
PHYSICAL REVIEW B 105, 214521 (2022)

Signatures of Majorana bound states and parity effects in two-dimensional
chiral p-wave Josephson junctions
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We characterize topological features of Josephson junctions formed by coupled mesoscopic chiral p-wave
superconducting islands. Through analytic and numerical studies of the low-lying BdG (Bogoliubov-deGennes)
spectrum, we identify localized MBS (Majorana bound states) nucleated in Josephson vortices by the application
of a perpendicular magnetic field. Additionally, we demonstrate the existence of an extended MBS that is
delocalized around the outer perimeter of the coupled islands, which has measurable consequences on the
Josephson supercurrent and phase dynamics of the junction. In particular, we predict a change in the critical
current diffraction pattern in which the odd integer-flux nodes are lifted in a fermion parity-dependent fashion.
We model the competing stochastic effects of thermal noise and macroscopic quantum tunneling within the RCSJ
framework and show the emergence of a bimodal critical current distribution. We demonstrate that increasing the
parity transition rate suppresses the bimodal nature of the distribution, thus strongly emphasizing the nontrivial
parity dependent nature of the many-body ground state. Finally, we consider a trijunction geometry with three
islands and discuss possible schemes to braid Majorana bound states by moving the Josephson vortices to which
they are bound.
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I. INTRODUCTION

One of the most fascinating possibilities offered by
two-dimensional topological systems is the existence of
exotic fractionalized excitations—anyons—that are neither
fermionic nor bosonic in nature. These excitations may be
classified as Abelian or non-Abelian anyons based on their
exchange statistics and braiding characteristics. Beyond their
fundamental value, non-Abelian anyons are of interest as
potential building blocks for robust, fault-tolerant compu-
tation [1–4]. Breakthroughs in the study of materials that
can host anyons pave the path towards topologically pro-
tected quantum computing. The search for such platforms
has emerged as an exciting nexus between condensed matter
physics, material sciences, engineering, mathematics, as well
as information sciences, promising to usher in an exciting new
era of technology and processing capabilities [5].

In recent times, Majorana bound states (MBS) have
become the leading contenders for the formulation of
topological qubits [6–8]. Rapid developments in topologi-
cal materials, capabilities for growing heterostructures, and
nanowire technology, have resulted in a plethora of designs
and proposals for nucleating and manipulating these low-
lying excitations [6,9–11]. Superconducting nanowires have
received much attention over the last decade as prospective
candidates. Given the current obstacles in the nanowire sys-
tem and the general need for having a selection to choose
from, as with standard qubits, it has become increasingly
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clear that multiple other platforms that can host MBS also
need to be explored [12–14]. Presently, these platforms, in-
cluding the original ν = 5

2 states in fractional quantum Hall
system revisited, as well as lateral Josephson junctions, vor-
tices in iron-based superconductors, and topological Floquet
systems, are being extensively explored in both theory and ex-
periments [9,15–26]. Ascertaining the existence of localized,
controllable MBS and their braiding statistics in any system
would make for a landmark achievement, not only from the
quantum information perspective, but fundamentally in and
of itself.

In particular, lateral Josephson junctions offer a
promising alternative to their nanowire counterparts for
localizing MBS even at low magnetic fields [14,27–30]. To
summarize the key ideas, starting with the proposed setting by
Fu and Kane [27], the principle is to juxtapose appropriate thin
film materials in patterned geometries so as to create networks
of lateral topological Josephson junctions. These junctions
define proximity-coupled channels in which a field-induced
phase winding can nucleate spatially separated Josephson
vortices that host MBS. Pairs of MBS would together host an
electronic state that could be occupied or unoccupied—the
parity qubit. The magnetic field can be adjusted to control
the spacing of the MBS, and applied currents can be used
to manipulate the positions of the MBS by controlling the
phase degree of freedom between the two superconductors.
Such a setup could be realized in a range of systems either
composed of intrinsic topological superconductors or of
superconducting gapped materials in contact with those
possessing a topologically protected gap [31]. Thus, multiple
material platforms and heterostructure configurations have
been proposed as candidates, including proximity-induced
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superconductivity on 2D and 3D topological insulators,
quantum anomalous Hall systems, quantum spin Hall
systems, semiconductor-superconductor interfaces and so
on [9,14,16,17,27,28,32–36].

As with established nanowire geometries, a complete ar-
chitecture has been recently proposed to manipulate the
MBS within a lateral Josephson junction and perform gate
operations including by three authors of this article [36].
Previous work considers an extended junction formed by
S-TI-S heterostructures, which continue to be extensively
studied and characterized via experiments [37,38]. Here, we
turn to the essential task of laying out and analyzing crucial
steps leading to such a functioning device. While several of
these components have been investigated in different con-
texts, our purpose here is to have a focused treatment in the
specific context of lateral junctions, as directly relevant to
current experimental capabilities, including on-going work
[29,30,38–42]. We center our analysis on a simple, mini-
mal model of a lateral topological Josephson junction. We
consider spinless px + ipy superconducting islands separated
by a trivial insulator [6,33,43]. We address two key ques-
tions: (a) In the presence of a perpendicular magnetic field,
where are the MBS precipitated in such systems and what
are the effects of finite size? (b) What are some key signa-
tures of the presence of MBS and associated parity states,
and how can they be experimentally accessed? Additionally,
we propose parity readout schemes and braiding proto-
cols that may be easily adapted across platforms. As with
nanowire geometries, where the very first issue of the zero-
bias conductance peak associated with the Majorana-based
midgap electronic state is itself in question, experimentally
ascertaining any of these steps would constitute a leap in
progress.

Our approach involves considering the lateral junction in
two geometries, as shown in Fig. 1—the two-island geome-
try, with a single junction formed by a trivial conductor (or
trivial insulator with a conducting surface state) between the
topological superconductors, and the three-island geometry,
analogous to the nanowire Y junctions [6]. In the geom-
etry composed of two mesoscopic superconductor islands,
we chart out the nucleation of Majorana bound states as a
function of system parameters, and show delocalization along
the islands’ shared outer perimeter. It must be pointed out
that a similar result was obtained for S-TI-S junctions in
the presence of a perpendicular magnetic field in [44,45].
Here, we show the same for px + ipy junctions and further
propose detection via coupling to quantum dots, a step akin
to measuring zero-bias conductance peaks in nanowires. In
diffraction patterns related to critical current as a function
of applied flux, we demonstrate an electron parity-dependent
node lifting as well as a bimodal switching current distribution
across the junction, reminiscent of the fractional Josephson
effect, which requires quantum coherence and charge e pro-
cesses [46]. We consider three different stochastic processes
that could affect the current and identify regimes in which
the bimodal signature would remain robust. Finally, as the
smoking gun signature of Majorana bound states, we adapt
the nanowire T-junction scheme to the nanowire setting as
a means to perform exchanges that result in non-Abelian
braiding.

