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We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with mul-
tilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms,
generated by the exchange of virtual photons through a common cavity mode, grows exponentially
fast and is described by two-mode squeezing (TMS) of effective bosonic quadratures. The mapping
between an effective bosonic model and the natural spin description of the dipoles allows us to realize
the analog of optical homodyne measurements via straightforward global rotations and population
measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing
of an optical phase (common and differential between two ensembles). We discuss a specific imple-
mentation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence
intrinsic to cavity platforms. Our proposal can open unique opportunities for the observation of
continuous variable entanglement in atomic systems and associated applications in next-generation
optical atomic clocks.

The production of entangled pairs of quantum particles
is a process with relevance across broad areas of quan-
tum science, ranging from fundamental investigations of
quantum mechanics [1–3] and exotic phenomena in high
energy physics and QED [4–6], to technological appli-
cations in quantum communication [7], amplification of
quantum signals [8], metrology [9–11], and information
processing [12].

Pairs of entangled photons are a workhorse of quan-
tum optics, typically generated via processes such as, e.g.,
four-wave mixing (FWM) of optical fields in a nonlinear
medium [13]. Complementary efforts have also sought
to realize pair production of entangled bosonic atoms
using the intrinsic nonlinearity provided by contact in-
teractions in ultracold gases [6, 14–19]. A common ex-
ample are spinor Bose-Einstein condensates (BECs) [20–
26], wherein spin-changing collisions between atoms of
different internal spin states simulate a pair production
process that is analogous to degenerate FWM of optical
fields [27]. While atomic realizations present distinct ad-
vantages and opportunities relative to optical systems,
including entanglement of massive particles and longer
interaction times where the dynamics can be highly non-
perturbative, spatial dynamics of the atomic clouds can
sometimes add unwanted complexity to the pair creation
process. For example, in spinor BECs it is typically as-
sumed that spatial motion is frozen out so that the inter-
nal spin dynamics can be amenably described by a simple
single-mode model [28, 29].

In this Letter, we outline a proposal to simulate a pair
production process through light-mediated interactions
between atoms confined in an optical cavity and exploit
it for quantum-enhanced metrology. Pairs of entangled

excitations are generated by the exchange of virtual pho-
tons between a quartet of internal spin states coupled to
a common, far-detuned cavity mode, in a process analo-
gous to FWM. The pinning of the atoms in a deep optical
lattice supported by the cavity, in combination with the
global range of the effective interaction [30], avoids unde-
sirable motional decoherence and can enable the study of
large systems without treating complex multi-mode dy-
namics such as those encountered in, e.g., spinor BECs
[29]. The exploitation of light-mediated exchange inter-
actions realized by coupling an optical transition to an
undriven cavity complements prior work involving Ra-
man transitions [31, 32], and avoids potential sources of
technical noise introduced by driving the cavity with an
external field, such as fluctuations in the drive intensity
or detuning. Nevertheless, our proposal can in principle
be extended to these systems.

In optical systems, the generation of entangled pho-
tons is well known to lead to excess quantum fluctua-
tions in the phase and amplitude quadratures of each
photon mode, but suppressed relative fluctuations of the
combined quadratures of the two modes. This form of
inter-mode entanglement, described by two-mode squeez-
ing (TMS), can be diagnosed using homodyne techniques,
whereby optical quadratures are measured by mixing the
squeezed light with a strong classical reference field [33].
Atomic homodyne techniques have also been developed
and realized in spinor BECs, whereby the condensate
takes the role of the phase reference, but these require
careful mixing of multiple internal states [20, 34], or alter-
natively nonlinear readout protocols to exploit the cor-
related noise [35]. Here, we demonstrate that by engi-
neering TMS using long-lived optical transitions coupled
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by a common cavity mode, the quadrature squeezing can
be accessed and exploited for quantum-enhanced sensing
via a standard Ramsey sequence employing rotations and
population measurements on the optical transitions. The
four-level realization of the TMS lets us design protocols
to sense rotations about any collective quadrature, in-
cluding differential phases and sum phases imprinted on
the atoms. We verify that our protocol is robust to typ-
ical sources of decoherence in cavity-QED realizations
and thus can be immediately relevant for state-of-the-
art time and frequency standards, while simultaneously
opening new opportunities for the observation and prob-
ing of continuous variable entangled states.
Engineered FWM – We consider an ensemble of atoms

