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a b s t r a c t 

Optimal capacity expansion requires complex decision-making, often influenced by technology learning, 

which represents the reduction in expansion cost due to factors such as cumulative installed capacity. 

However, having perfect foresight over the technology cost reduction is highly unlikely. In this work, 

we develop a multistage stochastic programming framework to model capacity planning problems with 

endogenous uncertainty in technology learning. To assess the benefit of the proposed framework over 

deterministic optimization, we apply a shrinking-horizon approach to compute the value of stochastic 

solution. Further, a decomposition scheme based on column generation is developed to solve large in- 

stances. Results from our computational experiments indicate substantial potential cost savings and the 

effectiveness of the proposed decomposition algorithm in solving instances with large numbers of scenar- 

ios. Lastly, a power capacity planning case study is presented, highlighting the stochastic optimization’s 

ability to anticipate significantly different expansion and production decisions in low- and high-learning 

scenarios. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past few decades, the unfavorable shift in global cli- 

atic conditions has driven us to focus on renewable technology 

evelopment to lower carbon emissions. The increasing energy de- 

and has further aggravated the need to look for alternatives to 

raditional fossil-based energy sources. However, in addition to de- 

eloping new technologies, making them economical as fast as 

ossible remains a challenging task. In general, the cost of a tech- 

ology is a function of several interrelated factors, including pric- 

ng and the number of competitors, government regulations and 

olicies, the scale of production, and demand, to name a few. The 

eduction in the cost of a new technology due to these factors is 

ften termed technology learning. 

Of all the stated, the scale of production constitutes a major 

riving force for cost reduction in new technologies. One of the 

rst reported instances of learning effect was in the aircraft in- 

ustry ( Wright, 1936 ), where the production cost of an aircraft 

as found to decrease with the quantity produced. Additionally, 

mproved efficiency of workers with repetitive tasks has been ex- 

ensively studied in different contexts, which in almost all cases 

eads to a reduction in cost/execution time ( Wright, 1936; Laffel 

t al., 1992; Sturm, 1999 ). The type of learning where improved 
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fficiency is observed solely by performing the same task repeat- 

dly or due to a scale-up in production falls under the category of 

earning-by-doing. 

The reduction in cost as a function of installed capacity is of- 

en expressed using learning curves, a common way of expressing 

echnology learning. Lieberman (1984) discusses the concept of a 

earning curve and cost-affecting factors in the chemical process- 

ng industries. Further, Daugaard et al. (2015) determine the corre- 

ation between the size/cost of biorefineries and installed capacity 

ased on different learning curve models. Besides, learning curves 

ave been used as a tool to estimate the time for a new technol- 

gy to become cost-competitive. Rubin et al. (2007) utilize learn- 

ng curves for cost projection of power plants with carbon capture. 

n assessment of solar power cost based on the extrapolation of 

he learning curve is presented in Van der Zwaan and Rabl (2003) . 

ecently, a hybrid approach for estimating the cost of an N 
th -of- 

-kind plant ( Rubin, 2019 ) was utilized for estimating future cost 

rojections of CO 2 mineralization plants that can potentially help 

ecarbonize the cement industry ( Strunge et al., 2022 ). A detailed 

eview of learning curve models and potential areas of application 

an be found in Anzanello and Fogliatto (2011) . 

A less considered aspect is the utilization of learning 

urves to make optimal capacity expansion decisions. Heuberger 

t al. (2017) account for endogenous technology learning in a 

ower capacity expansion problem. Chen et al. (2017) present a 

ynamic programming framework that integrates learning curves 

or making decisions to advance low-carbon fuels. Aliabadi (2020) 

https://doi.org/10.1016/j.compchemeng.2022.107868
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ncorporates endogenous technology learning in a model that 

utputs optimal capacities and deployment times for coal-based 

ower plants equipped with carbon capture, utilization, and stor- 

ge (CCUS) technology. Recently, Bakker et al. (2021) investigate 

he effect of incorporating endogenous learning in determining de- 

isions regarding the plugging and abandonment of oil and gas 

ells. 

Most of the literature on optimization concerning learning 

urves assumes that they can be constructed deterministically. His- 

orical data is generally used to construct learning curves, which, 

n general, could be a useful technique if the data is readily avail- 

ble as well as reliable. However, the sheer unavailability of data, 

he dependence of the learning on the decisions made in real- 

ime, or the influence of other external factors can make pre- 

icting the learning curve a challenging task. For example, an 

nexpected technological breakthrough (exogenous technological 

hange) could affect how the learning curve will develop. More- 

ver, government safety regulations, especially in the context of 

hemical plants, can hinder the decrease in plant expansion costs. 

 discussion of factors affecting learning rates can be found in 

out et al. (2009) . The unpredictability of such factors at the time 

f decision-making introduces uncertainty in the learning curve. 

It has been observed that the policy decisions made with mod- 

ls that consider learning curves are often upward biased (antic- 

pating higher learning rate) if the external factors are neglected 

 Nordhaus, 2014 ). The upward bias could lead to sub-optimal or 

nfeasible solutions that could be detrimental, especially for long- 

erm planning projects. Moreover, uncertainty in learning rates has 

een accounted for, if at all, using methods such as Monte Carlo 

imulation ( Kim et al., 2012 ). Even though such methods can pro- 

ide valuable insights, their inability to ensure non-anticipativity 

emands a more rigorous optimization framework. For this reason, 

e explore the feasibility of stochastic programming ( Birge and 

ouveaux, 2011 ) in incorporating uncertain learning curves for 

ultiperiod capacity expansion planning. 

In stochastic programming, uncertainty is usually classified as 

xogenous or endogenous. The uncertainty not affected by deci- 

ions is termed exogenous, whereas the uncertainty affected by 

ecisions is termed endogenous ( Jonsbråten et al., 1998 ). Endoge- 

ous uncertainty is further classified as type-1 and type-2. Type- 

 uncertainty arises when decisions alter the probability distribu- 

ion of the uncertain parameters ( Ahmed, 20 0 0; Peeta et al., 2010;

ellemo et al., 2018 ), whereas type-2 uncertainty affects the tim- 

ng of the realization of the uncertain parameters ( Goel and Gross- 

ann, 2006 ). For example, the size of an oil reserve and the gas 

roduction rate are only revealed after drilling the reserve ( Goel 

nd Grossmann, 2004; Gupta and Grossmann, 2014 ). Similarly, in a 

harmaceutical planning problem, the outcome of a clinical trial 
t

ig. 1. (Color online) A general process network comprising a set of processes K (square

esources by processes are denoted by green and black arrows, respectively. The flow of re

2

esolves only when the potential drug is subjected to the trial 

 Colvin and Maravelias, 2008; 2010 ). Likewise, in a capacity ex- 

ansion problem with an uncertain learning curve, the expansion 

ost realizes only when the capacity is actually increased; thus, the 

ncertainty in expansion cost classifies as type-2 endogenous. Re- 

ently, Zhang and Feng (2020) further refined the type-2 classifi- 

ation by differentiating between decision-dependent materializa- 

ion (type-2a) and observation (type-2b) of uncertain parameters. 

pap and Grossmann (2017) provide a comprehensive review on 

he application of stochastic programming to problems with exoge- 

ous and type-2 endogenous uncertainty. 

The main contributions of this work, along with the organiza- 

ion of the paper, are summarized as follows: 

1. In Section 2 , we consider endogenous technology learning and 

develop a mixed-integer linear programming (MILP) capacity 

planning formulation for a general process network compris- 

ing a set of processes/technologies and resources. In Section 3 , 

we propose a stochastic optimization framework to account for 

type-2 endogenous uncertainty in technology learning. 

2. An algorithm to compute the value of stochastic solution for 

multistage problems with endogenous uncertainty is developed 

in Section 4 . The algorithm is crucial for quantifying the value 

of a stochastic optimization framework over a deterministic ap- 

proach. 

3. In Section 5 , we exploit the proposed capacity planning for- 

mulation structure to devise an efficient decomposition scheme 

based on column generation. The proposed scheme leads to 

better feasible solutions and improved computation times. 

4. We conduct extensive computational experiments on randomly 

generated instances of varying sizes (in terms of the number of 

scenarios and the length of the planning horizon) in Section 6 . 

The effectiveness of the proposed framework and the decom- 

position scheme is showcased through the resulting values of 

stochastic solutions and improved computational statistics, re- 

spectively. 

5. In Section 7 , we demonstrate the practicability of the proposed 

framework through a case study on power capacity planning. In 

particular, we highlight the differences in expansion and pro- 

duction decisions for low- and high-learning scenarios, empha- 

sizing the capability of the proposed framework to produce 

sound decisions while ensuring non-anticipativity. Lastly, we 

conclude with some final remarks in Section 8 . 

. Deterministic model 

To capture the interconnectivity of technologies, model their si- 

ultaneous availability to satisfy product demand, and optimize 

heir selection for capacity expansion and operations, we consider 
 nodes) and a set of resources J (circular nodes). Production and consumption of 

sources to and from the network are denoted by blue and red arrows, respectively. 