FIG. 1. Lateral Josephson junctions composed of px + ipy topo-
logical superconductors (blue slabs) separated by a trivial insulator
(grey slab) in (a) two- and (b) three-island geometries. Spontaneous
chiral subgap Majorana modes (red lines) nucleate around the edges
of the islands, perpendicular to the z axis. Applying magnetic flux
between the islands results in the formation of localized Majorana
bound states (red circles). (a) Quantum dots (yellow blocks) coupled
to the junction can act as detectors of electronic states shared by
Majorana excitation pairs. (b) The Majorana bound states may be
adiabatically exchanged to perform a non-Abelian braiding opera-
tions, e.g., by sequentially applying voltage pulses.

In what follows, we present the model Hamiltonian for
describing the mesoscopic topological superconducting island
setup in Sec. II. We provide a discretized version amenable for
numerical treatment as well as an effective one-dimensional
model that focuses on the low-lying dispersing modes along
the periphery of the islands, which are responsible for the
MBS. For the two-island setting, we obtain the spectrum of
states and pinpoint the modes corresponding to the MBS as a
function of applied flux in Sec. III. We then employ this infor-
mation for obtaining the parity-dependent critical Josephson
current across the junction in Sec. IV. To model the fate of this
current and its bimodal nature in the presence of geometric
capacitance and resistive quasiparticle flow, we employ the
standard RCSJ model, adapted here to account for parity. We
then turn to the three-island geometry in Sec. V to outline the
protocols required for braiding.

II. MODELS

The geometries we consider are all modeled within the
framework of a spinless chiral topological superconduc-
tor [31,47] described by the Nambu-space Bogoliubov-de
Gennes (BdG) Hamiltonian

H =
(− 1

2m∗ ∇2 − μ̃ �̂

�̂† 1
2m∗ ∇2 + μ̃

)
. (1)

The spatially varying electrochemical potential is given
by μ̃(r) = μ(r) −V (r), where V (r) denotes a local
external potential. A representative chiral px + ipy
pairing operator is taken to have the form [47]
�̂ = i�(r)

kF
eiϕ(r)/2(−i∂x + ∂y)eiϕ(r)/2, where ϕ(r) denotes
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the superconducting phase. We also define a velocity by
h̄v(r) = �(r)

kF
. The topological and trivial phases of this

model in the bulk are distinguished by the value of μ̃; the
topological phase has μ̃ > 0 while the trivial phase has
μ̃ < 0. By appropriately choosing the parameters’ spatial
variation in the plane, we can construct different device
geometries.

We first study a Josephson junction of width L formed by
bringing together two mesoscopic px + ipy superconducting
islands separated by a trivial insulator, as shown in Fig. 1(a).
The function μ̃(r) is set to a positive constant μ̃0 within the
islands and to −μ̃0 elsewhere; likewise, �(r) is equal to �0

within the islands and vanishes elsewhere.
We assume that a magnetic field B, applied perpendicular

to the plane, is completely expelled from the islands (zero
London penetration depth). At the same time, the self-field of
the Josephson currents is assumed to be sufficiently small to
prevent the expulsion of field from the junction region separat-
ing the islands; this is known as the short junction limit [48].
The short junction limit can be stated as Jc � �0/2πμ0LW 2,
where �0 = h/2e and the Josephson current density Jc de-
pends on the extent to which the supercurrent is spread out
in the z direction. We expect that a window of supercurrent
values would respect both this limit as well as the quasi-2D
geometry.

The total flux within the junction is uniform and takes the
value � = BLW . In a Landau gauge, the corresponding vector
potential is Ax = 0 and

Ay =

⎧⎪⎨
⎪⎩

− �
2W x � 0

− �
2W + �

W
x
L 0 < x < L

�
2W x � L

. (2)

The ansatz for the superconducting phase ϕ(r) is cho-
sen such that the Landau-Ginsburg supercurrent density
js ∝ ∇ϕ − 2π

�0
A vanishes within the islands. This gives

ϕ(r) =
{

−(
2π �

�0

y
W + φ0

)
/2 x � 0(

2π �
�0

y
W + φ0

)
/2 x � L

, (3)

where φ0 is a parameter describing the interisland supercon-
ducting phase difference at y = 0.

Some of our treatment below involves full numerical
diagonalization in this two-island geometry. We employ a
discretized version of the Hamiltonian on a square lattice with
spacing a,

HD =
∑
i, j

[(4t − μ̃i, j )|i, j〉〈i, j|τz + (|i + 1, j〉〈i, j|Hx

+ |i, j + 1〉〈i, j|Hy + H.c.)], (4)

where

Hx/y = −teiτzθ
x/y
i, j τz − i

h̄vi, j
2a

eiτzϕ
x/y
i, j τy. (5)

Here τx, τy, and τz are Pauli matrices acting in the particle-
hole space, and the hopping parameter takes the standard form
t = h̄2

2m∗a . The superconducting phases ϕx
i, j and ϕ

y
i, j are defined

on the links. Inclusion of the Peierls phases θ x
i, j and θ

y
i, j does

not make a qualitative difference to the structure of the midgap
modes of interest.

As has been well studied [6], the subgap degrees of free-
dom in the junction geometry are chiral Majorana fermions
propagating along the one-dimensional edges of the two is-
lands. To obtain a heuristic understanding of the subgap
spectrum and wavefunctions, we discard the kinetic energy
term in Eq. (1) and project the Hamiltonian to the space
spanned by the chiral Majoranas.

One may use a common coordinate system, denoted here
by s, to obtain the peripheral Hamiltonian [33],

Ĥeff = 1

2

∫
ds (ψL ψR)

(
iv∂s −iW (s)
iW (s) −iv∂s

)
︸ ︷︷ ︸

≡Heff

(
ψL

ψR

)
.

