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ABSTRACT
Drones are increasingly associated with incidents disturbing air
tra�c at airports, invading privacy, and even terrorism. Wireless
Direction of Arrival (DoA) techniques, such as the MUSIC algo-
rithm, can localize drones, but deploying a system that systemati-
cally localizes RF emissions can lead to intentional or unintentional
(e.g., if compromised) abuse. Multi-Party Computation (MPC) pro-
vides a solution for controlled computation of the elevation of RF
emissions, only revealing estimates when some conditions are met,
such as when the elevation exceeds a speci�ed threshold. How-
ever, we show that a straightforward implementation of MUSIC,
which relies on costly computation of complex matrix operations
such as eigendecomposition, in state of the art MPC frameworks
is extremely ine�cient requiring over 20 seconds to achieve the
weakest security guarantees. In this work, we develop a set of MPC
optimizations and extensions of MUSIC. We extensively evaluate
our techniques in several MPC protocols achieving a speedup of
300-500 times depending on the security model and speci�c tech-
nique used. For instance a Malicious Shamir execution providing
security against malicious adversaries enables 536 DoA estimations
per second, making it practical for use in real-world setups.

CCS CONCEPTS
• Security and privacy! Domain-speci�c security and pri-
vacy architectures; Wireless security; Privacy protections.
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1 INTRODUCTION
Localization of RF emissions is an increasingly useful primitive
with many applications. Current applications include pinpointing
the location of drone intrusions or locating and tracking the source
of malicious emissions (e.g, a jammer). Especially drone intrusions
have been at the center of a multitude of security incidents in recent
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years, with a dramatic increase in airport incidents [42], and the po-
tential of terrorist attacks [1, 50]. With low cost commercial drones
causing billion dollar damages [51] and being used to smuggle il-
legal substances and equipment [29], authorities are trying to �nd
ways to monitor, control and even take down these targets [30].

As a �rst step to control drone intrusions, the US DHS/FAA has
introduced new regulations, e.g., requiring permission authoriza-
tions using mobile apps such as B4UFLY [20]. As such requests
are increasing in frequency, in some areas such authorizations are
automatically processed and approvals are conditioned on respect-
ing altitude limits. The incorporation of tracking technology into
drones is also being considered [52], and the European Union Avia-
tion Safety Agency (EASA) passed similar regulations for drones [3].
However, locating intrusion violations from non-compliant drones
remains a challenge. While agencies such as DHS, EASA, FAA,
FCC have installed regulations, there exist no mechanisms to en-
force them. In practice, localization and tracking might need to
be triggered in real time or a-posteriori based on proximity to a
sensitive location (airports) or observations of other events such
as interference or suspicious activity from a Wi-Fi MAC address.

Various techniques have been developed over the last few decades
to automatically locate RF emissions, from active radars [55], to
algorithms for multi-antenna systems such as MUSIC [48], ES-
PRIT [43], and Matrix Pencil [28]. Fundamentally, these techniques
estimate the Direction of Arrival (DoA) of RF emissions by ana-
lyzing and correlating signals received by multiple antennas with
a computer. Today, techniques are fairly accurate and reasonably
e�cient for a small number of emissions [2, 14]. Recent years have
also seen the emergence of several commercial systems to locate
drones such as Fortem TrueView Radar [23] or DJI Aeroscope [18].

However, the ability of a single system to permanently eavesdrop
and analyze the wireless spectrum and track all RF emissions raises
concerns and violates fundamental privacy laws. A compromise or
intentional misuse of such systems could result in an indiscriminate
tracking of users. Consequently, there is a need for systems which
can collaboratively and in a privacy-preserving way track RF emis-
sions, but only when they are deemed of interest. Such emissions
could belong to a jammer, or a drone �ying in a restricted zone or
altitude without authorization. Locating and tracking RF emissions
should only be possible when speci�c rules are violated and should
not allow indiscriminately tracking of users.

A conceptually straightforward way to achieve privacy preserv-
ing localization consists of evaluating a localization algorithm using
secure Multi-party Computation (MPC). Essentially, antennas send
secret shared signals to a group of parties such that no single party
has access to plain signals at any time. As a group, these parties
are trusted to not collaborate, intentionally or unintentionally (e.g.,
when a subset is compromised) on trying to compute anything but
the MPC-speci�ed functionality. Jointly, the parties then analyze
the signals working only on the secret shared data and output a
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Table 1: Total time (s) for MPC elevation angle estimation of a single emission (3 parties) over 10ms latency network

Malic. Hon. Standard This paper Speed up
Protocol Advers. Maj. MUSIC Opt-MUSIC SELEST ⇥
MASCOT X N 24 2.52 0.08 300
Lowgear X N 24 2.52 0.08 300
Cowgear X N 24 2.52 0.08 300
Semi - N 23.9 2.47 0.05 478
Hemi - N 23.9 2.47 0.05 478

Mal-Shamir X Y 25.5 2.63 0.05 510
Sy-Shamir X Y 43.6 4.5 0.16 272
Ps-Rep X Y 25.6 2.67 0.08 320
Shamir - Y 25.4 2.62 0.05 508
Rep3 - Y 25.3 2.61 0.05 506

function of the emission source location (e.g., elevation estimate).
However, as we show in Table 1, the implementation of an existing
localization algorithm (such asMUSIC) in MPC frameworks results
in exorbitant computation and communication costs.

In this work, we develop a DoA technique amenable to e�cient
optimization within several MPC frameworks, and in particular
secure against malicious parties performing the analysis. We show
that spatio-temporal cropping of RF samples results in a covari-
ance matrix (of antenna samples) that has a single non-negligible
eigenvalue. We also show that computing the pseudo-spectrum
by MUSIC becomes equivalent to projecting steering vectors on
a random combination of the covariance matrix. This technique
is signi�cantly more e�cient than the use of a &' algorithm for
eigenvalue and eigenvector computation as in MUSIC. We imple-
ment our technique within the MP-SPDZ framework [31], further
optimizing to reduce complexity by, adjusting the norm, exploiting
parallelism, avoiding divisions, square roots, comparisons. We eval-
uate our resulting algorithm (along our optimizations ofMUSIC)
in all common security models with arithmetic MPC protocols
including MASCOT [32] and Malicious Shamir [13]. We perform
extensive benchmarks in terms of computation and communication
cost for both online and o�ine operations. We discuss the various
trade-o�s such as communication cost vs. computation, o�ine vs.
online computation, and trust assumptions. In particular, we show
that it is possible to process up to 775 emissions per second in the
passive adversary setting, and up to 586 emissions in the active
adversary setting with su�cient o�ine-computed Beaver triples.

We apply for ACMWiSec’s replicability label. Our source code
can be found here [54]. The technical highlights of this paper are:

(1) SELEST : A practical system for secure, privacy-preserving
DoA estimation on top of MPC.

