemispheres.
No studies have used bandpower measures to identify SN or
differentiated spectral features corresponding to fast and slow
reactions to visual stimuli in stroke and stroke with SN.

B. Our Contributions

Our goal was to integrate brain imaging through EEG and
AR technology in order to identify SN in stroke patients more
reliably and accurately. We have developed a BCI system
called AR-based EEG-guided neglect detection system called
AREEN to detect SN and potentially neglected visual targets.
Early and accurate neglect detection is crucial for informing
rehabilitation strategies to promote functional recoveries. An
ultimate goal of this project is to adapt AREEN into a
multimodal system for rehabilitating acute stroke patients who
present with SN. The completed system should be able to
detect neglected stimuli in near real-time and alert the user to
attend to the missed stimuli.

The preliminary step in AREEN system development was
selecting an appropriate brain imaging modality and an AR
device. We selected EEG as the measurement method in our
proposed BCI system for its portability, cost-effectiveness,
and high temporal resolution. For our AR system, we chose
the Microsoft HoloLens, a state-of-the-art AR headset. The
HoloLens enables the participant to use a Bluetooth clicker
which is less constraining and easier to use than a keyboard or
joystick. It will also improve on past computer-based methods
by accounting for compensatory strategies. Such movements
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could misrepresent the number of potentially neglected targets
and give a false sense of high performance. When fitted
correctly, an AR headset will always center its screen in the
participant’s FOV; this makes our novel system more robust
to compensatory techniques and FOV problems with a fixed
screen.

In this paper, we illustrate the architecture of the AREEN
system and propose a time synchronization method to mini-
mize the delay due to the asynchronous signal transmission be-
tween the HoloLens and the EEG amplifier. We then evaluate
the performance of the AREEN system, and present our Phase
I preliminary results, starting with identifying spatiospectral
features that are optimal for SN detection. Next, we develop
a machine learning classification algorithm to deploy on the
EEG signals to classify between potentially neglected and
observed targets. This prediction can be used to estimate
neglect severity in terms of the neglected visual field. We
utilize multiple classifiers and specifically regularized discrim-
inant analysis (RDA) and kernel density estimation (KDE) for
classification applied on the common spatial patterns (CSP) as
the extracted feature from the EEG signals. The experimental
results show that our system is highly accurate in detecting
neglected targets with RDA+KDE. These results will build
towards the future Phase II of this study will adapt this
system as a neglect rehabilitation tool that provides real-time
neurofeedback.

II. METHODOLOGY

A. AR-Based EEG-Guided Neglect Detection (AREEN) System

The AREEN system is developed as an integrated mul-
timodal tool for detection, assessment, and rehabilitation of
unilateral SN caused by stroke. It detects and maps visually
neglected extra-personal space with high accuracy through
continuous EEG-guided SN detection. Unlike previous BCI
applications which provide fixed-location visual cues, our
system provides a customized application that tracks head
position in real-time and projects the holographic visual cues
dynamically in the participant’s visual space. AREEN records
EEG signals as a user views randomly appearing and disap-
pearing targets on the AR headset display. The application
itself can be considered as a cascade of multiple applications
in different platforms working as a whole (Fig. 1a). A modified
version of the Starry Night Test [16] is built specifically for the
HoloLens in Unity Plus (Unity, San Francisco, CA, USA). The
system interface is built on MATLAB R2015a and the EEG
collection module is built on MATLAB R2015a with gTec
MATLAB API. The computer and the Microsoft HoloLens
application are connected via Bluetooth Low Energy (BLE)
connection with an Arduino kit. The test is displayed on the
transparent lenses where the targets and distractors are clearly
seen without much obstruction to the user’s vision.

B. Time synchronization of AREEN

In order to more accurately segment the EEG signal
sequence, when the target appears in the HoloLens head-
mounted display, a personal computer (PC) controls and sends
triggers to the HoloLens to present targets and to the EEG

amplifier to mark the EEG sequence being received at the
same time. However, there is difference in latency between
when the wireless HoloLens and wired amplifier receive the
triggers (wireless technologies have higher latency). Therefore,
considering this inevitable transmission delay, we use a time
correction algorithm to correct the timestamp of the EEG
signal marker before data analysis.