T. Rathi and Q. Zhang Computers and Chemical Engineering 164 (2022) 107868 

Fig. 2. A log-linear learning curve and its discretization. 
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Fig. 3. Multiscale time representation, which divides the planning horizon into a 

set of time periods, T , with each time period t ∈ T having a representative schedul- 
ing horizon H t of length H t . 
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 general process network comprising process and resource nodes 

s illustrated in Fig. 1 . Processes and resources are denoted by 

quare and circular nodes, respectively. The arcs in the network 

enote the directed flow of resources. Process nodes can represent 

hemical and manufacturing processes or, generally, technologies. 

esource j ∈ J produced by a process k ∈ K can either serve as

n input resource (denoted by black arrows) to process k ′ ∈ K\{ k }
r discharged from the process network (denoted by red arrows). 

oreover, a resource can also be purchased or made available from 

n outside source (denoted by blue arrows). 

We assume that some processes may exhibit the phenomenon 

f technology learning. Learning curves are a pictorial depiction of 

he concept of endogenous technology learning representing a re- 

uction in capital costs due to various factors, including but not 

imited to scale-up and R&D investments. In this paper, we focus 

n univariate learning curves based on the concept of learning- 

y-doing, which, in a production setting, represents cost reduction 

ue to capacity expansion. Anzanello and Fogliatto (2011) provide a 

etailed comparison of various univariate models and discussion of 

ultivariate models. Amongst the most studied univariate models 

or cost prediction is the log-linear model. Fig. 2 shows a typical 

eterministic log-linear learning curve illustrating the reduction in 

nit expansion cost with cumulative installed capacity. The learn- 

ng rate is usually significant during the initial development stages 

f a technology or a new plant setup phase, usually with low ca- 

acities. As the technology matures (or the plant is scaled-up), the 

earning rate decreases, eventually plateauing towards the end of 

ts lifetime. 

A mathematical representation of a log-linear model is as fol- 

ows: 

f ( C ) = θ = θ0 

(
C 

C 0 

)
l 

r f ( C i ) = θi = θ0 

(
C i 

C 0 

)
l (discretized version) 

here C 0 and θ0 denote the initial installed capacity and initial 
nit expansion cost, respectively. The slope of the learning curve 

s controlled by the parameter l ≤ 0 . The unit expansion cost after 

he cumulative installed capacity increases to C is denoted by θ . To 
aintain tractability, we allow capacity to take only a finite num- 

er of values belonging to the set I; thus, discretizing the learning 
urve as illustrated in Fig. 2 . Here, it is important to note that the

nit expansion cost ( θi ) materializes only when we actually expand 

he cumulative capacity to C i . Therefore, the technology learning 

urve is endogenous. 

The goal is to determine optimal capacity expansion deci- 

ions in a long-term planning problem as the resource demand 

rows with time. Additionally, the model considers operational 

onstraints within each time period t; thus, allowing determining 
3 
ptimal operational decisions based on factors including each pro- 

ess’s available capacity, the demand of resources, up-time/down- 

ime of units, and so on. To accomplish this goal, we start with 

roposing a deterministic MILP model for capacity expansion with 

echnology learning. In the deterministic model, we assume that 

here is no uncertainty, i.e., the learning curve for each process 

 ∈ K is known precisely. Also, we use the terms “process” and 

technology” interchangeably from here onwards. 

.1. Capacity expansion constraints 

Based on the process network in Fig. 1 , we define binary vari- 

ble x kit that equals 1 if a process k undergoes capacity expansion 

o (at least) the permissible point i ∈ I in time period t ∈ T . We

urther define the variables C kt and �kt representing the cumu- 

ative installed capacity and additional capacity installed of a pro- 

ess k in time period t , respectively. Then, the following constraints 

ontrol the timing and extent of capacity expansion for each pro- 

ess in the network: 

 k 0 = C k 0 ∀ k ∈ K (1a) 

 kt = C k,t−1 + �kt ∀ k ∈ K, t ∈ T (1b) 

kt = 

∑ 

i ∈I k 
x kit �ki ∀ k ∈ K, t ∈ T (1c) 

kt ≤ b kt ∀ k ∈ K, t ∈ T (1d) 

 kit ≤
t ∑ 

τ=1 

x k,i −1 ,τ ∀ k ∈ K, i ∈ I k \ { 1 } , t ∈ T (1e) 

t ∑ 

τ=1 

x kiτ ≤ 1 ∀ k ∈ K, i ∈ I k , t ∈ T (1f) 

 kit ∈ { 0 , 1 } ∀ k ∈ K, i ∈ I k , t ∈ T (1g) 

 kt , �kt ≥ 0 ∀ k ∈ K, t ∈ T (1h) 

here C k 0 denotes the initial installed capacity of process k . The 

ncremental capacity for process k from point i − 1 to i is denoted 
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Fig. 4. The cost of expansion for process k from point i − 1 to i is given by the area 

under the learning curve. Note that we consider learning as a function of additional 

capacity installed over time instead of the cumulative capacity. We do so because 

the net capacity may decrease if we allow the capacities to retire after a certain 

duration, whereas the additional capacity installed can only increase. 

Fig. 5. Example of an uncertain learning curve. Each discrete expansion point i acts 

as source of uncertainty. In this case, we have two, four, and eight possible unit 

expansion costs at i = 1 , 2 , and 3 , respectively. Note that this is not a scenario tree 

but simply an uncertainty representation; however, it does help in creating scenar- 

ios for the overall problem. 
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y �ki . Constraints (1a) - (1c) together represent the capacity bal- 

nce. Constraints (1d) limit the capacity expansion of a process k 

y the available budget b kt in time period t . Constraints (1e) en- 

ure that we move in the positive direction on the learning curve 

n a sequential fashion, i.e., we can only install additional capacity 

orresponding to point i if we have already installed the additional 

apacity corresponding to point i − 1 . That being said, it does not 

estrict installing additional capacities corresponding to both point 

 − 1 and i in the same time period t , which can be alternatively

nterpreted as jumping directly to the point i from any lower ca- 

acity point. Constraints (1f) imply that investment at any point 

 ∈ I cannot be made more than once in any time period. 
4 
.2. Operational constraints 

In addition to modeling the capacity expansion decisions, we 

urther solve an operational problem at the scheduling level. We 

elect a representative scheduling horizon H t (e.g., a representa- 

ive day) for each time period t to facilitate the modeling of time- 

arying operation, which is particularly important in systems in- 

olving intermittent renewable energy, and we assume that it is 

epeated n t times in time period t . As illustrated in Fig. 3 , each

 t is of length H t (e.g., H t hours). Different time periods are not 

estricted to having scheduling horizons of the same length. 

We define variables Q jth and P kth to represent the inventory of 

esource j and the amount of the reference resource produced or 

onsumed by process k in interval h of time period t , respectively. 

urther, we define a variable V jth that denotes the influx of re- 

ource j in interval h of time period t . It can be used to mitigate 

he resource shortage, purchase a resource at a lower price, make 

vailable renewable resources such as biomass, or denote the un- 

et demand. Discrete decisions involving the number of operating 

nits (or units started/shut down) for a process k in interval h of 

ime period t is represented through variables y kth . The demand of 

esource j in interval h of time period t is denoted by d jth . Param- 

ter ρk jt serves as a conversion factor to deduce the amount of re- 

ource j produced or consumed by process k based on its reference 

esource. The fraction of cumulative capacity of process k available 

or utilization in interval h of time period t is denoted by ηkth . It 

s particularly useful to model processes with time-varying capaci- 

ies, e.g., solar- and wind-based power generation. The operational 

ecisions can then be modeled using the following constraints: 

 jth = Q jt,h −1 + 

∑ 

k ∈K 
ρk jt P kth + V jth −d jth ∀ j ∈ J , t ∈ T , h ∈ H t (2a) 

 jtH t ≥ Q jt0 ∀ j ∈ J , t ∈ T (2b) 

 kth ≤ ηkth C kt ∀ k ∈ K, t ∈ T , h ∈ H t (2c) 

 kth (C kt , Q jth , P kth , y kth , . . . ) ≤ 0 ∀ k ∈ K, j ∈ J , t ∈ T , h ∈ H t 

(2d) 

 ≤ V jth ≤ V max 
jth ∀ j ∈ J , t ∈ T , h ∈ H t (2e) 

 jth ≥ 0 ∀ j ∈ J , t ∈ T , h ∈ H t (2f) 

 kth ≥ 0 ∀ k ∈ K, t ∈ T , h ∈ H t (2g) 

 kth ∈ Z ∀ k ∈ K, t ∈ T , h ∈ H t (2h) 

here constraints (2a) and (2b) denote the inventory balance. Con- 

traints (2c) enforce time-varying availability of the installed ca- 

acity for each process k . Constraints (2d) represent the remain- 

ng relevant operational constraints. For example, we can constrain 

nventory by limiting storage capacity, model mode-based opera- 

ions, and model startup and shut down of operations for each 

rocess k , to name a few. Constraints (2e) - (2h) define bounds on 

he operational variables. 