(6)

Here ψL(s) and ψR(s) are Hermitian fields describing the
chiral Majorana fermions confined to the edges of the left and
right islands, respectively. The term W (s) = m(s) cos( φ(s)

2 )
mixes the counterpropagating ψL and ψR in the junction
region, and φ(s) = ϕR(s) − ϕL(s) is the (gauge-invariant)
local superconducting phase difference across the junction
at position s. If one of the islands is made of px − ipy
paired superconductor, the chiral modes copropagate along
the edges of the islands. The mixing term then takes the form
W (s) = m(s) sin( φ(s)

2 ) [33]. Here, we focus on the system
where both islands are composed of px + ipy paired super-
conductors. From Eq. (3),

φ(s) = 2π
�

�0

s − P/2

W
+ φ0. (7)

The tunneling function m(s) vanishes outside the junction
region; for simplicity we take m(s) = m0�(W2 − |s − P

2 |),
where P = 2(W + D) is the perimeter of each island. The
tunneling parameter m0 decreases exponentially with increas-
ing L. Crucial to what follows, we assume that no Abrikosov
vortices penetrate the bulk of either island. Consequently, the
boundary conditions appropriate to ψL and ψR are antiperi-
odic: ψL(s + P) = −ψL and ψR(s + P) = −ψR.

III. LOCATING THE MAJORANAS

The effective one-dimensional model serves well to
provide an immediate characterization of the MBS configu-
rations. In the presence of magnetic flux, a single MBS is
present in each Josephson vortex, that is, at each point in the
junction where the phase difference φ(s) equals an odd mul-
tiple of π . By inspection of Eq. (7), these points are equally
spaced along the junction at sn = P

2 + (n + 1
2 − φ0

2π
)lB, where

lB = W
�/�0

is the magnetic length separating adjacent Joseph-
son vortices.

In the vicinity of the Josephson vortex at sn, to obtain the
form of an isolated MBS, one can linearize the couplingW (s)
in Eq. (6) and solve for the zero-mode operator, [γn, Ĥeff] = 0.
The Majorana bound state thus obtained is

γn =
∫

ds
exp

[ − 1
2

( s−sn
λM

)2]
(
8πλ2

0

)1/4 (ψR + (−1)nψL ), (8)

which satisfies the Hermitian requirement γ †
n = γn. The lin-

earization is valid for this purpose when the localization
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length λM =
√

W v
π (�/�0 )m0

is much smaller than the magnetic
length lB. The total number of MBS is proportional to the
amount of flux penetrating the junction, while the absolute
position of the equally-spaced array of MBS depends on φ0.
The MBS can thus be moved rigidly along the junction by
varying φ0, e.g., by means of applied voltage pulses [36] or by
connecting the two superconductors through a SQUID-based
loop and passing extra flux.

In the context of the finite-size geometries we study,
an interesting feature emerges due to the requirement that
MBS occur in pairs. Whenever there is an odd number
of MBS localized within Josephson vortices, one may ask
where an extra zero mode is located. Similarly to the case
of bound states vortex cores within a single superconduct-
ing island [31,33,47,49], the answer lies in the periphery.
Subgap quasiparticles delocalized around the device’s shared
outer perimeter form a near continuum in which the ener-
getic level spacing is inversely proportional to the linear size
of the device. When the junction contains an odd number
of Josephson vortex-bound MBS and no Abrikosov vortices
pierce the islands themselves, one finds that that this near
continuum contains an additional Majorana zero mode. This
behavior may be established analytically [45]. We remark
that the strictly 2D setup necessitates such a scenario; a sys-
tem of finite thickness could admit a vortex line permeating
through the third dimension, harboring pairs of MBS at the
two ends [50].

To demonstrate these features explicitly, we have carried
out numerical diagonalization of the effective 1D junction
Hamiltonian in Eq. (6). Care must be taken to subtract the
doubled chiral Majorana fermions that appear at momentum
k = π/a when naively discretizing Eq. (6) on a lattice with
spacing a. We elected to Fourier transform Eq. (6) on a
ring and then impose a momentum cutoff |k| < �, where
� 	 λ−1

M to ensure the ability to spatially resolve the low-
energy modes. A sample low-lying mode thus obtained, which
can be interpreted as a hybridized state between a MBS local-
ized within a Josephson vortex and a MBS delocalized around
the periphery, is shown in Fig. 2(a). On continuously tuning
φ0 so that the array of an odd number of vortex-localized
MBS traverses along the junction, we observe a hybridiza-
tion event whenever a vortex-localized MBS approaches the
MBS delocalized around the junction. During the course
of this hybridization, the localized/delocalized MBS pair is
transformed into a single complex fermion having a nonzero
energy inversely proportional to the joint outer perimeter of
the two islands.

The qualitative features of the low-lying subgap states
obtained from the the 1D effective description Eq. (6) are
also borne out by numerical diagonalization of the full 2D
Hamiltonian of Eq. (4), as shown in Fig. 2 for �/�0 � 1. If
φ0 = −π , then the lowest quasiparticle state has zero energy
and is a very weakly hybridized state of two MBS—one
vortex-localized and one delocalized along the perimeter. If
φ0 is increased, the vortex-localized MBS migrates to the
lower end of the junction, whereupon it hybridizes with the
delocalized MBS to form the nonzero energy complex quasi-
particle depicted when φ0 = 0. Further increasing φ0 causes
the reverse process to occur at the upper end of the junction.

FIG. 2. Spectrum and wavefunctions. (a) Weight of the lowest
quasiparticle wavefunction (red) obtained by simulation of the one-
dimensional effective model Ĥeff when �/�0 = 1/2 and φ0 = π ,
exhibiting a MBS localized within the junction and a MBS de-
localized around the islands’ shared perimeter. The line width is
proportional to the square of the wavefunction weight. (Numerical
parameters: W = 40a, D = 20a, L = a, m0 = 10, v = 1/30, energy
scale set by �0). (b) Numerical BdG spectrum as a function of φ0

when � = 1.3�0. (Numerical parameters:W = 1 μm, D = 0.5 μm,
L = a = 0.025 μm, �0 = μ̃ = 100 μeV, m∗ = 0.15me). States in
the shaded regions extend into the bulk of the islands, while those
in the unshaded region are localized within the junction and on
the edges. For the chosen parameters, �∞

0 =
√

3
2 �0 is the islands’

bulk gap in the infinite-area limit. Weights of lowest quasiparticle
wavefunctions (red), corresponding to the red-dotted BdG levels, are
shown superimposed on the junction at various values of φ0. As φ0

increases from −π to 0, a localized/delocalized pair of MBS fuses
into a nonzero-energy complex-fermion quasiparticle.