The HoloLens currently only supports two wireless data
transmission modes: WiFi and Bluetooth. To minimize the
wireless transmission delay, we tested the performance of both
modes of transmission 1000 times in different environments
(i.e. a public laboratory room, an open office area, and private
home). The latency of a communications network is defined
as the time needed to transport information from a sender to a
receiver. One of the most commonly used measures of latency
is the Round-Trip-Time (RTT), meaning the time for a packet
of information to travel from the sender to the receiver and
back again. Fitting the HoloLens’ data transmission latencies
to a beta distribution, we observe that the WiFi network is
greatly affected by the environment with a very large range of
transmission delay (from about 20ms to 550ms), while the
Bluetooth transmission method resulted in the lesser delay
time (the average of two-way delay is about 75ms), allowing
for more stable communication between HoloLens and PC.

To minimize the impact of asynchronous trigger transmis-
sion, we used an offline correction method to correct each
trial’s EEG marker (Fig. 1c), which contains two stages: Clock
Synchronization and kth Trial Transmission.

In first stage, we synchronize the clocks of PC, Arduino,
and HoloLens by sending the PC’s time to HoloLens through
an Arduino device. PC’s time is defined as universal/reference
time. The receipt timestamps of the Arduino and HoloLens
based on universal time are noted as TA0 and TH respectively.
The original time of HoloLens is defined as TO. PC first
sends its timestamp TP0 to the Arduino. Once it receives the
PC’s time, the Arduino sends the current timestamp TA0 to
the HoloLens. As soon as the HoloLens receives TA0, the
HoloLens will modify its own time from TO to TH . We
note the transmission delay from PC to Arduino as DA and
assume the transmission delay between Arduino and HoloLens
is constant Dm (the estimated average two-way delay divided
by two) at this stage. So, the time relationships between PC
and Arduino, Arduino and HoloLens can be written as:

TA0 = TP0 +DA (1)

TH = TA0 +Dm (2)

After synchronizing the clock (from the green dotted line in
Fig. 1c), the clock of the PC, Arduino, and HoloLens shares
the same time (TH = TA = TP ). The offset between the
HoloLens’s original time and PC’s time (universal time), noted
θ, can be computed:

θ = TH − TO = TA0 +Dm − TO. (3)

For stage two, we initiate target triggers. The PC first sends
the trigger to the Arduino. Once the Arduino receives the
trigger, it records the timestamp and sends the trigger to the
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Fig. 1. (a) Flowchart that represents connections within AREEN system. PC is the main interactive terminal and control unit to activate external devices.
HoloLens headset is responsible for displaying the Starry Night paradigm. g.USBamp is a high-performance biosignal amplifier for the EEG data acquisition.
The ArduinoBLE module serves as a bridge to assist the PC to transmit triggers to Hololens over Bluetooth and to amplifier over cable. (b) Participant using
the AREEN system, which presents the Starry Night Test paradigm. EEG electrodes are connected to the system for data collection. (c) The scheme of trigger
transmission consists of two stages: Clock Synchronization and kth Trial Transmission. (d) Scatter plot of participant target detection performance vs BIT-C
score with a linear line of best fit and correlation coefficient R. The SN group is indicated in red and the WSN group is indicated in blue.

HoloLens and amplifier. Based on the universal time, the exact
delay for each trial could be easily calculated. For the kth trial,
we define that PC’s timestamp of sending is T k

P , Arduino’s
timestamps of receiving/sending is T k

A, the HoloLens receives
the trigger at time T (k)

Hr and presents the target at time T (k)
Hp .

Then Arduino’s sending time can be computed as:

T
(k)
A = T k

P +Dk
A, (4)

where Dk
A is the corresponding transmission delay from PC

to Arduino for the kth trial.
And the total delay between the Arduino and target presen-

tation on HoloLens is:

D(k) = D(k)
p +D(k)

r = T
(k)
Hp − T

(k)
A , (5)

where D(k)
p and D(k)

r represent presentation delay and propa-
gation delay respectively.

Since the offset θ is known in (3), the synchronized
HoloLens’s presentation time T (k)

Hp can be written:

T
(k)
Hp = T

(k)
O + θ = T

(k)
O + TA0 +Dm − TO, (6)

where T (k)
O is the original HoloLens’s time for the kth trial.

