

1 **Uniquely anisotropic mechanical and thermal responses of hybrid
2 organic-inorganic perovskites under uniaxial strain**

3 Muhammad Akif Rahman¹ and Ashutosh Giri¹

4 *Department of Mechanical, Industrial, and Systems Engineering,
5 University of Rhode Island*

6 (*Electronic mail: ashgiri@uri.edu)

7 (Dated: September 8, 2021)

8 The complete understanding of the mechanical and thermal responses to strain in hybrid
9 organic-inorganic perovskites holds great potential for their proper functionalities in a
10 range of applications such as in photovoltaics, thermoelectrics and flexible electronics. In
11 this work, we conduct systematic atomistic simulations on methyl ammonium lead iodide,
12 which is the prototypical hybrid inorganic-organic perovskite, to investigate the changes
13 in their mechanical and thermal transport responses under uniaxial strain. We find that
14 the mechanical response and the deformation mechanisms are highly dependent on the
15 direction of the applied uniaxial strain with a characteristic ductile- or brittle-like failure
16 accompanying uniaxial tension. Moreover, while most materials shrink in the two lateral
17 directions when stretched, we find that the ductile behavior in hybrid perovskites can lead
18 to a very unique mechanical response where negligible strain occurs along one lateral di-
19 rection while length contraction occurs in the other direction due to uniaxial tension. This
20 anisotropy in the mechanical response is also shown to manifest in an anisotropic thermal
21 response of the hybrid perovskite where the anisotropy in thermal conductivity increases by
22 up to 30% in comparison to the unstrained case before plastic deformation occurs at higher
23 strain levels. Along with the anisotropic responses of these physical properties, we find
24 that, uniaxial tension leads to ultralow thermal conductivities that are well below the value
25 predicted with a minimum thermal conductivity model, which highlights the potential of
26 strain engineering to tune the physical properties of hybrid organic-inorganic perovskites.

27 **I. INTRODUCTION**

28 Hybrid organic-inorganic perovskites are endowed with remarkable physical properties, which
29 derive from their unique chemical and structural makeup.^{1,2} Since their first successful demon-
30 stration as materials for photovoltaic applications little more than a decade ago,³ these materials
31 have demonstrated exceptional optical, electrical and thermal properties, placing them as one of
32 the premier materials for emerging technologies such as in thermoelectrics, electrochemical en-
33 ergy storage, and solar cells.⁴⁻¹¹ More recently, these materials have been integrated as thin film
34 absorbers on flexible polymer substrates and in shape recoverable device architectures for flexible
35 electronics.^{12,13} As such, a comprehensive understanding of their mechanical and thermal prop-
36 erties that inherently set the limitations of hybrid organic-inorganic perovskites as materials for
37 deformable electronics is quintessential for their realization and further improvement in efficien-
38 cies in such applications.

39 Recent studies have focused on understanding heat transfer and lattice dynamics of hybrid
40 perovskites from both experimental and computational perspectives.¹⁴⁻²⁶ Experimental measure-
41 ments report thermal conductivities in the range of 0.34 to $0.73 \text{ W m}^{-1} \text{ K}^{-1}$ for various three-
42 dimensional single crystal hybrid perovskites. The variation in the ultralow thermal conductivities
43 between the different hybrid perovskites has been attributed to changes in the speed of sound,
44 which are mainly dictated by the elastic properties of the inorganic framework.¹⁹ The ultralow
45 room temperature thermal conductivity of these materials and the hot phonon bottleneck have
46 been prescribed to low group velocities and strong anharmonic phonon-phonon scattering that are
47 prevalent in these types of structures mainly due to their low elastic stiffnesses.^{17,18,25,27} Therefore,
48 these findings suggest that the thermal properties of hybrid perovskites are strongly associated with
49 their mechanical and structural properties.

50 In terms of the mechanical properties, nanoindentation studies and laser-based experiments
51 have highlighted the unique anisotropy in elastic properties of hybrid perovskites with the mea-
52 sured Young's modulus in the range of 7 to 20 GPa.^{12,28-30} Computational studies conducted with
53 first principles calculations have corroborated the anisotropy in Young's modulus and have also
54 demonstrated that the low shear modulus in hybrid organic-inorganic perovskites can be benefi-
55 cial for applications in compliant devices where large deformations are demanded.³¹ Furthermore,
56 polycrystalline $\text{CH}_3\text{NH}_3\text{PbI}_3$ (MAPbI₃) have been shown to possess nanoductility surpassing their
57 single crystal counterparts, which was attributed to the extensive and continuous amorphization in

58 the polycrystalline structure.³²

59 Another unique mechanical property predicted by computational studies for hybrid perovskites
60 (and other oxide based perovskites) is the possibility of negative Poisson's ratio in certain
61 directions.^{31,33,34} Based on the elastic constant tensor calculated from first-principle calcula-
62 tions, Ji *et al.*³⁴ have shown that the orthorhombic phase of MAPbI_3 and other similar hybrid
63 perovskites can demonstrate a negative Poisson's ratio in certain directions due to the rotational
64 motion of the PbI_6 octahedron.³⁴ In most materials, a uniaxial tension in the orthogonal direction
65 leads to the shrinking of the lateral directions; these materials are characterized by a positive
66 Poisson's ratio. However, there are a certain class of materials, although rare, that have a negative
67 Poisson's ratio (a.k.a. auxetic materials)³⁵⁻⁴¹ and are characterized with an expansion in the lateral
68 directions when stretched in the orthogonal direction such as that predicted by Ji *et al.*³⁴ for hybrid
69 perovskites in certain directions. These materials are often accompanied by enhanced physical
70 properties that are beneficial for different kinds of applications.⁴²⁻⁴⁷ For example, auxetic materi-
71 als are used in applications ranging from medicine and tissue engineering, flexible photovoltaics
72 and in aerospace and defense.⁴⁸⁻⁵¹ Auxetic behavior has been shown for honeycomb structures
73 and open cell foams,^{44,52} cubic metals strained along non axial directions,^{46,53} two-dimensional
74 materials,⁵⁴⁻⁵⁶ select types of polymers,^{37-39,57,58} and metal organic frameworks.^{59,60} However,
75 direct observation of auxeticity in hybrid organic-inorganic perovskites has not yet been demon-
76 strated and only inferences based on the elastic tensor predicted from first-principle calculations
77 have been made.³⁴ Therefore, a systematic investigation from an atomistic perspective of the me-
78 chanical as well as thermal responses of hybrid organic-inorganic perovskites under uniaxial strain
79 would shed light on the microscopic mechanisms dictating these physical properties and would
80 also be beneficial for a range of applications that are reliant on these novel materials.