Apart from the low-lying states bound to the junction and
perimeter, bulk states with support in the islands are present
at energies above the bulk gap. This 2D simulation forms
the basis of our analysis of Josephson currents in the next
section.
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Turning to possible measurements these observations can
lead to, there have been multiple proposals to detect the pres-
ence of MBSs in Josephson junctions in nanowires [46]. Some
proposals attempt to take advantage of the nonlocal parity of
MBS and its manifestation in a number of measurable phys-
ical phenomena [51–54]. Alongside these methods, electron
parity may also be directly detected through quantum dots
and single-electron transistors (SET). In this lateral junction
situation, we remark that signatures in Josephson currents and
single-electron detection are the most basic indicators of the
existence of potential MBSs, similar to nanowire zero-bias
conductance peaks—a necessary but not sufficient condition.
The geometry here also provides a unique setup for observing
the interplay between the MBSs and also with the delocalized
Majorana mode. We thus propose positioning quantum dots
as shown in Fig. 1 as well as over the junction above the
plane of the islands. Voltage pulses can induce MBS pairs
to be driven towards the latter kind of quantum dots. The
parity of the complex fermion state formed by a MBS pair
(occupied or unoccupied) can be determined by measuring
the conductance shift associated with the quantum dot [55].
Likewise, the quantum dots shown in Fig. 1 can register the
parity-based hybridization of an MBS with the delocalized
mode.

IV. PARITY SIGNATURES IN THE CRITICAL
CURRENT DISTRIBUTION

Another signature of Majorana fermion-based parity ef-
fects concerns the behavior of supercurrent flowing across
the junction. In this section, we present a numerical study
of Josephson current in the finite-sized two-island junction
of the previous section. We focus on the critical current—
the maximum bias current at which the voltage remains
zero—and its behavior under various conditions. We predict
MBS-associated bimodality in the critical current diffraction
pattern corresponding to two different values of critical cur-
rent that depend on the parity of the system. Having shown
that there exist two possible values of critical current that
depend on parity, more generally, we demonstrate that the
bimodality can remain detectable even when considering the
effects of dissipation, charging energy, finite temperature,
macroscopic quantum tunneling, and quasiparticle poisoning.
We model the stochastic nature of the associated critical cur-
rent distribution by taking into account temperature-activated
escaping events as well as macroscopic quantum tunneling.
Related universal behavior has been studied both experimen-
tally and numerically, particularly in the context of nanowires
and graphene-based systems [56–61]. The bimodality studied
here can serve as an indicator of the existence of MBS, al-
though it is insensitive to their exchange statistics.

A. Derivation of Critical Current from Energy Spectrum

We first derive the critical current Ic as a function of the
applied flux from the energy spectrum derived in the previous
section, as is standard for any given spectrum corresponding
to a Josephson junction setting [48,62,63]

Ic = max
φ0

{
2e

h̄

∂E

∂φ0

}
, (9)

where E (φ0) is the many-body energy of the two-island device
followed adiabatically as a function of φ0. In the φ0-dependent
ground state,

Egnd(φ0) = −1

2

∑
εn>0

εn(φ0), (10)

where εn(φ0) are the positive quasiparticle energies at φ0

obtained from the numerics of Fig. 2. The energies of higher
states are obtained from Egnd by the addition of one or more
of the εm > 0.

In accounting for finite but small temperature, the question
arises as to which state(s) one should use to evaluate Eq. (9).
First, as the most physically relevant possibility, we propose
that the appropriate state is determined by initializing the
junction in equilibrium with a thermal/particle bath. In the
regime of flux considered here, �/�0 ≈ 1, we may focus on
the two lowest-energy many-body states: the ground state with
energy Egnd(φ0) and the first excited state with energy E1(φ0).
These two states differ by the addition of the lowest-lying
quasiparticle, which as we have seen is associated to the
MBS. Correspondingly, the two states have opposite fermion
number parity. In Figs. 3(a) and 3(b), Egnd(φ0) and E1(φ0) are
depicted by the solid-red and dashed-blue curves, respectively.
We assume that the temperature kBT of the bath is large
compared to the exponentially small hybridization energy of
well-separated MBS [as in the φ0 = −π wavefunction of
Fig. 2(b)], but small compared to the hybridization energy
between the localized and delocalized MBS when they are
brought together to overlap (as when φ0 = 0). For the specific
set of parameters chosen in our simulations, these constraints
can be met if kBT � �0. If �/�0 � 1 as in Fig. 3(a), then
the junction equilibrates to the energetic minimum near φ0 ≈
0. Since E1(0) − Egnd(0) 	 kBT , the equilibrium many-body
state is well approximated by the pure ground state, ignoring
the negligibly small mixture with higher states. Hence we use
Egnd in Eq. (9) to compute Ic at this flux. If �/�0 � 1 as
in Fig. 3(b), then the junction equilibrates to φ0 ≈ π . Since
E1(π ) − Egnd(π ) � kBT , the equilibrium many-body state is
well approximated by the completely incoherent, equiproba-
ble mixture of the ground state and first excited state. Hence
at this flux we obtain two values for Ic with equal probability,
computed by using Egnd or E1 in Eq. (9).

Proceeding in this manner to compute Ic(�), we obtain
the critical current diffraction pattern of Fig. 3(c). Interest-
ingly, the distribution exhibits parity-dependent lifting of the
odd integer nodes as well as parity-independent lifting of
all nodes. At even nodes, in-junction localized MBSs simply
trade places with the MBS delocalized around the perimeter
as a function of phase difference φ0, and no hybridization
takes place. For this reason, we expect no parity dependence
of the critical current near even nodes, though node lifting
is still present. The MBS hybridization at the junction ends
only occurs when the value of the flux is near an odd node of
the diffraction pattern, leading to the parity-dependent node
lifting.

