Computers and Chemical Engineering 164 (2022) 107868

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Capacity planning with uncertain endogenous technology learning n

Tushar Rathi?, Qi Zhang®*

Check for
updates

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis MN 55455, USA

ARTICLE INFO

Article history:

Received 2 January 2022
Revised 4 May 2022
Accepted 29 May 2022
Available online 1 June 2022

Keywords:

Multistage stochastic programming
Endogenous uncertainty
Technology learning

Value of stochastic solution
Column generation

ABSTRACT

Optimal capacity expansion requires complex decision-making, often influenced by technology learning,
which represents the reduction in expansion cost due to factors such as cumulative installed capacity.
However, having perfect foresight over the technology cost reduction is highly unlikely. In this work,
we develop a multistage stochastic programming framework to model capacity planning problems with
endogenous uncertainty in technology learning. To assess the benefit of the proposed framework over
deterministic optimization, we apply a shrinking-horizon approach to compute the value of stochastic
solution. Further, a decomposition scheme based on column generation is developed to solve large in-
stances. Results from our computational experiments indicate substantial potential cost savings and the
effectiveness of the proposed decomposition algorithm in solving instances with large numbers of scenar-
ios. Lastly, a power capacity planning case study is presented, highlighting the stochastic optimization’s
ability to anticipate significantly different expansion and production decisions in low- and high-learning

scenarios.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, the unfavorable shift in global cli-
matic conditions has driven us to focus on renewable technology
development to lower carbon emissions. The increasing energy de-
mand has further aggravated the need to look for alternatives to
traditional fossil-based energy sources. However, in addition to de-
veloping new technologies, making them economical as fast as
possible remains a challenging task. In general, the cost of a tech-
nology is a function of several interrelated factors, including pric-
ing and the number of competitors, government regulations and
policies, the scale of production, and demand, to name a few. The
reduction in the cost of a new technology due to these factors is
often termed technology learning.

Of all the stated, the scale of production constitutes a major
driving force for cost reduction in new technologies. One of the
first reported instances of learning effect was in the aircraft in-
dustry (Wright, 1936), where the production cost of an aircraft
was found to decrease with the quantity produced. Additionally,
improved efficiency of workers with repetitive tasks has been ex-
tensively studied in different contexts, which in almost all cases
leads to a reduction in cost/execution time (Wright, 1936; Laffel
et al,, 1992; Sturm, 1999). The type of learning where improved
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efficiency is observed solely by performing the same task repeat-
edly or due to a scale-up in production falls under the category of
learning-by-doing.

The reduction in cost as a function of installed capacity is of-
ten expressed using learning curves, a common way of expressing
technology learning. Lieberman (1984) discusses the concept of a
learning curve and cost-affecting factors in the chemical process-
ing industries. Further, Daugaard et al. (2015) determine the corre-
lation between the size/cost of biorefineries and installed capacity
based on different learning curve models. Besides, learning curves
have been used as a tool to estimate the time for a new technol-
ogy to become cost-competitive. Rubin et al. (2007) utilize learn-
ing curves for cost projection of power plants with carbon capture.
An assessment of solar power cost based on the extrapolation of
the learning curve is presented in Van der Zwaan and Rabl (2003).
Recently, a hybrid approach for estimating the cost of an Nt-of-
a-kind plant (Rubin, 2019) was utilized for estimating future cost
projections of CO, mineralization plants that can potentially help
decarbonize the cement industry (Strunge et al., 2022). A detailed
review of learning curve models and potential areas of application
can be found in Anzanello and Fogliatto (2011).

A less considered aspect is the utilization of learning
curves to make optimal capacity expansion decisions. Heuberger
et al. (2017) account for endogenous technology learning in a
power capacity expansion problem. Chen et al. (2017) present a
dynamic programming framework that integrates learning curves
for making decisions to advance low-carbon fuels. Aliabadi (2020)
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incorporates endogenous technology learning in a model that
outputs optimal capacities and deployment times for coal-based
power plants equipped with carbon capture, utilization, and stor-
age (CCUS) technology. Recently, Bakker et al. (2021) investigate
the effect of incorporating endogenous learning in determining de-
cisions regarding the plugging and abandonment of oil and gas
wells.

Most of the literature on optimization concerning learning
curves assumes that they can be constructed deterministically. His-
torical data is generally used to construct learning curves, which,
in general, could be a useful technique if the data is readily avail-
able as well as reliable. However, the sheer unavailability of data,
the dependence of the learning on the decisions made in real-
time, or the influence of other external factors can make pre-
dicting the learning curve a challenging task. For example, an
unexpected technological breakthrough (exogenous technological
change) could affect how the learning curve will develop. More-
over, government safety regulations, especially in the context of
chemical plants, can hinder the decrease in plant expansion costs.
A discussion of factors affecting learning rates can be found in
Rout et al. (2009). The unpredictability of such factors at the time
of decision-making introduces uncertainty in the learning curve.

It has been observed that the policy decisions made with mod-
els that consider learning curves are often upward biased (antic-
ipating higher learning rate) if the external factors are neglected
(Nordhaus, 2014). The upward bias could lead to sub-optimal or
infeasible solutions that could be detrimental, especially for long-
term planning projects. Moreover, uncertainty in learning rates has
been accounted for, if at all, using methods such as Monte Carlo
simulation (Kim et al., 2012). Even though such methods can pro-
vide valuable insights, their inability to ensure non-anticipativity
demands a more rigorous optimization framework. For this reason,
we explore the feasibility of stochastic programming (Birge and
Louveaux, 2011) in incorporating uncertain learning curves for
multiperiod capacity expansion planning.

In stochastic programming, uncertainty is usually classified as
exogenous or endogenous. The uncertainty not affected by deci-
sions is termed exogenous, whereas the uncertainty affected by
decisions is termed endogenous (Jonsbraten et al., 1998). Endoge-
nous uncertainty is further classified as type-1 and type-2. Type-
1 uncertainty arises when decisions alter the probability distribu-
tion of the uncertain parameters (Ahmed, 2000; Peeta et al., 2010;
Hellemo et al., 2018), whereas type-2 uncertainty affects the tim-
ing of the realization of the uncertain parameters (Goel and Gross-
mann, 2006). For example, the size of an oil reserve and the gas
production rate are only revealed after drilling the reserve (Goel
and Grossmann, 2004; Gupta and Grossmann, 2014). Similarly, in a
pharmaceutical planning problem, the outcome of a clinical trial
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resolves only when the potential drug is subjected to the trial
(Colvin and Maravelias, 2008; 2010). Likewise, in a capacity ex-
pansion problem with an uncertain learning curve, the expansion
cost realizes only when the capacity is actually increased; thus, the
uncertainty in expansion cost classifies as type-2 endogenous. Re-
cently, Zhang and Feng (2020) further refined the type-2 classifi-
cation by differentiating between decision-dependent materializa-
tion (type-2a) and observation (type-2b) of uncertain parameters.
Apap and Grossmann (2017) provide a comprehensive review on
the application of stochastic programming to problems with exoge-
nous and type-2 endogenous uncertainty.

The main contributions of this work, along with the organiza-
tion of the paper, are summarized as follows:

1. In Section 2, we consider endogenous technology learning and
develop a mixed-integer linear programming (MILP) capacity
planning formulation for a general process network compris-
ing a set of processes/technologies and resources. In Section 3,
we propose a stochastic optimization framework to account for
type-2 endogenous uncertainty in technology learning.

2. An algorithm to compute the value of stochastic solution for
multistage problems with endogenous uncertainty is developed
in Section 4. The algorithm is crucial for quantifying the value
of a stochastic optimization framework over a deterministic ap-
proach.

3. In Section 5, we exploit the proposed capacity planning for-
mulation structure to devise an efficient decomposition scheme
based on column generation. The proposed scheme leads to
better feasible solutions and improved computation times.