81 Through atomistic simulations, in this work, we show that the mechanical response and the
82 deformation mechanism in hybrid perovskites are highly dependent on the direction of the applied
83 uniaxial strain with a characteristic ductile deformation under uniaxial tension along [100] or
84 [010] directions, whereas brittle failure occurs when the tensile loading is applied along the [001]
85 direction. With uniaxial tension along the [100] or [010] orthogonal direction, an anisotropic
86 mechanical response is observed in the two lateral directions with a length contraction in the [001]
87 direction while a negligible change in the length occurs along the other direction. We also find
88 an anisotropic thermal response to uniaxial strain, where the thermal conductivity along the length
89 contraction direction remains unchanged, whereas the thermal conductivity in the plane of the

90 uniaxial tensile loading [001] decreases monotonically, thus increasing the anisotropy in thermal
 91 conductivity by up to 30 % before plastic deformation occurs.

92 II. METHODOLOGY

93 We study the prototypical hybrid organic-inorganic perovskite, MAPbI_3 , via molecular dynam-
 94 ics (MD) simulations. The interatomic potential utilized in our MD simulations is the *ab initio*-
 95 based potential (MYP forcefield) developed by Mattoni *et al.*⁶¹ This potential has been shown
 96 to predict the correct vibrational physics (including thermal properties of MAPbI_3)^{18,23} and also
 97 shown to correctly predict their elastic properties.³² Moreover, the potential was developed specif-
 98 ically to replicate the energy profile as the molecular constituents reorient themselves with respect
 99 to the deforming inorganic framework, which further validates the use of this potential for inves-
 100 tigation of mechanical response to strain of these materials. We use the LAMMPS package for all
 101 of our simulations.⁶²

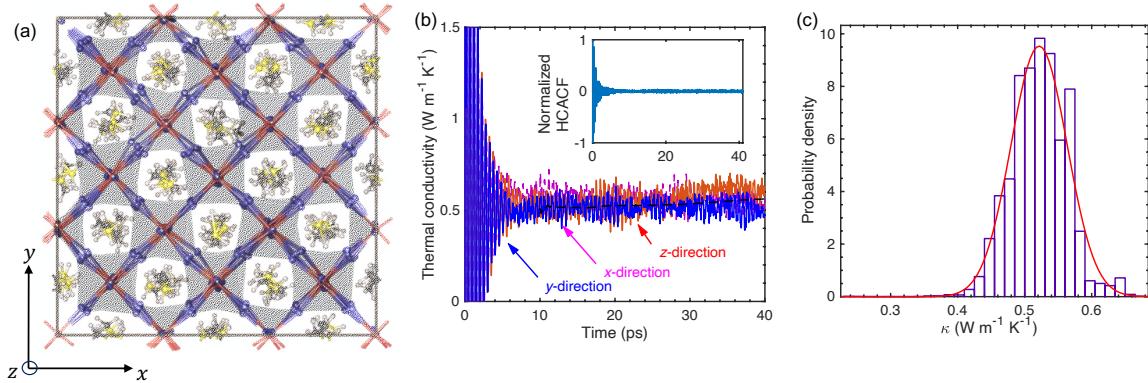


Figure 1. (a) Schematic cross-section of the equilibrated computational domain for tetragonal $\text{CH}_3\text{NH}_3\text{PbI}_3$ at room temperature. (b) Green-Kubo predicted thermal conductivity of MAPbI_3 as a function of the integration time at 300 K. (inset) HCACF vs. time for MAPbI_3 . (c) An error of $\sim 8\text{--}11\%$ is calculated based on predictions from 10 independent simulations ($\kappa=0.52\pm 0.04 \text{ W m}^{-1} \text{ K}^{-1}$).

102 Using the MYP potential,⁶¹ the initial computational domain for MAPbI_3 is equilibrated for
 103 a total of 1 ns at 0 bar pressure with a time step of 1 fs under the Nose-Hoover thermostat (at
 104 room temperature) and barostat;⁶³ this is the NPT integration where the number of particles, pres-
 105 sure and temperature are held constant during the simulation. Following the NPT integration, an
 106 additional equilibration under the NVT integration (where the volume and number of particles is
 107 held constant during the simulation) is performed. Note, during equilibration and the subsequent
 108 simulation to investigate the thermal and mechanical properties, periodic boundary conditions are

109 applied in all directions and a time step of 1 fs is utilized. The size of the computational domain
110 is $26.45 \times 26.55 \times 112.90 \text{ \AA}^3$. The cross-section of the equilibrated computational domain for
111 MAPbI_3 is shown in Fig. 1a. The x -, y -, and z -directions as shown in Fig. 1a reflect the [100],
112 [010], and [001] directions, respectively.

113 To assess the mechanical properties, a uniaxial deformation in the three principle (x -, y - and
114 z -) directions is applied at a strain rate of 10^8 s^{-1} . During the uniaxial loading, the other periodic
115 boundaries are held under "stress-free" conditions (at 0 bars) with the NPT integration. To gen-
116 erate the stress-strain relationships for our MAPbI_3 , the stress and strain along the three principle
117 directions are calculated every 0.1 ps.

118 To understand how the structural and mechanical anisotropy affects the thermal properties of
119 MAPbI_3 , the thermal conductivities along the three principle directions at different strain condi-
120 tions are predicted via the Green-Kubo (GK) approach under the equilibrium molecular dynamics
121 (EMD) framework. The thermal conductivity within this framework is calculated as,

$$\kappa_{x,y,z} = \frac{1}{k_B V T^2} \int_0^\infty \langle J_{x,y,z}(t) J_{x,y,z}(0) \rangle dt, \quad (1)$$

122 where, t is time, T and V are the temperature and volume of the systems, respectively, and
123 $\langle J_{x,y,z}(t) J_{x,y,z}(0) \rangle$ is the component of the heat current autocorrelation function (HCACF) in the
124 prescribed three-principle directions and is given as,

$$\mathbf{J} = \frac{1}{V} \left(\sum_i \mathbf{v}_i \boldsymbol{\varepsilon}_i + \sum_i \mathbf{S}_i \cdot \mathbf{v}_i \right), \quad (2)$$

125 where, \mathbf{v}_i , $\boldsymbol{\varepsilon}_i$ and \mathbf{S}_i are the velocity, energy and stress of atom i respectively.⁶⁴ The total correlation
126 time period for the integration of the HCACF is set to 40 ps. This ensures that the HCACF decays
127 to zero as shown in the inset Fig. 1b. The heat current is computed every 10 time steps followed by
128 integration of the HCACF to calculate the converged thermal conductivity for the MAPbI_3 domain.
129 The converged thermal conductivity is determined from the integration from 10 ps to 40 ps as
130 shown in Fig. 1b (dashed line). Utilizing this procedure, we conduct 10 independent simulations
131 with different initial conditions to determine the uncertainty of $\sim 8\text{-}11\%$ as exemplified in Fig. 1c
132 showing the distribution of thermal conductivities of our unstrained MAPbI_3 (with $\kappa=0.52\pm0.04$
133 $\text{W m}^{-1} \text{ K}^{-1}$).