According to (4) and (6), we can rewrite (5):

Dk = T k
O + TP0 +DA +Dm − TO − (T k

P +Dk
A)

= Dm + (T k
O − TO)− (T k

P − TP0) + (DA −Dk
A).

(7)

As the connections between PC and Arduino and Arduino
and amplifier are wired, we assume their transmission delays
are negligible (DA = Dk

A ≈ 0). Therefore, based on (7), only
the HoloLens’s elapsed time from it receiving the synchro-
nization message to when it presents kth the target, the PC’s
elapsed time from sending synchronization message to sending
the kth trigger, and the initial delay Dm need to be recorded
to compute kth trial delay. After data collection, the trigger
markers for each trial can be shifted by transforming the delay
Dk to sample points:

N =
(
Dm + (T k

O − TO)− (T k
P − TP0)

)
× Fs

1000
, (8)

where Fs is sampling rate 256Hz for our system setting, Dm

is 37.5ms, the average two-way delay, which is estimated by
testing and statistically analyzing, divided by two.

C. Participants

226 stroke patients were screened from the community
and a University of Pittsburgh Medical Center inpatient re-
habilitation facility. Exclusion criteria included severe visual
field deficits or cognitive impairments. Participants had at
least one stroke, had normal or corrected-to-normal vision,
and were over 18 years old. Participants completed the BIT-
C. If any BIT-C subtests scores were below each subtest’s
cutoff or the total score was below 129, the participant was
categorized as SN. We recruited five participants with stroke
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and SN and five participants with stroke without SN (WSN)
who completed informed consent procedures under University
of Pittsburgh Institutional Review Board protocol number
STUDY19060390 (approved October 8, 2019) (Table I). Each
participant attended two sessions. One session from SN103
was excluded from analysis due to poor adherence to the task.

D. Data Collection
Participants were fitted with the EEG and HoloLens. EEG

data was collected through 16 electrodes located at Fp1, Fp2,
F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2, Cp3, Cp4, O1 and O2
according to the 10-20 system with a sampling frequency of
256Hz. A ground electrode was placed at Fpz and the reference
electrode was placed on the left mastoid process.

We have defined four experimental modes: (1) Signal Check
to check the quality of 16 channels’ EEG signals in real
time by visual inspection; (2) FOV Test, which allows the
experimenter to calibrate the FOV in HoloLens including top,
left, central, and right edges; (3) Clicker-Based Assessment for
EEG data ground truth generation by identifying the locations
in the HoloLens canvas in which stimuli is or is not responded
to; and (4) EEG-Based Assessment to assess both existence
and severity of neglect by analyzing the recorded participant’s
EEG in response to visual stimuli shown on random locations
on the HoloLens canvas. Each experimental session began
with a signal check to inspect signal quality and an FOV test
to ensure proper mounting and positioning of the HoloLens.
Participants then performed the Clicker-Based and EEG-Based
assessments, taking breaks between tests as necessary. These
assessments were completed with the participants facing blank
white walls with external distractions minimized.

We designed a new paradigm in this new protocol: a modi-
fied Starry Night Test for the HoloLens (Fig. 1b). The canvas
was 0.564m wide × 0.288m tall, divided into a 6×12 grid (72
total cells) with a fixed depth of 1.14m. Only one stimulus
can occupy one cell at a time. 30-35 distractors, or green
stars, were shown at a time for 0.05s-0.25s across the grid.
Targets, or red stars, were shown one at a time 216 times total,
(three times in each cell) in a random order for a maximum
of 3s during the Clicker-Based Assessment and FOV test and
0.066s in EEG-Based Assessment. Time between targets was
randomized 1.2s-2.5s. Randomizing the appearance of targets
and distractors reduces the risk of seizure due to rhythm photic
stimulation [40]. In this study, all participants were able to
distinguish between red and green stars. However, it is possible
that future users may experience red-green colorblindness. The
colors of these stars are easily reprogrammable in the app
developer.