(2) An implementation and thorough performance evaluation
of SELEST using arithmetic and binary circuits in two promi-
nentMPC frameworks (MP-SPDZ [31] and EMP-Toolkit [56]),
capable of elevation angle estimation with high rates and
satisfying real-time requirements.

(3) An e�cient implementation of arithmetic for complex num-
bers in MP-SPDZ and EMP-Toolkit.

(4) MP-SPDZ libraries for the QR Algorithm over complex num-
bers, together with array and matrix multiplications.

2 BACKGROUND
2.1 Basic Notation
Throughout the paper, we refer to matrices using uppercase bold
letters (A) and column vectors using lowercase bold letters (v). The
expectation of a random variable - is denoted as E [- ], Ī denotes
the complex conjugate of a complex number I, E⇤ denotes the con-
jugate transpose of matrix E, and the nullspace of a matrix " is
denoted by ker("). Furthermore, with [G] we denote the complete
representation of a secret shared value G in an MPC circuit, and
with [G]8 we denote the share of G held by the party 8 .

2.2 Direction of Arrival Estimation

Figure 1: The DoA estimation problem.

Assume an antenna array consisting of# elements (Figure 1).We
refer to incident signals or waveforms as the set of electromagnetic
�elds �8 created by distinct emissions that arrive on the antenna
at an angle q8 . In this setup, the measured signal (�/& sample, re-
ferred to as complex sample) on an antenna element is called the
antenna response and the vector of # antenna responses caused by
an incident signal from angle q is called steering vector, denoted as
" (q). Intuitively, there is a phase di�erence between the observed
signals at two antennas due to the distance between them. The
steering vector describes the phase di�erences within the array
depending on its topology, and can be used to estimate the direction
of arrival: the azimuth and/or elevation angles with respect to the
antenna array orientation. Estimating the DoA has been a problem
of interest in wireless communications research for many years and
can be very challenging in practical applications [15, 21, 60, 61, 64].
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MUSIC Algorithm. Multiple Signal Classi�cation (MUSIC) [48]
and its derivations is a set of popular high-resolution techniques for
DoA estimation that uses subspace separation. In a nutshell,MUSIC
analyzes the covariance within the received complex samples of
all antennas and maps highly correlated values to signals, and low
correlated values to noise. Due to the orthogonality between the
noise and signal subspaces, the DoA is computed as the angle that
minimizes the projection of the steering vector (triggered by the
signals) on the noise subspace. The pseudospectrum output is the
magnitude of this projection with respect to the angle \ . We provide
a more detailed description and discussion of MUSIC in Section 4.

2.3 Secure Multiparty Computation
Secure multiparty computation (MPC) [40] allows a set of = parties
(%1, . . . , %=) to jointly compute output . = � (G1, . . . , G=) of any
function on their respective inputs (G1, . . . , G=) without revealing
more than what can be inferred from the output. . Essentially, MPC
emulates an ideal world where parties would send their inputs to a
trusted third party which computes the desired functionality and
sends the �nal output back to the parties.

As described in Sections 3 and 4, there exist several di�erent
techniques for di�erent settings of secure multiparty computation,
and in the following we informally summarize the intuition behind
one idea. Function � is converted into a circuit representation, com-
prising of (Boolean or arithmetic) gates. Instead of evaluating the
circuit on their real inputs G8 , parties distribute secret shares ([G8 ])
to other parties and evaluate the circuit’s gates on the shares [G8 ],
thus hiding parties’ inputs. The circuit is evaluated one gate at a
time until output [. ] is computed and revealed to all parties. Input
privacy follows from the fact that no single party %8 is able to learn
anything about the inputs of other parties.

Security Models. MPC allows participants to jointly evaluate a
function even in the presence of corrupted parties. Corrupted parties
may be assumed under the control of an adversary trying to extract
information, a�ect the output or completely disrupt the computa-
tion. Various formal security de�nitions [12] have been proposed,
informal de�nitions to some of themost important properties follow.
Speci�c MPC protocols and techniques provide security guarantees
for combinations of these properties.

Privacy: No party must learn anything from the computation
other than what can be inferred from the output.

Correctness: Each party receives a correct output.
Guaranteed output delivery: The adversary may not obstruct the

honest parties from learning the output of the computation.
Fairness: Either all, or no parties, learn the output.
Abort: The adversary is allowed to learn the output and abort

the execution, before making it known to the honest parties.
In terms of adversarial behavior, a semi-honest, passive adversary

(honest-but-curious) follows the protocol, but may use any observed
messages from other parties to recover sensitive information. On
the other hand, a malicious (active) adversary may arbitrarily devi-
ate from the allowed protocol execution in order to a�ect security or
correctness. A covert adversary may potentially act like a malicious
adversary with a high probability of being caught, and penalized.

Figure 2: Private drone detection work�ow

Arithmetic Operations in MPC. Since its introduction [10, 26, 62]
many di�erentMPC protocols have been proposed. The focus of this
work is the private DoA estimation evaluation using arithmetic cir-
cuits, although we brie�y discuss the evaluation in Boolean circuits
as well in Section 5. The reasoning behind this is that arithmetic
circuits are signi�cantly more e�cient in evaluating arithmetic op-
erations such as addition and multiplication than Boolean circuits.
The computation domain of arithmetic circuits is usually compu-
tation modulo a large number: either prime (denoted Z? ), or power
of two (denoted Z2: ).

A secret sharing scheme allows a party to split a value G into
shares [G]8 , where [G]8 is distributed to party %8 . Without loss of
generality, we brie�y illustrate an additive secret sharing mech-
anism between two parties. There, G will be shared such that
[G] = [G]1 + [G]2. To actually share its input G , %1 randomly sam-
ples A , sets their share to [G]1 = G � A , sets [G]2 = A , and sends [G]2
to %2. Informally, value G is hidden by A , and by adding their shares
the parties can reconstruct G . We denote as [G] the complete set of
shares that de�ne the value G , in this case: [G] = {[G]1, [G]2}.

We stretch notation and write [G] + [~] to describe the addition
(resp. other operations) of values G and ~ based on their shares.
More speci�cally, by adding their shares [G]8 + [~]8 , %8 obtains a
share [G + ~]8 of the sum G + ~. Note that the same does not hold
for local multiplication of shares. Instead, parties need to inter-
act and exchange further information for each multiplication (see
below) which introduces a signi�cant communication overhead
in the evaluation of an MPC circuit. Interactivity, the number of
communication rounds relates to the multiplicative depth of the cir-
cuit. The communication complexity denotes the amount of data to
be exchanged between parties during the computation. Finally, a
sharing scheme de�nes a reconstruction mechanism that allows
the parties to combine the shares of a value they are holding in
order to learn the output. As local computations by each party are
highly e�cient, the total runtime of securely evaluating a circuit
with MPC is dominated by network latency and throughput.