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

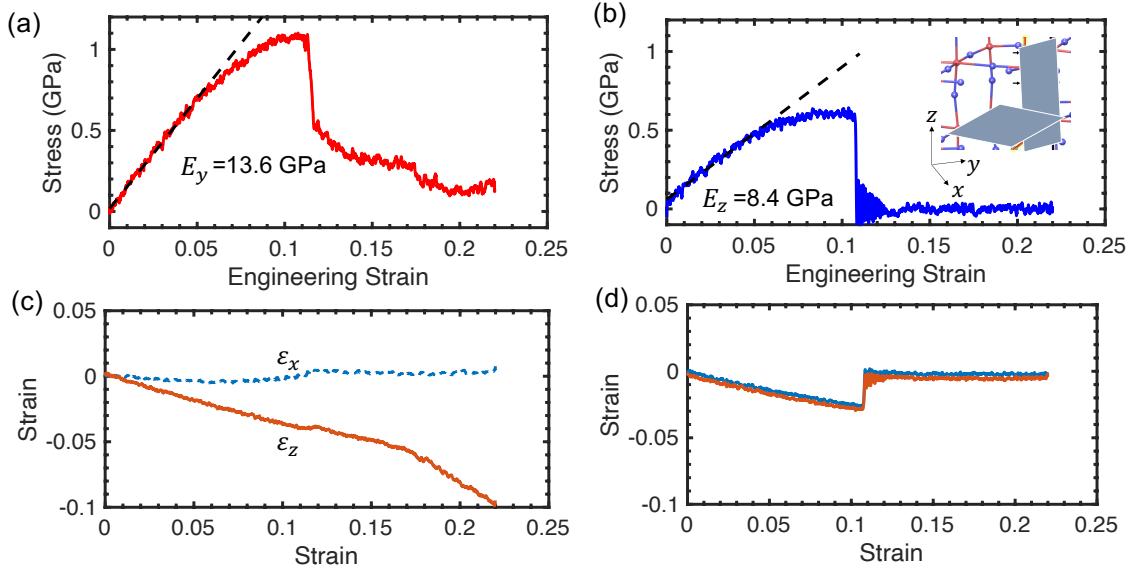
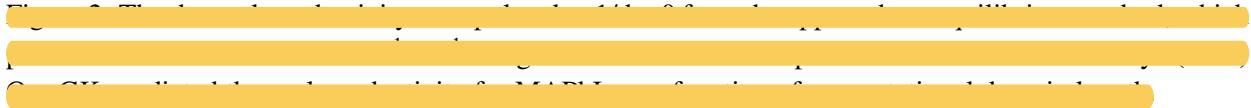
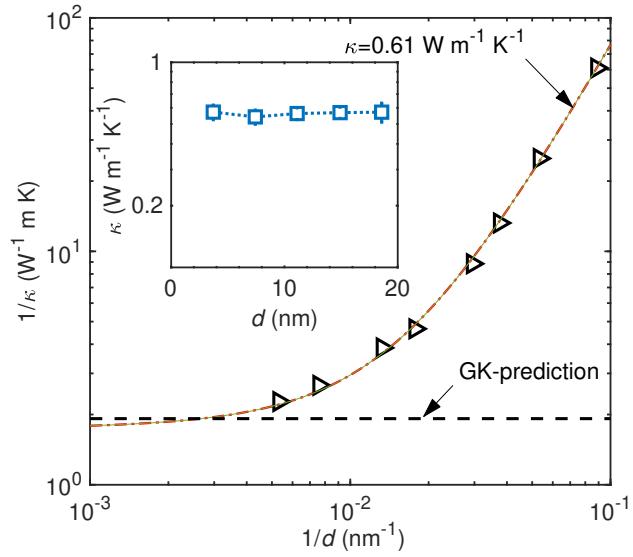




Figure 3. Characteristic stress-strain curves under uniaxial tensile loading along (a) y - and (b) z -directions. Note, stress-strain curves for uniaxial loading along x - and y -directions are similar, therefore we only show the results for uniaxial tension along the y -direction. The slope of the linear elastic region as represented by the dashed-line corresponds to the Young's modulus. The resultant strain in the two orthogonal directions versus the applied strain in the (c) y - and (d) z -directions.

166 structure of the inorganic framework, where the lead atoms are bonded to 4 iodide atoms in the

167 xy -plane, whereas the lead atoms are bonded to only 2 iodide atoms within the plane parallel to
 168 the z -axis as illustrated in the inset of Fig 3b. The relative changes in the bond environments along
 169 the two orthogonal planes lead to a more compliant mechanical response under uniaxial tension in
 170 the z -direction in comparison to that in either the x - or the y -directions.

171 More interestingly, the uniaxial tensile loading simulations reveal another unique anisotropic
 172 mechanical behavior of MAPbI_3 where the length of the computational domain in the x -direction
 173 remains constant while the length in the z -direction is decreased during uniaxial tensile loading in
 174 the y -direction. This is quantitatively shown in Fig. 3c where we plot the strain in the two lateral
 175 directions as a function of the applied strain in the y -direction. In contrast, when tension is applied
 176 in the z -direction, the computational domain shrinks in both the x - and y -directions in response to
 177 the applied strain as shown in Fig. 3c.