trapped by a deep one-dimensional magic optical lattice
within an optical cavity, such that the spatial dynamics
are effectively frozen. A single cavity mode, with angu-
lar frequency ωc and power decay linewidth κ, couples
to a long-lived optical transition, with angular frequency
ωa and natural decay rate γ � κ, between a manifold
of ground (g) and excited (e) states with single-photon
Rabi frequency 2g0 [see Fig. 1(a)]. We focus on the far-
detuned limit, |∆| = |ωc − ωa| � g0

√
N,κ, for N atoms,

where the dynamics is almost unitary. The cavity field
can be adiabatically eliminated and serves only to me-
diate effective interactions between the atoms [36]. For
concreteness of the following discussion, here we consider
a system based on the Zeeman levels of the 1S0 (g) and
3P0 (e) electronic states in 87Sr with F = 9/2, which
are separated by an optical transition frequency form-
ing the basis of state-of-the-art optical lattice clocks [37].
However, our discussion can be generalized to alternative
implementations using, e.g., two spatially divided ensem-
bles to emulate the multiple internal transitions [32, 38].
We assume the atomic ensemble is prepared with

an equal population of atoms in the electronic states
|g,m = −9/2〉 and |e,m = 9/2〉 where m labels the spin
projection of the Zeeman sublevel along the quantization
axis set to be perpendicular to the cavity axis (e.g. by an
external magnetic field). In Ref. [39] (see also Fig. 1) we
verify that under this initial condition, the description of
the cavity-mediated dynamics can be restricted to a quar-
tet of states, |g,m = ±9/2〉 and |e,m = ±9/2〉, as the
population of other Zeeman sublevels is suppressed by a
combination of collective effects and favourable Clebsch-
Gordan coefficients [39, 40]. The atomic evolution is then
described by the effective spin Hamiltonian [36, 39],

Ĥ = ~χ
(
Ŝ+
A + Ŝ+

B

)(
Ŝ−
A + Ŝ−

B

)
+ ~δ

(
Ŝz
B − Ŝz

A

)
. (1)

Hereafter, we denote the m = −9/2(9/2) manifold as the
A(B) ensemble. We have introduced collective opera-

tors Ŝ+
A =

∑N
i=1 |e,A〉i 〈g,A|i, Ŝ+

B = −∑i |e,B〉i 〈g,B|i
and Ŝz

α = 1/2
∑

i (|e, α〉i 〈e, α|i − |g, α〉i 〈g, α|i) for α =
A,B, where the summation runs over all N atoms.
The non-traditional sign convention for the B ensem-

FIG. 1. (a) Schematic of cavity implementation: Interactions
(χ) between multilevel atoms (internal structure shown in in-
set) are mediated by exchange of virtual photons through a
common cavity mode of angular frequency ωc = ωa+∆ where
∆ is the detuning and ωa is the atomic transition angular fre-
quency. The cavity leaks photons through the mirrors at rate
κ and the atoms undergo spontaneous emission at rate γ. A
magnetic field perpendicular to the cavity axis provides a Zee-
man shift, and sets the quantization direction. (b) Possible
exchange processes (blue) and self-interactions (red) caused
by cavity-mediated interactions. (c) Visualization of the spin
squeezing generated during the dynamics, in the combined
basis of the A and B manifolds. Blue arrows label the Bloch
vector. (d) Squeezing, quantified by the normalized variance
ξ2 = N(∆S1,−)