4. We conduct extensive computational experiments on randomly
generated instances of varying sizes (in terms of the number of
scenarios and the length of the planning horizon) in Section 6.
The effectiveness of the proposed framework and the decom-
position scheme is showcased through the resulting values of
stochastic solutions and improved computational statistics, re-
spectively.

5. In Section 7, we demonstrate the practicability of the proposed
framework through a case study on power capacity planning. In
particular, we highlight the differences in expansion and pro-
duction decisions for low- and high-learning scenarios, empha-
sizing the capability of the proposed framework to produce
sound decisions while ensuring non-anticipativity. Lastly, we
conclude with some final remarks in Section 8.

2. Deterministic model

To capture the interconnectivity of technologies, model their si-
multaneous availability to satisfy product demand, and optimize
their selection for capacity expansion and operations, we consider

k | Process node k € K

@ Resource node j € J

— Resource production by a process
— Resource input to a process
—— Resource output from the network

— Resource input to the network

Fig. 1. (Color online) A general process network comprising a set of processes K (square nodes) and a set of resources J (circular nodes). Production and consumption of
resources by processes are denoted by green and black arrows, respectively. The flow of resources to and from the network are denoted by blue and red arrows, respectively.
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Fig. 2. A log-linear learning curve and its discretization.

a general process network comprising process and resource nodes
as illustrated in Fig. 1. Processes and resources are denoted by
square and circular nodes, respectively. The arcs in the network
denote the directed flow of resources. Process nodes can represent
chemical and manufacturing processes or, generally, technologies.
Resource j e J produced by a process k € K can either serve as
an input resource (denoted by black arrows) to process k' € K\ {k}
or discharged from the process network (denoted by red arrows).
Moreover, a resource can also be purchased or made available from
an outside source (denoted by blue arrows).

We assume that some processes may exhibit the phenomenon
of technology learning. Learning curves are a pictorial depiction of
the concept of endogenous technology learning representing a re-
duction in capital costs due to various factors, including but not
limited to scale-up and R&D investments. In this paper, we focus
on univariate learning curves based on the concept of learning-
by-doing, which, in a production setting, represents cost reduction
due to capacity expansion. Anzanello and Fogliatto (2011) provide a
detailed comparison of various univariate models and discussion of
multivariate models. Amongst the most studied univariate models
for cost prediction is the log-linear model. Fig. 2 shows a typical
deterministic log-linear learning curve illustrating the reduction in
unit expansion cost with cumulative installed capacity. The learn-
ing rate is usually significant during the initial development stages
of a technology or a new plant setup phase, usually with low ca-
pacities. As the technology matures (or the plant is scaled-up), the
learning rate decreases, eventually plateauing towards the end of
its lifetime.

A mathematical representation of a log-linear model is as fol-
lows:

f©) =6 :90(,5)’
Co
- G\, a: . .
or f(G)=06;= 90<6—> (discretized version)
0
where Cy and 6, denote the initial installed capacity and initial
unit expansion cost, respectively. The slope of the learning curve
is controlled by the parameter [ < 0. The unit expansion cost after
the cumulative installed capacity increases to C is denoted by 6. To
maintain tractability, we allow capacity to take only a finite num-
ber of values belonging to the set Z; thus, discretizing the learning
curve as illustrated in Fig. 2. Here, it is important to note that the
unit expansion cost (6;) materializes only when we actually expand
the cumulative capacity to C;. Therefore, the technology learning
curve is endogenous.

The goal is to determine optimal capacity expansion deci-
sions in a long-term planning problem as the resource demand
grows with time. Additionally, the model considers operational
constraints within each time period t; thus, allowing determining

T I ) I B

Planning horizon

L2 - T - ]
+—t —t t

Representative scheduling horizon

Fig. 3. Multiscale time representation, which divides the planning horizon into a
set of time periods, 7, with each time period t € 7 having a representative schedul-
ing horizon #; of length H;.

optimal operational decisions based on factors including each pro-
cess’s available capacity, the demand of resources, up-time/down-
time of units, and so on. To accomplish this goal, we start with
proposing a deterministic MILP model for capacity expansion with
technology learning. In the deterministic model, we assume that
there is no uncertainty, i.e., the learning curve for each process
k € K is known precisely. Also, we use the terms “process” and
“technology” interchangeably from here onwards.

2.1. Capacity expansion constraints

Based on the process network in Fig. 1, we define binary vari-
able x,;, that equals 1 if a process k undergoes capacity expansion
to (at least) the permissible point i € Z in time period t € 7. We
further define the variables C,, and A, representing the cumu-
lative installed capacity and additional capacity installed of a pro-
cess k in time period t, respectively. Then, the following constraints
control the timing and extent of capacity expansion for each pro-
cess in the network:

Cio = Cro Vk e K (1a)

th = Ck,t—l =+ Akt Vk e K.teT (1b)

A= Xt Ari VkeK,teT (1c)
ieZy
Ay < by VkeK,teT (1d)

t
Xiit SZX’“‘,LT VI(GIC,iGIk\{l},tGT (]e)
=1

t
Z Xir < 1
=1

Xii € {0, 1}

VkeK,iecTteT (1f)

VkeK,ieZ,teT (1g)
Ches Age = 0 VkeK,teT (1h)

where C,, denotes the initial installed capacity of process k. The
incremental capacity for process k from point i — 1 to i is denoted
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Unit cost

Additional capacity, @y,

Fig. 4. The cost of expansion for process k from point i — 1 to i is given by the area
under the learning curve. Note that we consider learning as a function of additional
capacity installed over time instead of the cumulative capacity. We do so because
the net capacity may decrease if we allow the capacities to retire after a certain
duration, whereas the additional capacity installed can only increase.

Unit expansion cost

~

A Az Ags
Additional capacity, ®y

Fig. 5. Example of an uncertain learning curve. Each discrete expansion point i acts
as source of uncertainty. In this case, we have two, four, and eight possible unit
expansion costs at i = 1,2, and 3, respectively. Note that this is not a scenario tree
but simply an uncertainty representation; however, it does help in creating scenar-
ios for the overall problem.

by A Constraints (1a)-(1c) together represent the capacity bal-
ance. Constraints (1d) limit the capacity expansion of a process k
by the available budget by, in time period t. Constraints (le) en-
sure that we move in the positive direction on the learning curve
in a sequential fashion, i.e., we can only install additional capacity
corresponding to point i if we have already installed the additional
capacity corresponding to point i — 1. That being said, it does not
restrict installing additional capacities corresponding to both point
i—1 and i in the same time period t, which can be alternatively
interpreted as jumping directly to the point i from any lower ca-
pacity point. Constraints (1f) imply that investment at any point
i € T cannot be made more than once in any time period.
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2.2. Operational constraints

In addition to modeling the capacity expansion decisions, we
further solve an operational problem at the scheduling level. We
select a representative scheduling horizon #; (e.g., a representa-
tive day) for each time period t to facilitate the modeling of time-
varying operation, which is particularly important in systems in-
volving intermittent renewable energy, and we assume that it is
repeated n; times in time period t. As illustrated in Fig. 3, each
H; is of length H; (e.g., H: hours). Different time periods are not
restricted to having scheduling horizons of the same length.