MPC using preprocessed data. Many MPC protocols take advan-
tage of an input independent o�ine phase to generate correlated
randomness to speed up computation in the subsequent online
phase. A typical example of such randomness are Beaver triples [9]
for multiplication. The idea is that a trusted third party prepares
random products [I] = [G] [~] during the o�ine phase, which are
‘corrected’ into the desired product [2] = [0] [1] during the online
phase by revealing 3 = [G] � [0] and 4 = [~] � [1]. Parties are now
able to compute the product using only local operations (additions,
multiplications by constant): [2] = [0] [1] = [I]�4 · [0]�3 · [1]�3 ·4 .
Other examples of preprocessed data include random input gad-
gets [17], and random bits [16, 19, 41].
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3 PROBLEM STATEMENT
3.1 Problem description
In a traditional DoA estimation system consisting of one computer
processing the data collected by an # -antenna array, this computer
alone can track all emissions unconditionally. Instead, we propose
a system of # separate receivers, each equipped with a receiving
antenna, that forward received data to a set of remote servers, see
Figure 2. The servers then privately estimate the DoA using MPC
and reveal the output under a certain condition. In this setup, a
receiver describes a deployed receiver in the area of interest with
the ability to record data and forward them to a remote server. We
assume that receivers are properly time and phase synchronized
using standard techniques [6, 7, 36]. By server, MPC party or sim-
ply party we refer to a remote server participating in the MPC
evaluation of the detection. The setting is described in Outline 1.

We note twomajor advantages of this approach. First, the compu-
tationally intensiveMPC evaluation is performed on remote servers,
which allows for the a�ordable deployment of large numbers of
receivers. The computation can be run on the cloud, on demand,
or in real time. Second, the data received from all antennas are
never owned by a single entity in the clear, therefore protecting
the location of regular users from systematic tracking.

3.2 Technical Challenges
In the following, we identify several technical challenges arising
from both MUSIC and MPC.

MUSIC in Practice. Received data rates in practical wireless sys-
tems easily reach the order of millions of samples per second (e.g.,
monitoring 1MHz of spectrum results in 1 million complex samples
per second), and estimating the received data covariance matrix
and performing eigendecomposition is computationally highly de-
manding, even without MPC. Furthermore, there is the need for an
extensive angle search to �nd the angle that maximizes the DoA es-
timation function. Moreover, to identify the noise subspace,MUSIC
requires that the number of antennas is larger than the number
of incident signals in the air, therefore the number of incident sig-
nals must be known or precisely estimated, which on its own is a
di�cult problem [22, 44, 58].

Secure computation overhead. A recent �urry of research on mak-
ingMPC practical has resulted inmultiple, ready-to-use open source
frameworks to securely implement functionalities [11, 32, 34, 46,
47, 56, 63]. Today, MPC is increasingly used in a wide range of
applications, including statistics [38], data analysis or end-to-end
encryption [49], but available frameworks are still limited in terms
of general usability. For example, there is no implementation that
supports e�cient complex arithmetic, a vital requirement in wire-
less system analysis (and crucial for DoA). Moreover, apart from
communication overhead depending on speci�c MPC operations,
mathematical operations such as comparisons, trigonometric func-
tions or computing roots are converted to large, complex circuits
which compute approximate results. Internally, these operations
require �xed point arithmetic which is signi�cantly more expensive
and numerically sensitive than integer arithmetic. For reference,
a single 32-bit �xed-point inverse utilizes 329 multiplications to

Outline 1 Secure DoA
Inputs: Received samples xj = {G8,1, . . . , G8, } for  snapshots
Output: 5 (\ )
Functionality:
1: Receiver 9 splits xj into additive shares and forwards

⇥
xj
⇤
B to

remote server (party) B .
2: Servers perform DoA estimation in MPC.
3: return 5 (\ ), e.g.: output 5 (\ ) = \ if \ > \C⌘A , otherwise ?.

approximate the result.MUSIC includes a wide range of such op-
erations: �xed-point divisions, computing norms and square roots,
comparisons, as well as trigonometric and logarithmic functions.

MPC protocols leverage multiple computationally heavy tools
and cryptographic primitives, such as commitment schemes, zero
knowledge proofs, large �eld operations, oblivious transfer, and
more. Table 1 shows complete online execution times of MUSIC
with 4 input samples using various state-of-the-art MPC protocols.

An additional challenge of computing over encrypted data is e�-
ciently achieving the required fractional precision. Currently, many
MPC frameworks omit a �oating point implementation completely
and rely on �xed-point arithmetic. Even though MP-SPDZ [31]
provides both options, our own MP-SPDZ benchmarks have found
�xed-point arithmetic both more e�cient and better supported
than �oating-point arithmetic. This, in turn, introduces limits in
the arithmetic range, resolution, and accuracy. Complex samples
from received emissions aggravate these limitations: their scalars
can vary a lot in magnitude based on the received signal strength
and phase, both within, and across executions. Furthermore, the
chosen bit-precision is an important factor in the performance of
the MPC evaluation, as achieving higher range and resolution re-
quires more computation and potentially larger �eld size. On the
other hand, operations like norms, squaring and dividing by very
small numbers are very susceptible to causing over�ows.

Working on Isolated Emissions. The computational complexity of
DoA algorithms, ampli�ed by the computation and communication
cost of MPC, make it clear that maintaining a practical, secure local-
ization system in a modern congested RF environment is impossible
without further optimization. However, processing one emission
at a time lowers the complexity and run time of the algorithm as
the number of antennas required is minimal, and fewer samples
are su�cient to estimate the covariance matrix [45]. The problem
arising in this scenario is the precise isolation of a few emission
samples from a stream of wideband collected data.

With the rapid growth of Machine Learning and Arti�cial In-
telligence in wireless communication systems, multiple tools have
emerged that allow for wireless emission classi�cation. [8] propose
a tool for incremental learning of the surrounding RF environment
by classifying known emissions and detecting newly encountered
types of signals. Their evaluation shows real-time, high accuracy
signal classi�cation in the 2.4 GHz and 5 GHz bands. Using such
tools, we can obtain samples that belong to exactly one signal and
our working assumption onward is an isolated emission, i.e., one
incident signal on the antenna array. Yet, Table 1 shows that even
with the single emission assumption the performance improvement
is not su�cient for a real time private detection system.

241



Selest: Secure Elevation Estimation of Drones Using Multi-Party Computation WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

4 TECHNIQUES
Overview of our contributions. We propose a set of techniques for

secure DoA estimation using MPC. For this, we introduce new tech-
niques for MPC arithmetic over complex numbers in MP-SPDZ, an
MPC-optimized version of the original MUSIC algorithm, and our
novel extension ofMUSIC, dubbed SELEST . This extension features
optimized angle search, outperforming MUSIC in an MPC envi-
ronment at the cost of acceptable loss of precision. All techniques
have been both implemented and evaluated in relevant arithmetic-
circuit MPC protocols of the MP-SPDZ framework [31] as well
as in Yao’s GC [62]. For comparison, we have also implemented
SELEST in EMP-toolkit [56]. We �rst describe the basic techniques
and optimizations (parallelism and relevant arithmetic optimiza-
tions) and their application to MUSIC. We report that while these
optimizations result in over an order of magnitude improvement of
performance relative to the standardMUSIC (Table 1), they remain
impractical for real-time DoA computation. We then present our
extension of MUSIC along with a proof of correctness.