We mention two caveats to the results obtained in
Fig. 3. First, our intent is to show that the two values of
parity-dependent critical current can indeed be discernible
in principle even in the presence of the midgap states
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FIG. 3. Many-body energy of the junction in its φ0-dependent instantaneous ground state (solid red), lowest quasiparticle occupation
above the filled ground state (dashed blue), and similarly occupation of the second-lowest quasiparticle (dotted green) when (a) � = �0 and
(b) � = 1.3�0. In (a), low-temperature thermal equilibrium is achieved in a nondegenerate state at φ0 = 0; in (b), it is achieved in a nearly
degenerate state at φ0 = π . (c) The critical current diffraction pattern splits into parity-dependent branches near odd-integer flux and exhibits
both parity-dependent and parity-independent node lifting. Device parameters chosen as in Fig. 2. The energy axis in (a) and (b) has been
shifted and scaled by E0 = 30 μeV. The critical current in (c) has been scaled by I0 = 40 nA.

characteristic of extended junctions. However, not all param-
eter ranges show a clear splitting. Second, the nodes of the
diffraction pattern are expected to be located at integer values
of �/�0 for large systems. In our numerics, we find the
spacing between nodes to be slightly larger than one flux
quantum, as visible in Fig. 3(c), which we expect to be due
to the small size of our system. In fact, this effect is highly
reduced in simulating physically larger geometries with the
same number of lattice sites, but the parity dependence also
reduces. This observation is indicative that parity dependence
would require geometries employing mesoscopic grains.

In comparing our results to that of the original setting
proposed by Potter and Fu, Ref. [28] predicts a similar
MBS-attributed node lifting in a 3DTI/s-wave heterostruc-
ture. Apart from differences in the considered material and
geometry, our analysis differs from theirs in that ours treats the
occupation of a MBS pair as a long-lived degree of freedom
on the timescale of critical current measurement. We have
found that this leads to additional parity dependence of the
critical current diffraction pattern. Furthermore, the difference
in geometry between our system and that of Potter and Fu
leads to a differing prediction for the MBS-attributed critical
current. In Potter and Fu’s geometry, pairs of MBS on the
top and bottom of the device can hybridize around the ends
of the junction no matter the value of the magnetic flux,
whereas in our analysis this hybridization, and concomitant
parity-dependent current contribution, only occurs near odd
nodes.

To highlight the key result we study here, as exhibited
in Fig. 3, the MBS parity degree of freedom changes the
current-phase relation of the junction. This change is reflected
in the magnitude and shape of the Josephson washboard po-
tential and effectively a parity-dependent critical current. This
dependence can be probed by measuring the distribution of
the transition to the finite-voltage state as the bias current is
increased, manifesting in a bimodal distribution. Observing
this bimodality would make for a prominent and direct indi-
cation of parity-dependent physics, which in this case is tied
to the presence of MBS.

B. RCSJ modeling of stochastic processes

As with conventional superconductors, more detailed and
realistic predictions for critical current distributions can be
generated by taking into account the geometric capacitance
and resistive quasiparticle flow across the junction using the
RCSJ circuit model [48,64–66]. In particular, we aim to ad-
dress the robustness of the critical current bimodality in the
presence of multiple physical processes. Similar studies in
related systems have been carried out by Refs. [46,67]. To this
end we adopt the RCSJ model, in which the ideal Josephson
junction is placed in parallel with a lumped-element capacitor
(capacitance C) and resistor (resistance R). We first provide
a general analysis and expectations for bimodality, adher-
ing to the experimentally viable parameters employed in our
simulations. We then demonstrate the ubiquitous nature of bi-
modality by considering another range of parameters, namely
those that match the order of magnitude critical current pa-
rameters obtained from the energy spectrum in the subsection
above.

In the RCSJ model, the dynamical behavior of φ0 maps
onto that of the position of a particle of mass M = ( �0

2π
)
2
C

subject to a linear damping force having a characteristic
timescale τ = RC and a one-dimensional washboard potential
U (φ0) = E (φ0) − �0

2e Ibiasφ0. The washboard potential can be
tilted by biasing the junction with applied current Ibias. Note
that the washboard potential differs for the different many-
body states (see Fig. 4). The equation of motion describing
this model is

Mφ̈0 = −U ′(φ0) − M

τ
φ̇0. (11)

Here, an overdot denotes differentiation with respect to time,
and a prime denotes differentiation with respect to φ0. At
time t = 0, Ibias = 0 and one assumes φ0 is trapped in a
minimum of the washboard potential. Upon ramping Ibias, as
it approaches the critical value Ic the local minimum ofU (φ0)
vanishes, φ0 escapes to a running state with nonzero φ̇0, and
the junction develops a finite voltage V ∝ φ̇0 according to
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FIG. 4. Depiction of the two tilted washboard potentials differ-
entiated by their associated parities and various stochastic processes
that could act on a state that is initially at a minimum of the potential
in the RCSJ model. Such a state could undergo macroscopic quantum
tunneling at rate �MQT or undergo thermally-activated escape over
the energy barrier energy Eb at rate �TA.

the Josephson relation. This is the behavior expected from
Eq. (11) in its overdamped regime in which Q ≈ ω0RC > 1,
where ω0 denotes the oscillation frequency of the unbiased
washboard potential. Here, the experimentally measurable
critical current Ic is obtained as the value of Ibias at which the
junction develops a finite voltage.

The situation here warrants the further inclusion of three
stochastic effects. We introduce a rate �TA for thermally-
activated escape from the washboard potential minimum and
a rate �MQT for macroscopic quantum tunneling through the
potential barrier. In the low-damping regime relevant to our
devices, the thermal activation rate can be determined in a
saddle-point approximation to have the Arrhenius form [46]

�TA = ωp

2π
e−Eb/kBTeff . (12)

Here ωp

2π
is as an attempt frequency, and Eb is the barrier height

for escape from the well. These depend implicitly on Ibias. The
temperature Teff parametrizing thermal noise can in principle
exceed the device temperature T , e.g., if the external leads
are at a higher temperature than the device itself. For macro-
scopic tunneling we use the expression derived by Caldeira
and Leggett [68,69],

�MQT = ωp

2π

[
120π

(
7.2Eb

h̄ωp

)]1/2

(13)

× exp

[
−7.2Eb

h̄ωp

(
1 + 0.87

τωp

)]
. (14)

The third effect is the parity transition rate �P charac-
terizing changes in the parity state of Majorana pairs. This
could arise from effects such as quasiparticle poisoning of
the low-lying modes that can trigger a transition between the
washboard potentials of the ground and first excited many-
body states.