2 = N(∆S2,+)
2, for δ = Nχ/2 and different

atom numbers N . The UPA prediction (dashed line) agrees
with TWA calculations (solid lines) until corrections beyond
UPA become important (see text). The minimum squeezing

is ξ2min ≈ 0.88/
√
N as shown in the inset.

ble accounts for the differing sign of Clebsch-Gordan
coefficients for the relevant transitions in each ensem-
ble, which we absorb in the raising/lowering operators
rather than Hamiltonian definition for convenience. The
cavity detuning ∆ controls the strength of the interac-
tion, χ ≈ −g2F /∆ where the adjusted Rabi frequency

2gF = 2g0
√
F/(F + 1) includes an additional factor√

F/(F + 1) arising from Clebsch-Gordan coefficients
[39]. A relative Zeeman shift, ∝ δ, splits the energies
of the two ensembles.

The first term of Eq. (1) is a flip-flop process that
includes: i) an exchange of an excitation between the
A and B ensembles, e.g., Ŝ+

A Ŝ−
B + h.c., and ii) a self-

interaction Ŝ+
A Ŝ−

A + Ŝ+
B Ŝ−

B . Both can be understood as
the simultaneous destruction of a pair of particles in two
atomic levels and subsequent creation of a pair in two lev-
els, which is analogous to the process of FWM familiar
from quantum and atom optics. We rigorize this analogy
by defining Schwinger boson operators âg,α and âe,α via
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Ŝ+
α = â†e,αâg,α to rewrite the spin Hamiltonian as,

ĤFWM = ~χ
(
â†e,Aâg,A + â†e,B âg,B

)(
â†g,Aâe,A + â†g,B âe,B

)

+
~δ
2

(
â†g,Aâg,A + â†e,B âe,B − â†e,Aâe,A − â†g,B âg,B

)
,

(2)

where the first line describes a set of FWM processes be-
tween the four Zeeman sublevels. The Hamiltonian (2) is
closely related to that realized via spin-changing interac-
tions in spin-1 BECs [39] under the assumption that all
atoms are restricted to a single common spatial mode.
This assumption is fundamentally absent in cavity-QED
implementations [30, 32, 36] as the infinite-range interac-
tions are physically generated by the atomic coupling to a
single common cavity mode, which can be made uniform
by selective loading of the atoms in the spatial lattice or
by adopting a ring cavity configuration.
Dynamics of pair creation – In quantum optics it is

common to make an undepleted pump approximation
(UPA) [41] to study FWM dynamics, corresponding to
replacing âg,A, âe,B ∼

√
N/2 in ĤFWM. For simplicity,

we have assumed that the two pump modes are equally
populated and treat the general case with unequal pump
populations in Ref. [39]. Further assuming δ = Nχ/2
to effectively remove the mean-field interaction shift due
to the self-interaction terms χ(Ŝ+

A Ŝ−
A + Ŝ+

B Ŝ−
B ) [39] we

obtain,

ĤTMS =
N~χ
2

(
â†e,Aâ

†
g,B + h.c.

)
. (3)

This final form elucidates a resonant production of pairs
of bosons, or equivalently the correlated transfer of pairs
of atoms to the internal levels |e,A〉 and |g,B〉. Us-
ing ĤTMS, the number of entangled particles is n̄(t) =

〈â†e,Aâe,A+ â†g,B âg,B〉 = 2 sinh2(Nχt/2) [25, 42]. We ver-
ify this prediction in [39].
Two-mode squeezing for enhanced metrology with an

optical transition – It is well established in quantum op-
tics that the Hamiltonian Eq. (3) generates squeezing of
combined two-mode quadrature fluctuations [43]. Con-
sidering χ > 0 without loss of generality, within the UPA
Ĥ produces squeezing along two bosonic quadratures la-
belled Y+ and X− and anti-squeezing along conjugate
quadratures X+ and Y− [39], with exponentially fast
suppression or growth of the associated quantum noise
〈(∆X̂±)2〉 = 1