Parallel communication. A major bottleneck in the evaluation
of a circuit its multiplicative depth. In case of multiple indepen-
dent multiplications, parties’ interactions can be grouped, so the
data for all multiplications can essentially be exchanged in one
round of communication. Our complex arithmetic implementation
supports and extensively uses this optimization o�ered by the MP-
SPDZ compiler [32]. From now on, we will refer to it as parallel
communication, noting the di�erence from parallel executions.

Secure complex arithmetic for MPC. A �xed-point representation
is essentially an extension of the integer representation, consisting
of an integer value and a scaling factor. Fixed-point arithmetic is
usually preferred in MPC, because of its e�ciency compared to
�oating-point arithmetic [31]. In most cases the range of the values
supported is con�gured by the application such that �xed-point
representation is su�cient for computation.

Operating on complex numbers (magnitude, phase, divisions)
introduces fractional values and requires �xed point scalars for
the real and imaginary parts. In our design, we de�ne a com-
plex number I = G + 9~ as a tuple of two �xed-point scalars
(G,~), and reduce complex operations to operations on the scalars.
For complex multiplications, we use Knuth’s standard technique
which is considered numerically stable for practical use [27, 35]:
I = (0+ 91) (2+83) = 02�13+ 9 [(0+1) (2+3)�02�13]. Note that each
complex multiplication requires only three scalar multiplications
instead of four, grouped in a single communication round.

During our development process, we contributed to the MP-
SPDZ framework by identifying a signi�cant number of bugs, rais-
ing performance issues, and providingminor additional features. An
overview of our contributions to MP-SPDZ can be found here [53].

4.1 Arithmetic optimizations
Besides optimization speci�c toMUSIC (below), we also perform
the following general operations to speed up total runtime. All
complex operations are vectorized [32] whenever possible, meaning
that the same instruction is executed for consecutive memory reg-
isters to boost both compilation time and runtime (SIMD). Given

Pseudocode 2 GS orthogonalization(A)
B,R 0
for 8 = 1, . . . ,=2>;B (A) do

v A) [8]
B[8]  v � ?A> 9B (v) // comm. parallelism in projection

for 8 = 1, . . . ,=A>FB (R) do // comm. parall. in R computation
for 9 = 8, . . . ,=2>;B (R) do

R[8] [ 9] = hB[8] · AT [ 9]i
return B) ,R

our speci�c application requirements, we have also extended struc-
tures like Arrays and Matrices in MP-SPDZ to store and operate
on data. These structures support parallelized scalar multiplication,
matrix-vector multiplication, matrix multiplication, dot product,
vector covariance, and norm (!1, !2) computation.

QR Algorithm. MUSIC relies on the QR algorithm [24, 37] for
the eigendecomposition of covariance matrices (see pseudocode 2).
We implement the complex QR Algorithm using Gram-Schmidt
orthogonalization. While it converges quickly for the small size
of our input matrix, our implementation supports arbitrary sizes
of input matrices and is extensible to di�erent methods. We lever-
age parallel communication wherever possible, and we minimize
the number of expensive operations such as norms, divisions and
comparisons. Typically, the QR Algorithm iterates until the input
matrix becomes almost diagonal, which in our experiments was in
1 to 3 iterations. Ours and any MPC evaluation requires the number
of iterations to be �xed to not leak any information.

Input pro�ling. To balance the trade-o� between the desired frac-
tional resolution and arithmetic e�ciency while avoiding over�ows
we perform input pro�ling and track the numerical progression
during test MPC executions. As a �rst step, we scale the received
samples to a range of [0.1 � 1] at each receiver to ensure that the
empirical covariance will not be arbitrarily large or small. This does
not a�ect the outcome as it is simply a per-receiver gain adjustment,
and our approaches exploit the phase correlation of the received
signals. At every step of the execution, we mark the required arith-
metic range and maintain an accuracy of at least 3 decimals, to
identify the minimum �xed-point precision. This leads to a 32-
bit signed �xed-point number with 24 bits for the fractional part
for the Optimized MUSIC implementation and to a 13-bit signed
�xed-point number with 9 bits for the fractional part for SELEST .

4.2 Data split
Samples received by antennas are forwarded to potentially un-
trusted servers and subsequently used as inputs for MPC evalua-
tion. This raises security concerns. First, a semi-honest adversary in
control of a subset of servers is able to process the correlation of the
data their servers hold. Additionally, a malicious adversary can alter
the data before engaging in the MPC. We stress that this is di�erent
than a standard input substitution attack [25], as in this case the in-
put comes from another, honest entity and must not be substituted.
Informally, the server is playing the role of a middle-man.

To address these concerns, the received data sample x is sim-
ply split at the receivers’ level into additive shares, such that x =
x1 + . . . + x" , and xB is forwarded to remote server B . Observe
that this data split is extremely cheap and can be performed with
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Pseudocode 3 Empirical covariance matrix calculation

for 8 = 1, . . . , do // Parallelism across snapshots
S S + xx⇤ // Parallelism in covariance

S 1
 �1S // aggregate instead of averaged

Pseudocode 4 Pseudospectrum search

for 8 = 1, . . . , 180 do // Parallelism across angles
%"*(�⇠ (q)  1

k0 (q)E⇤n k2 // avoid inversion

high rates even by resource constrained receivers. After the input
sharing phase of the MPC protocol, server B obtains share [x]B by
adding [x; ]B , for ; = 1, . . . ," .

4.3 Optimized MUSIC
We apply our MPC optimization techniques to the MUSIC algo-
rithm and provide a secure, e�cient implementation for arithmetic
MPC circuits. Given the scenario discussed in Section 2.2, the ar-
ray of received samples can be written as x = Af +w, where A is
a # ⇥ " matrix of steering vectors, f is a complex vector of the
incident signals on the antenna, and w is the (environmental and
instrumental) noise vector. MUSIC takes advantage of the signal
covariance matrix Ss = A�⇤A⇤ that contains the collective infor-
mation of all antenna responses stimulated by the incident signals
f , without the noise. Assuming that the signals and noise are uncor-
related, any vector qm uncorrelated to the signals must belong to
ker(Ss) and, by de�nition, be orthogonal to all steering vectors in
A. Thus, expression kA⇤qmk2 is equal to zero. As the signal corre-
lation Ss cannot be obtained in practice, ker(Ss) is estimated by the
covariance matrix of the received data over  snapshots in time:

S = E
⇥
xx⇤

⇤
=

1
 � 1

 ’
8=1

xix⇤i = Ss + E
⇥
ww⇤

⇤
= Ss + f2I, (1)

where f2 is the noise variance. In fact, the eigenvectors of Ss cor-
responding to the zero eigenvalue are the exact eigenvectors of
S that correspond to the f2 eigenvalue. Then, if En denotes the
matrix of these eigenvectors, MUSIC plots the pseudospectrum, i.e.,
levels corresponding to the magnitude of the above projection for
di�erent possible angles of incident signals:

%"*(�⇠ (q) =
1

" ⇤ (q)EnE⇤n" (q) =
1

kE⇤n" (q)k2 (2)

The points of the peak values of eq. (2) correspond to the estimated
DoA, and the magnitude of the peaks directly relate to the strength
of each received signal.