During the Clicker-Based Assessment, participants have up
to 3s to responded to a target using the remote clicker and
reaction time is collected. No EEG is collected during this
period. During the EEG-Based Assessment, targets appear for
a fixed time, as the participant does not give direct input to the
system but their EEG is collected. The target number order is
recorded for both assessments.
E. Preprocessing

The EEG data was filtered through an 8th order Butterworth
bandpass filter (2-62 Hz) and a 4th order notch filter (58-

TABLE I
PARTICIPANT CHARACTERISTICS

ID Age Sex Stroke
Hemisphere

Days
Since
Stroke

BIT-C
Total

BIT-C
subtests

at or
below

cutoff (/6)

SN101 81 F Right 701 107 3
SN102 78 M Right 17 56 6
SN103 50 M Right 15 112 5
SN104 61 F Left 9 106 5
SN105 37 F Right 13 117 5
mean±SD 61.4±18.6 - - 151±307 100±25 5±1
WSN101 35 M Left 2404 138 0
WSN102 57 F Left 2466 145 0
WSN103 80 M Right 823 142 0
WSN104 27 M Left 483 146 0
WSN105 73 M Right 15 144 0
mean±SD 54.4±23.1 - - 1238±1130 143±3 0±0

62 Hz). Data samples were shifted according to the recorded
transmission delay times. The data was then segmented into
signal and baseline segments, or 500ms following and 200ms
prior the appearance of a target, respectively. The average
baseline amplitude was subtracted from the signal segment
in the time-domain for baseline correction. Artifact removal
and repairing was completed using the Autoreject algorithm
[41]. The total number of trials preserved after Autoreject and
therefore used for analyses are detailed in Table I.

The 6×12 display grid was divided down the middle so
that half the cells are on the left and the other half are on
the right. For each participant, EEG segments to the targets
corresponding to the target location are labeled ”ipsilesional”
or ”contralesional”, based on the lesioned hemisphere for
each participant. The EEG data was also labeled with their
corresponding band and electrodes. There are a total of 80
possible labels, as there are 16 electrodes and five bands.

For each session, the median reaction times of the three
responses per each of the 72 targets were thresholded using
a majority-voting procedure. Getting the median increases the
number of slow-response targets in a way that is more robust
compared to getting the mean in terms of outlier behaviour.
These times were thresholded using Otsu’s method [42]. Otsu’s
method, while mainly used for image binarization, is an
algorithm that iteratively searches for a threshold. The selected
threshold maximizes the variance (equivalently minimizing the
intra-class variance) between two classes: slow-response and
fast-response.

For intra-class variance defined as σ2
intra(i) = ω0(i)σ2

0(i)+
ω1(i)σ2

1(i), weights ω0,1 are probabilities of the classes sepa-
rated by a threshold i. σ2

0,1 are variances of the classes. ω0,1(i)
are computed from k-bin histogram:

ω0(i) =
i−1∑
x=0

p(x)

ω1(i) =
k−1∑
x=i

p(x)

For two classes, as stated above, minimizing intra-class
variance is equivalent to maximizing inter-class variance:

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2022.3188184

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



6

σ2
b (i) = σ2 − σ2

w(i) = ω0(i)(µ0 − µT )2 + ω1(i)(µ1 − µT )2

= ω0(i)ω1(i) [µ0(i)− µ1(i)]
2

where ω0,1 are class probabilities, µ0,1 are class means and
µT is given by:

ω0µ0 + ω1µ1 = µT (9)

Reaction times above the threshold were labeled as slow
responses. Reaction times below the threshold were labeled
as fast responses. The fast and slow labels are meant to
characterize response segments as high attention and low
attention states, respectively.

F. Neglect Detection

Bandpowers for delta (0-4 Hz), theta (5-8 Hz), alpha (9-13
Hz), beta (14-30 Hz), and gamma (31-45 Hz) bands were cal-
culated for each signal and baseline segment at each electrode
channel. The powers of the ipsilesional responses and con-
tralesional responses were combined from all the participants
in this analysis. At each electrode-band location, a power ratio
was calculated such that each ipsilesional-response power was
divided by the average contralesional-response power. The log
of these ratios was taken for analyses. This ratio represents
neural activation in the ipsilesional response normalized with
respect to the average contralesional response. Wilcoxon rank
sum tests with Bonferroni-correction were conducted for every
electrode within each band to find significant differences in
power ratios (n=940 in WSN, n=852 in SN) between the two
groups. A logistic regression analysis was performed using the
significant electrode-band locations as features to evaluate the
ability of these power ratios to separate SN from WSN. Results
were validated with 10-fold cross validation with random
shuffling.