.3. Objective function 

The capital expenditure (CAPEX) comprises the scaling-up cost 

or each process k incurred in each time period t and is repre- 

ented as follows: 

 
CPX = 

∑ 

t∈T 
αt 

[ ∑ 

k ∈K 

∑ 

i ∈I k 

(∫ �ki 

�k,i −1 

f k (�k ) d �k 

)
x kit 

] 
(3) 

here αt denotes the discount factor for time period t . The learn- 

ng curve for process k is encoded in the model as f k (�k ) and

ki := 

∑ i ′ �ki ′ . Note that we make no assumptions on the form 
i =1 



T. Rathi and Q. Zhang Computers and Chemical Engineering 164 (2022) 107868 

o

c  

p

o

C

w

b  

E

u

u

e

 

e

C

w

n

n

m

s

3

c

t

i

r

l

i

o

p

p

t

t

(  

c

p

u

p

I  

b

u

t

a

d

t

t

p

p

t

i

q

3

c

f

o

t

m

e

p

S 

w

t

s

t

3

u

d

e

t

e

t

s

a  

w

a

d

r

s

x[

Z

Z

Z

fi

t

o

n

(

(

e

c

i  
f the learning curve since the integral term (expansion cost on in- 

reasing capacity from point i − 1 to i ) is a parameter that can be

re-calculated in the pre-modeling phase irrespective of the form 

f the learning curve ( Fig. 4 ). 

The net operating cost (OPEX) can be represented as follows: 

 
OPX = 

∑ 

t∈T 
αt n t 

∑ 

h ∈H t 

∑ 

j∈J 

∑ 

k ∈K 

(
βk jth ρk jt P kth + u k jth (C kt , Q jth , P kth , y kth , . . . ) 

)
(4) 

here βk jth represents the unit production cost of resource j

y process k in interval h of time period t . The first term in

q. (4) denotes the cost of production, whereas the second term, 

 (·) , captures the operating cost of specific modes of operation, 

tilizing storage, purchasing and discharging resources, tax on 

missions, etc. 

The net present cost, C NET , is simply the sum of capital and op-

rating expenditures: 

 
NET = C CPX + C OPX (5) 

here the objective is to minimize the net cost for the entire plan- 

ing horizon. 

The final deterministic capacity expansion problem with tech- 

ology learning can be summarized as: 

inimize C NET ( FS DM ) 

ubject to Eqs. (1a)–(5) . 

. Stochastic programming model 

As stated in Section 1 , there can be uncertainty in the learning 

urve due to lack of historical data, safety regulations and policies, 

echnological breakthroughs, and other external factors. Moreover, 

n a realistic setting, the assumption of a univariate learning curve 

arely holds. Therefore, we need to account for uncertainty in the 

earning curve, i.e., we need to consider different scenarios regard- 

ng how the learning curve might unfold. Fig. 5 shows an example 

f how a learning curve may take different paths as additional ca- 

acity is installed. Again, we consider only a finite number of ex- 

ansion points. Also, in this work, we focus on the uncertainty in 

he learning curve of expansion cost and hence neglect other po- 

ential sources of uncertainty such as demand. 

Each possible expansion point acts as a source of uncertainty 

dashed boxes in Fig. 5 : represented as i ), and the uncertainty in

ost at permissible point i resolves only when we increase the ca- 

acity to point i ; therefore, it classifies as a type-2 endogenous 

ncertainty. Furthermore, as the uncertainty resolves, our antici- 

ation of the learning curve from that point onwards changes too. 

n other words, any point of realization (red markers in Fig. 5 ) can

e thought of as a new starting point. Thus, a new learning curve 

nfolds from that point onwards with a different underlying uncer- 

ainty. This process continues until we reach the limit of capacity 

ddition or the planning horizon. 

We utilize the concept of stochastic programming to extend the 

eterministic model of Section 2 to account for uncertainty in the 

echnology learning curves. Since our planning horizon spans mul- 

iple time periods, we specifically formulate a multistage stochastic 

rogramming model. Further, the presence of binary capacity ex- 

ansion decisions (and likely integer operational decisions) leads 

o an MILP model. The specifics of how the deterministic model 

s modified to account for uncertainty are discussed in the subse- 

uent subsections. 

.1. Scenario feasibility constraints 

The core idea in stochastic programming is to account for un- 

ertainties through scenarios, which in our case are given in the 

orm of possible learning curves (or a combination of them in case 
5 
f multiple uncertain technologies/processes). Based on this idea, 

he stochastic model can be interpreted as a collection of deter- 

inistic models, one for each possible scenario s ∈ S . Therefore, we 

xtend the capacity expansion and operational constraints to each 

ossible scenario as follows: 

C k 0 s = C k 0 ∀ k ∈ K 

C kts = C k,t−1 ,s + �kts ∀ k ∈ K, t ∈ T 
�kts = 

∑ 

i ∈I k 
x kits �ki ∀ k ∈ K, t ∈ T 

�kts ≤ b kt ∀ k ∈ K, t ∈ T 

x kits ≤
t ∑ 

τ=1 

x k,i −1 ,τ s ∀ k ∈ K, i ∈ I k \ { 1 } , t ∈ T 
t ∑ 

τ=1 

x kiτ s ≤ 1 ∀ k ∈ K, i ∈ I k , t ∈ T 

Q jths = Q jt,h −1 ,s + 

∑ 

k ∈K 
ρk jt P kths + V jths − d jth ∀ j ∈ J , t ∈ T , h ∈ H t 

Q jtH t s ≥ Q jt0 s ∀ j ∈ J , t ∈ T 
P kths ≤ ηkth C kts ∀ k ∈ K, t ∈ T , h ∈ H t 

g kths (C kts , Q jths , P kths , y kths , . . . ) ≤ 0 ∀ k ∈ K, j ∈ J , t ∈ T , h ∈ H t 

0 ≤ V jths ≤ V max 
jth ∀ j ∈ J , t ∈ T , h ∈ H t 

Q jths ≥ 0 ∀ j ∈ J , t ∈ T , h ∈ H t 

P kths ≥ 0 , y kths ∈ Z ∀ k ∈ K, t ∈ T , h ∈ H t 

C kts , �kts ≥ 0 ∀ k ∈ K, t ∈ T 
x kits ∈ { 0 , 1 } ∀ k ∈ K, i ∈ I k , t ∈ T 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

∀ s ∈ 

(6) 

here all decision variables have the same meaning as in the de- 

erministic model; however, here, they are also indexed for each 

cenario s ∈ S , ensuring the feasibility of eventual decisions for all 
he considered scenarios. 

.2. Non-anticipativity constraints 

Now, ensuring the feasibility of decisions for all scenarios is 

sually not sufficient. A less intuitive (more so in the case of en- 

ogenous uncertainty) but equally important condition is to ensure 

quality of decisions for indistinguishable scenarios at all points in 

ime of the planning horizon. Two scenarios s and s ′ are consid- 
red indistinguishable at time t if no uncertain source that dis- 

inguishes the two scenarios has been resolved. To ensure s and 

 
′ have the exact same capacity expansion decisions implemented 

ll the way from t = 1 to the beginning of time period t + 1 ,

e need additional constraints. These constraints are termed non- 

nticipativity constraints (NACs) and link the capacity expansion 

ecisions for the indistinguishable scenarios. The following rep- 

esentation of conditional NACs using disjunctions and logic con- 

traints is adapted from Goel and Grossmann (2006) . 

 ki 1 s = x ki 1 s ′ ∀ s, s ′ ∈ S, s � = s ′ , k ∈ K, i ∈ I k (7a) 

Z s,s 
′ 

t 

x ki,t+1 ,s = x ki,t+1 ,s ′ ∀ k ∈ K, i ∈ I k 

]
∨ 

[
¬ Z s,s ′ t 

] ∀ s, s ′ ∈ S, s � = s ′ , t ∈ T \ { T } (7b) 

 
s,s ′ 
t ⇐⇒ 

∧ 

(r,i ) ∈D(s,s ′ ) 

[ 

t ∧ 

τ=1 

(¬ x riτ s ) 

] 

∀ s, s ′ ∈ S, s � = s ′ , t ∈ T \ { T } (7c) 

 
s,s ′ 
t ⇐⇒ 

∧ 

(r,i ) ∈D(s,s ′ ) 

[ 

t ∧ 

τ=1 

(¬ x riτ s ′ ) 

] 

∀ s, s ′ ∈ S, s � = s ′ , t ∈ T \ { T } (7d) 

 
s,s ′ 
t ∈ { true , false } ∀ s, s ′ ∈ S, s � = s ′ , t ∈ T \ { T } (7e) 
Since no decision has been implemented at the start of the 

rst time period, all scenarios are indistinguishable at that point in 

ime. This condition is enforced in constraints (7a) by the equality 

f capacity expansion decisions at the very beginning of the plan- 

ing horizon. Disjunctions (7b) impose NACs for each scenario pair 

 s, s ′ ) provided that the Boolean variable Z s,s ′ t is true . Constraints 

7c) and (7d) relate the Boolean variable Z s,s 
′ 

t with the capacity 

xpansion decisions for the technologies with uncertain learning 

urves, denoted by set R . Specifically, if θris is the uncertainty real- 
zation of source (r, i ) in scenario s , and D(s, s ′ ) = { (r, i ) | r ∈ R , i ∈
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 r , θris � = θris ′ } is the set of sources of endogenous uncertainty that 
istinguish scenario s from s ′ , then Z s,s ′ t is true if at the end of time

eriod t , the uncertainty has not realized in any of the uncertain 

arameters that belong to the set D(s, s ′ ) . It is important to note

ere that constraints (7a) - (7e) are a mathematical representation 

f the conditional scenario tree, which is a unique characteristic of 

tochastic optimization problems with (type-2) endogenous uncer- 

ainty. 