We define variables Q;;;, and Py, to represent the inventory of
resource j and the amount of the reference resource produced or
consumed by process k in interval h of time period t, respectively.
Further, we define a variable Vj;, that denotes the influx of re-
source j in interval h of time period t. It can be used to mitigate
the resource shortage, purchase a resource at a lower price, make
available renewable resources such as biomass, or denote the un-
met demand. Discrete decisions involving the number of operating
units (or units started/shut down) for a process k in interval h of
time period t is represented through variables y,,,. The demand of
resource j in interval h of time period ¢ is denoted by d;y,. Param-
eter pyj; serves as a conversion factor to deduce the amount of re-
source j produced or consumed by process k based on its reference
resource. The fraction of cumulative capacity of process k available
for utilization in interval h of time period ¢ is denoted by 7. It
is particularly useful to model processes with time-varying capaci-
ties, e.g., solar- and wind-based power generation. The operational
decisions can then be modeled using the following constraints:

Qjth=Qjt.n-1+ Z Okt PeentVien—djen VjeJ, teT, het, (2a)
ke

Qjtn, = Qjro VjeJ.teT (2b)

Pkth < n,(ttht Vk e K.teT, he He (ZC)

8ieh Cie» Qjens Peen» Yiens ) <0 VkeK,jeJ.teT heH

(2d)
Ogvjthgvjrgf" VieJ.teT,heH (2e)
Qjin =0 VieJ,teT, heH (2f)
Pen>0 VkeK,.teT, heH (28)
Yien €Z VkeK,t € T,heH (2h)

where constraints (2a) and (2b) denote the inventory balance. Con-
straints (2c) enforce time-varying availability of the installed ca-
pacity for each process k. Constraints (2d) represent the remain-
ing relevant operational constraints. For example, we can constrain
inventory by limiting storage capacity, model mode-based opera-
tions, and model startup and shut down of operations for each
process k, to name a few. Constraints (2e)-(2h) define bounds on
the operational variables.

2.3. Objective function

The capital expenditure (CAPEX) comprises the scaling-up cost
for each process k incurred in each time period t and is repre-
sented as follows:

o _ z;a [ ;C ZI ( A q) Sl @A, e (3)

where o denotes the discount factor for time period t. The learn-
ing curve for process k is encoded in the model as fi,(®;) and
@ = Y i_; Apyr. Note that we make no assumptions on the form
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of the learning curve since the integral term (expansion cost on in-
creasing capacity from point i — 1 to i) is a parameter that can be
pre-calculated in the pre-modeling phase irrespective of the form
of the learning curve (Fig. 4).

The net operating cost (OPEX) can be represented as follows:

=S Y >y <ﬂkjthpkj[1’kzh + Ukjen (Cues Qjens Pecns Yrens - - -)) (4)

teT heHy jeJ ke

where By, represents the unit production cost of resource j
by process k in interval h of time period t. The first term in
Eq. (4) denotes the cost of production, whereas the second term,
u(-), captures the operating cost of specific modes of operation,
utilizing storage, purchasing and discharging resources, tax on
emissions, etc.

The net present cost, CNET, is simply the sum of capital and op-
erating expenditures:

CNET — CCPX + COPX (5)

where the objective is to minimize the net cost for the entire plan-
ning horizon.

The final deterministic capacity expansion problem with tech-
nology learning can be summarized as:

minimize CNET (FSpm)

subject to Eqgs. (1a)-(5).
3. Stochastic programming model

As stated in Section 1, there can be uncertainty in the learning
curve due to lack of historical data, safety regulations and policies,
technological breakthroughs, and other external factors. Moreover,
in a realistic setting, the assumption of a univariate learning curve
rarely holds. Therefore, we need to account for uncertainty in the
learning curve, i.e., we need to consider different scenarios regard-
ing how the learning curve might unfold. Fig. 5 shows an example
of how a learning curve may take different paths as additional ca-
pacity is installed. Again, we consider only a finite number of ex-
pansion points. Also, in this work, we focus on the uncertainty in
the learning curve of expansion cost and hence neglect other po-
tential sources of uncertainty such as demand.

Each possible expansion point acts as a source of uncertainty
(dashed boxes in Fig. 5: represented as i), and the uncertainty in
cost at permissible point i resolves only when we increase the ca-
pacity to point i; therefore, it classifies as a type-2 endogenous
uncertainty. Furthermore, as the uncertainty resolves, our antici-
pation of the learning curve from that point onwards changes too.
In other words, any point of realization (red markers in Fig. 5) can
be thought of as a new starting point. Thus, a new learning curve
unfolds from that point onwards with a different underlying uncer-
tainty. This process continues until we reach the limit of capacity
addition or the planning horizon.

We utilize the concept of stochastic programming to extend the
deterministic model of Section 2 to account for uncertainty in the
technology learning curves. Since our planning horizon spans mul-
tiple time periods, we specifically formulate a multistage stochastic
programming model. Further, the presence of binary capacity ex-
pansion decisions (and likely integer operational decisions) leads
to an MILP model. The specifics of how the deterministic model
is modified to account for uncertainty are discussed in the subse-
quent subsections.

3.1. Scenario feasibility constraints
The core idea in stochastic programming is to account for un-

certainties through scenarios, which in our case are given in the
form of possible learning curves (or a combination of them in case
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of multiple uncertain technologies/processes). Based on this idea,
the stochastic model can be interpreted as a collection of deter-
ministic models, one for each possible scenario s € S. Therefore, we
extend the capacity expansion and operational constraints to each
possible scenario as follows:

Cros = Cro Vk e K
Cies = Cie—1.5 + Des VkeK,.teT
Aes = Y Xiies Mk VkeK,teT
i€Z
Apes < by VkeK.teT
t
Xiies < D Xkiot.rs VkeK,ieZ\(1}.teT
=1

VkeK,ieL,teT

t
Zxkirs =1
=1

. A4
Qjtns = Qith-1s + Y PujePuchs + Viens — djen Vi€ T.t e T.h e Hy ses
kek
Qjths = Qjeos VieJ.teT
Puths < MienCies VkeK.teT, heH
Ziehs Ciess Qjenss Prehs Yienss ---) <0 VkeK.jeJ . teT. heH
0 < Vius < V™ VjieJ.teT.heH
Qjens = 0 VieJ.teT, heH
Piths > 0, Yiehs € Z VkeK.teT,heH
Cies» Ages = 0 VkeK,teT
Xiits € {0, 1} VkeK.ieT,teT
(6)

where all decision variables have the same meaning as in the de-
terministic model; however, here, they are also indexed for each
scenario s € S, ensuring the feasibility of eventual decisions for all
the considered scenarios.

3.2. Non-anticipativity constraints

Now, ensuring the feasibility of decisions for all scenarios is
usually not sufficient. A less intuitive (more so in the case of en-
dogenous uncertainty) but equally important condition is to ensure
equality of decisions for indistinguishable scenarios at all points in
time of the planning horizon. Two scenarios s and s’ are consid-
ered indistinguishable at time t if no uncertain source that dis-
tinguishes the two scenarios has been resolved. To ensure s and
s’ have the exact same capacity expansion decisions implemented
all the way from t=1 to the beginning of time period t+1,
we need additional constraints. These constraints are termed non-
anticipativity constraints (NACs) and link the capacity expansion
decisions for the indistinguishable scenarios. The following rep-
resentation of conditional NACs using disjunctions and logic con-
straints is adapted from Goel and Grossmann (2006).

Xiits = Xpity VS, S €S,s#5 . keK,iel, (7a)
Zs.s’ s , ,
[Xkl.[+1.s t: Xit+1,5' VkeK.ie Zk:| ! [_‘Zr ] vesess Pl T\{T} (7b)
t
A A INGSS) Vs,s' €S, s#5 .t e T\{T} (7¢)
(ri)eD(s,s") | =1
, t
= N\ INGE™) Vs,s' €S, s#5 .t e T\{T} (7d)
(r,i)eD(s,s") | T=1

755 ¢ {true, false} Vs.s'eS.s#s .t e T\{T} (7e)

Since no decision has been implemented at the start of the
first time period, all scenarios are indistinguishable at that point in
time. This condition is enforced in constraints (7a) by the equality
of capacity expansion decisions at the very beginning of the plan-
ning horizon. Disjunctions (7b) impose NACs for each scenario pair
(s,s’) provided that the Boolean variable Zf’sl is true. Constraints

(7¢) and (7d) relate the Boolean variable Zf‘s, with the capacity
expansion decisions for the technologies with uncertain learning
curves, denoted by set R. Specifically, if 8,;; is the uncertainty real-
ization of source (r,i) in scenario s, and D(s,s’) = {(r,i)[re R.ie
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T, Byis # 0,9} 1s the set of sources of endogenous uncertainty that

distinguish scenario s from s’, then Zf’s/ is true if at the end of time
period t, the uncertainty has not realized in any of the uncertain
parameters that belong to the set D(s,s’). It is important to note
here that constraints (7a)-(7e) are a mathematical representation
of the conditional scenario tree, which is a unique characteristic of
stochastic optimization problems with (type-2) endogenous uncer-
tainty.