We have implemented MUSIC for MPC in MP-SPDZ, but in-
stitute the following changes resulting in major performance im-
provements. In estimating the covariance matrix for every snapshot
(pseudocode 3), communication rounds are kept to a minimum since
the parties only need to interact in order to compute half the ma-
trix (plus the diagonal). The rest of the matrix is computed locally
by Hermitian symmetry. Additionally, parallel communication is
exploited both in computing the covariance during every snapshot
and across all snapshots. Finally, we use the aggregate covariance
matrix instead of the average, skipping the last step to avoid the
unnecessary overhead of �xed-point division. This results to an

estimate scaled by some factor, but we stress that this factor has
no impact on the matrix eigenstructure.

Another computationally heavy part of MUSIC is the pseu-
dospectrum search (pseudocode 4), which evaluates eq. (2) for every
angle of the plane. Even though this operation is also parallelized,
for every angle a signi�cant amount of multiplications and one di-
vision are evaluated. We implement the square norm with parallel
communication and omit inversion to minimize the communication
rounds. After the calculation of the pseudo-spectrum, a function of
the elevation angle is revealed according to the application require-
ments. For instance, the elevation angle is revealed if it is over a
certain threshold. This requires = � 1 comparisons, where = is the
size of the calculated pseudospectrum, or, comparing the elements
in pairs results in dlog=e comparisons.

4.4 SELEST
We show that for the single emission case we can avoid a lot of
the computation of standard MUSIC and still obtain accurate re-
sults. Instead of using the noise subspace, we revert to the signal
subspace and use the covariance matrix of the received signals to es-
timate the DoA to avoid the overhead of the complex QR Algorithm.
At the same time, we optimize the operations for the multi-party
computation case.

We prove correctness of our single emission detection, starting
from theMUSIC algorithm. Let S be the covariance matrix of eq. (1):
S = E [xx⇤] = APA⇤ + f2I, with P = �⇤.

MUSIC utilizes the fact that the eigenvectors of Ss which corre-
spond to the zero eigenvalue are orthogonal to all" signal steering
vectors, in order to maximize (2). Let En be the matrix of these
eigenvectors as columns, and Es be the matrix of the eigenvectors
that correspond to non-zero eigenvalues as columns.

L���� 4.1. The values that minimize the denominator of (2), are
the same values that maximize the expression %B = " ⇤ (q)EsE⇤s" (q)

P����. By the Hermitian property of Ss, eigenvectors corre-
sponding to distinct eigenvalues are orthogonal, therefore En?Es.
Because Es, En completely de�ne the eigenvectors of Ss, the signal
steering vectors " (qB ) that are orthogonal to En must be parallel to
a corresponding signal eigenvector qs in Es. This naturally creates
a local maximum of %B = kEs⇤" (q)k2 at qB . ⇤

L���� 4.2. In the case of a single incident waveform, projecting
on any column vector of the signal covariance matrix Ss is equivalent
to projecting on the eigenvector of Ss that corresponds to the single
non-zero eigenvalue.

P����. In the case of a single emission, P = �⇤ = E
⇥
|51 |2

⇤
,

Ss is clearly a # ⇥ # matrix with rank 1 and has (# � 1) zero
eigenvalues. Ss can be decomposed into matrices EsΛE⇤s with Es =
[qs, n1, n2, n3],Λ = diag(_B , 0, 0, 0); (_B , q) being the single signal
eigenvalue-eigenvector pair. Therefore Ss = EsΛE⇤s = _Bqq⇤ and by
the property of the outer product of a vector with itself, Ss has rank
1 and all its columns are linearly dependent on q. ⇤

It is crucial to note that the important information is contained
in the phase of the samples and the norm of a vector is rather irrele-
vant. Also, in practice it is impossible to obtain a column vector of Ss
but we can closely estimate it from the received covariance matrix S.
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T������ 4.3. In the case of a single incident waveform on an an-
tenna array, DoA estimation using the covariance matrix is equivalent
to DoA estimation using the noise subspace (MUSIC).

%B = " ⇤ (q)EsE⇤s" (q) ⇡ " ⇤ (q)SiS⇤i " (q) = %SELEST

Please refer to the Appendix for the proof of the theorem.

4.4.1 Localization Output.

Coarse pseudospectrum output. DoA estimation algorithms such
asMUSIC output a complete view of the pseudospectrum, with the
peaks denoting the magnitude and angle of arrival of the incident
signals. Our goal is to provide a �atter, coarser representation of
the pseudospectrum by averaging the output power over a range of
angles. This way, we create a rough picture of the elevation plane
without explicitly revealing the elevation of the targeted emissions.
We achieve this by using a modi�ed steering vector "̂ (q) which
includes the average information of the array’s original steering
vector over a certain range of angles 5 . In addition to the coarse
pseudospectrum view, this provides signi�cant boost in the per-
formance of the MPC circuit because of the reduced number of
operations. Figure 3 demonstrates the accuracy as well as the out-
put coarseness of this method, for a factor 5 = 18.

If : is the degree resolution of the original steering vector of
eq. (4), we obtain B points for our modi�ed steering vector with
1 := d:5 e and we compute "̂ (q) = ["̂ (q)1, · · · , "̂ (q)1 ], "̂ (q)8 =
1
5
Õ8 ·5 +5 �1
9=8 ·5 " (q) 9 and from eq. (2):

%SELEST (q) = "̂ ⇤ (q)vsv⇤s "̂ (q) = kv⇤s · "̂ (q)k2 (3)

In the above, v⇤s denotes the chosen signal vector from the co-
variance matrix according to Theorem 4.3. The e�ect of invers-
ing expression 2 is re�ected in Figure 3b by a wider, �atter peak,
compared to Figure 3a. This coarse approximation achieves high
performance without leaking sensitive information, but still reveals
more than nothing about the location of the target emission.

Conditioned output. In addition to the above output method, we
consider the case where nothing is revealed besides whether a sig-
nal matches a certain condition in the monitored area. For example,
we consider areas where �ying a drone is permitted under regula-
tions such as a maximum allowed �ying altitude. Thus, we modify
the output of our algorithm to compare the calculated pseudospec-
trum values and output only Detection if the estimated elevation
angle exceeds some threshold. In general, the output as a function
of the elevation angle . = 5 (\ ) incurs the extra cost of evaluating
the output condition in MPC given the computed pseudospectrum
from eq. (3). Both of these techniques are used in both Optimized
MUSIC and SELEST .