Now, clearly the set P = { (s, s ′ ) | s, s ′ ∈ S, s � = s ′ } can become

uge as the number of scenarios grows. Consequently, the number 

f NACs (7a) - (7e) can become exponentially large. However, usu- 

lly, a large fraction of these NACs are redundant. To identify the 

edundant scenario pairs, we utilize a polynomial-time exact algo- 

ithm discussed in Hooshmand and MirHassani (2016) designed for 

he case of pure endogenous uncertainty with an arbitrary scenario 

et. Since model reduction is not the focus of this paper, we do not 

elve into the details of the NAC reduction method. We refer the 

eader to Hooshmand and MirHassani (2016) for the details of the 

lgorithm. 

Let P 
′ denote the reduced set of scenario pairs, then the re- 

uced equivalent of NACs (7a) - (7e) is as follows: 

 ki 1 s = x ki 1 ,s +1 ∀ k ∈ K, i ∈ I k , s ∈ S, s < |S| (8a) 

Z s,s 
′ 

t 

x ki,t+1 ,s = x ki,t+1 ,s ′ ∀ k ∈ K, i ∈ I k 

]
∨ 

[
¬ Z s,s 

′ 
t 

] ∀ (s, s ′ ) ∈ P ′ , t ∈ T \ { T } 
(8b) 

 
s,s ′ 
t ⇐⇒ 

∧ 

(r,i ) ∈D(s,s ′ ) 

[ 

t ∧ 

τ=1 

(¬ x riτ s ) 

] 

∀ (s, s ′ ) ∈ P 
′ , t ∈ T \ { T } 

(8c) 

 
s,s ′ 
t ∈ { true , false } ∀ (s, s ′ ) ∈ P 

′ , t ∈ T \ { T } (8d) 

The above modifications preserve the optimal solution of the 

riginal formulation. The reformulation of constraints (8b) and 

8c) to linear constraints is given in Sections A and B of the sup- 

lementary material, respectively. 

.3. Objective function 

We define CAPEX for each scenario based on the corresponding 

apacity expansion decisions as follows: 

 
CPX 
s = 

∑ 

t∈T 
αt 

[ ∑ 

k ∈K 

∑ 

i ∈I k 

(∫ �ki 

�k,i −1 

f ks (�k ) d �k 

)
x kits 

] 
∀ s ∈ S (9) 

Similarly, the operational decisions in each scenario determine 

he OPEX as follows: 

 
OPX 
s = 

∑ 

t∈T 
αt n t 

∑ 

h ∈H t 

∑ 

j∈J 

∑ 

k ∈K 

(
βk jth ρk jt P kths + u k jth (C kts , Q jths , P kths , y kths , . . . ) 

)
∀ s ∈ S 

(10) 

For each scenario s , the net cost equals the sum of the corre-

ponding CAPEX and OPEX: 

 
NET 
s = C CPX s + C OPX s ∀ s ∈ S (11) 

For the capacity expansion problem with uncertain endogenous 

echnology learning, the objective is to minimize the expected net 

ost over the entire planning horizon; thus, the overall stochastic 

ptimization problem can be summarized as follows: 

inimize 
∑ 

s ∈S 
p s C 

NET 
s (FS SP ) 

ubject to Eqs. (6), (8a)–(8d), (9)–(11) 

here p s denotes the probability of scenario s . 
6 
. Value of stochastic solution for multistage problems with 

ndogenous uncertainty 

The value of stochastic solution (VSS) provides a quantitative 

easure of the benefits yielded from accounting for uncertainty 

n parameters instead of modeling with their expected values, as 

llustrated by Eq. (12) . It indicates whether it is worth investing 

n formulating and solving a stochastic program (SP) instead of 

 deterministic expected value problem (EVP). For the most part, 

SS has been defined and implemented for two-stage stochas- 

ic optimization problems with exogenous uncertainty ( Birge and 

ouveaux, 2011 ). Lately, the concept has been extended to multi- 

tage stochastic optimization problems with exogenous uncertainty 

 Escudero et al., 2007; Maggioni et al., 2014; Zhang et al., 2018 );

owever, it remains sparsely utilized. To the best of our knowledge, 

o algorithm for calculating VSS has been formally developed for 

tochastic optimization problems with endogenous uncertainty. 

SS = E [ Z EVP ] − Z SP (12) 

We present a shrinking-horizon approach for solving the EVP at 

ach node of the scenario tree for multistage problems. Unlike the 

lassical exogenous case, the main challenge in determining the 

SS for the endogenous case lies in constructing the conditional 

cenario tree based on the investment decisions that control which 

nd when an uncertain source resolves. 

To develop the algorithm, we use a notation independent of the 

otation used in the rest of the paper. Following are the sets and 

arameters utilized in this section: The set of uncertainty sources 

s denoted by I . For the sake of brevity, we assume that each un- 

ertainty source has only one uncertain parameter associated with 

t; however, the algorithm works for sources with multiple uncer- 

ainties as well. Realizations of the uncertain parameter associated 

ith source i form the set R i . Time periods are represented by the 

et T . The last time period is denoted by parameter T . The sce-

ario tree is characterized by ‘layers’ that form the set L , where a

ayer l ∈ L has a set of nodes represented by N l . It is important to

ote that the cardinality of L is always one greater than the car- 

inality of T , i.e., |L| = T + 1 . A node is represented by the pair

l, n ) indicating the layer l it resides in and its specific label n .

he set of children nodes of a node (l, n ) is denoted by C ln , and
he parent node of node (l, n ) resides in layer l − 1 and is denoted

y n̄ ln . The uncertainty sources resolved at node (l, n ) are repre- 

ented by the set I ′ 
ln 
, whereas the set ̃  I ln comprises all uncertainty 

ources resolved prior to node (l, n ) . Lastly, the values of all the

ncertain parameters realized prior to node (l, n ) are contained in 

ector ˆ 
ln . In contrast, the expected values of those yet to be re- 

olved comprises vector 
ln . Fig. 6 illustrates the notation through 

 small example. 

The following formulation represents a general multistage 

tochastic program with endogenous uncertainty: 

Z MSP = min 
x,y 

∑ 

s ∈S 
p s 

∑ 

t∈T 
f t (x ts , y ts , θs ) (MSP) 

subject to g t (x [ t] s , y [ t] s , θs ) ≥ 0 ∀ t ∈ T , s ∈ S 
NACs 

x ts ∈ { 0 , 1 } |I| ∀ t ∈ T , s ∈ S 

here vector x ts comprises binary investment variables for each 

ncertainty source i ∈ I in time period t of scenario s , i.e., x ts =
x 1 ts , . . . , x |I| ts ) . Uncertainty in source i resolves at the beginning
f time period t if x its equals 1. Vector y ts comprises operational 

ariables for time period t of scenario s . Vectors x [ t] s = (x 1 s , . . . , x ts )

nd y [ t] s = (y 1 s , . . . , y ts ) facilitate linking of decisions across time 

eriods. Vector θs contains realizations of all uncertain parameters 

orresponding to scenario s , i.e., θs = (θ1 s , . . . , θ|I| s ) . The probability 
f a scenario s is denoted by p s . Objective Z 

MSP is a probability
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Fig. 6. Illustrating notation using a problem with I = { 1 , 2 } , R 1 = { ̂ θ L 
1 , ̂

 θH 
1 } , R 2 = { ̂ θ L 

2 , ̂
 θH 
2 } , T = { 1 , 2 } . Note that l denotes a layer in the scenario tree. The first time period 

( t = 1 ) spans from l = 1 to l = 2 , and so on. Uncertainty in source i = 1 realizes after investment decisions in the first time period. If θ1 = 
ˆ θ L 
1 then the investment decisions 

in the second time period resolves the uncertainty in source i = 2 ; otherwise, source i = 2 remains unresolved. 
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eighted sum of cost function f t of each time period t in each 

cenario s . The feasible region of the problem is defined by NACs 

nd the constraints on function g t for each time period t . 

In a deterministic setting, an EVP is solved at each node of the 

onditional scenario tree. Due to endogenous uncertainty, model- 

ng and solving the EVP requires us to dynamically construct the 

cenario tree based on the solution obtained at each node (l, n ) .

or this purpose, we define a series of sets and parameters that 

ssist us in constructing the scenario tree. 

The structure of the scenario tree corresponding to layer l + 1 

s a function of the decisions made at the nodes in layer l. At

ode (l, n ) with l ≤ T , we define a set comprising the uncertainty

ources that get resolved after solving node (l, n ) : 

 
′ 
ln := { i : i ∈ I, x ∗itn = 1 , t = l} (F-0) 

As illustrated in Fig. 6 , no investment decisions are made at the 

eaf nodes since they correspond only to the recourse decisions for 

he last time period; thus, I ′ 
ln 

is not defined for l = T + 1 . 