Now, clearly the set P ={(s,s)|s,s’ € S,s#5} can become
huge as the number of scenarios grows. Consequently, the number
of NACs (7a)-(7e) can become exponentially large. However, usu-
ally, a large fraction of these NACs are redundant. To identify the
redundant scenario pairs, we utilize a polynomial-time exact algo-
rithm discussed in Hooshmand and MirHassani (2016) designed for
the case of pure endogenous uncertainty with an arbitrary scenario
set. Since model reduction is not the focus of this paper, we do not
delve into the details of the NAC reduction method. We refer the
reader to Hooshmand and MirHassani (2016) for the details of the
algorithm.

Let P’ denote the reduced set of scenario pairs, then the re-
duced equivalent of NACs (7a)-(7e) is as follows:

Xkits = Xkils41 VkeK,ieTy,se€S8,s <|S| (8a)

Z?’S/ / / /
. v[=zss"] V(s,s) eP t e T\{T}
[in.r+1.s =Xy VkeK ieTy [ ¢ ]

(8b)
¢
Z?'SI — /\ /\(_'xrirs) V(s s') e Pt € T\{T}
(ri)eD(s,s') | T=1
(8¢)
Zﬁ'S/ € {true, false} V(s,5') e P'.t e T\{T} (8d)

The above modifications preserve the optimal solution of the
original formulation. The reformulation of constraints (8b) and
(8c) to linear constraints is given in Sections A and B of the sup-
plementary material, respectively.

3.3. Objective function

We define CAPEX for each scenario based on the corresponding
capacity expansion decisions as follows:

CEPX = Zar[z > (/(bfd ﬁcs(cbk)dq:'lc)xkits]

teT kek ieZy Pt

Vse s (9)

Similarly, the operational decisions in each scenario determine
the OPEX as follows:

= am Yy >y (ﬂkjmpkapkths + Ujen (Cies» Qjiehs» Prths» Yiehs» - - -))VS €S

teT heH,; jeJ kek

(10)

For each scenario s, the net cost equals the sum of the corre-
sponding CAPEX and OPEX:

CyET _ CSCPX + CSOPX VseS (11)

For the capacity expansion problem with uncertain endogenous
technology learning, the objective is to minimize the expected net
cost over the entire planning horizon; thus, the overall stochastic
optimization problem can be summarized as follows:

minimize Z psCNET
seS

subject to Egs. (6), (8a)-(8d), (9)-(11)
where ps denotes the probability of scenario s.

(FSsp)
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4. Value of stochastic solution for multistage problems with
endogenous uncertainty

The value of stochastic solution (VSS) provides a quantitative
measure of the benefits yielded from accounting for uncertainty
in parameters instead of modeling with their expected values, as
illustrated by Eq. (12). It indicates whether it is worth investing
in formulating and solving a stochastic program (SP) instead of
a deterministic expected value problem (EVP). For the most part,
VSS has been defined and implemented for two-stage stochas-
tic optimization problems with exogenous uncertainty (Birge and
Louveaux, 2011). Lately, the concept has been extended to multi-
stage stochastic optimization problems with exogenous uncertainty
(Escudero et al., 2007; Maggioni et al., 2014; Zhang et al., 2018);
however, it remains sparsely utilized. To the best of our knowledge,
no algorithm for calculating VSS has been formally developed for
stochastic optimization problems with endogenous uncertainty.

VSS = E[ZEVP] — Z%P (12)

We present a shrinking-horizon approach for solving the EVP at
each node of the scenario tree for multistage problems. Unlike the
classical exogenous case, the main challenge in determining the
VSS for the endogenous case lies in constructing the conditional
scenario tree based on the investment decisions that control which
and when an uncertain source resolves.

To develop the algorithm, we use a notation independent of the
notation used in the rest of the paper. Following are the sets and
parameters utilized in this section: The set of uncertainty sources
is denoted by Z. For the sake of brevity, we assume that each un-
certainty source has only one uncertain parameter associated with
it; however, the algorithm works for sources with multiple uncer-
tainties as well. Realizations of the uncertain parameter associated
with source i form the set R;. Time periods are represented by the
set 7. The last time period is denoted by parameter T. The sce-
nario tree is characterized by ‘layers’ that form the set £, where a
layer | € £ has a set of nodes represented by Aj. It is important to
note that the cardinality of £ is always one greater than the car-
dinality of 7T, i.e,, |£] =T + 1. A node is represented by the pair
(I,n) indicating the layer [ it resides in and its specific label n.
The set of children nodes of a node (I,n) is denoted by C,, and
the parent node of node (I, n) resides in layer [ — 1 and is denoted
by 7j,. The uncertainty sources resolved at node (I,n) are repre-
sented by the set Z; , whereas the set 7y, comprises all uncertainty
sources resolved prior to node (I, n). Lastly, the values of all the
uncertain parameters realized prior to node (I, n) are contained in
vector @,. In contrast, the expected values of those yet to be re-
solved comprises vector ©,. Fig. 6 illustrates the notation through
a small example.

The following formulation represents a general multistage
stochastic program with endogenous uncertainty:

ZMP = H)}in Z Ds Z Je (s, Yis, 05) (MSP)
Y seS  teT
subject to g (Xjrjs. Vye)s» 05) =0 VieT,seS8
NACs

xs€{0,1}7 VeeT ses

where vector x;s comprises binary investment variables for each
uncertainty source i € Z in time period t of scenario s, i.e., X¢s =
(X1¢s, - - -» Xj7y¢s)- Uncertainty in source i resolves at the beginning
of time period t if x; equals 1. Vector y;s comprises operational
variables for time period ¢ of scenario s. Vectors xj;; = (Xqs. - - -, Xts)
and Yy = O1s, - - - Yes) facilitate linking of decisions across time
periods. Vector 6; contains realizations of all uncertain parameters
corresponding to scenario s, i.e., s = (0ys, ..., Oj7)5). The probability
of a scenario s is denoted by ps;. Objective ZMSP is a probability
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- — Investment decisions x;; Vi € T
4— Uncertainty in source ¢ resolves if z;; = 1

4— Operational decisions 1/

L= 4— Investment decisions x;5 Vi € 7
4— Uncertainty in source ¢ resolves if z;o = 1
= <{— Operational decisions ¥,
Nl { Lo = @ @32 = (éf‘,ég)
No =1 I3 ={1,2} O11 = (E[61], E[62])
/_\/3 { O = () Oz = O = O33 = (E[f;
7}21 1 1 } @22 = @;%3 = (H{I)
nzp =1 21 — {2} O3 = (91L>92L>

Fig. 6. Illustrating notation using a problem with Z = {1,2}, Ry = {éf, é{"}' Ry = {éZL, 0}"}' T = {1, 2}. Note that | denotes a layer in the scenario tree. The first time period
(t =1) spans from [ =1 to [ = 2, and so on. Uncertainty in source i = 1 realizes after investment decisions in the first time period. If ; = éll then the investment decisions
in the second time period resolves the uncertainty in source i = 2; otherwise, source i = 2 remains unresolved.

weighted sum of cost function f; of each time period t in each
scenario s. The feasible region of the problem is defined by NACs
and the constraints on function g; for each time period t.