We present SELEST in Algorithm 5. SELEST supports the general
case of" servers processing  snapshots collected by # antennas
for two output scenarios: Coarse and Conditioned. Protocol % can be
any arbitrary"-party MPC protocol. The algorithm for Optimized
MUSIC replaces [vS] in line 7 of Algorithm 5 by [E# ] = FQR ([(])
using our optimized QR Algorithm FQR (Algorithm 7) and contin-
ues accordingly.

Algorithm 5 SELEST
Inputs: Received samples xj = {G 9 ,1, . . . ,G 9 , } for snapshots

8 2 {1, . . . , }, for antennas 9 2 {1, . . . ,# }. Angle \C⌘A . Algorithm
� 2 {Coarse,Conditioned}. Protocol % .

Stage 1: Receiver Setup
1: Receiver 9 splits samples xj into additive shares G (1)

8,9 , . . . ,G
(" )
8,9

for all 8 2 {1, . . . , }. and forwards shares G (B )
8,9 to server B for all

B 2 {1, . . . ," }.
Stage 2: MPC
2: Server B secret sharesG (B )

8,9 according to protocol% for all 8 2 {1, . . . , }
and 9 2 {1, . . . ,# }.

3: Server B computes
⇥
G8,9

⇤
B =

Õ"
✓=1

h
G (✓ )
8,9

i
B
for all 8 2 {1, . . . , },

9 2 {1, . . . ,# }.
4: for 8 = 1, . . . , do
5: [Si ] = [xi ] [xi⇤ ], where [xi ] =

⇥ ⇥
G8,1

⇤
, . . . ,

⇥
G8,#

⇤ ⇤
6: [S] = Õ 

8=1 [Si ]
7: Choose a column of [S], [vS ] := [S]) (0) .
8: fork = 1, . . . ,1 do
9: [%SELEST (k ) ] = [vS ] · "̂ (\ )) [k ]
10: if � = Coarse then
11: return %SELEST
12: else
13: if � = Conditioned then
14: [\4; ] := argmaxk2{1,...,1} { [%SELEST (k ) ] }
15: if [\4; > \C⌘A ] then
16: return \4;
17: else
18: return ?

Algorithm 6 Optimized Gram Schmidt FGS
Inputs: Secret shares of input matrix [A]
Output: Secret shares of orthonormal basis [Q], triangular [R]
1: [B] = 0
Stage 1: Form [Q]
2: for 8 = 1, . . . ,=2>;B ( [A]) do
3: for 9 = 1, . . . ,=A>FB ( [B]) do
4: [A[8 ] ] = [A[8 ] ] � h[A[8 ] ], [B[ 9 ] ] i · [B[ 9 ] ]
5: [B[8 ] ] = [A[8 ] ]

[kA[8 ]k ]
Stage 2: Form [R]
6: [R] = 0
7: for 8 = 1, . . . ,=A>FB ( [R]) do
8: for 9 = 8, . . . ,=2>;B ( [R]) do
9: [B[8 ] [ 9 ] ] = h[A[ 9 ] ], [B[8 ] ] i
10: return [Q], [R]

Algorithm 7 Optimized QR Algorithm FQR
Inputs: Secret shares of input matrix [A], iterations 8C4A
Output: Secret shares of triangular [A], eigenvectors [Q2 ]
1: [Q2 ] = I, [A1 ] = [A]
2: for 8 = 1, . . . , 8C4A do
3: [Q], [R] = FGS ( [A8 ])
4: [A8+1 ] = [R] · [Q]
5: [Q2 ] = [Q2 ] · [Q]
6: return [A8C4A+1 ], [Q2 ]

5 IMPLEMENTATION AND EVALUATION
We have implemented and evaluatedMUSIC, Opt-Music, and SE-
LEST in MP-SPDZ to show e�cacy of our optimizations and, specif-
ically, the practicality of SELEST as a privacy-preserving drone
localization system. The source code is available for download [54].
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(a) MUSIC coarse pseudoscpectrum
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(b) Opt-MUSIC coarse pseudoscpectrum
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(c) SELEST coarse pseudoscpectrum

Figure 3: Coarse DoA Estimation of a single emission at 90� angle with averaging factor 18

In our implementation, we choose signed �xed-point arithmetic
as required by each of our algorithms according to Section 4.1. For
computations on �xed-point numbers, we use MP-SPDZ standard
128 bit �eld size to maintain security for operations on numbers of
length 32 bit. All evaluations were performed on a single server with
a 16-Core Intel Xeon E5-2660@2.20GHz processor and 128 GByte of
RAM. As latency dominates total runtime, communication between
parties takes place over the loopback interface, and all parties run
on the same machine. This allows us to precisely control latency
via the Linux kernel Tra�c Control (tc/netem) interface.

All techniques have been tested on both synthetic and real data.
Synthetic data was created in Matlab from random data streams and
additive white Gaussian noise. Real data was captured from WiFi
dongles and a DJI Phantom 4 commercial drone in outdoor spaces to
re�ect realistic environments. The emissions were recorded using a
Uniform Linear Array (ULA) consisting of 4 antennas, a single Ettus
USRP X310 synchronized using an Ettus OctoClock CDA-2990, and
4 snapshots samples were processed per antenna.

In the following, we analyze accuracy, security, performance,
and costs of our methods with respect to latency and protocol used.
We focus on performance during protocols’ online phases and dis-
cuss the preprocessing separately. We measure throughput in terms
of DoA estimations per second to re�ect requirements of a real-
world localization system, and present indicative monetary costs
for the deployment of a system based on our techniques, taking
computational and network tra�c costs into account. To compare
performance for di�erent levels of security, we evaluated our tech-
niques using various state of the art MPC protocols, covering a
wide range of adversary models. Table 3 provides a comprehensive
summary of our �ndings.

5.1 SELEST evaluation
Detection accuracy. Figure 4 compares the accuracy of our tech-

niques against the results of the standard MUSIC algorithm on the
same input data. The results of standard MUSIC were produced
by our Python implementation, using a discretized angle search of
1 deg. The results of our algorithms were obtained by the output
of the MPC Coarse pseudospectrum evaluation using a modi�ed
steering vector with 5 = 18. All results were then shifted into the
same logarithmic scale for better comparability.

Table 2: SELEST o�line cost for maximum throughput case
in consumed triples per hour and triple generation cost in
$/h

Usage Rate (106 triples/h) Cost ($/h)
Protocol Coarse Conditioned Coarse Conditioned
MASCOT 43.87 48.76 0.693 0.77
Lowgear 43.99 69.68 0.695 1.101
Cowgear 43.26 66.15 0.683 1.044
Semi 65.87 79.25 1.04 1.251
Hemi 63.45 84.67 1.002 1.337

Mal-Shamir 220 290.7 3.474 4.59
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(a) DoA = 68
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(b) DoA = 43

Figure 4: Coarse pseudospectrum identifying the DoA of
transmitted signals from various angles

The e�ect of the modi�ed steering vector is a pseudospectrum
view with the same trend as MUSIC’s, simultaneously hiding any
particular position of the peak up to an extent depending on the
chosen 5 . Higher values for 5 result in an even coarser view of the
pseudospectrum with slightly improved performance, because of
the decreased amount of computation. Lower values of 5 provide a
more re�ned view. Figure 4 shows the expected coarse approxima-
tion of up to 5 /2 o� the actual angle for over-the-air transmitted
sine waves (Fig. 4a) and over-the-air transmitted drone emission
(Fig. 4b) Our coarse pseudospectrum output accurately re�ects
the actual angle of arrival of the target emission in order to infer
whether a device violates a regulation such as altitude restriction.