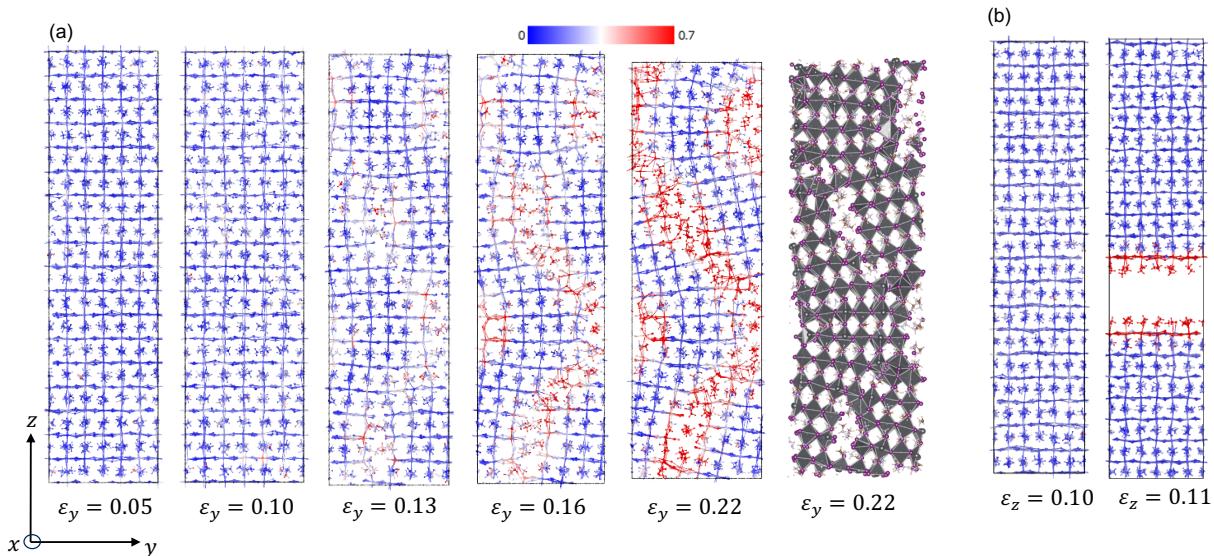
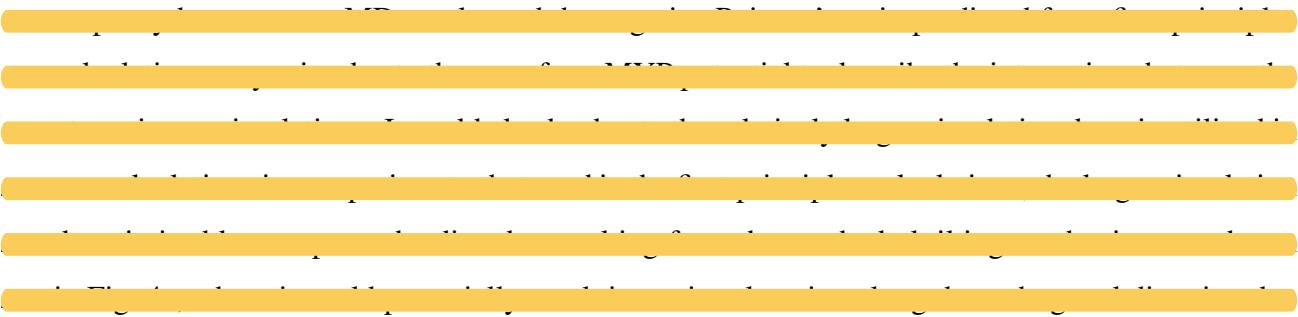
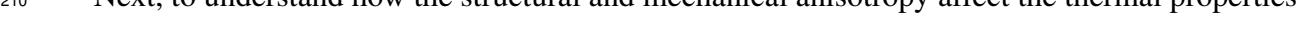




Figure 4. Snapshots of the cross-sections of $\text{CH}_3\text{NH}_3\text{PbI}_3$ computational domain showing calculations of atomic level strain relative to the relaxed computational domain at (a) various ε_y and (b) ε_z . Ductile failure dominates beyond the elastic region when the applied uniaxial tensile strain is along either x - or y -direction. The ductile deformation originates from the distortion of the PbI_6 octahedron. However, brittle failure occurs when uniaxial strain is applied along the z -direction.

178 From the stress-strain curves shown in Figs. 3a and 3b, it can be inferred that the mechanism
 179 of deformation under uniaxial tensile loading in the two orthogonal directions are also different.
 180 While ductile failure occurs during uniaxial tension along the x - or y -directions, a more brittle-like
 181 failure is observed at $\sim 10\%$ strain level during uniaxial loading along the z -direction. This is
 182 schematically shown in Figs. 4a and 4b, which shows the computational domains under uniaxial

183 deformation when strain is applied in the y - and z -directions, respectively. To highlight the local
184 deformation mechanisms, the atoms are colored in terms of the associated von Mises strain as
185 calculated in Ref. 69. Figure 4a shows the local strain under uniaxial tension along the y -direction
186 at different strain levels. At 5 % strain level, no observable stress localization occurs. However, as
187 the strain is increased beyond 10 %, stress localization (as represented by the red colored atoms)
188 spreads throughout the structure, which ultimately leads to a ductile failure. As shown by the
189 corresponding figure highlighting the octahedral tilts for $\varepsilon_y=0.22$ in Fig. 4a, the ductile behavior
190 in MAPbI_3 can be ascribed to the rotation and tilting of the octahedral cages due to the applied
191 strain. This deformation mechanism makes the crystal more compliant and leads to the unique
192 strain response as shown in Fig. 3a and Fig. 3c; although our results do not directly support the
193 hypothesized auxetic behaviour in MAPbI_3 ,³⁴ the unique mechanical response where lateral con-
194 traction occurs in one direction, while the length in the other lateral direction does not change
195 separates these materials from other crystalline solids where it is usually observed that length
196 contractions along both lateral directions occur due to uniaxial tensile force.

197 In contrast, when uniaxial strain is applied in the z -direction,
198 stress localization occurs along a specific plane of atoms parallel to the xy -plane leading to a more
199 brittle-like failure as shown in Fig. 4b.
200
201
202
203
204

210 Next, to understand how the structural and mechanical anisotropy affect the thermal properties
211 of MAPbI_3 , the thermal conductivity is calculated with the GK formalism. For the equilibrated
212 computational domain without the application of uniaxial strain, the thermal conductivity along
213 all three principle directions are similar within the 8-11 % uncertainties that are associated with
214 our GK predictions ($\kappa \sim 0.52 \pm 0.04 \text{ W m}^{-1} \text{ K}^{-1}$ as shown in Fig. 5a) and agree well with experi-