G. Response Prediction

A machine-learning based classification algorithm was cre-
ated to distinguish between slow-response and fast-response
targets across SN and WSN participants. We have applied
multiple classifiers that are used in EEG analysis: Quadratic
and Linear Discriminant Analyses (QDA and LDA) [43],
AdaBoost [44], Random Forest Classifier (RFC) [45], Naive
Bayes [46], Multilayer Perceptron (MLP) [47], Regular-
ized Discriminant Analysis and Kernel Density Estimation
(RDA+KDE) [48]. RDA+KDE is the main classifier that we
have worked on and has been demonstrated to work well
on event-related potentials (ERP). [49], whereas the other
classifiers are used for comparison. However, here we use a
different feature extraction method than channel-wise principal
component analysis approach, which is used in [48]. We are
using common spatial patterns (CSP) as the feature extraction
algorithm.

1) Common Spatial Patterns as Discriminative Features:
Common spatial patterns (CSP) is an algorithm to calculate
spatial filters and it is widely used in BCI systems. It was
first proposed to classify imagined hand movements by using
multi-channel EEG [50]. The goal is to design a pair of spatial

filters such that the filtered signal’s variance is maximal for
one class while minimal for the other, and vice versa.

Let Xi ∈ RNi×C be the filtered EEG signals, where i ∈
1, 2 denotes the class. The algorithm computes a spatial filter
w ∈ RC

max
w

wTXT
1 X1w

wTXT
2 X2w

(10)

As the equation above is invariant with the scale of w, ∀w 6=
0, it can be formulated as

max
w

wTXT
1 X1w s.t. wTXT

2 X2w = 1 (11)

Finally, by applying Lagrange multiplier, this results in the
generalized eigenvalue problem

XT
1 X1w = λXT

2 X2w (12)

To find multiple spatial filters W , solving the simultaneous
diagonalization problem

max
W∈RC×K

trace(Λ)

s.t. WTXT
1 X1W = Λ, WTXT

2 X2W = I

where K is the number of spatial filters, Λ is a diagonal
matrix of shape K ×K, and I is the identity matrix

After taking 16 vectors from each trial using CSP, the
average power of each vector is extracted and classified.

With X being a normal distributed variable, the classification
rule can be given as

dk̂(X) = min
1≤k≤K

dk(X) (13)

with

dk(XXX) = (XXX −µkµkµk)T Σ−1k (XXX −µkµkµk) + ln|Σk| − 2lnπk (14)

where µkµkµk and Σk are class mean vector and covariance matrix
respectively and πk is the unconditional prior probability of
observing a class k data. Equation 14 is called the discriminant
score for kth class. Using equations 13 and 14 results in
using quadratic discriminant analysis (QDA) for classifica-
tion. If class covariance matrices are assumed identical, i.e.
Σk = Σ, 1 ≤ k ≤ K it results in linear discriminant analysis
(LDA). When class sample sizes Nk are smaller compared
to the dimension of the measurement space p, covariance
matrix estimates get highly variable. Regularized discriminant
analysis (RDA) [51] attempts to overcome this problem by
introducing two parameters for estimating the class covariance
matrices: λ and γ. λ is used for regularization of individual
class covariance matrices towards a pooled estimate. λ = 0
results in LDA whereas λ = 1 results in QDA. γ shrinks those
class covariance matrices towards a multiple of identity matrix.
This parameter is used to alleviate the effects of eigenvalue
bias: it decreases the larger eigenvalues and increases the
smaller ones. The equation wholly becomes:

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) +
γ

p
tr[Σ̂k(λ)]I (15)

RDA is the main classifier scope of this paper and the
calculations are performed on the data from CSP. After getting
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scores for each datapoint from RDA, we use kernel density
estimation (KDE) with a Gaussian kernel to make predictions.

The dataset is comprised of 10 participants, where each
participant may have multiple experimental sessions. As there
are fewer slow responses than fast responses in all participants,
our dataset is imbalanced with a 1:7 ratio, which is preserved
after Autoreject. We use all 16 CSP vectors’ average powers
as features in temporal analysis.

III. RESULTS
The estimated number of fast and slow responses thresh-

olded from the Clicker-Based Assessment are listed for each
participant in Table II. The percentage of fast responses for
each participant has a positive correlation with BIT scores
(R = 0.811), with a division in performances between SN
and WSN (Fig. 1d). This demonstrates an expected aspect of
AREEN system performance.