2e
±Nχt and 〈(∆Ŷ±)2〉 = 1

2e
∓Nχt. Impor-

tantly for our proposal, the two-mode quadrature squeez-
ing can be observed in collective spin operators that act
on our four-level system, up to corrections beyond UPA
[39] that we will argue are irrelevant in practice. Specif-
ically, the squeezed quadratures can be directly mapped

to a combination of spin operators,
√

N
2 X̂− = Ŝ1,− ≡

Ŝx
B−Ŝy

A and
√

N
2 Ŷ+ = Ŝ2,+ ≡ Ŝy

B+Ŝx
A. Correspondingly,

the anti-squeezed quadratures are
√

N
2 Ŷ− = Ŝ2,− ≡

Ŝy
B − Ŝx

A and
√

N
2 X̂+ = Ŝ1,+ ≡ Ŝx

B + Ŝy
A.

We can visualize the squeezed quantum noise of the
combined spin state corresponding to the A and B tran-
sitions on a pair of coupled Bloch spheres defined by axes
(S1,−,S2,−,S3,−) and (S1,+,S2,+,S3,−) that share a com-
mon vertical component S3,− = Sz

B − Sz
A and for which

the corresponding operators obey standard SU(2) com-
mutation relations [39]. As shown in Fig. 1(c), the state is
squeezed in both Bloch spheres, (∆Ŝ1,−)2 = (∆Ŝ2,+)

2 =
Ne−Nχt/4, relative to the level of the initial state which
is separable.

The UPA prediction for the squeezing, (∆S1,−)2 and
(∆S2,+)

2, is verified in Fig. 1(d) by comparing to a cal-
culation of the variances based on a numerical simulation
of the full multilevel cavity implementation, and we find
excellent agreement up to n̄ ∼ 0.76

√
N . The multilevel

cavity dynamics are obtained using a truncated Wigner
approximation (TWA), which approximates the quantum
dynamics by averaging over an ensemble of mean field
trajectories with initial conditions chosen to reproduce
the quantum fluctuations of the initial state [44–48]. We
include all possible exchange processes between the com-
plete set of 4F+2 ground and excited atomic levels in our
TWA simulation, including, e.g., those mediated by pho-
tons with polarization perpendicular to the quantization
axis [39, 49].

A Ramsey protocol that uses only collective rotations
and population measurements of the collective spins en-
coded in the A and B manifolds can be used to take
advantage of the squeezing in the Bloch sphere for en-
hanced sensing of phase shifts imprinted on the optical
transition. The protocol is analogous to optical homo-
dyne techniques in quantum optics, as well as atomic
homodyne [34, 50] or measurements of squeezing in spin-
1 BECs [51, 52]. However, as our atomic realization is
based on four internal levels, as opposed to three in spin-
1 BECs, we do not require any coherent mixing of the
F = ±9/2 manifolds. This also distinguishes our ap-
proach from prior demonstrations of interferometry with
Dicke-like states realized in spin-1 BECs [21], which treat
the mF = ±1 modes as the two internal levels of a col-
lective spin-1/2 system and uses a Holland-Burnett-type
protocol [53]. Such an approach is sensitive to decoher-
ence [54] and readout errors [55], while in our system it
would also add the complex requirement of engineering
a coupling between the F = ±9/2 states.

Here, we present Ramsey protocols for measuring sum
and difference optical phases imprinted on the atoms,
illustrated in Fig. 2. Measuring differential phases has
several applications including gravimetry [56], measur-
ing gravitational redshifts [57–60], and detecting gravi-
tational waves [61, 62] and dark matter [63]. Measuring
the sum phase is useful for improving state-of-the-art op-
tical atomic clocks.
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FIG. 2. (a) Ramsey sequence to measure a differential clock
phase shift imprinted on the atoms. A first π/2 pulse rotates
the Bloch vector to the equator. Next, a phase accumulation
rotates the Bloch vector about Sz