Security & Privacy. To evaluate di�erent performance vs. secu-
rity trade-o�s, we evaluate SELEST for di�erent adversary models
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as shown in Table 3. MASCOT and Lowgear provide the strongest
security guarantees out of the evaluated protocols, being secure in
the presence of a dishonest majority of malicious adversaries, while
Cowgear is secure against covert adversaries. Semi and Hemi are
semi-honest secure variations of the above protocols, but maintain
security against a dishonest majority. These protocols provide the
�exibility of arbitrary number of honest and corrupt parties at the
expense of increased computation.

MPC based on Shamir’s secret sharing protocols achieve secu-
rity against an honest majority of malicious adversaries with a
noticeable improvement in performance and cost. Similarly, the
replicated secret sharing, 3-party computation protocols Ps-Rep
and Rep3 achieve malicious and semi-honest security respectively
for a honest majority of parties, by having two parties holding a
share of a value unknown to the third. This way, two out of three
parties are able to reconstruct a value. The above compromises are
re�ected in the performance evaluation in Table 3.

Our system inherently requires trust in the input shares sent by
the receivers to the servers. In any system, an untrusted receiver
could provide incorrect inputs to a�ect the correctness of the re-
sult, and application speci�c techniques (e.g. redundancy based)
are required to cope with this type of attack. Additionally, a mali-
cious server could modify a receiver’s shares. There are standard
techniques to mitigate this: an antenna could send cryptographic
hashes of every sample to all parties, which can be veri�ed in the
MPC circuit after the input reconstruction. During the evaluation
of the MPC circuit, security is obtained by the chosen protocol, and
no information is leaked about the recorded samples. In the case of
the coarse pseudospectrum output, the elevation peaks cannot be
traced back to a speci�c set of input samples and the exact angle
of arrival remains private.

Network impact. We evaluate two crucial factors in the perfor-
mance of the system, communication rounds and communication
complexity. For the former, we show the e�ect of latency in various
scenarios and protocols. For the latter, we show network tra�c
costs based on the total data exchanged for every second of the
evaluation, and the current $0.01 cents/GByte tra�c cost between
certain AWS instances[4]. Running the same experiments on a
similar setup using EC2 AWS instances, a reserved m4.4xlarge in-
stance would cost $0.496 e�ective hourly. Furthermore, the data
transferred between the parties during a single online execution
of SELEST are in the worst case ⇠0.33 MByte one-way for protocol
Sy-Shamir for conditioned output. Even at very high throughput,
this requires speeds of ⇠50 MBytes/sec, far within the range of the
25 GBit/sec connections between AWS instances [5].

Figure 5 presents the e�ect of communication rounds for various
protocols in a single MPC evaluation of SELEST , for round trip
time (RTT) latency up to 150 ms which re�ects high quality intra-
continental WAN connections. For consistency, we conduct the rest
of the experiments in a 10 ms RTT setting, at the time of writing
the worst case for cloud server instances like AWS EC2 within a
local zone [59]. The amount of exchanged data and therefore the
bandwidth is a negligible factor in the performance compared to
the communication rounds and implied network latency.

Performance. With multiplications requiring interaction, in a sin-
gle execution of SELEST communication between parties is invoked
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(b) conditioned output
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(c) coarse output, high latency
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(d) GC vs. arithmetic protocols

Figure 5: SELEST execution times varying network latency

10 to 28 times depending on the underlying protocol. This results
to idle computational resources, waiting for the data exchange, es-
pecially as the network latency increases. We have heuristically
estimated maximum parallelism for each protocol by measuring the
performance over increased executions for various latency values.
For low latency, we �nd that most protocols peak in performance at
1 to 10 parallel executions. For a 10 ms RTT the maliciously-secure
protocols’ performance peaked at 60 parallel executions, and the
semi-honest protocols’ performance peaked at 120 � 180 parallel
executions. This veri�es our assumption that executions can be
highly parallelized to increase the system throughput, in terms of se-
cure DoA estimations per second. We attribute this di�erence in the
additional computation required by themalicious protocols for oper-
ating on the MACs of the shares to detect inconsistencies in the par-
ties’ shares and computations. We note that for every execution, #
party instances are invoked (in our case # = 3), and, being executed
on the same server, the player instances share a common pool of re-
sources, thereby restricting the potential parallelism by a factor of 3.

We demonstrate the online performance of SELEST , evaluated
as a throughput of achieved DoA estimations per second in two
cases, coarse pseudospectrum and conditioned. For reference, we also
evaluated the performance of MUSIC in Python (using Hermitian-
optimized eigendecomposition by NumPy) on the same inputs, and
hardware/DoA con�guration, and measured 7.44ms per execution,
as opposed to 24s (Table 1). In order to account forMUSIC’s ability
to process multiple emissions, we scale up its performance by a fac-
tor of three (there are four antennas in our system), and compute a
maximum throughput of 403.2 DoA/s, almost 4 orders of magnitude
faster than the Standard MUSIC implementation in MPC (Table 1).

Preprocessing costs. Several protocols in Table 3 achieve a faster
online phase when the required randomness is computed during
an o�ine phase. While all of the arithmetic protocols bene�t from
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Table 3: SELEST online performance (secure DoA estimations/second), 3 parties, 10ms RTT, tra�c cost in cents/hour
Model Coarse Conditioned

Malic. Hon. Single Parallel Single Parallel
Protocol Advers. Maj. DoA/s Cost (c/h) DoA/s Cost (c/h) DoA/s Cost (c/h) DoA/s Cost (c/h)
MASCOT X N 13.1 0.001 106.9 0.09 5 0.002 38.7 0.126
Lowgear X N 13.1 0.001 107.2 0.119 4.9 0.002 55.3 0.377
Cowgear X N 13.1 0.001 105.4 0.119 5.0 0.002 52.5 0.377
Semi - N 20.2 0.001 160.5 0.117 5.8 0.002 62.9 0.373
Hemi - N 20.3 0.001 154.6 0.263 5.8 0.002 67.2 0.373

Mal-Shamir X Y 19.8 0.001 536.1 0.09 5.6 0.002 230.7 0.124
Sy-Shamir X Y 6.3 0.036 227.1 2.893 2.5 0.037 151.8 4.413
Ps-Rep X Y 12.0 0.001 601 0.117 4.7 0.001 296.8 0.171
Shamir - Y 20.0 0.001 586.6 0.005 5.6 0.001 293.2 0.149
Rep3 - Y 21.8 0.001 775.9 0.055 5.6 0.001 333.0 0.084

Yao (2PC) - n/a 2.1 0.99 20.3 59.54 2.2 0.99 19.5 59.5
EMP (2PC) - n/a - - - - 0.8 0.002 - -

randomly generated bits for bit-wise operations, the greatest impact
is caused by the preprocessing of multiplication (Beaver [9]) triples.