To generate the probability distribution for the critical cur-
rent Ic, as resulting from the inclusion of stochastic effects,
we discretize time and numerically simulate many trials of a

switching current measurement in which Ibias(t ) = İbiast with a
constant ramping speed İbias. At t = 0, the washboard poten-
tial is initialized in accordance with the �-dependent nature
of the equilibrium many-body state discussed above. In the
absence of parity transitions, at each time step t → t + dt , the
combined escape probability (�TA + �MQT)dt is compared
with a random number to decide whether the junction switches
to its resistive regime, in which case Ic is recorded and the
simulation loop is terminated. In most cases, the transition
is dominated by thermal activation at high temperatures and
MQT at low temperatures, with a crossover temperature at
which both are significant. To include the effects of parity
transitions, �Pdt is used to decide whether the washboard
potential undergoes a transition between the two parity states
as the bias current is swept. This has the effect of modifying
the critical current distribution, in general shifting it to lower
currents.

Our treatment of px + ipy superconductor devices is not
based on a particular physical system or geometry. However,
based on the material geometry and motivated by measure-
ments we have made on the different but related S-TI-S lateral
junction system implemented with Nb as the superconduc-
tor and Bi2Se3 as the topological insulator, we can expect
Josephson junction critical currents of order 1 μA, junction
resistances of 10 − 100 �, and lateral junction capacitances
of 0.1 − 10fF . We can also estimate the size of the critical
current carried by Majorana states in the junction, which sets
the scale for the splitting of the parity state, a quantity measur-
able in the S-TI-S system as the lifting of odd-numbered nodes
in the modulation of critical current with applied magnetic
field. Using these parameters, we can calculate the expected
critical current distribution for transitions dominated by ther-
mal activation (TA), macroscopic quantum tunneling (MQT),
or with both significant near the crossover between TA and
MQT. We can also include the effects of Majorana pair parity
transitions that occur during the measurement.

As a means of calibrating the associated parameter
regimes, Fig. 5(a) plots simulated critical current distribu-
tions for C = 1fF , R = 10 �, deterministic critical current
IC_max = 1 μA, ramp rate at 100 μA/s based on the TA or
MQT rate. Note that critical current distribution resulting
from the inclusion of stochastic effects can differ signifi-
cantly from the deterministic critical currents (IC_max). By
comparing the plots at T= 100 mK, 155 mK, 200 mK, and
300 mK, we show that the crossover from MQT-dominated to
TA-dominated transition from the Josephson washboard well
as the temperature increases. The critical current distribution
generated by MQT does not change with temperature, while
the distribution generated by TA is sensitive to temperature
changes. We find at crossover temperature T = 155 mK the
critical current distribution generated by MQT and TA over-
laps, where both mechanisms contribute. As also shown in
the same figure, the critical current distributions by MQT
and TA have quite different shape, where the MQT one is
much sharper than the TA ones. The distribution at crossover
temperature has a shape from the mix of both mechanisms.
Hence by observing the shape of the critical current distribu-
tion of a Josephson junction, we can tell if it is dominated
by either TA or MQT mechanisms at a certain temperature.
Figure 5(b) shows the expected TA-MQT crossover tempera-
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FIG. 5. Calibration of different regimes in regular junctions,
which do not have parity effects (a) Simulations of the critical current
distributions for TA and MQT at different temperatures. The tem-
perature T = 155 mK is the crossover temperature at which the TA
and MQT distributions overlap. (b) The TA-MQT crossover temper-
ature as a function of resistance for different values of the junction
capacitance.

ture as a function of junction resistance for different values
of the junction capacitance, obtained at temperature when
TA and MQT critical current distributions overlap. Lower
capacitance, corresponding to a smaller mass in the Josephson
washboard potential, enhances the MQT rate and raises the
crossover temperature; lower junction resistance resulting in
damping of the Josephson phase dynamics suppresses MQT
and lower the crossover temperature.

In Fig. 6, assuming the same parameters as the previ-
ous paragraph, we show the effect of parity fluctuations that
induce premature transitions from the washboard well. In
Fig. 6(a), the critical current distribution is simulated at T =
200 mK above the TA-MQT crossover temperature, such that
the system has a TA-dominated transition. In the presence
of MBS parity fluctuations, the distribution is bimodal. With
critical current IC splitting equal to the difference in the critical
currents of the two MBS states (the splitting is assumed 5%
of IC in the simulation). During the bias current sweep in the
simulation, we allow the MBS parity states to fluctuate at a

FIG. 6. Evolution of critical current distribution and parity-based
bimodal peaks for a range of parameters. Plots show distributions
with IC_max = 1 μA and different parity transition rates: (a) T =
200 mK, TA-dominated regime, (b) T = 100 mK, MQT-dominated
regime

fixed average rate in time and assume both parity states appear
at equal chances. Hence at a certain time point the Josephson
junction will have different TA rates based on the different
split IC from the MBS parity state. For low parity transition
rate, the double peaks IC distribution reflects that the system
has the random initial parity state that persists throughout the
bias current sweep. As the parity transition rate increases, the
parity has a chance to switch into the lower parity state during
the bias current sweep, and this induces immediate transitions
from the washboard well at currents intermediate between the
two parity states. We show the evolution of the shapes of the
distributions as a function of the parity rate. The significance
of this dependence is that it shows direct evidence for the par-
ity degree of freedom generated by the Majorana bound states
and enables a way to determine the parity transition rate from
experiments. Similarly we plot the critical current distribution
in MQT regime as shown in Fig. 6(b) for T = 100 mK. In the
MQT regime, the double peaks feature becomes much sharper
than the TA regime, and again the shape of the distribution
evolves as the parity transition rate changes.

We note that this qualitative behavior can be observed for
a large range of parameters. For example, for the system
in consideration here, it is possible that the critical currents
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FIG. 7. Evolution of critical current distribution and parity-based
bimodal peaks for a second range of parameters. Plots show dis-
tributions with IC_max = 10 nA and different parity transition rates:
(a) junction switches through TA at T = 10 mK (b) junction switches
through MQT

achievable in a proximity coupled px + ipy superconductor
junction could be very small, perhaps in the nanoampere
range, which would be measurable only at ultralow temper-
atures. This range is consistent with the scale derived from
the tight-binding model in the previous subsection. However,
in our simulations we see that the bimodal signatures for
Majorana parity states and parity fluctuation effects do persist
and thus offer a robust approach to probe Majorana physics in
topological systems.