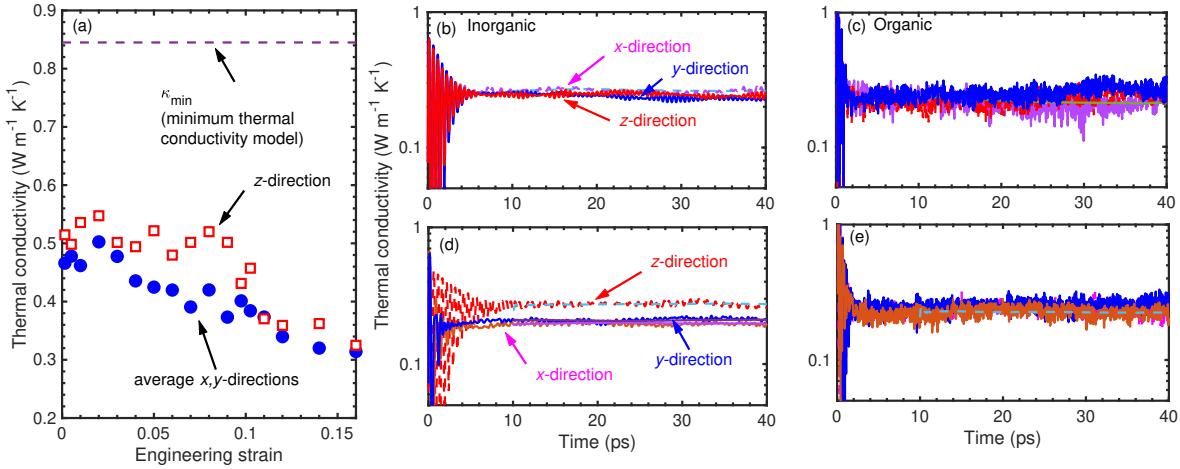


Figure 5. (a) Thermal conductivity of MAPbI_3 along the xy -plane and z -direction as a function of applied uniaxial strain along the y -direction, ε_y . For comparison, the dashed line shows predictions from the minimum thermal conductivity model. Separate contributions from the (b) inorganic and (c) organic constituents to the total thermal conductivity at $\varepsilon_y=0$. Separate contributions from the (d) inorganic and (e) organic constituents to the total thermal conductivity at $\varepsilon_y=0.08$.

mentally measured room temperature thermal conductivity for MAPbI_3 .^{15,19} However, as shown in Fig. 5a, the application of tensile strain along the x -direction leads to a monotonic reduction in thermal conductivity in both the x - and y -directions (solid circles), whereas the change in the thermal conductivity in the z -direction is negligible (in the elastic region of the stress-strain relationship, which is up to $\sim 8\%$ strain; hollow squares). Beyond the strain where the ultimate strength of the material is reached, thermal conductivity decreases for all three directions as shown in Fig. 5a.

Engineering strain along the x -direction is limited by the onset of plastic deformation.

This model is usually applied (and often correctly predicts the thermal conductivity) for pure amorphous solids where non-propagating vibrations (namely diffusons and locons) are the dominant heat carriers.⁷¹ The main assumptions in calculating κ_{\min} for a disordered solid are that the "mean-free-paths" of vibrations in the solid are limited to the spacings between adjacent atoms and the lifetimes of these heat-carrying oscillations are one half the period of vibration (see Refs. 24 and 70 for details). The GK-predicted thermal conductivities for all strain levels as shown in Fig. 5a are well below the prediction from this minimum limit model suggesting that the explanation of energy propagation through thermal interactions on the order of the vibrational wavelength cannot explain the heat conduction mechanism in MAPbI_3 for both the unstrained and strained cases. Instead, the ultralow thermal conductivity for unstrained MAPbI_3 has been attributed to strong acoustic-optical phonon scatter-

233 ing that result from the significant overlap in energy of the acoustic and optical phonons.^{18,72} The
234 application of strain further enhances these scattering mechanisms and leads to an overall decrease
235 in thermal conductivity.

236 To better understand the effect of uniaxial strain on the anisotropic thermal response in MAPbI_3 ,
237 we separate the contributions from the inorganic and organic constituents (as shown in Figs. 5b-
238 e) by analyzing the total heat flux. Using Eq. 2, the thermal conductivity contributions from the
239 inorganic and organic constituents can be easily separated by calculating the heat flux for the atoms
240 of the methylammonium cations separately from the atoms forming the inorganic framework (Pb
241 and I atoms). This is shown in Figs. 5b and 5c for the inorganic and organic, respectively at
242 0 % strain level. The contributions to the total heat conduction from the inorganic and organic
243 constituents are similar as shown in Figs. 5b and 5c for the respective. However, at 8 % strain, the
244 anisotropy in thermal conductivity originates from the inorganic framework leading to an increased
245 contribution to the total thermal conductivity from the inorganic framework along the z -direction,
246 whereas the contributions from the organic constituents are unaffected by the strain (see Fig. 5e).

247 The change in thermal conductivity upon mechanical loading (up to the elastic region) can
248 be used in applications such as thermal switches and diodes.⁷³ Usually when tensile force is ap-
249 plied to a crystalline solid, the thermal conductivity decreases due to phonon softening.^{74,75} Upon
250 compression, phonon hardening generally leads to enhanced thermal conductivity. The uniaxial
251 tension along the x - or y -directions in MAPbI_3 leads to compression in the z -direction (see Fig. 3c).
252 However, the thermal conductivity in the z -direction remains unchanged in the linear elastic region,
253 which is likely due to the competing effects of phonon hardening that increases thermal con-
254 ductivity and phonon scattering that leads to a reduction in thermal conductivity. These competing
255 mechanisms can lead to as much as 30 % increase in thermal conductivity anisotropy in MAPbI_3 as
256 the thermal conductivity monotonically decreases in the x - and y -directions due to uniaxial tension
257 along one of these directions (see Fig. 5a). Taken together with the mechanically compliant nature
258 of hybrid perovskites along certain directions, enhancement in thermal conductivity anisotropy
259 due to strain engineering in these novel materials could be beneficial for applications such as in
260 flexible electronics where preferential energy transfer along selected directions is required.⁷⁶

261 **IV. CONCLUSION**

262 In summary, the mechanical and thermal responses under uniaxial strain of the prototypical hy-
263 brid organic-inorganic perovskite, MAPbI_3 , are investigated via molecular dynamics simulations.
264 It is found that the mechanical response and the deformation mechanism is highly dependent on
265 the direction of the uniaxial strain with a characteristic ductile deformation under uniaxial strain
266 along [100] or [010] directions, whereas brittle failure occurs when the tensile loading is applied
267 along the [001] direction. Furthermore, when uniaxial tension is applied along the [100] or [010]
268 directions, an anisotropic mechanical response is observed in the two lateral directions with a
269 length decrease in the [001] direction and a negligible change in the length along the other lateral
270 direction. The anisotropy in the mechanical response also manifests in an anisotropic thermal re-
271 sponse where the thermal conductivity along the length contraction direction remains unchanged
272 during the elastic response under uniaxial tensile strain, whereas the thermal conductivity in the
273 plane of the uniaxial tensile loading [001] decreases monotonically, thus increasing the anisotropy
274 in thermal conductivity by up to 30 %. The combination of these anisotropic physical properties
275 positions hybrid organic-inorganic perovskites as an emerging class of multifunctional materials
276 with potential applications in the development of sensors for pressure detection and shock absorb-
277 ing materials such as in 'smart' body armors.^{77,78}

278 **ACKNOWLEDGMENTS**

279 This manuscript is based upon work supported by the Office of Naval Research, Grant No.
280 N00014-21-1-2622. The work is also partially supported by the National Science Foundation
281 (NSF Award No. 2119365).