In a deterministic setting, an EVP is solved at each node of the
conditional scenario tree. Due to endogenous uncertainty, model-
ing and solving the EVP requires us to dynamically construct the
scenario tree based on the solution obtained at each node (I, n).
For this purpose, we define a series of sets and parameters that
assist us in constructing the scenario tree.

The structure of the scenario tree corresponding to layer [ + 1
is a function of the decisions made at the nodes in layer [. At
node (I,n) with [ < T, we define a set comprising the uncertainty
sources that get resolved after solving node (I, n):
Typi={itiel,x =1t=1}

itn (F'O)
As illustrated in Fig. 6, no investment decisions are made at the
leaf nodes since they correspond only to the recourse decisions for
the last time period; thus, Z is not defined for [ =T + 1.
Further, we calculate the number of children nodes of a non-

leaf node (I, n) as follows:

1 ifz; =0
O, =1 [I IRil otherwise (F-1)
ieI{n

where R; denotes the set of realizations of uncertain parameters
associated with source i.

Using oy,, the set containing children nodes of a non-leaf node
(I, n) can be defined as follows:

(A+1,1), ..., (+1,0)}) ifn=1

-_ j=n"+oi, n-1 _
Cin = {I+1.n):ne U ’ {it.n" = ¥ o,} otherwise (F-2)
j=n"+1 m=1

Further, using the set C;_; ,, we define the ordered set \; com-
prising nodes in layer [ of the scenario tree as follows:

{1} ifl=1
fn:(,n)e U C_1n} otherwise

n'eN;_q

N = (F-3)

Now, let nj, denote the parent node of node (I,n) in parent
layer, [ — 1. Note that when mapping parent to children nodes, we
can simultaneously map the children to their parent node. Next,
we define the set of all the resolved uncertain sources prior to

solving a node (I, n):

~ [} ifl=1
Tni=Ag VT, iflec\(1) (F-4)
The probability of a node (I, n) is defined as follows:
1 ifl=1
1q iflec\{1},Z/ .- =0
Pin = Di 1.1, . . \{ } 1/_14,%l (F _ 5)
pl—1,ﬁm H (P(Gl ) ifl e c\{l}vz[,]ﬁ,n #* 0
€T 1,
(F-5)

where é{ is the realized value of uncertain parameter i, and go(é{)

is the probability of realization of éif.

Returning to solving the EVP corresponding to the multistage
problem (MSP), we present the following deterministic problem to
be solved at node (I, n) of the conditional scenario tree:

Zy = n}in th (¢, Ye. O Opn) (DPy,)
v teT

subject to g (X}, Ve OOy =0 VteT (13a)

X =Xpy 45, VieLteT,t<Il-1 (13b)

Ye=Y{i 14, VEeT.t=<l-2 (13¢)

x {0, 1} VteT (13d)

where vector ®;, comprises the expected value of un-
certain parameters that are yet to be resolved, ie., O, =
(E[6, ). El6;,]....) V{i1.i2,...} €I\Z,. The expected value of
uncertain parameter 6;, E[6;] =), R é{go(é[). Similarly, vector

@m comprises the realized values of uncertain parameters already
resolved, ie., O, = (éh,é,»z, ...) V{iy.i,...} € Z;p. To be clear, the
uncertain parameters fixed at node (I,n) should have realized at
the nodes in the layers I’ < | and must lie on the path connecting
node (I,n) and the root node. To summarize, the unresolved
uncertain parameters are fixed to their expected values while the
resolved uncertain parameters are fixed to their realized values.
Since we utilize the expected value representation instead of
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Algorithm 1 Algorithm for Computing the VMSS with Endogenous Uncertainty.

1: Solve (MSP), get ZMSP
2: 1«1,V < {1}
3: while /| <T+1 do

4 for all n e NV, do

5 Get I, using (F-4)

6: Get py, using (F-5)

7 9[ < él’ Vl € {\-:Z-ln

8 0; < 0] Viely

9 x,-,<—x;‘”_1ﬁl VieZ,teT,t<l-1
10: yf‘_y§171ﬁ| VteT, t<l-2

11: Solve (Dpy,), get ZDP, y;, and x}, VieZ,teT
12: X, <X VieTteT, t<I

13: Vi < ¥t VieZ,teT,t<l-1

14: Get 77y, using (F-0)

15: Get oy, using (F-1)

16: Get (), using (F-2)

17: end for

18: Get N, using (F-3)
19: [ <~1+1

20: end while

=DP
. DP
21: Z° « Z pT+1v"ZT+1,n
neNriq

22: VMSS = Z°" — ZMsP

> Assigning expected values
> Assigning realizations
> Fixing investment decisions

> Fixing operational decisions

> Storing investment decisions
> Storing operational decisions

scenarios, we no longer need the index s. For the same reason,
we drop the NACs. Constraints (13b) and (13c) denote fixing of
variables from the preceding time periods. The investment and
operational decisions for a time period t obtained at node (I, n)
are denoted by x;, and y;,, respectively. It is important to note
that at node (I, n), we fix the investment decisions for time period
t such that t <I—1; however, we fix the operational decisions
only for time period t such that t <[ — 2. For example, in Fig. 6, at
node (3,1), we fix xj = Xf5,;, Xi1 = X}, Vi and y1 =y},

The solution obtained from deterministic optimization is the
probability-weighted average of the leaf nodes’ solutions. Leaf

nodes belong to the layer [ =T + 1.

—DP
DP
zZ = Z Pre1nZriin

neNt.

Once we have the solutions to the stochastic problem and the
deterministic problem, we can substitute them in Eq. (12) to
obtain the value of stochastic solution for a multistage problem
(VMSS) with endogenous uncertainty. For the detailed algorithm,
see Algorithm 1.

VMSS = Z — ZMsP

5. Column generation strategy

The stochastic programming models for large-scale problems
are, in general, intractable due to a large number of scenarios and
NACs. This demands the development of a decomposition strat-
egy that can split the stochastic programming model into several
smaller problems while at the same time preserving the optimal
solution to the original model.

If we ignore the NACs (8a)-(8d), (FSsp) decomposes into |S| in-
dependent subproblems. Notice that the constraint set (6) holds

individually for each scenario s € S. For a scenario s, let X; := {x; :
ITI X 1%l
(6)} be the feasible space of binary variables xs € {0,1} ke« ‘

The binary restriction on variables x ensures that the set X; has fi-
nite cardinality Ns := |Xs|; hence, we can rewrite Xs = {x}, : c € Cs},

where C; = {1,...,Ns}. The selection of exactly one element (col-

umn) from set X; can then be enforced as follows:

Xiits = Z)\‘SCx;Zi[SC VkeK,ie I teT (14)
ceCs

S =1 (15)

ceCs

Asc €{0,1} VYceCs (16)

Further, each feasible column xi. is assumed to have an asso-
ciated optimal cost W;. obtained from solving the following opti-
mization problem:

Dy
W= min ps> o YY" (/ fks(q)k)dq)k)xzns
y,é‘g.l’. Dpig

teT kek ieZy

+ne Z Z Z (ﬂkjfhl)kjfpkrm + Ugjth (Cies» Qjtns» Prehs» Ykehso - - )):|

heH, jeJ kek

subject to Cygs =Cro Vk e K
Cues =Crp1s+ As YkeK, teT
Aps = Yier, Xies i Yk e K, teT
Aps <by VkeK,teT
Qjths = Qje.n-1.5s + 2kex PLkjtPeens + Viens —
Qjtns = Qjros Vje T teT
Puns < ManCies Yk e K.t € T, h e Hy
Ziths Chess Qjnss Peths» Yiehs» ---) <0 VkeK,je T, teT, heH
0<Vigs <VI™ VjeJ teT heh,
Qjins =0 VjeJ.teT. heH:
Peens = 0,Yiens €Z Vke K, t e T,heH
Cus: As =0 VkeK,teT

djp VjeJ.teT heM

&)