TABLE II
TARGET RESPONSE DATA

ID Fast
Responses

Slow
Responses

Total
Responses

Median
Reaction
Time (s)

SN101 260 78 338 1.42
SN102 188 240 428 2.13
SN103 164 38 202 1.06
SN104 221 75 296 1.48
SN105 237 195 432 1.73
mean±SD 214±38 125±87 339±96 1.56±0.370
WSN101 340 90 430 0.700
WSN102 363 40 403 0.892
WSN103 366 36 402 0.766
WSN104 268 80 348 0.683
WSN105 261 33 294 0.801
mean±SD 320±27 56±27 375±54 0.768±0.0841

Topographic visualizations of the power ratios reveal similar
trends within the two groups’ responses to targets across
frequency bands, with a few differences in spatial distribution
(Fig. 2a). Most noticeably, a normalized ipsilesional response
within the WSN group is generally most powerful in the
highest frequencies (beta and gamma); within the SN group,
this is most powerful in theta and beta. In the WSN group,
the occipital region is the location of highest power ratio in
every band. In the SN group, the points of highest power ratio
are concentrated in the central-parietal regions in the lower
frequencies (delta and theta) and shifted to the frontal-central
regions in the upper frequencies (alpha, beta, and gamma).
Both groups see highest power ratios in beta. Between groups,
SN generally has higher power ratios in theta and alpha but
lower gamma than WSN. In both groups, spatial distributions
of power ratio generally vary symmetrically across hemi-
spheres.

A. Neglect Detection

The Wilcoxon rank sum tests using the power ratios found
50 statistically significant (p<0.0006) locations out of the 80
possible locations (Fig. 2b). These locations describe nearly
the whole brain in delta, theta, and alpha except in occipital
electrodes, frontal beta, and mostly left frontal-parietal gamma.
These significant areas are symmetric in all bands except

gamma. Additional Wilcoxon rank sum tests were performed
to compare power ratios in the left and right electrodes within
each group and no significant differences were found. The
logistic regression analysis using the power ratios at these sig-
nificant locations yielded an average area under the receiver-
operator-characteristic curve (AUC) of 0.853 and 0.832 for
the training and testing sets, respectively, demonstrating the
high detection probability of an SN participant based on this
metric. From the regression, 17 locations were significant,
or important to the prediction of neglect, describing frontal-
central delta and alpha, frontal-parietal theta, Fp1 beta, and
left frontal gamma.

B. Response Prediction

Here, we present the results for classification between
recorded EEG responses corresponding to the slow-response
and fast-response targets for the SN and WSN groups to show
the performance of our proposed classifier for identification
of potentially neglected targets. The results in Table III are
obtained through 10-fold cross validation. The results given
in the table are average AUC’s over folds. We also plotted
two examples of the estimated neglected visual fields from
participants SN102 (Fig. 3a) and SN101 (Fig. 3b), representing
the varying degrees in prediction accuracy.

The results demonstrate that using RDA+KDE shows
greater performance compared to other methods whereas RFC
and MLP overfits. In this classifier, we only train for RDA,
where all λ and γ values are searched and the pair with highest
AUC is picked. After getting the ’best’ λ and γ values, test
data is put through RDA with best λ, γ pair and then KDE.
The search for λ and γ values are done in a brute force
manner, contrary to what is provided with BciPy, where 100
values between 0 and 1 are tried and train AUC are gotten
for each fold. BciPy uses constrained optimization by linear
approximation algorithm, also known as Powell’s method [52],
which does not rely on derivative calculation and -AUC was
used as the loss function. We initially chose to search for all
the results for our exploratory work where we checked for the
impact of λ and γ values.

The temporal analysis takes both slow and fast responses
from SN patients and only fast responses from WSN patients.
Trials thresholded as slow responses are removed from the
WSN group, as slow responses can be considered potentially
neglected responses and WSN patients do not have an SN
diagnosis. As Phase I is still ongoing and we will be working
on SN patients only from Phase II onwards, data from WSN
patients are added for data augmentation.

We have used Python for temporal analysis and the fol-
lowing libraries: numpy [53], scikit-learn [54], MNE [55],
Autoreject [41], BciPy [48].