Further, we calculate the number of children nodes of a non- 

eaf node (l, n ) as follows: 

ln = 

{ 

1 if I ′ 
ln 

= ∅ ∏ 

i ∈I ′ 
ln 

|R i | otherwise (F-1) 

here R i denotes the set of realizations of uncertain parameters 

ssociated with source i . 

Using σln , the set containing children nodes of a non-leaf node 

l, n ) can be defined as follows: 

 ln := 

⎧ ⎨ ⎩ 

{ (l + 1 , 1) , . . . , (l + 1 , σln ) } if n = 1 

{ (l + 1 , n ′ ) : n ′ ∈ 

j= n ′′ + σln ⋃ 

j= n ′′ +1 

{ j} , n ′′ = 

n −1 ∑ 

m =1 

σlm } otherwise 
(F-2) 

Further, using the set C l−1 ,n , we define the ordered set N l com- 

rising nodes in layer l of the scenario tree as follows: 

 l := 

{ { 1 } if l = 1 
{ n : (l, n ) ∈ 

⋃ 

n ′ ∈N l−1 

C l−1 ,n ′ } otherwise (F-3) 

Now, let n̄ ln denote the parent node of node (l, n ) in parent 

ayer, l − 1 . Note that when mapping parent to children nodes, we 

an simultaneously map the children to their parent node. Next, 

e define the set of all the resolved uncertain sources prior to 
7

olving a node (l, n ) : 

 
 ln := 

{
∅ if l = 1 

I ′ 
l−1 , ̄n ln 

∪ ̃
 I l−1 , ̄n ln 

if l ∈ L\{ 1 } (F-4) 

The probability of a node (l, n ) is defined as follows: 

p ln = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 if l = 1 
p l−1 , ̄n ln 

if l ∈ L\{ 1 } , I ′ 
l−1 , ̄n ln 

= ∅ 
p l−1 , ̄n ln 

∏ 

i ∈I ′ 
l −1 , ̄n l n 

ϕ( ̂  θ r 
i 
) if l ∈ L\{ 1 } , I ′ 

l−1 , ̄n ln 
� = ∅ ( F − 5 ) 

(F-5) 

here ˆ θ r 
i 
is the realized value of uncertain parameter i , and ϕ( ̂  θ r 

i 
) 

s the probability of realization of ˆ θ r 
i 
. 

Returning to solving the EVP corresponding to the multistage 

roblem (MSP), we present the following deterministic problem to 

e solved at node (l, n ) of the conditional scenario tree: 

Z DP ln = min 
x,y 

∑ 

t∈T 
f t (x t , y t , ˆ 
ln , 
ln ) ( DP ln ) 

subject to g t (x [ t] , y [ t] , ˆ 
ln , 
ln ) ≥ 0 ∀ t ∈ T (13a) 

x it = x ∗it,l−1 , ̄n ln 
∀ i ∈ I, t ∈ T , t ≤ l − 1 (13b) 

y t = y ∗t,l−1 , ̄n ln 
∀ t ∈ T , t ≤ l − 2 (13c) 

x t ∈ { 0 , 1 } |I| ∀ t ∈ T (13d) 

here vector 
ln comprises the expected value of un- 

ertain parameters that are yet to be resolved, i.e., 
ln = 

E [ θi 1 ] , E [ θi 2 ] , . . . ) ∀{ i 1 , i 2 , . . . } ∈ I\ ̃  I ln . The expected value of

ncertain parameter θi , E [ θi ] = 

∑ 

r∈ R i 
ˆ θ r 
i 
ϕ( ̂  θ r 

i 
) . Similarly, vector 

ˆ 
ln comprises the realized values of uncertain parameters already 

esolved, i.e., ˆ 
ln = ( ̂  θi 1 , 
ˆ θi 2 , . . . ) ∀{ i 1 , i 2 , . . . } ∈ ̃

 I ln . To be clear, the
ncertain parameters fixed at node (l, n ) should have realized at 

he nodes in the layers l ′ < l and must lie on the path connecting

ode (l, n ) and the root node. To summarize, the unresolved 

ncertain parameters are fixed to their expected values while the 

esolved uncertain parameters are fixed to their realized values. 

ince we utilize the expected value representation instead of 
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Algorithm 1 Algorithm for Computing the VMSS with Endogenous Uncertainty. 

1: Solve (MSP), get Z MSP 

2: l ← 1 , N 1 ← { 1 } 
3: while l ≤ T + 1 do 

4: for all n ∈ N l do 

5: Get ̃  I ln using ( F-4 ) 
6: Get p ln using ( F-5 ) 

7: θi ← θ i ∀ i ∈ I\ ̃  I ln � Assigning expected values 

8: θi ← 
ˆ θ r 
i 

∀ i ∈ ̃
 I ln � Assigning realizations 

9: x it ← x ∗
it,l−1 , ̄n ln 

∀ i ∈ I, t ∈ T , t ≤ l − 1 � Fixing investment decisions 

10: y t ← y ∗
t,l−1 , ̄n ln 

∀ t ∈ T , t ≤ l − 2 � Fixing operational decisions 

11: Solve (Dp ln ), get Z 
DP 
ln 

, y ∗t , and x 
∗
it 

∀ i ∈ I, t ∈ T 
12: x ∗

itln 
← x ∗

it 
∀ i ∈ I, t ∈ T , t ≤ l � Storing investment decisions 

13: y ∗
tln 

← y ∗t ∀ i ∈ I, t ∈ T , t ≤ l − 1 � Storing operational decisions 

14: Get I′ ln using ( F-0 ) 
15: Get σln using ( F-1 ) 

16: Get C ln using ( F-2 ) 
17: end for 

18: Get N l+1 using ( F-3 ) 

19: l ← l + 1 

20: end while 

21: Z 
DP ← 

∑ 

n ∈ N T+1 

p T +1 ,n Z 
DP 
T +1 ,n 

22: VMSS = Z 
DP − Z MSP 
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cenarios, we no longer need the index s . For the same reason, 

e drop the NACs. Constraints (13b) and (13c) denote fixing of 

ariables from the preceding time periods. The investment and 

perational decisions for a time period t obtained at node (l, n ) 

re denoted by x ∗
itln 

and y ∗
tln 

, respectively. It is important to note 

hat at node (l, n ) , we fix the investment decisions for time period

such that t ≤ l − 1 ; however, we fix the operational decisions 

nly for time period t such that t ≤ l − 2 . For example, in Fig. 6 , at

ode (3,1), we fix x i 2 = x ∗
i 221 

, x i 1 = x ∗
i 121 

∀ i and y 1 = y ∗
121 

. 

The solution obtained from deterministic optimization is the 

robability-weighted average of the leaf nodes’ solutions. Leaf 

odes belong to the layer l = T + 1 . 

 

DP = 

∑ 

n ∈N T+1 

p T +1 ,n Z 
DP 
T +1 ,n 

nce we have the solutions to the stochastic problem and the 

eterministic problem, we can substitute them in Eq. (12) to 

btain the value of stochastic solution for a multistage problem 

VMSS) with endogenous uncertainty. For the detailed algorithm, 

ee Algorithm 1 . 

MSS = Z 
DP − Z MSP 

. Column generation strategy 

The stochastic programming models for large-scale problems 

re, in general, intractable due to a large number of scenarios and 

ACs. This demands the development of a decomposition strat- 

gy that can split the stochastic programming model into several 

maller problems while at the same time preserving the optimal 

olution to the original model. 

If we ignore the NACs (8a) - (8d) , (FS sp ) decomposes into |S| in-
ependent subproblems. Notice that the constraint set (6) holds 

ndividually for each scenario s ∈ S . For a scenario s , let X s := { x s :
6) } be the feasible space of binary variables x s ∈ { 0 , 1 } |T | 

∑ 

k ∈K 
|I k | 

.

he binary restriction on variables x ensures that the set X s has fi- 

ite cardinality N s := |X s | ; hence, we can rewrite X s = { x ∗sc : c ∈ C s } ,
8 
here C s = { 1 , . . . , N s } . The selection of exactly one element (col-

mn) from set X s can then be enforced as follows: 

 kits = 

∑ 

c∈C s 
λsc x 

∗
kitsc ∀ k ∈ K, i ∈ I k , t ∈ T (14) 

∑ 

c∈C s 
λsc = 1 (15) 

sc ∈ { 0 , 1 } ∀ c ∈ C s (16) 

Further, each feasible column x ∗sc is assumed to have an asso- 

iated optimal cost �∗
sc obtained from solving the following opti- 

ization problem: 

∗
sc = min 

y, �,C,P, 
Q,V 

p s 
∑ 

t∈T 
αt 

[∑ 

k ∈K 

∑ 

i ∈I k 

(∫ �ki 

�k,i −1 

f ks (�k ) d �k 

)
x ∗kits 

+ n t 
∑ 

h ∈H t 

∑ 

j∈J 

∑ 

k ∈K 

(
βk jth ρk jt P kths + u k jth (C kts , Q jths , P kths , y kths , . . . ) 