The SPDZ family of protocols, i.e., MASCOT, Semi [32], Lowgear,
Cowgear and Hemi [33], follow the online phase of the SPDZ pro-
tocol [17] which heavily relies on Beaver triples for performing
multiplications, but o�er improved o�ine phase performance. We
focus on the Lowgear and Cowgear protocols because they per-
form better than MASCOT for large number of triples, yet we note
their higher computation requirement. On the other hand, MAS-
COT relies more on communication and performs better in very
low latency scenarios [33]. Keller et al. [33] measure over 100.000
triples/sec throughput for 3 parties and the same computation set-
ting as in our experiments. Moreover, they estimate near 190 million
triples per dollar and per party given the hourly cost of one hour
AWS r4.16xlarge instance in Amazon’s US East data center. SELEST
requires a varying number of triples depending on the size of the
input and the type of output. For reference, we examine the cost
of the o�ine phase based on 4 samples of input per antenna (total
of 32 samples) for both coarse and conditioned outputs (Table 2).

Summary of results. Our results show that we are able to achieve
high performance DoA estimation with high accuracy in an MPC
circuit, thus maintaining data privacy and security in the presence
of di�erent types of adversaries. For a coarse spectrum estimation,
we achieve more than 100 DoA/s in the presence of a majority of
compromised servers in the malicious model and more than 160
DoA/s in the semi-honest model. In the case of an honest majority
of servers, our results boast more than 536 DoA/s in the mali-
cious model and more than 775 DoA/s in the semi-honest model.
The more demanding circuit producing conditional outputs also
achieves more than 230 DoA/s in the malicious model and more
than 330 DoA/s in the semi-honest model. We �nd Ps-Rep proto-
col balanced between high performance and security against one
malicious adversary out of three parties, without the requirement
of preprocessed multiplication triples. We also observe a speedup
compared to non-private MUSIC (403.2 DoA/s), which re�ects the
lower computation of SELEST and the potential of parallel execu-
tions due to party interactions. However, SELEST processes a single
emission and its performance is a�ected by network latency.

We note that ML-based detection techniques (Baset et al. [8]) are
increasingly practical in isolating RF-emissions from millions of
received samples, making our assumption of single emission rea-
sonable. Furthermore, in a reasonably congested residential setting

with hundreds of wireless devices, our results show the feasibility
of a real time, secure, drone localization system.

5.2 Discussion
Constant round protocols. Being the �rst complex number imple-

mentation for a wireless application, it is natural that our imple-
mentation and evaluation focuses on arithmetic circuits. It is worth
noting another growing �eld of MPC, Constant Round protocols
which are based on Yao’s GC protocol [62]. In a nutshell, such pro-
tocols usually operate in the binary domain and achieve constant
rounds of communication by having one party (the garbler) create
the circuit, send it to the other party (the evaluator) which evaluates
it. This comes at the cost of a very large circuit that has to be created,
transmitted and evaluated e�ciently. We implemented and tested
our algorithm in Yao’s GC in MP-SPDZ [31] and EMP-Toolkit, both
2-party protocols for semi-honest adversaries with the EMP-Toolkit
implementation easily extensible for malicious adversaries using
Authenticated Garbling [57]. Figure 5d shows that 3 party arith-
metic protocols outperformed constant round protocols for RTT
up to 80ms. We observed that constant round protocols only take
the lead for larger number of parties and higher RTT. We attribute
this to the network volume caused by the garbled circuit which
overshadows the few, low-latency communication rounds between
a small number of parties in arithmetic evaluation: we observed 655
times more communication in Yao/EMP-Toolkit compared an equiv-
alent MASCOT online phase. Moreover, a faster CPU would favor
the garbled circuit approach, since it relies in computation for gar-
bling and evaluating the circuit more than arithmetic protocols do.

Other applications. Our results are also promising for use in
extended DoA estimation, such as higher dimension search and
similar applications. Some applications aim for Acoustic Source
Localization (ASL) by using microphone arrays to collect samples
and pose similar security concerns [39].
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A APPENDIX
T������ A.1. In the case of a single incident waveform on an an-

tenna array, DoA estimation using the covariance matrix is equivalent
to DoA estimation using the noise subspace (MUSIC).

%B = " ⇤ (q)EsE⇤s" (q) ⇡ " ⇤ (q)SiS⇤i " (q) = %SELEST
P����. When P = �⇤ = E

⇥
|51 |2

⇤
the signal covariance matrix

can be written Ss = APA⇤ = PAA⇤. For simplicity we consider a
Uniform Linear Array with the following steering vector, but the
proof holds for arbitrary antenna arrays:

" (q) = [1, 4 9:32>Bq , 4 9:232>Bq , · · · , 4 9: (#�1)32>Bq ]
= [1, I, I2, · · · , I#�1]

(4)

with I = 4 9:32>Bq and |I | = 1. Then:

S = Ss + f2I = PAA⇤ + f2I

= E
⇥
|51 |2

⇤
26666666664

1 + f̃ Ī Ī2 · · · Ī#�1

I IĪ + f̃ IĪ2 · · · IĪ#�1

I2 I2Ī I2Ī2 + f̃ · · · I2Ī#�1
... · · · · · ·

. . .
...

I#�1 I#�1Ī I#�1Ī2 · · · I#�1Ī#�1 + f̃

37777777775

where f̃ = f2

E[ |51 |2 ] .

We can now express a column vector of S as

s8 = [Ī8 , IĪ8 , · · · , I8 Ī8 + f̃, · · · , I#�1Ī8 ])

and have the dot product of two arbitrary column vectors of S be

hs8 · s9 i =
#�1’
:=0

s̄8:s9: = I8 Ī 9 (# + 2f̃) (5)

For the norm of a column vector of S, we have ks8 k =
qÕ#�1

:=0 |B8: |2 =p
(# + f̃), and therefore ks8 k · ks9 k = (# + f̃). Then by the vector

dot product:

cos\ =
Re(hs8 · s9 i)
ks8 k · ks9 k

= Re(I |8�9 | ) (1 + f̃

# + f̃ )  Re(I |8�9 | ) (1 + f̃)

However, f̃ = f2

E[ |51 |2 ] and the noise variance can be safely as-
sumed orders of magnitude less than the expected norm of the
incident signal. This shows that choosing two arbitrary vectors
from S is equivalent to choosing two arbitrary vectors from Ss. ⇤
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