IV. DISCUSSION

In this study, we have shown that the AREEN system
can feasibly detect SN using the spatiospectral features from
EEG responses to visual targets. These features lie within all
frequency bands, although there are distinct areas of activation
within each band. Similar to another study using EEG and AR

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2022.3188184

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8

Fig. 2. (a) Topographic head plots of power ratios averaged across all trials of all participants within each group. Plots are scaled all together and normalized
[0,1].(b) Results of Wilcoxon rank sum tests comparing median power ratios between WSN and SN. White spaces indicate locations that were significantly
different between groups. Black spaces indicate locations that were not significantly different between groups.

Fig. 3. The estimated FOV plots from two participants, exemplifying
moderate prediction accuracy (a) and high prediction accuracy (b). The grids
show the canvas with the 72 locations in which targets appear. The colors
correspond to the predictions of ”fast” or ”slow” at each location.

TABLE III
CLASSIFICATION RESULTS

Method Average Train AUC Average Test AUC
QDA 0.728 0.698
LDA 0.636 0.629
AdaBoost 0.681 0.615
RFC 0.999 0.604
Gaussian Naive-Bayes 0.717 0.716
MLP 0.816 0.613
RDA+KDE 0.788 0.760

to classify attention [56], important features were distributed
across bands and many were located in the frontal area.
Diverging from those results, we found significance also within
the delta band and parietal-occipital areas. Higher power in
low frequencies is typically associated with decreased cogni-
tive function and poorer stroke recovery outcomes [57]. This is
consistent with the trend seen in power ratios between groups,
as the SN group is considered more impaired. Frontal-parietal
and parietal-occipital regions are important areas regarding
visuospatial attention. Neglect pathology is heterogenous but
can generally be correlated with dorsal frontal-parietal network
structural or functional dysfunction [58], [59]. The condition

is also related to parietal-occipital damage which plays a role
in selective attention [60].

High beta and gamma activity in the left occipital area
has been correlated with impaired attention selectivity [61].
From the statistical analyses, we find that the left occipital
electrode, O1, had higher power ratios in beta in the SN
group compared to the WSN group. However, this is the
only electrode representing the entire left occipital cortex,
so this outcome should be considered with caution. Frontal-
central beta synchronization has also been relevant to premotor
activity in neglect [62]. In our study, this may be explained
by more undesired movements from the SN gropu during the
EEG-Based Assessment. In addition to this, perhaps the most
striking difference seen in the present study is the power ratio
decrease in gamma in the SN group compared to the WSN
group. The reason for this difference remains unclear as this
has not been previously observed in literature.

Increased task-related alpha activity in the parietal-occipital
region is thought to be related to the inhibition of external
stimuli, particularly distracting or irrelevant stimuli [63], [64].
Therefore, we could expect to see high alpha power ratio
from the WSN group in this region, as they should be better
at inhibiting the distractor stars in the Starry Night Task.
However, we actually saw greater alpha in the parietal region
in the SN group compared to the WSN group and there
were no significant differences from the occipital region. This
suggests a more general problem at the earliest stages of
attention to stimuli, salient or not. Additionally, parietal theta
was also higher in the SN group. Although the theta band
produced the fewest significant features for neglect detection,
the presence of some significant locations in this band expands
upon previous findings that did not implicate its importance
in identifying post-stroke cognitive deficits [65]. Increased
theta and alpha activity have been linked to greater mental
fatigue [66], [67] which might account for some of the higher
power in these frequencies in the SN group. Participants were
encouraged to take breaks between the Clicker-Based and
EEG-Based assessments, but at least one participant verbally
reported feeling fatigued due to the length of the tests and
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the requirement to remain still and fixate. Participants in
the SN group generally fatigued more and faster than those
in the WSN group. This could have further impaired their
performance on the task and ability to concentrate.

In this study, power ratio maps within any band tended
to be symmetric. Previous research suggests that activation
within hemispheres may depend on the location of the stimuli
with respect to the lesioned hemisphere [37], [39], [68]. A
possible explanation for the departure from the literature is the
nature of our metric. The power ratio incorporates responses to
both ipsilesional and contralesional targets. Additionally, we
recruited both left-hemisphere and right-hemisphere damaged
participants in both groups. This study did not control for
stroke hemisphere, as the goal of this project was to find
general spatiospectral features that would identify SN. Doing
so could possibly reveal these hemispheric distribution patterns
and improve classification accuracy, but the result may be that
we develop a system only applicable for a subset of the neglect
population. Future work could investigate using spectral met-
rics that are robust to inter-individual EEG differences within
a group, such as individual alpha frequency, to output more
relevant, precise measures for neglect detection or personalized
metrics for each patient.