282 **AUTHOR DECLARATIONS**

283 **Conflict of interest**

284 The authors have no conflicts to disclose.

285 **DATA AVAILABILITY STATEMENT**

AVAILABILITY OF DATA	STATEMENT OF DATA AVAILABILITY
286 Data available on request from the authors	The data that support the findings of this study are available from the corresponding author upon reasonable request.

287 **REFERENCES**

- 288 ¹J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid
289 perovskites for photovoltaic applications,” *Nature Reviews Materials* **2**, 1–19 (2017).
- 290 ²G. Grancini and M. K. Nazeeruddin, “Dimensional tailoring of hybrid perovskites for photo-
291 voltaics,” *Nature Reviews Materials* **4**, 4–22 (2019).
- 292 ³A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-
293 light sensitizers for photovoltaic cells,” *Journal of the American Chemical Society* **131**, 6050–
294 6051 (2009).
- 295 ⁴L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma,
296 T. Ding, *et al.*, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” *Science*
297 **349**, 1518–1521 (2015).
- 298 ⁵M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M.
299 Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, *et al.*, “Cesium-containing triple cation perovskite
300 solar cells: improved stability, reproducibility and high efficiency,” *Energy & environmental
301 science* **9**, 1989–1997 (2016).
- 302 ⁶J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and
303 M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar
304 cells,” *Nature* **499**, 316–319 (2013).
- 305 ⁷H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and
306 X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality
307 factors,” *Nature materials* **14**, 636–642 (2015).
- 308 ⁸H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,”
309 *The journal of physical chemistry letters* **4**, 3623–3630 (2013).
- 310 ⁹Y. Fang, Q. Dong, Y. Shao, Y. Yuan, and J. Huang, “Highly narrowband perovskite single-
311 crystal photodetectors enabled by surface-charge recombination,” *Nature Photonics* **9**, 679–686

- 312 (2015).
- 313 ¹⁰M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao,
314 E. M. Beauregard, P. Kanjanaboons, *et al.*, “Perovskite energy funnels for efficient light-emitting
315 diodes,” *Nature nanotechnology* **11**, 872–877 (2016).
- 316 ¹¹B. Saparov and D. B. Mitzi, “Organic–inorganic perovskites: structural versatility for functional
317 materials design,” *Chemical reviews* **116**, 4558–4596 (2016).
- 318 ¹²M. Park, H. J. Kim, I. Jeong, J. Lee, H. Lee, H. J. Son, D.-E. Kim, and M. J. Ko, “Mechanically
319 recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of
320 organic–inorganic perovskite,” *Advanced Energy Materials* **5**, 1501406 (2015).
- 321 ¹³P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal tri-
322 halide perovskite planar-heterojunction solar cells on flexible polymer substrates,” *Nature com-
323 munications* **4**, 1–6 (2013).
- 324 ¹⁴M. A. Haque, S. Kee, D. R. Villalva, W.-L. Ong, and D. Baran, “Halide perovskites: thermal
325 transport and prospects for thermoelectricity,” *Advanced Science* **7**, 1903389 (2020).
- 326 ¹⁵A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaál, L. Forró, and E. Horváth, “Ultra-
327 low thermal conductivity in organic–inorganic hybrid perovskite $\text{CH}_3\text{NH}_3\text{PbI}_3$,” *The journal of
328 physical chemistry letters* **5**, 2488–2492 (2014).
- 329 ¹⁶T. Hata, G. Giorgi, and K. Yamashita, “The effects of the organic–inorganic interactions on the
330 thermal transport properties of $\text{CH}_3\text{NH}_3\text{PbI}_3$,” *Nano letters* **16**, 2749–2753 (2016).
- 331 ¹⁷X. Qian, X. Gu, and R. Yang, “Lattice thermal conductivity of organic-inorganic hybrid per-
332 ovskite $\text{CH}_3\text{NH}_3\text{PbI}_3$,” *Applied Physics Letters* **108**, 063902 (2016).
- 333 ¹⁸M. Wang and S. Lin, “Anisotropic and ultralow phonon thermal transport in organic–inorganic
334 hybrid perovskites: atomistic insights into solar cell thermal management and thermoelectric
335 energy conversion efficiency,” *Advanced Functional Materials* **26**, 5297–5306 (2016).
- 336 ¹⁹G. A. Elbaz, W.-L. Ong, E. A. Doud, P. Kim, D. W. Paley, X. Roy, and J. A. Malen, “Phonon
337 speed, not scattering, differentiates thermal transport in lead halide perovskites,” *Nano letters*
338 **17**, 5734–5739 (2017).
- 339 ²⁰T. Liu, S.-Y. Yue, S. Ratnasingham, T. Degousée, P. Varsini, J. Briscoe, M. A. McLachlan,
340 M. Hu, and O. Fenwick, “Unusual thermal boundary resistance in halide perovskites: A way to
341 tune ultralow thermal conductivity for thermoelectrics,” *ACS applied materials & interfaces* **11**,
342 47507–47515 (2019).
- 343 ²¹R. Heiderhoff, T. Haeger, N. Pourdavoud, T. Hu, M. Al-Khafaji, A. Mayer, Y. Chen, H.-C.