)]

subject to C k 0 s = C k 0 ∀ k ∈ K 
C kts = C k,t−1 ,s + �kts ∀ k ∈ K, t ∈ T 
�kts = 

∑ 

i ∈I k x 
∗
kits 

�ki ∀ k ∈ K, t ∈ T 
�kts ≤ b kt ∀ k ∈ K, t ∈ T 
Q jths = Q jt,h −1 ,s + 

∑ 

k ∈K ρk jt P kths + V jths − d jth ∀ j ∈ J , t ∈ T , h ∈ H t 

Q jtH t s ≥ Q jt0 s ∀ j ∈ J , t ∈ T 
P kths ≤ ηkth C kts ∀ k ∈ K, t ∈ T , h ∈ H t 

g kths (C kts , Q jths , P kths , y kths , . . . ) ≤ 0 ∀ k ∈ K, j ∈ J , t ∈ T , h ∈ H t 

0 ≤ V jths ≤ V max 
jth 

∀ j ∈ J , t ∈ T , h ∈ H t 

Q jths ≥ 0 ∀ j ∈ J , t ∈ T , h ∈ H t 

P kths ≥ 0 , y kths ∈ Z ∀ k ∈ K, t ∈ T , h ∈ H t 

C kts , �kts ≥ 0 ∀ k ∈ K, t ∈ T 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

�

Now that we have the set of Eqs. (14) - (16) that enables us to

elect exactly one column from set X s as well as the cost �∗
sc as- 

ociated with it, (FS sp ) can thus be equivalently written as the fol- 

owing master problem (MP) : 
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MP = min 

λ,z 

∑ 

s ∈S 

∑ 

c∈C s 
λsc �

∗
sc 

subject to 
∑ 

c∈C s 
λsc x 

∗
ki 1 sc −

∑ 

c ′ ∈C s +1 

λs +1 ,c ′ x 
∗
ki 1 ,s +1 ,c ′ = 0 

∀ k ∈ K, i ∈ I k , s ∈ S, s < |S| [ π(1) ] ∑ 

c∈C s 
λsc x 

∗
ki,t+1 ,sc −

∑ 

c ′ ∈C s ′ 
λs ′ c ′ x 

∗
ki,t+1 ,s ′ c ′ ≥ −(1 − z s,s 

′ 
t ) 

∀ k ∈ K, i ∈ I k , (s, s ′ ) ∈ P 
′ , t ∈ T \ { T } [ π(2) ] ∑ 

c∈C s 
λsc x 

∗
ki,t+1 ,sc −

∑ 

c ′ ∈C s ′ 
λs ′ c ′ x 

∗
ki,t+1 ,s ′ c ′ ≤ (1 − z s,s 

′ 
t ) 

∀ k ∈ K, i ∈ I k , (s, s ′ ) ∈ P 
′ , t ∈ T \ { T } [ π(3) ] 

 
s,s ′ 
t + 

∑ 

c∈C s 
λsc x 

∗
riτ sc ≤ 1 

∀ (s, s ′ ) ∈ P 
′ , (r, i ) ∈ D(s, s ′ ) , ∀ τ, t ∈ T \ { T } , τ ≤ t [ π(4) ] 

 
s,s ′ 
t + 

∑ 

(r,i ) ∈D(s,s ′ ) 

t ∑ 

τ=1 

∑ 

c∈C s 
λsc x 

∗
riτ sc ≥ 1 ∀ (s, s ′ ) ∈ P 

′ , t ∈ T \ { T } [ π(5) ] 

∑ 

c∈C s 
λsc = 1 ∀ s ∈ S [ μ] 

sc ∈ { 0 , 1 } ∀ s ∈ S, c ∈ C s 
 
s,s ′ 
t ∈ { 0 , 1 } ∀ (s, s ′ ) ∈ P 

′ , t ∈ T \ { T } 
here binary variable z s,s 

′ 
t corresponds to the Boolean variable Z s,s 

′ 
t 

n (FS sp ) . 

The above formulation is commonly known as a Dantzig-Wolfe 

eformulation, which often serves as the basis of a column gen- 

ration algorithm ( Barnhart et al., 1998; Lübbecke and Desrosiers, 

005 ). Now, the number of variables in (MP) can be extremely 

arge due to the cardinality of X s ; therefore, instead of solving 

MP) , we solve a restricted version of it, (RMP), with only a sub- 

et of columns present, i.e., X s ⊆ X s . The columns to be included 

n (RMP) are determined by solving a set of pricing problems. The 

ricing problem for scenario s is defined as follows: 

s = min 
x,y, �,C,P, 

Q,V 

p s 
∑ 

t∈T 
αt 

[∑ 

k ∈K 

∑ 

i ∈I k 

(∫ �ki 

�k,i −1 

f ks (�k ) d �k 

)
x kits + ( PP s )

n t 
∑ 

h ∈H t 

∑ 

j∈J 

∑ 

k ∈K 

(
βk jth ρk jt P kths + u k jth (C kts , Q jths , P kths , y kths , . . . ) 

)]
−

∑ 

k ∈K, 
i ∈I k 

[ (
π(1) 

kis 
− π(1) 

ki,s −1 

)
x ki 1 s 

] 

−
∑ 

k ∈K, 
i ∈I k , 

t∈T \ { T} 

[ ( ∑ 

(s,s ′ ) ∈P ′ 
π(2) 

kitss ′ −
∑ 

(s ′ ,s ) ∈P ′ 
π(2) 

kits ′ s 
)
x ki,t+1 ,s 

] 

−
∑ 

k ∈K, 
i ∈I k , 

t∈T \ { T} 

[ ( ∑ 

(s,s ′ ) ∈P ′ 
π(3) 

kitss ′ −
∑ 

(s ′ ,s ) ∈P ′ 
π(3) 

kits ′ s 
)
x ki,t+1 ,s 

] 

−
∑ 

τ,t∈T \ { T} , 
τ≤t 

∑ 

(s,s ′ ) ∈P ′ , $ r,i ) ∈D(s,s ′ ) 
π(4) 

ritτ ss ′ x riτ s 

−
∑ 

t∈T \ { T} , $ s,s ′ ) ∈P ′ 
π(5) 

tss ′ 
∑ 

(r,i ) ∈D(s,s ′ ) , 
τ∈T \ { T} ,τ≤t 

x riτ s − μs 

subject to x kits ≤
t ∑ 

τ=1 

x k,i −1 ,τ s ∀ k ∈ K, i ∈ I k \ { 1 } , t ∈ T 
t ∑ 

τ=1 

x kiτ s ≤ 1 ∀ k ∈ K, i ∈ I k , t ∈ T 

x kits ∈ { 0 , 1 } ∀ k ∈ K, i ∈ I k , t ∈ T 
(y, �, C, P, Q, V ) ∈ �

here the dual prices π and μ correspond to the NACs and the 

onvexity constraints in (MP) , respectively. Further, if the reduced 
9 
ost ζs is negative for some vector x ∗s , then it becomes eligible to 

nter the column set X s defining (RMP). 

Once we have the master and subproblems defined, the algo- 

ithm requires solving the relaxation of (MP) , which we denote 

MP-LP). Each iteration of the column generation algorithm in- 

olves solving a linear relaxation of (RMP), which we denote (RMP- 

P), with an updated column set X s from the pricing problems 

olved in the preceding iteration. The mutually independent pric- 

ng problems allow us to solve them in parallel, reducing compu- 

ation time. Since (RMP-LP) contains only a subset of all columns, 

 
RMP-LP is an upper bound ( UB ) to (MP-LP). The lower bound 

 LB ) to (MP-LP) can be shown to be UB + 

∑ 

s ∈S ζs ( Allman and 

hang, 2021 ). 

The iterative column generation procedure continues until the 

ptimality gap drops below the desired tolerance ( ε). If column 

eneration yields an integer feasible solution, then it is the opti- 

al solution to (MP) . However, in the case of fractional decisions, 

nstead of branching, we simply solve (RMP) with the accumulated 

olumns to quickly generate a feasible solution (UB) to (MP) . Also, 

he lower bound to (MP-LP), LB , is a lower bound to the (MP) as

ell, which allows us to compute a rigorous optimality gap for 

MP) . Fig. 7 summarizes the column generation algorithm through 

 flow chart. 

emark 1. Column generation does not require us to solve the 

ricing problems to optimality. A sub-optimal column with a neg- 

tive reduced cost is acceptable. Let LB s be the lower bound asso- 

iated with pricing problem s , then we get a valid lower bound on 

he (MP-LP) as follows: 

 
RMP-LP + 

∑ 

s ∈S 
LB s ≤ v MP-LP ≤ v RMP-LP 

he above technique can speed up convergence, especially if the 

ricing problems are computationally difficult, by quickly generat- 

ng columns that are feasible to the (RMP-LP). However, to prove 

onvergence, we are eventually required to solve the pricing prob- 

ems to optimality. The decision of when to start solving pricing 

roblems to optimality is influenced by factors such as the current 

ap and optimality tolerance, convergence rate, size of (RMP-LP), 

nd iteration limit, to name a few. 