To demonstrate this persistence, we show in Fig. 7
simulations of the critical current distributions for these ex-
treme conditions consistent with small critical current and
parity splittings, choosing a junction with a critical cur-
rent 100 x smaller, IC_max = 10 nA, and a resistance 10 x
larger, R = 100 �. The capacitance remains the same, C =
1fF , consistent with a lateral Josephson junction between
proximity-coupled superconducting islands. Last we assume
the MBS parity states cause 10% splitting of critical current.
We show the distribution that would arise for dominance of
thermal activation processes at T = 10 mK and for MQT
for parity transition rates of 0 Hz, 1 kHz, and 10 kHz. The
qualitative nature of the distributions persists and provides a
path to measure the parity lifetime.

We note that there could be additional considerations in
systems with low critical currents measured at ultralow tem-
peratures. In this regime, we expect that the equiprobable
mixed initial state might no longer be prepared by thermal
equilibration. In principle, the mixed initial state could be
prepared by induced parity processes before each trial. These
processes could involve controlled quasiparticle current in-
jection, or tunneling from a voltage-tuned quantum dot into
a localized MBS, which could in turn be moved into the
tunneling regime via flux manipulation.

The RCSJ treatment presented here is general to parity-
dependent switching current. The exact experimental param-
eters naturally depend on specific experimental geometries.
Our results here are proof-of-principle that these bimodal cur-
rent distributions are a consequence of parity and are expected
to be robust within reasonable parameter ranges.

V. TRIJUNCTION AND BRAIDING

A crucial aspect of Majorana physics is the ability for
MBS to be braided via exchange. This leads to non-Abelian
rotations in the basis of two-qubit parity states, an operation
that is fundamental to the design of logical gates in any quan-
tum computation platform [5]. These processes have been
extensively analyzed in the T or Y junctions in nanowire
systems [6,27]. While manipulating the position of Majo-
rana states in nanowires requires gating to move the interface
between topological and trivial regimes, the MBS in the lat-
eral Josephson junctions considered here are bound to the
Josephson vortices and can be easily moved by adjusting the
phases in the junctions by currents and voltages. A possible
trijunction geometry is shown in Fig. 1, consisting of uniform
channels between three superconducting islands. Magnetic
field applied to the device creates a gradient in the phase
across the junctions, which results in the entry of Josephson
vortices and MBS bound to them into the junction. In the
absence of external biases, the Josephson vortices/MBS are
symmetrically located in the junctions, spaced by one flux
quantum. By adjusting the relative phases between the islands,
the bound states may be moved along the junction. We note
that Ref. [44] proposes a probe of non-Abelian statistics in a
closely related system.

The change in the phase and subsequent movement of
the MBS can be achieved in two ways: (1) By applying a
current that exceeds the critical current, the junction can be
driven into the normal state in which there is a finite voltage
across the junction. This causes the phase to wind in time
according to the Josephson relation,V = (h̄/2e) ∂φ

∂t and moves
the Josephson vortices and MBS linearly in time. By applying
appropriate voltage pulse sequences, we can manipulate the
MBS positions. (2) By applying a dc supercurrent through
the junction to create static phase difference. By shunting the
junction with a superconducting inductor, any phase differ-
ence can be generated, not limited by the critical current of
the junction, and the position of the Josephson vortices and
MBS can be continuously controlled. Each of these schemes
has advantages. The first approach allows measurements of
the junction critical currents and can utilize the established
technology of RSFQ (rapid single flux quantum) pulse
technology common in digital Josephson junction circuits.
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FIG. 8. Three-step operation to affect a braiding exchange of the
Majorana states shown in blue and green via a sequence of single-
flux quantum voltage pulses that move the host Josephson vortices.

However, because the junctions are driven into a finite-voltage
state, quasiparticles may be generated that could enhance
parity fluctuations via quasiparticle poisoning. The second
approach avoids this problem because the junctions are never
driven into a finite voltage state, avoiding quasiparticle pro-
duction. However, this is at the expense of shorting the entire
circuit with superconductors, making it more difficult to track
the location of the vortices via transport measurements and
instead requiring phase-sensitive SQUID measurements or
scanning probe microscopies.

Here, we focus on the voltage pulse scheme. We can per-
form an exchange as shown in Fig. 8. As defined also in
Fig. 1(b), let the horizontal junctions be along the x axis,
the vertical junction along the negative y axis and the point
of conjunction be the origin. We can parametrize the gauge-
invariant phase difference across the junctions in the presence
of an applied vertical magnetic field as ϕBA(x) = φ0,BA − Fx,
ϕAC (x) = φ0,AC + Fx and ϕCB(y) = φ0,CB − Fy. Here, φ0,IJ is
the phase difference at the origin for the junction between
islands I and J, and F = 2π

W
�IJ
�0

is the magnetic flux per length
threading each junction.

Now, to provide a specific scheme for enabling such an
exchange, let us say a voltage pulse of amplitude V is ap-
plied for a time �t on the island B relative to islands A and
C. This causes the phases to evolve in time in the AB and
BC junctions according to the Josephson relation, with φ0,BA

being modified to φ0,BA + 2e
h̄ V�t and φ0,CB being modified to

φ0,CB − 2e
h̄ V�t . This causes the position of all of the Joseph-

son vortices and the Majorana states bound to them in the AB
and BC junctions to move by a distance + 2e

h̄
V�t
F . In particular,

if V�t = �0, each Majorana/Josephson vortex moves by the
vortex spacing. This can be achieved experimentally by apply-
ing pulses of magnitude V ≈ 1 μV and duration �t ≈ 1 ns.
Repeating this operation by applying a voltage pulse to island
A and then island C, we can achieve the exchange of the two
Majoranas as in Fig. 8. Details of this process are elucidated
in Ref. [36]. It must be stressed here that application of volt-
age pulses in a practical setting could result in quasiparticle

poisoning events, leading to breakdown of parity conservation
and hence, the preservation of the MBS. This can be avoided
with the current pulse scheme.