- 344 Scheer, and T. Riedl, "Thermal conductivity of methylammonium lead halide perovskite single
345 crystals and thin films: A comparative study," *The Journal of Physical Chemistry C* **121**, 28306–
346 28311 (2017).
- 347 ²²Y. Wang, R. Lin, P. Zhu, Q. Zheng, Q. Wang, D. Li, and J. Zhu, "Cation dynamics governed
348 thermal properties of lead halide perovskite nanowires," *Nano letters* **18**, 2772–2779 (2018).
- 349 ²³C. Caddeo, C. Melis, M. I. Saba, A. Filippetti, L. Colombo, and A. Mattoni, "Tuning the
350 thermal conductivity of methylammonium lead halide by the molecular substructure," *Physical
351 Chemistry Chemical Physics* **18**, 24318–24324 (2016).
- 352 ²⁴A. Giri, A. Z. Chen, A. Mattoni, K. Aryana, D. Zhang, X. Hu, S.-H. Lee, J. J. Choi, and P. E.
353 Hopkins, "Ultralow thermal conductivity of two-dimensional metal halide perovskites," *Nano
354 letters* **20**, 3331–3337 (2020).
- 355 ²⁵H. Ma, C. Li, Y. Ma, H. Wang, Z. W. Rouse, Z. Zhang, C. Sledodnick, A. Alatas, S. P. Baker,
356 J. J. Urban, *et al.*, "Supercompliant and Soft $(\text{CH}_3\text{NH}_3)_3\text{Bi}_2\text{I}_9$ Crystal with Ultralow Thermal
357 Conductivity," *Physical review letters* **123**, 155901 (2019).
- 358 ²⁶T. Zhu and E. Ertekin, "Mixed phononic and non-phononic transport in hybrid lead halide per-
359 ovskites: glass-crystal duality, dynamical disorder, and anharmonicity," *Energy & Environmen-
360 tal Science* **12**, 216–229 (2019).
- 361 ²⁷A. C. Ferreira, A. Létoublon, S. Paofai, S. Raymond, C. Ecolivet, B. Rufflé, S. Cordier, C. Katan,
362 M. I. Saidaminov, A. A. Zhumekenov, *et al.*, "Elastic softness of hybrid lead halide perovskites,"
363 *Physical Review Letters* **121**, 085502 (2018).
- 364 ²⁸S. Sun, Y. Fang, G. Kieslich, T. J. White, and A. K. Cheetham, "Mechanical properties of
365 organic–inorganic halide perovskites, $\text{CH}_3\text{NH}_3\text{PbX}_3$ (X= I, Br and Cl), by nanoindentation,"
366 *Journal of Materials Chemistry A* **3**, 18450–18455 (2015).
- 367 ²⁹P.-A. Mante, C. C. Stoumpos, M. G. Kanatzidis, and A. Yartsev, "Directional negative thermal
368 expansion and large poisson ratio in $\text{CH}_3\text{NH}_3\text{PbI}_3$ perovskite revealed by strong coherent shear
369 phonon generation," *The journal of physical chemistry letters* **9**, 3161–3166 (2018).
- 370 ³⁰A. Létoublon, S. Paofai, B. Ruffle, P. Bourges, B. Hehlen, T. Michel, C. Ecolivet, O. Durand,
371 S. Cordier, C. Katan, *et al.*, "Elastic constants, optical phonons, and molecular relaxations in the
372 high temperature plastic phase of the $\text{CH}_3\text{NH}_3\text{PbBr}_3$ hybrid perovskite," *The journal of physical
373 chemistry letters* **7**, 3776–3784 (2016).
- 374 ³¹T. Feng and X. Ruan, "Prediction of spectral phonon mean free path and thermal conductivity
375 with applications to thermoelectrics and thermal management: a review," *Journal of Nanomate-*

- 376 rials **2014** (2014).
- 377 ³²J. Yu, M. Wang, and S. Lin, “Probing the soft and nanoductile mechanical nature of single and
378 polycrystalline organic–inorganic hybrid perovskites for flexible functional devices,” *Acs Nano*
379 **10**, 11044–11057 (2016).
- 380 ³³L. Dong, D. S. Stone, and R. S. Lakes, “Softening of bulk modulus and negative Poisson ratio in
381 barium titanate ceramic near the Curie point,” *Philosophical magazine letters* **90**, 23–33 (2010).
- 382 ³⁴L.-J. Ji, S.-J. Sun, Y. Qin, K. Li, and W. Li, “Mechanical properties of hybrid organic-inorganic
383 perovskites,” *Coordination Chemistry Reviews* **391**, 15–29 (2019).
- 384 ³⁵E. Kittinger, J. Tichy, and E. Bertagnolli, “Example of a negative effective Poisson’s ratio,”
385 *Physical Review Letters* **47**, 712 (1981).
- 386 ³⁶K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers, “Molecular network design,”
387 *Nature* **353**, 124–124 (1991).
- 388 ³⁷K. E. Evans, A. Alderson, and F. R. Christian, “Auxetic two-dimensional polymer networks.
389 an example of tailoring geometry for specific mechanical properties,” *Journal of the chemical
390 society, Faraday transactions* **91**, 2671–2680 (1995).
- 391 ³⁸J. N. Grima, R. Jackson, A. Alderson, and K. E. Evans, “Do zeolites have negative Poisson’s
392 ratios?” *Advanced Materials* **12**, 1912–1918 (2000).
- 393 ³⁹N. Pour, L. Itzhaki, B. Hoz, E. Altus, H. Basch, and S. Hoz, “Auxetics at the molecular level:
394 a negative Poisson’s ratio in molecular rods,” *Angewandte Chemie International Edition* **45**,
395 5981–5983 (2006).
- 396 ⁴⁰J.-W. Jiang, S. Y. Kim, and H. S. Park, “Auxetic nanomaterials: Recent progress and future
397 development,” *Applied Physics Reviews* **3**, 041101 (2016).
- 398 ⁴¹C. Huang and L. Chen, “Negative Poisson’s ratio in modern functional materials,” *Advanced
399 Materials* **28**, 8079–8096 (2016).
- 400 ⁴²A. Yeganeh-Haeri, D. J. Weidner, and J. B. Parise, “Elasticity of α -cristobalite: a silicon dioxide
401 with a negative poisson’s ratio,” *Science* **257**, 650–652 (1992).
- 402 ⁴³K. L. Alderson, A. P. Pickles, P. J. Neale, and K. E. Evans, “Auxetic polyethylene: the effect of
403 a negative Poisson’s ratio on hardness,” *Acta Metallurgica et Materialia* **42**, 2261–2266 (1994).
- 404 ⁴⁴R. Lakes, “Foam structures with a negative Poisson’s ratio,” *Science* **235**, 1038–1041 (1987).
- 405 ⁴⁵N. R. Keskar and J. R. Chelikowsky, “Negative Poisson ratios in crystalline SiO_2 from first-
406 principles calculations,” *Nature* **358**, 222–224 (1992).
- 407 ⁴⁶R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S. Stafström, “Negative Poisson’s ratios