. Computational experiments 

This section evaluates the VMSS on randomly generated in- 

tances to showcase the benefits of modeling uncertainty using 

 stochastic programming framework. Further, an analysis of the 

erformance difference between solving the full-space model and 

olumn generation is presented. All instances were modeled using 

uMP v0.21.10 ( Dunning et al., 2017 ) in Julia v1.6.3 ( Bezanson et al.,

017 ). All instances were solved using Gurobi v9.1.2 ( Gurobi Opti- 

ization, LLC, 2021 ) on the Mangi cluster of the Minnesota Super- 

omputing Institute (MSI) equipped with dual-socket AMD EPYC 

702 64-core processors. The number of cores utilized to solve 

ach instance was set such that complete parallelization could be 

chieved. For all instances solved using the full-space model and 

olumn generation, the optimality tolerance was set to 0.1%. Fur- 

her, a maximum time limit of 10,0 0 0 s was enforced for each 

nstance. To counter the frequently observed tailing-off effect in 

olumn generation, we disabled presolve and crossover functional- 

ty, and solved (RMP-LP) using the barrier algorithm. The capacity 

lanning model used in this section can be found in the supple- 

entary material, Section C. 

We consider instances with varying numbers of scenarios (8, 

6, 32, and 64) and time periods (5, 7, and 9). The 8-, 16-, and

2-scenario instances were generated assuming a single uncertain 

echnology, whereas the instances with 64 scenarios were gener- 

ted assuming two uncertain technologies, each with 8 possible 
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Fig. 7. Flowchart depicting the steps involved in the proposed column generation algorithm ( gap OA = overall feasible solution gap, gap CG = relaxed solution gap at the end of 

column generation, t el = elapsed time, t max = maximum time limit; although not explicitly shown, t el is updated at the end of each iteration). 

l

|
T

a  

s  

t

T

a

i

t

m

s

t

a

e  

i

e

p  

i

u

Table 1 

Distributions used for generating random problem instances. 

Parameter Distribution 

Initial capacity, C k 0 U(4 , 6)10 3 

Incremental capacity, �ki U(4 , 5)10 3 

Initial expansion cost, f k (0) U(4 , 6)10 6 

Production cost, βkth U(4 , 5) 

Initial demand, d̄ 1 U(0 . 8 , 1 . 3)( 
∑ 

k ∈K C k 0 ) 
Final demand, d̄ T U(0 . 5 , 0 . 7)( 

∑ 

k ∈K C k |I k | ) 
Demand, d̄ t for 2 ≤ t ≤ T − 1 U( ̄d 1 , d̄ T ) 

Budget, b kt U(10 , 20) E [ �ki ] 

Discount rate (%) U(2 , 6) 

Purchase/unmet demand cost, γth U(20 , 40)10 3 

c

w

t

a

c

c

earning curves. For each case, the total numbers of technologies, 

K| , and products, |J | , considered were four and one, respectively. 

he number of expansion points was assumed to be the same for 

ll technologies, i.e., |I | k = |I | k ′ ∀ k, k ′ ∈ K, k � = k ′ . In particular, in-
tances with 8, 16, and 32 scenarios have |I| k = 3, 4, and 5, respec-

ively. For the 64-scenario case, for each technology, |I| k equals 3. 
he frequency of representative day in each time period, n t , was 

ssumed to be 365, whereas the number of operational scheduling 

ntervals, |H t | , was assumed to be 24 ∀ t ∈ T . 
Demand data was generated separately for the initial and final 

ime periods according to the distribution in Table 1 . For the inter- 

ediate time periods, representative demand was distributed (and 

orted in an increasing order) between the demand in the first and 

he last time period. Now, since each time period t has |H t | oper- 
tional scheduling intervals, the demand in each h ∈ H t was gen- 

rated from U(0 . 8 , 1 . 15) ̄d t , where d̄ t is the representative demand

n time period t . To mimic the variable availability of renewable 

nergy sources, we consider an availability parameter, ηkth , sam- 

led from U(0 . 8 , 1) , denoting fraction of available installed capac-

ty for technology k in interval h of time period t . The minimum 

p-time and down-time for each technology k was generated ac- 
10 
ording to the discrete distribution U{ 1 , 2 } . The capacity associated 
ith a single unit for each technology k belongs to U(350 , 450) . 

The learning curves for uncertain technologies were generated 

o represent both the high- and low-learning scenarios. For ex- 

mple, a high-learning scenario may correspond to a steep de- 

line in cost initially (as much as 90–95%). Then with further in- 

rease in capacity, the rate of decline gradually reduces (0-60%). 
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 low-learning scenario may correspond to virtually no reduction 

n capacity initially and then a slow decrease (0-30%) with any 

ubsequent expansion. For deterministic technologies, the learning 

urves were generated such that they lie between the high and low 

earning scenarios of the uncertain technology. If the deterministic 

earning curves lie completely above or below the uncertain learn- 

ng curves, that may entirely favor or disregard the expansion of 

ncertain technologies compared to the deterministic technologies, 

aking the decision-making process trivial. This is a close repre- 

entation of a real-world scenario, where a new technology (po- 

entially uncertain) with a cost initially higher than a mature tech- 

ology (deterministic) may either undergo low-learning, in which 

ase it fails to become competitive, or high-learning, in which case 

t eventually replaces the current technology. 

.1. Value of multistage stochastic solution 

For each combination of |S| and |T | , we solve 12 randomly gen-

rated instances. Table 2 summarizes the results for the case with 

ne uncertain technology in terms of the average objective value 

rom the expected value deterministic model (EV), the average ob- 

ective value of the best solution we could find using stochastic 

rogramming (SP), and the mean, minimum, and maximum rela- 

ive VMSS values. 

Stochastic programming clearly outperforms the expected value 

eterministic approach in each case leading to a positive VMSS. We 

bserve an average VMSS in the range ∼3-7 % , which is quite sig-

ificant, especially considering that the cost in long-term capacity 

lanning often amounts to millions or billions of dollars. For in- 

tances with two uncertain technologies ( Table 3 ), we again see 

 considerable improvement in the solution indicated by the rel- 

tive VMSS, further stressing the benefits reaped by modeling un- 

ertainty using the stochastic programming approach. Moreover, on 

verage, the relative VMSS appears to be higher in case of two un- 

ertain technologies compared to only one, indicating a positive 

orrelation between VMSS and the number of uncertain technolo- 

ies. However, we should be cautious about generalizing this cor- 

elation because VMSS is affected by various factors including the 
Table 2 

VMSS statistics for instances with one uncertain and three de- 

terministic technologies. For each combination of |S| and |T | , 12 
random instances were solved. 

Mean obj. ( ×10 6 ) VMSS (%) 

|S| |T | EV SP Mean Min. Max. 

8 5 73,278 70,386 3.91 1.10 6.83 

7 80,603 77,070 4.30 1.12 7.94 

9 82,277 78,973 4.02 1.17 7.15 

16 5 96,229 89,983 6.40 0.88 11.13 

7 81,147 77,032 5.01 1.22 7.21 

9 92,558 88,254 4.62 3.20 8.22 

32 5 98,425 92,382 6.25 2.56 9.18 

7 107,890 103,344 4.30 1.38 9.05 

9 104,050 99,996 4.06 0.47 7.24 

Table 3 

VMSS statistics for instances with two uncertain and 

two deterministic technologies. All instances correspond 

to 64 scenarios resulting from the combination of 8 sce- 

narios from each uncertain technology. 

Mean obj. ( ×10 6 ) VMSS (%) 

|T | EV SP Mean Min Max 

5 79,590 73,406 7.57 4.41 10.28 

7 77,941 73,896 5.23 1.75 9.76 

9 85,336 80,353 5.66 1.11 8.22 
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11 
cenario distribution and actual realizations as well as other deter- 

inistic model parameters. 

.2. Performance analysis: Full-space vs column generation 

Considering the same set of random model instances, we now 

ompare the computational performance between the full-space 

odel and the proposed column generation algorithm. All compu- 

ational statistics are shown in Tables 4 and 5 . 

The first key observation is that, for all cases, on average, the 

est feasible solution obtained using column generation is at least 

s good as the one obtained from the full-space model. The differ- 

nce is especially prominent for larger instances with 32 and 64 

cenarios. The average improvement observed for the 32- and 64- 

cenario instances range from 0.8-89% and 2.7-97%, respectively. It 

s due to this observation that we did not see the need to further 

mplement a branching scheme in the spirit of a branch-and-price 

lgorithm to further reduce the optimality gap. The difference in 

easible solution gaps between the full-space model ( gap ) and col- 

mn generation ( gap OA ) indicates the superiority of column gen- 

ration in producing better feasible solutions. However, it should 

e noted that a lower gap does not necessarily imply a better 

easible solution. For example, for the 8-scenario case, although 

ap < gap OA , column generation produces the same or slightly bet- 

er feasible solutions. 