Now that we have the set of Eqs. (14)-(16) that enables us to
select exactly one column from set Xs as well as the cost W;. as-
sociated with it, (FSsp) can thus be equivalently written as the fol-
lowing master problem (MP):
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MP H)ann SN eV

se8 ceCs
subject to Y AscXjjyee — D Asi1cXiieare =0
ceCs c'eCsyiq
VkeK,ieTseS8,s<|S| [xM]
Z)““xii‘tﬂ.sc - Z )\S’C'Xlti,ul‘s’c’ >-(1 72?5 )
ceCs c'eCy
VkeK,ie (s,s') e P .t eT\{T} [T@]
Z)‘Sfxii.tﬂ.sc - Z )‘S'C'Xlti,tﬂ.s’c’ = _Zi’s)
ceCs c'eCy
VkeK,ieT (s,8) e P'.t e T\{T} [T®]
Zz’s, + Z)‘SCX:irsc =1
ceCs
V(s,s) e P, (ri) e D(s,8), V.t e T\[T}, T <t [n¥]
t
794 Y Y ke z1 V) ePLteT\T)  [x®)]
(r,i)eD(s,s’) T=1ceCs
D he=1 Vses8 (]

ceCs

Asc €{0,1} VseS,ceCs
25 e{0,1} V(s,5) eP teT\(T}

where binary variable zi*s/ corresponds to the Boolean variable Zf"/
in (FSsp).

The above formulation is commonly known as a Dantzig-Wolfe
reformulation, which often serves as the basis of a column gen-
eration algorithm (Barnhart et al., 1998; Liibbecke and Desrosiers,
2005). Now, the number of variables in (MP) can be extremely
large due to the cardinality of As; therefore, instead of solving
(MP), we solve a restricted version of it, (RMP), with only a sub-
set of columns present, i.e., Xs € X;. The columns to be included
in (RMP) are determined by solving a set of pricing problems. The
pricing problem for scenario s is defined as follows:

Phi
&s = X»}?EEP. DPs Zat |: Z Z (/ fks(q)k)dq)k)xkits + (PPs)
Qv

e Lkekiez, 7 Pki-1

ey Yy (,Bkjmﬂkapkzhs + Ukjen (Cues» Qjens» Prchs Yiehs» ))]

hety jeJ kek

a_ M
-2 [(”kis - ﬂki.s—1>xk“5:|
kek,

i€T),

2) 2) X
Y (X 2o X m e
keK. (s.5")eP! (s".s)eP’
leIk.
teT\(T}

(3) 3) .
- Z [( Z nkit:s/_ Z nkits’s>xk"t+1'sj|

kek, (s.8")eP! (s',s)eP’
€Ty,

teT\(T}

T-tErT\t{T)v (s.s")eP’ $r.i)eD(s.s)
(5)

- Z Ties! Z

teT\{T}.$5.5")eP’ (r,i)eD(s,s'),

TeT\{T}r=t

4) .
ritzss/ XTiTS

Xrits — Ms

t
subject to  Xyis < > Xgi1rs YkeK.ieL\{1}teT

=1

¢
> s <1 VkeKieLteT

=1
Xiies €{0,1} VkeK,ieLi teT
., A,CPQV)eE

where the dual prices @ and g correspond to the NACs and the
convexity constraints in (MP), respectively. Further, if the reduced
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cost ¢ is negative for some vector xi, then it becomes eligible to
enter the column set X5 defining (RMP).

Once we have the master and subproblems defined, the algo-
rithm requires solving the relaxation of (MP), which we denote
(MP-LP). Each iteration of the column generation algorithm in-
volves solving a linear relaxation of (RMP), which we denote (RMP-
LP), with an updated column set X from the pricing problems
solved in the preceding iteration. The mutually independent pric-
ing problems allow us to solve them in parallel, reducing compu-
tation time. Since (RMP-LP) contains only a subset of all columns,
yRMPLP i an upper bound (UB) to (MP-LP). The lower bound
(LB) to (MP-LP) can be shown to be UB+ Y ( <& (Allman and
Zhang, 2021).

The iterative column generation procedure continues until the
optimality gap drops below the desired tolerance (€). If column
generation yields an integer feasible solution, then it is the opti-
mal solution to (MP). However, in the case of fractional decisions,
instead of branching, we simply solve (RMP) with the accumulated
columns to quickly generate a feasible solution (UB) to (MP). Also,
the lower bound to (MP-LP), LB, is a lower bound to the (MP) as
well, which allows us to compute a rigorous optimality gap for
(MP). Fig. 7 summarizes the column generation algorithm through
a flow chart.

Remark 1. Column generation does not require us to solve the
pricing problems to optimality. A sub-optimal column with a neg-
ative reduced cost is acceptable. Let LB be the lower bound asso-
ciated with pricing problem s, then we get a valid lower bound on
the (MP-LP) as follows:

URMP—LP + Zﬁs < vMP—LP < URMP—LP
seS

The above technique can speed up convergence, especially if the
pricing problems are computationally difficult, by quickly generat-
ing columns that are feasible to the (RMP-LP). However, to prove
convergence, we are eventually required to solve the pricing prob-
lems to optimality. The decision of when to start solving pricing
problems to optimality is influenced by factors such as the current
gap and optimality tolerance, convergence rate, size of (RMP-LP),
and iteration limit, to name a few.

6. Computational experiments

This section evaluates the VMSS on randomly generated in-
stances to showcase the benefits of modeling uncertainty using
a stochastic programming framework. Further, an analysis of the
performance difference between solving the full-space model and
column generation is presented. All instances were modeled using
JuMP v0.21.10 (Dunning et al., 2017) in Julia v1.6.3 (Bezanson et al.,
2017). All instances were solved using Gurobi v9.1.2 (Gurobi Opti-
mization, LLC, 2021) on the Mangi cluster of the Minnesota Super-
computing Institute (MSI) equipped with dual-socket AMD EPYC
7702 64-core processors. The number of cores utilized to solve
each instance was set such that complete parallelization could be
achieved. For all instances solved using the full-space model and
column generation, the optimality tolerance was set to 0.1%. Fur-
ther, a maximum time limit of 10,000 s was enforced for each
instance. To counter the frequently observed tailing-off effect in
column generation, we disabled presolve and crossover functional-
ity, and solved (RMP-LP) using the barrier algorithm. The capacity
planning model used in this section can be found in the supple-
mentary material, Section C.

We consider instances with varying numbers of scenarios (8,
16, 32, and 64) and time periods (5, 7, and 9). The 8-, 16-, and
32-scenario instances were generated assuming a single uncertain
technology, whereas the instances with 64 scenarios were gener-
ated assuming two uncertain technologies, each with 8 possible
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Formulate
fullspace (FSsp)

Dantzig-Wolfe
reformulation (MP)

Initialization:
X,VseS
UB < +00,LB + —c0
Elapsed time: tg < 0

Solve RMP-LP

with X, Vs € S
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Infeasible? Yes St
nfeasible?  Stop
No
Update UB :
TUB « RMPLP
Record UB:
|UB — LB]|
gaPpp = W
‘So]ve PP, ‘ ‘Solve PP, ‘ .. ‘Solve PPg
""""""""""""""""""""" ! Record final gap:
8aPos = &aPcc
Solve RMP with X, Vs € S
Update LB:
LB + max{LB,UB + 3" (.} Yes
s€8
Update X, Vs € S NPT Yes A€ {0,1}
G < y————— N
with new columns E4Pco Vs e S,ceCy? °
No
Yes tel < tmax No

Fig. 7. Flowchart depicting the steps involved in the proposed column generation algorithm (gapp,=overall feasible solution gap, gapc=relaxed solution gap at the end of
column generation, t,=elapsed time, tmx=maximum time limit; although not explicitly shown, t. is updated at the end of each iteration).

learning curves. For each case, the total numbers of technologies,
|K], and products, | 7|, considered were four and one, respectively.
The number of expansion points was assumed to be the same for
all technologies, i.e., |Z|;, = |Z|s Yk, k' € K,k # k'. In particular, in-
stances with 8, 16, and 32 scenarios have |Z|; = 3, 4, and 5, respec-
tively. For the 64-scenario case, for each technology, |Z|, equals 3.
The frequency of representative day in each time period, ng, was
assumed to be 365, whereas the number of operational scheduling
intervals, |#;|, was assumed to be 24 Vt € T.