Compared to other related neglect detection systems [69],
[70], AREEN more accurately detects the presence of neglect
by evaluating its neural signatures rather than behavioral
metrics. Our system also demonstrates higher accuracy in
classifying potentially neglected and observed targets than a
similar previously proposed system [33] and is the first to
attempt to do so in neglect patients via EEG. The ultimate
purpose of the classification algorithms presented in this
study is to propose an initial step towards our end goal:
rehabilitation. RDA+KDA, though simple compared to state-
of-the-art deep learning models, has demonstrated high AUC
values with 10-fold cross validation in our limited dataset.
Each fold in cross-validation is stratified; each set is forced to
keep the ratio of slow- and fast-response targets. Additionally,
given there are five participants with SN and five without SN,
one can concur that the model is generalizable. Even though
the average results from 10-fold cross validation are good,
future translation into rehabilitation requires a highly accurate
classifier that can work in the patient’s real-world environment.

Our future Phase II research will be conducted only on
patients with SN. For initial analyses, leave-one-out cross-
validation for SN participants will be chosen to analyze each
participant by themselves: a participant is set as test set and the
remainder is used for training. However, EEG data is highly
variable person-to-person. While the number of participants
from each group is equal, the number of potentially neglected
targets are still lower than the number of potentially observed
ones. Therefore, we observed an overfitting issue where the
model tends to pick class 0, fast-response or potentially
observed targets. Both our previous work [71] and statistical
analyses reported in this paper also demonstrate that neglect
detection with EEG is possible. Thus, as we collect more
data and go into Phase II, we will create a multiobjective
optimization algorithm for online rehabilitation utilizing a
neglect detection and a neglected target detection objectives

together.
This study has several limitations. More sophisticated statis-

tical analyses may illuminate different activation patterns and
spatiospectral relationships that better align with those seen in
literature. However, our strategy has been used in similar EEG
analyses [72], [73] and still yielded many significant features
that separated the groups with high accuracy despite using
a very conservative α to correct for multiple comparisons.
Due to the small sample size in this study, the results of
this study are only preliminary and will need to be verified
with a larger cohort. The time since stroke also varied widely
as this study incorporated both acute and chronic stroke
participants. It is possible that there are differences in the
EEG responses between the two groups, especially as the brain
rapidly reorganizes in the weeks post-stroke.

Additionally, eye-tracking technology would have been ben-
eficial to this experimental setup. The HoloLens used in this
implementation (1st generation) did not have this capability,
but it is offered in the 2nd generation device. For this study’s
setup, this addition would also verify gaze fixation at the center
of the screen without verbal prompting which could introduce
an external distraction and elicit an undesired EEG response.
Eye-tracking would open further avenues for analyses for
neglect detection as this technology has been used in previous
research for such purposes [74], [75]. Gaze patterns and pupil
dilations have been used to detect neglect, often with higher
sensitivity than classic pen-and-paper tests [76]–[78].

V. CONCLUSIONS

In this paper, we presented our AREEN system that in-
corporates an augmented reality (AR) headset into a BCI
framework, and developed and tested an EEG-based BCI for
SN detection. It was also demonstrated that spatiospectral
features for detecting SN could be identified from statistically
significant power ratios. In future work, band synchronizations
may be observed between regions of the brain and across
hemispheres. We also extracted features using common spatial
patterns and demonstrated performances of multiple classifiers
to identify EEG features. We specifically used RDA+KDA
to detect potentially neglected targets. This method is highly
accurate in detecting neglect, as demonstrated by the high
AUC. Future research will implement the proposed AREEN
system in rehabilitation of patients with SN. Specifically,
a real-time feedback system for patients with SN will be
developed to draw their attention to neglected stimuli; visual
and auditory feedback will be given to the participant by
processing EEG data in real-time. The rehabilitation process
will be conducted during ADLs to provide a dynamic and
realistic setup for participants.
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