Turning to gate operations, the simplest one that can be
accomplished by exchange braiding can be constructed using
four Majoranas, for instance arranged along the x direction
as illustrated in Fig. 8(b). We can label the four Majoranas
as γi at position si, with i = a, b, c, d . Assuming the total
fermion parity to be conserved, i.e., (−)γaγbγcγd = −1, we
have two states forming a qubit in the Hilbert space: |1ab0cd〉
and |0ab1cd〉, where we use the notation |0i j〉 or |1i j〉 to repre-
sent a state of 0 or 1 fermion created by (γi − iγ j )/2. Upon the
application of a voltage pulse, the system returns to the same
Hilbert space after the braiding operation between γb and γc.
This adiabatic evolution generally applies a quantum gate U
to the system:U |ψi〉 = |ψ f 〉. Instead of using the Schrödinger
picture, we can equivalently use a Heisenberg picture. The
braiding operation that swaps γβ and γ3 must satisfy:

U †γa,dU = γa,d , U †γbU = ηγc, U †γcU = θγb, (15)

where η and θ must take value of ±1 so that the Majorana
operators are real. Due to the conservation of fermion parity
we have ηθ = −1. Up to a gauge choice, we can fix η = 1
and θ = −1. Now from the transformation law Eq. (15), the
transformation matrix U has to take the form U = cos φ +
sin φγbγc and we can solve for φ = π

4 . We can see that this
indeed is a nontrivial single qubit gate:

U |1ab0cd〉 = 1√
2

(|1ab0cd〉 − i|0ab1cd〉)

U |0ab1cd〉 = 1√
2

(−i|1ab0cd〉 + |0ab1cd〉), (16)

which is a single qubit gate that acts on the Majorana qubit.
Demonstrating such non-Abelian operations would require, in
addition to exchange, such as via the pulse sequence discussed
here, a viable parity qubit read-out scheme.

VI. DISCUSSION

In summary, we have presented a detailed analysis of
extended 2D topological superconducting junctions, the asso-
ciated spectrum of low-lying states, and the appearance of the
sought-after MBS on application of flux through the junction.
Amidst the tangle of states, the localized MBS are indeed
prevalent, and their evolution as a function of applied flux
and global phase could potentially be detected through various
means, such as quantum dot spectroscopy. The associated
zero-energy electronic state and parity-dependent many-body
ground state give rise to palpable signatures in Josephson
current Fraunhofer patterns and bimodal switching current
distributions. Scaling up to have networks of extended Joseph-
son junctions provides an entire platform for applications to
Majorana-based quantum computation. Here, we show one
possible scheme for MBS exchange in trijunction geometries
that gives rise to non-Abelian rotation.

The work presented here opens up several theoretical is-
sues to be resolved, as has been done extensively in the
nanowire setting. To mention a few, in contrast to nanowires,
where induced superconductivity gives rise to a distinct gap
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(in the absence of strong disorder), the extended junction car-
ries with it a whole spectrum of low-lying dispersive modes.
Thus, care is required in isolating MBS features from the rest
of this spectrum, and stringent diagnostics and bounds are
yet to be developed. We proposed quantum dots to detect the
presence and evolution of MBS; further work would model the
nature of the coupling between the dot and junction degrees
of freedom as well as the dot itself. With regards to stochastic
processes in the RCSJ model, we introduced three rates phe-
nomenologically; in principle, future work can derive these
rates from within the model itself. Turning to the trijunction
scheme, the time-dependent pulse application and motion of
MBS would require a whole nonequilibrium treatment for a
full-fledged analysis.

On the experimental front, there has been a keen hunt for
materials that exhibit intrinsic unconventional p-wave paired
superconductivity over the last few decades. The difficulty
in detecting p-wave paired states stems from their similarity
to s-wave states in the thermodynamic limit [70,71]. Sev-
eral promising candidates continue to be investigated, chief
among them being Sr2RuO4 [72–74]. While there were early
indications that the material most likely exhibited triplet pair-
ing, more recent NMR experiments offer evidence to the
contrary [75,76]. There has also been conflicting evidence
regarding chirality and the nature of time reversal symme-
try breaking in Sr2RuO4 [72,73,76–81]. Other candidates
are also being actively pursued, such as iron-based super-
conductors [20–22,82,83], bilayer BiH [84], and monolayer
graphene [85]. While materials that possess intrinsic p-wave
superconducting pairing are hard to find in nature, hybrid
structures can provide alternate realizations. In the case of
nanowires, effective p-wave pairing is often achieved through
the proximity effect as well as Rashba/Dresselhaus spin-orbit
coupling. In the case of lateral junctions, as presented here, the
px + ipy element assumes time-reversal symmetry breaking.
Such a scenario has been introduced in Refs. [44,45] and also
proposed [86–89] in certain quantum anomalous Hall plat-
forms [90–93]. These models are strictly 2D, and our results
are applicable in locating the “missing” Majorana delocalized
around the system’s perimeter.

The original setting where extended junction MBS were
conceived [27,28] offers another highly promising set of
platforms. These platforms entail proximity-induced super-
conductivity on the surface of a 3D topological insulator (TI),
forming S-TI-S junctions. Although the low-energy electronic
states on the Fermi surface have an effective px + ipy pairing,
the topology of the system is determined by the full ground-

state wavefunction and this scenario does not resemble a
chiral topological superconductor due to the preserving of
time-reversal symmetry. To apply our model to these systems,
a time-reversal breaking insulating gap has to be open around
the superconducting regime to produce the chiral Majorana
fermions around the island. Even then, only some charac-
teristic features presented here apply due to the presence
of two interfaces in the direction transverse to the plane.
Specifically, while we do not expect the delocalized Majorana
edge mode due to partnering at the two interfaces, we remark
that the theoretical studies performed here in fact stemmed
from considerations of the S-TI-S junction geometries real-
ized by the experimental group of Van Harlingen. Their initial
work showed evidence of a topological phase transition in
the Josephson current running through such junctions [38].
Our aforementioned theoretical work in Sec. I on a complete
architecture for manipulating MBS in lateral junctions [36]
was conducted in collaboration with this group based on their
current capabilities.

In conclusion, currently there is fertile theoretical and
experimental ground for exploring MBS in lateral junction
geometries. Here, we have provided directions for detecting
the evolution of MBS with applied flux, parity signatures in
bimodal distributions, and a scheme for performing MBS ex-
change. Demonstrating such exchanges, related non-Abelian
rotations, and parity-controlling qubit gate operations are the
ultimate goals. Identifying the optimal experimental setting
for bimodal signatures, achieving parity readout, be it detec-
tion with quantum dot devices, transmon circuits, or other
possibilities, and exchanges would each constitute a challenge
and if met with success, a tremendous leap.
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