Demand data was generated separately for the initial and final
time periods according to the distribution in Table 1. For the inter-
mediate time periods, representative demand was distributed (and
sorted in an increasing order) between the demand in the first and
the last time period. Now, since each time period t has |#;| oper-
ational scheduling intervals, the demand in each h € H; was gen-
erated from 2/(0.8, 1.15)d;, where d; is the representative demand
in time period t. To mimic the variable availability of renewable
energy sources, we consider an availability parameter, 7, sam-
pled from #/(0.8, 1), denoting fraction of available installed capac-
ity for technology k in interval h of time period t. The minimum
up-time and down-time for each technology k was generated ac-

Table 1

Distributions used for generating random problem instances.
Parameter Distribution
Initial capacity, Cyo U(4,6)10°
Incremental capacity, Ay U(4,5)103
Initial expansion cost, f,(0) U(4,6)106
Production cost, By UuA4,5)

Initial demand,_d1
Final demand, dr

U(0.8,1.3)(Cyex Cro)
U(0.5,0.7) (Ckex Cuyz, )

Demand, d; for 2 <t <T —1 U(dy, dr)
Budget, by, U(10, 20)E[Ag]
Discount rate (%) Uu(?2,6)

Purchase/unmet demand cost, y;;,

(20, 40)103

10

cording to the discrete distribution 2/{1, 2}. The capacity associated
with a single unit for each technology k belongs to ¢/(350, 450).
The learning curves for uncertain technologies were generated
to represent both the high- and low-learning scenarios. For ex-
ample, a high-learning scenario may correspond to a steep de-
cline in cost initially (as much as 90-95%). Then with further in-
crease in capacity, the rate of decline gradually reduces (0-60%).
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A low-learning scenario may correspond to virtually no reduction
in capacity initially and then a slow decrease (0-30%) with any
subsequent expansion. For deterministic technologies, the learning
curves were generated such that they lie between the high and low
learning scenarios of the uncertain technology. If the deterministic
learning curves lie completely above or below the uncertain learn-
ing curves, that may entirely favor or disregard the expansion of
uncertain technologies compared to the deterministic technologies,
making the decision-making process trivial. This is a close repre-
sentation of a real-world scenario, where a new technology (po-
tentially uncertain) with a cost initially higher than a mature tech-
nology (deterministic) may either undergo low-learning, in which
case it fails to become competitive, or high-learning, in which case
it eventually replaces the current technology.

6.1. Value of multistage stochastic solution

For each combination of |S| and |7, we solve 12 randomly gen-
erated instances. Table 2 summarizes the results for the case with
one uncertain technology in terms of the average objective value
from the expected value deterministic model (EV), the average ob-
jective value of the best solution we could find using stochastic
programming (SP), and the mean, minimum, and maximum rela-
tive VMSS values.

Stochastic programming clearly outperforms the expected value
deterministic approach in each case leading to a positive VMSS. We
observe an average VMSS in the range ~3-7%, which is quite sig-
nificant, especially considering that the cost in long-term capacity
planning often amounts to millions or billions of dollars. For in-
stances with two uncertain technologies (Table 3), we again see
a considerable improvement in the solution indicated by the rel-
ative VMSS, further stressing the benefits reaped by modeling un-
certainty using the stochastic programming approach. Moreover, on
average, the relative VMSS appears to be higher in case of two un-
certain technologies compared to only one, indicating a positive
correlation between VMSS and the number of uncertain technolo-
gies. However, we should be cautious about generalizing this cor-
relation because VMSS is affected by various factors including the

Table 2

VMSS statistics for instances with one uncertain and three de-
terministic technologies. For each combination of |S| and |T], 12
random instances were solved.

Mean obj. (x106) VMSS (%)
|S| |T]  EV SP Mean Min. Max.
8 5 73,278 70,386 3.91 1.10 6.83
7 80,603 77,070 4.30 1.12 7.94
9 82,277 78,973 4.02 1.17 7.15
16 5 96,229 89,983 6.40 0.88 11.13
7 81,147 77,032 5.01 1.22 7.21
9 92,558 88,254 4.62 3.20 8.22
32 5 98,425 92,382 6.25 2.56 9.18
7 107,890 103,344 4.30 1.38 9.05
9 104,050 99,996 4.06 0.47 7.24
Table 3

VMSS statistics for instances with two uncertain and
two deterministic technologies. All instances correspond
to 64 scenarios resulting from the combination of 8 sce-
narios from each uncertain technology.

Mean obj. (x106) VMSS (%)
|7l EV SP Mean  Min Max
5 79,590 73,406 7.57 4.41 10.28
7 77,941 73,896 5.23 1.75 9.76
9 85,336 80,353 5.66 1.11 8.22

1
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scenario distribution and actual realizations as well as other deter-
ministic model parameters.

6.2. Performance analysis: Full-space vs column generation

Considering the same set of random model instances, we now
compare the computational performance between the full-space
model and the proposed column generation algorithm. All compu-
tational statistics are shown in Tables 4 and 5.

The first key observation is that, for all cases, on average, the
best feasible solution obtained using column generation is at least
as good as the one obtained from the full-space model. The differ-
ence is especially prominent for larger instances with 32 and 64
scenarios. The average improvement observed for the 32- and 64-
scenario instances range from 0.8-89% and 2.7-97%, respectively. It
is due to this observation that we did not see the need to further
implement a branching scheme in the spirit of a branch-and-price
algorithm to further reduce the optimality gap. The difference in
feasible solution gaps between the full-space model (gap) and col-
umn generation (gapga) indicates the superiority of column gen-
eration in producing better feasible solutions. However, it should
be noted that a lower gap does not necessarily imply a better
feasible solution. For example, for the 8-scenario case, although
gap < gapopa, column generation produces the same or slightly bet-
ter feasible solutions.

Secondly, compared to the full-space model, column generation
manages to solve significantly more instances. In particular, for the
8-, 12-, and 32-scenario cases, on average, the full-space model
converged only for ~2 out of the 12 instances, whereas column
generation converged for ~9 instances. For the 64-scenario case,
the full-space model failed to solve any instances, whereas column
generation converged for 7 out of 12 instances. Although conver-
gence in the case of column generation does not necessarily guar-
antee a feasible solution, it does substantially reduce the overall
computation time since the solution time for the final RMP is fairly
short.

Lastly, for the instances that converged, column generation al-
ways terminates with a sub-10% gap, as indicated by the parameter
gapoa, Which is a significant improvement over the feasible solu-
tions obtained using the full-space model, again more so for the
32- and 64-scenario cases. Overall, column generation proves to
be an efficient decomposition method for solving large instances
of the proposed multistage stochastic programming model.

7. Industrial case study

The proposed stochastic programming framework is applied to
a capacity expansion case study for a network of power genera-
tion technologies. Specifically, we consider seven technologies and
categorize them into three categories - conventional (no cost re-
duction), deterministic (known learning curve), and uncertain tech-
nology (uncertain learning curve). Nuclear, coal, combined cycle
gas turbine (CCGT), and open cycle gas turbine (OCGT) are con-
sidered conventional, onshore wind and solar are assumed to be
deterministic, and offshore wind is assumed to have an uncertain
learning curve. The planning problem was modeled using JuMP
v0.21.10 in Julia v1.6.3 and was solved using Gurobi v9.1.2. The
model and data for this case study are partially adapted from
Heuberger et al. (2017). The model can be found in the supple-
mentary material, Section D.