- 408 as a common feature of cubic metals," *Nature* **392**, 362–365 (1998).
- 409 ⁴⁷l. j. Hall, v. r. coluci, d. s. galvão, m. e. kozlov, m. zhang, s. o. dantas, and r. h. baughman, "Sign
410 change of Poisson's ratio for carbon nanotube sheets," *Science* **320**, 504–507 (2008).
- 411 ⁴⁸P. Mardling, A. Alderson, N. Jordan-Mahy, and C. L. Le Maitre, "The use of auxetic materials
412 in tissue engineering," *Biomaterials science* **8**, 2074–2083 (2020).
- 413 ⁴⁹Y. J. Park and J. K. Kim, "The effect of negative Poisson's ratio polyurethane scaffolds for artic-
414 ular cartilage tissue engineering applications," *Advances in Materials Science and Engineering*
415 **2013** (2013).
- 416 ⁵⁰K. E. Evans and A. Alderson, "Auxetic materials: functional materials and structures from lateral
417 thinking!" *Advanced materials* **12**, 617–628 (2000).
- 418 ⁵¹L. Rothenburg, A. I. A. I. Berlin, and R. J. Bathurst, "Microstructure of isotropic materials with
419 negative Poisson's ratio," *Nature* **354**, 470–472 (1991).
- 420 ⁵²L. J. Gibson and M. F. Ashby, "Frontmatter," in *Cellular Solids: Structure and Properties*, Cam-
421 bridge Solid State Science Series (Cambridge University Press, 1997) pp. i–vi, 2nd ed.
- 422 ⁵³F. Milstein and K. Huang, "Existence of a negative Poisson ratio in fcc crystals," *Physical Review*
423 **B 19**, 2030 (1979).
- 424 ⁵⁴G. Qin and Z. Qin, "Negative Poisson's ratio in two-dimensional honeycomb structures," *npj*
425 *Computational Materials* **6**, 1–6 (2020).
- 426 ⁵⁵J.-W. Jiang and H. S. Park, "Negative poisson's ratio in single-layer black phosphorus," *Nature*
427 *communications* **5**, 1–7 (2014).
- 428 ⁵⁶J.-W. Jiang, T. Chang, X. Guo, and H. S. Park, "Intrinsic negative Poisson's ratio for single-layer
429 graphene," *Nano letters* **16**, 5286–5290 (2016).
- 430 ⁵⁷C. He, P. Liu, and A. C. Griffin, "Toward negative Poisson ratio polymers through molecular
431 design," *Macromolecules* **31**, 3145–3147 (1998).
- 432 ⁵⁸R. H. Baughman and D. S. Galvao, "Crystalline networks with unusual predicted mechanical
433 and thermal properties," *Nature* **365**, 735–737 (1993).
- 434 ⁵⁹E. Jin, I. S. Lee, D. Kim, H. Lee, W.-D. Jang, M. S. Lah, S. K. Min, and W. Choe, "Metal-organic
435 framework based on hinged cube tessellation as transformable mechanical metamaterial," *Sci-
436 ence advances* **5**, eaav4119 (2019).
- 437 ⁶⁰M. R. Ryder, B. Civalleri, G. Cinque, and J.-C. Tan, "Discovering connections between terahertz
438 vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic
439 framework," *CrystEngComm* **18**, 4303–4312 (2016).

- 440 61 A. Mattoni, A. Filippetti, M. I. Saba, and P. Delugas, “Methylammonium rotational dynamics
441 in lead halide perovskite by classical molecular dynamics: the role of temperature,” *The Journal*
442 of *Physical Chemistry C* **119**, 17421–17428 (2015).
- 443 62 S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” *Journal of compu-*
444 *tational physics* **117**, 1–19 (1995).
- 445 63 W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” *Physical review A*
446 **31**, 1695 (1985).
- 447 64 A. P. Thompson, S. J. Plimpton, and W. Mattson, “General formulation of pressure and stress
448 tensor for arbitrary many-body interaction potentials under periodic boundary conditions,” *The*
449 *Journal of chemical physics* **131**, 154107 (2009).
- 450 65 D. Surblys, H. Matsubara, G. Kikugawa, and T. Ohara, “Application of atomic stress to compute
451 heat flux via molecular dynamics for systems with many-body interactions,” *Physical Review E*
452 **99**, 051301 (2019).
- 453 66 P. Boone, H. Babaei, and C. E. Wilmer, “Heat flux for many-body interactions: corrections to
454 lammps,” *Journal of chemical theory and computation* **15**, 5579–5587 (2019).
- 455 67 K. R. Hahn, M. Puligheddu, and L. Colombo, “Thermal boundary resistance at si/ge interfaces
456 determined by approach-to-equilibrium molecular dynamics simulations,” *Physical Review B*
457 **91**, 195313 (2015).
- 458 68 J. Feng, “Mechanical properties of hybrid organic-inorganic $\text{CH}_3\text{NH}_3\text{BX}_3$ (B= Sn, Pb; X= Br, I)
459 perovskites for solar cell absorbers,” *Apl Materials* **2**, 081801 (2014).
- 460 69 F. Shimizu, S. Ogata, and J. Li, “Theory of shear banding in metallic glasses and molecular
461 dynamics calculations,” *Materials transactions* , 2923–2927 (2007).
- 462 70 D. G. Cahill, S. K. Watson, and R. O. Pohl, “Lower limit to the thermal conductivity of disor-
463 dered crystals,” *Physical Review B* **46**, 6131 (1992).
- 464 71 P. B. Allen and J. L. Feldman, “Thermal conductivity of glasses: Theory and application to
465 amorphous Si,” *Physical review letters* **62**, 645 (1989).
- 466 72 H. Ma, Y. Ma, H. Wang, C. Sledodnick, A. Alatas, J. J. Urban, and Z. Tian, “Experimental
467 Phonon Dispersion and Lifetimes of Tetragonal $\text{CH}_3\text{NH}_3\text{PbI}_3$ Perovskite Crystals,” *The Journal*
468 of *Physical Chemistry Letters* **10**, 1–6 (2019), <https://doi.org/10.1021/acs.jpclett.8b03419>.
- 469 73 N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating
470 heat flow with electronic analogs and beyond,” *Rev. Mod. Phys.* **84**, 1045–1066 (2012).
- 471 74 K. D. Parrish, A. Jain, J. M. Larkin, W. A. Saidi, and A. J. H. McGaughey, “Origins of thermal

- 472 conductivity changes in strained crystals," *Physical Review B* **90**, 235201 (2014).
- 473 ⁷⁵A. Giri, J. L. Braun, and P. E. Hopkins, "Reduced dependence of thermal conductivity on tem-
474 perature and pressure of multi-atom component crystalline solid solutions," *Journal of Applied*
475 *Physics* **123**, 015106 (2018).
- 476 ⁷⁶Z. Cheng, M. Han, P. Yuan, S. Xu, B. A. Cola, and X. Wang, "Strongly anisotropic thermal and
477 electrical conductivities of a self-assembled silver nanowire network," *Rsc Advances* **6**, 90674–
478 90681 (2016).
- 479 ⁷⁷A. L. Goodwin, D. A. Keen, and M. G. Tucker, "Large negative linear compressibility of
480 $\text{Ag}_3[\text{Co}(\text{CN})_6]$," *Proceedings of the National Academy of Sciences* **105**, 18708–18713 (2008),
481 <https://www.pnas.org/content/105/48/18708.full.pdf>.
- 482 ⁷⁸W. Li, M. R. Probert, M. Kosa, T. D. Bennett, A. Thirumurugan, R. P. Burwood, M. Parrinello,
483 J. A. K. Howard, and A. K. Cheetham, "Negative linear compressibility of a metal–organic
484 framework," *Journal of the American Chemical Society* **134**, 11940–11943 (2012).