Secondly, compared to the full-space model, column generation 

anages to solve significantly more instances. In particular, for the 

-, 12-, and 32-scenario cases, on average, the full-space model 

onverged only for ∼2 out of the 12 instances, whereas column 

eneration converged for ∼9 instances. For the 64-scenario case, 

he full-space model failed to solve any instances, whereas column 

eneration converged for 7 out of 12 instances. Although conver- 

ence in the case of column generation does not necessarily guar- 

ntee a feasible solution, it does substantially reduce the overall 

omputation time since the solution time for the final RMP is fairly 

hort. 

Lastly, for the instances that converged, column generation al- 

ays terminates with a sub-10% gap, as indicated by the parameter 

ap OA , which is a significant improvement over the feasible solu- 

ions obtained using the full-space model, again more so for the 

2- and 64-scenario cases. Overall, column generation proves to 

e an efficient decomposition method for solving large instances 

f the proposed multistage stochastic programming model. 

. Industrial case study 

The proposed stochastic programming framework is applied to 

 capacity expansion case study for a network of power genera- 

ion technologies. Specifically, we consider seven technologies and 

ategorize them into three categories – conventional (no cost re- 

uction), deterministic (known learning curve), and uncertain tech- 

ology (uncertain learning curve). Nuclear, coal, combined cycle 

as turbine (CCGT), and open cycle gas turbine (OCGT) are con- 

idered conventional, onshore wind and solar are assumed to be 

eterministic, and offshore wind is assumed to have an uncertain 

earning curve. The planning problem was modeled using JuMP 

0.21.10 in Julia v1.6.3 and was solved using Gurobi v9.1.2. The 

odel and data for this case study are partially adapted from 

euberger et al. (2017) . The model can be found in the supple- 

entary material, Section D. 

The planning horizon spans eight 5-year time periods from 

015 to 2055. The capacity expansion decisions are made at the 

tart of each of these time periods. Each time period comprises a 

epresentative scheduling horizon of 24 hours. Decisions made in 

ach hour of the scheduling horizon include the amount of power 

eneration, number of units to be started or shut down based on 
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Table 4 

Summary statistics highlighting the difference in com putational performance between solving the full-space model and the column 

generation algorithm for one uncertain and three deterministic technologies. ( Obj . = average objective value over the 12 random 

instances, NS = number of instances not solved to 0.1% optimality gap in 10,0 0 0 s, time = average solution time for instances solved 

to 0.1% gap, gap = average optimality gap for instances not solved to 0.1% gap in 10,0 0 0 s, gap CG = average optimality gap for column 

generation for instances not solved to 0.1% gap in 10,0 0 0 s, gap OA = average feasible solution gap for all 12 instances, gap OA = average 

feasible solution gap for instances for which column generation converged.). 

Full-space Column generation 

|S| |T | Obj . ( ×10 6 ) NS gap (%) time (s) Obj . ( ×10 6 ) NS gap CG (%) time (s) gap OA (%) gap OA (%) 

8 5 70,386 7 1.92 752 70,386 0 - 698 5.66 5.66 

7 77,099 7 3.71 2716 77,070 0 - 2233 4.54 4.54 

9 79,017 11 4.46 1154 78,973 0 - 3522 5.23 5.23 

16 5 90,015 12 6.13 - 89,983 0 - 3961 4.85 4.85 

7 77,203 12 7.95 - 77,032 0 - 4704 5.99 5.99 

9 88,805 11 14.22 7247 88,254 7 11.59 5326 12.49 7.26 

32 5 93,129 12 13.49 - 92,382 3 7.86 5648 6.79 5.10 

7 117,678 12 26.33 - 103,344 9 13.78 6230 16.20 9.02 

9 965,473 12 59.84 - 99,996 11 17.39 8006 20.75 9.15 

Table 5 

Summary statistics highlighting the difference in computational performance between solving the full-space model and the 

column generation algorithm for two uncertain and two deterministic technologies. All instances correspond to 64 scenarios 

resulting from the combination of 8 scenarios from each uncertain technology. 

Full-space Column generation 

|T | Obj . ( ×10 6 ) NS gap (%) time (s) Obj . ( ×10 6 ) NS gap CG (%) time (s) gap OA (%) gap OA (%) 

5 75,450 12 13.06 - 73,406 0 - 3882 6.86 6.86 

7 1,015,983 12 59.40 - 73,896 5 7.90 5731 11.60 9.35 

9 3,124,639 12 86.93 - 80,353 9 12.19 5204 15.92 9.56 

Fig. 8. The possible learning curves considered for offshore wind are illustrated on the left. Scenario tree (right) obtained using the stochastic programming approach reveals 

expansion decisions for offshore wind. 
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he minimum up- and down-time of each technology, inventory 

ransfer based on the power generation and the demand satis- 

ed, and so on. Fig. 8 illustrates the eight possible learning curves 

or offshore wind technology and the eventual scenario tree based 

n the expansion decisions made. The scenario tree indicates that 

he offshore wind capacity increases by 2.5 GW in the first time 

eriod; however, as expected, we do not see any further expan- 

ion for the low-learning (high-cost scenarios) case. In contrast, 

or the high-learning (low-cost scenarios) case, the capacity further 

xpands by 5.8 GW in the second time period, resulting in four 

cenario tree nodes. Besides, we obtained an ∼1.7% VMSS, which 

mounts to £2.16 billion savings over the deterministic approach. 

Next, Fig. 9 illustrates the distribution of capacity for all tech- 

ologies during the planning horizon obtained using the determin- 
12 
stic and the stochastic programming approaches. Unlike stochastic 

rogramming, the deterministic approach fails to adapt its deci- 

ions to different learning rates and yields identical decisions un- 

er both the low- and high-learning scenarios, where no further 

nvestment is made in offshore wind. For the rest of this section, 

e will focus on discussing results obtained using the proposed 

tochastic programming framework. Now, compared to the high- 

earning scenario, the low-learning scenario does not favor offshore 

ind expansion. For the low-learning case, the mean installed off- 

hore wind capacity during the planning period is 5 GW, which 

s 75% less than the high-learning case. This reduced capacity ex- 

ansion in offshore wind is compensated by expansions of con- 

entional technologies such as nuclear, CCGT, and OCGT. For exam- 

le, in the low-learning case, nuclear power has a mean installed 
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Fig. 9. Capacity distribution of power generation technologies under low- and high-learning scenarios for the deterministic and stochastic programming approaches. Stochas- 

tic programming furnishes decisions adapted to the low- and high-learning scenarios, whereas deterministic approach fails to adapt and generates identical decisions for the 

two cases. 
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Fig. 10. Offshore wind energy distribution obtained using the stochastic program- 

ming approach during a representative day in 2020 and 2040 under high-learning 

(HL) and low-learning (LL) cases. 

c

i

i

apacity of 13.8 GW, which is 34% higher than the high-learning 

ase. Similarly, in the low-learning case, CCGT and OCGT exceed 

he mean installed capacity in the high-learning case by 4% and 

8%, respectively. 

Further, since installed units of each technology have a finite 

ifetime, in the low-learning case, the minimal expansion of off- 

hore wind results in retiring all its capacity by the end of 2040. 

ote that the expansion decisions are governed not only by the 

xpansion cost but also by the expansion budget, production costs, 

ifetime of each technology, and the time-varying power generation 

apacity. The proposed stochastic programming model effectively 

ntegrates the above factors with the uncertain cost to generate the 

ptimal capacity distribution. 

Now, the available capacity of a technology along with the 

roduction costs directly affect the amount of energy produc- 

ion that can be achieved in any particular hour of the day. 

ig. 10 demonstrates the effect of uncertainty in technology learn- 

ng on the power generation through offshore wind technology 

n two distant time periods. In the case of low-learning, lower 

nstalled offshore wind capacity leads to lower power genera- 

ion. In particular, the mean energy production during the day 

n 2020 is 1475 MWh. Since most offshore wind capacity retires 

y 2040, the mean production reduces by 67% to 492 MWh. On 

he contrary, in the high-learning case, increased capacity expan- 

ion enables higher power generation capability to meet the in- 
13 
reased demand. For example, the mean power generation in 2020 

s 2616 MWh, which further increases by 79% to 4681 MWh 

n 2040. 
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. Conclusions 

In this work, we proposed a rigorous optimization framework 

or a general process network that can be utilized to model en- 

rgy systems containing both renewable and non-renewable tech- 

ologies. We applied stochastic programming to account for the 

ong-neglected aspect of uncertainty in technology learning curves. 

oreover, we developed an algorithm to compute the value of 

tochastic solution in multistage stochastic programming with 

ype-2 endogenous uncertainty. We further developed a decom- 

osition algorithm based on column generation to solve large in- 

tances. Improvement in tractability, especially for instances with a 

arge number of scenarios, and solution quality relative to the full- 

pace model was shown by applying our decomposition algorithm 

o a large set of randomly generated instances. 

The practical applicability of the proposed framework was es- 

ablished through a case study on power capacity expansion. The 

ifference in decisions was discussed primarily through two sub- 

lasses of scenarios, high- and low-learning, also indicating that 

ny solution obtained through a deterministic model, which essen- 

ially operates on the expected value of unrealized uncertain pa- 

ameters, would often be sub-optimal for any perturbation in the 

ssumed deterministic learning curves. Overall, the results demon- 

trate the importance of accounting for endogenous uncertainty in 

echnology learning. 
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