The planning horizon spans eight 5-year time periods from
2015 to 2055. The capacity expansion decisions are made at the
start of each of these time periods. Each time period comprises a
representative scheduling horizon of 24 hours. Decisions made in
each hour of the scheduling horizon include the amount of power
generation, number of units to be started or shut down based on
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Summary statistics highlighting the difference in computational performance between solving the full-space model and the column
generation algorithm for one uncertain and three deterministic technologies. (Obj.= average objective value over the 12 random
instances, NS=number of instances not solved to 0.1% optimality gap in 10,000 s, time=average solution time for instances solved
to 0.1% gap, gap=average optimality gap for instances not solved to 0.1% gap in 10,000 s, gap.;=average optimality gap for column
generation for instances not solved to 0.1% gap in 10,000 s, gapy,=average feasible solution gap for all 12 instances, gapo,=average
feasible solution gap for instances for which column generation converged.).

Full-space Column generation
ISl |T]  Obj.(x10°) NS gap(%) time(s) ObJ.(x10°) NS Eapcs (%) time(s) Eapos (%)  BaPoa(%)
8 5 70,386 7 1.92 752 70,386 0 - 698 5.66 5.66
7 77,099 7 3.71 2716 77,070 0 - 2233 4.54 4.54
9 79,017 11 4.46 1154 78,973 0 - 3522 5.23 5.23
16 5 90,015 12 6.13 - 89,983 0 - 3961 4.85 4.85
7 77,203 12 7.95 - 77,032 0 - 4704 5.99 5.99
9 88,805 11 14.22 7247 88,254 7 11.59 5326 12.49 7.26
32 5 93,129 12 13.49 - 92,382 3 7.86 5648 6.79 5.10
7 117,678 12 26.33 - 103,344 9 13.78 6230 16.20 9.02
9 965,473 12 59.84 - 99,996 11 17.39 8006 20.75 9.15
Table 5

Summary statistics highlighting the difference in computational performance between solving the full-space model and the
column generation algorithm for two uncertain and two deterministic technologies. All instances correspond to 64 scenarios
resulting from the combination of 8 scenarios from each uncertain technology.

Full-space Column generation
[TI  Obj.(x105) NS gap(%) time(s) Obj. (x105) NS EaPc (%) time(s) aPos (%)  EabPoa(%)
5 75,450 12 13.06 - 73,406 0 - 3882 6.86 6.86
7 1,015,983 12 59.40 - 73,896 5 7.90 5731 11.60 9.35
9 3,124,639 12 86.93 - 80,353 9 12.19 5204 15.92 9.56
3 T T T T 3 T T T T T T T
b
\ NO--0-- 6 --0--0--0--0--0
2.5 E 251 E
— = \
S = \
= Low- A = \
A learning & \
e 2F by 1 c 27 1
9o I K} \
= | . =
E | [High- z i
= | IIearnlng = \
@15+ Y 215t 1
o o .
a —— S~
2 8
o] ) \ N
1t | 1t \G\\\G\ |
S \\\
“§8-E58
= -— - W -
0.5 . , . . . . . 05 . \ \ . . . X
0 25 53 83 11.8 15.8 19.8 23.8 0 1 2 3 4 5 6 7 8

Additional capacity (GW)

Time period

Fig. 8. The possible learning curves considered for offshore wind are illustrated on the left. Scenario tree (right) obtained using the stochastic programming approach reveals

expansion decisions for offshore wind.

the minimum up- and down-time of each technology, inventory
transfer based on the power generation and the demand satis-
fied, and so on. Fig. 8 illustrates the eight possible learning curves
for offshore wind technology and the eventual scenario tree based
on the expansion decisions made. The scenario tree indicates that
the offshore wind capacity increases by 2.5 GW in the first time
period; however, as expected, we do not see any further expan-
sion for the low-learning (high-cost scenarios) case. In contrast,
for the high-learning (low-cost scenarios) case, the capacity further
expands by 5.8 GW in the second time period, resulting in four
scenario tree nodes. Besides, we obtained an ~1.7% VMSS, which
amounts to £2.16 billion savings over the deterministic approach.
Next, Fig. 9 illustrates the distribution of capacity for all tech-
nologies during the planning horizon obtained using the determin-

12

istic and the stochastic programming approaches. Unlike stochastic
programming, the deterministic approach fails to adapt its deci-
sions to different learning rates and yields identical decisions un-
der both the low- and high-learning scenarios, where no further
investment is made in offshore wind. For the rest of this section,
we will focus on discussing results obtained using the proposed
stochastic programming framework. Now, compared to the high-
learning scenario, the low-learning scenario does not favor offshore
wind expansion. For the low-learning case, the mean installed off-
shore wind capacity during the planning period is 5 GW, which
is 75% less than the high-learning case. This reduced capacity ex-
pansion in offshore wind is compensated by expansions of con-
ventional technologies such as nuclear, CCGT, and OCGT. For exam-
ple, in the low-learning case, nuclear power has a mean installed
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Fig. 9. Capacity distribution of power generation technologies under low- and high-learning scenarios for the deterministic and stochastic programming approaches. Stochas-
tic programming furnishes decisions adapted to the low- and high-learning scenarios, whereas deterministic approach fails to adapt and generates identical decisions for the

two cases.

capacity of 13.8 GW, which is 34% higher than the high-learning
case. Similarly, in the low-learning case, CCGT and OCGT exceed
the mean installed capacity in the high-learning case by 4% and
38%, respectively.

Further, since installed units of each technology have a finite
lifetime, in the low-learning case, the minimal expansion of off-
shore wind results in retiring all its capacity by the end of 2040.
Note that the expansion decisions are governed not only by the
expansion cost but also by the expansion budget, production costs,
lifetime of each technology, and the time-varying power generation
capacity. The proposed stochastic programming model effectively
integrates the above factors with the uncertain cost to generate the
optimal capacity distribution.

Now, the available capacity of a technology along with the
production costs directly affect the amount of energy produc-
tion that can be achieved in any particular hour of the day.
Fig. 10 demonstrates the effect of uncertainty in technology learn-
ing on the power generation through offshore wind technology
in two distant time periods. In the case of low-learning, lower
installed offshore wind capacity leads to lower power genera-
tion. In particular, the mean energy production during the day
in 2020 is 1475 MWh. Since most offshore wind capacity retires
by 2040, the mean production reduces by 67% to 492 MWh. On
the contrary, in the high-learning case, increased capacity expan-
sion enables higher power generation capability to meet the in-

13
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Fig. 10. Offshore wind energy distribution obtained using the stochastic program-
ming approach during a representative day in 2020 and 2040 under high-learning
(HL) and low-learning (LL) cases.

creased demand. For example, the mean power generation in 2020
is 2616 MWh, which further increases by 79% to 4681 MWh
in 2040.
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8. Conclusions

In this work, we proposed a rigorous optimization framework
for a general process network that can be utilized to model en-
ergy systems containing both renewable and non-renewable tech-
nologies. We applied stochastic programming to account for the
long-neglected aspect of uncertainty in technology learning curves.
Moreover, we developed an algorithm to compute the value of
stochastic solution in multistage stochastic programming with
type-2 endogenous uncertainty. We further developed a decom-
position algorithm based on column generation to solve large in-
stances. Improvement in tractability, especially for instances with a
large number of scenarios, and solution quality relative to the full-
space model was shown by applying our decomposition algorithm
to a large set of randomly generated instances.

The practical applicability of the proposed framework was es-
tablished through a case study on power capacity expansion. The
difference in decisions was discussed primarily through two sub-
classes of scenarios, high- and low-learning, also indicating that
any solution obtained through a deterministic model, which essen-
tially operates on the expected value of unrealized uncertain pa-
rameters, would often be sub-optimal for any perturbation in the
assumed deterministic learning curves. Overall, the results demon-
strate the importance of accounting for endogenous uncertainty in
technology learning.
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