B −Sz
A by an angle φ, before

a final π/2 pulse rotates the Bloch vector for readout via mea-

suring Ŝz
B − Ŝz

A. (b) Ramsey sequence to measure the sum
phase imprinted on the atoms. The first π/2 pulse defines the
squeezed distribution on a joint Bloch sphere of A and B de-
fined by the axes (S1,−,S2,+,S3,+). After phase accumulation

about Ŝz
B + Ŝz

A, the final pulse again rotates the Bloch vector
for readout via measuring Ŝz

B+Ŝz
A. In both cases, dashed blue

arrows mark the Bloch vector at each stage. The subscript
x(y) for the pulses denote the axis of rotation Sx(Sy), and the
degree 0◦(90◦) in the subscript conveys the same information
via the phase of the laser pulse.

To measure a differential phase imprinted by a rotation
about Sz

B − Sz
A, we begin our protocol with a π/2-pulse

that rotates atoms in the A ensemble about Sx and those
in the B ensemble by Sy, i.e implements exp(−iπ2 Ŝ2,+).
Next, we accumulate a relative phase shift by a rotation
of φ about −Sz

A and Sz
B (i.e. S3,−), and finally apply a

second π/2-pulse which rotates atoms in the A and B en-
sembles about Sy and Sx, i.e. implements exp(−iπ2 Ŝ1,+).
The action of this pulse sequence on the state is best vi-
sualized by looking at the spin distribution in the lower
Bloch sphere in Fig. 1(c), as shown in Fig. 2(a). The final
pulse converts the rotation Ûφ into a measurable change
in the difference in atomic inversions

〈Ŝz
B − Ŝz

A〉 =
N

2
sinφ. (4)

This Ramsey sequence does not imprint any information
about the differential phase on the upper Bloch sphere
in Fig. 1(c), as we discuss in Ref. [39].
The sum phase, imprinted by a collective rotation

around S3,+ ≡ Sz
A + Sz

B , can be similarly inferred by
another Ramsey protocol shown in Fig. 2(b). Note that
neither Bloch sphere in Fig. 1(c) has S3,+ as an axis.
Therefore, the first pulse in this Ramsey protocol, im-
plementing exp(−iπ2 Ŝ2,−), is chosen such that it rotates

the axes in the Bloch sphere from (S1,+,S2,+,S3,−) to
(−S3,+,S2,+,S1,−), thus introducing S3,+ into relevance.
The remainder of the sequence proceeds analogously to
that for the differential phase.
The sensitivity of both our protocols is given by

(∆φ)2 ≡ (∆O)2

(d 〈Ô〉 /dφ)2
=

e−Nχt

N
+

n̄(n̄+ 2)

4N2
tan2 φ, (5)

where Ô is the observable measured. Eq. (5) is valid
within the UPA and predicts an advantage relative to
the SQL (∆φ)2 = 1/N for any non-zero n̄. Moreover,
we predict sub-SQL sensitivity for a wide dynamic range
of φ lying in the region | tanφ| < 2

√
N/n̄, which can

be O(1). In Fig. 1(d) we compare the result in Eq. (5)
with that obtained by a TWA calculation accounting for
pump depletion, and find excellent agreement up to n̄ ∼
0.76

√
N .

The sensitivity [Eq. (5)] can have additional terms due
to unequal pump populations, corrections beyond the
UPA model (see below), and decoherence (further be-
low), all of which degrade the sensitivity. We focus on
the latter effects here and discuss population fluctuations
in Ref. [39], where we find they lead to at worst compa-
rable degradation. The leading corrections beyond the
UPA model of ĤTMS can be captured by iteratively mod-
ifying the UPA to include depletion of the pump states
|g,A〉 and |e,B〉 by n̄/2. This is achieved by setting

âg,A, âe,B ≈
√

N−n̄
2 where n̄ = 2 sinh2 Nχt

2 is taken to be

the original UPA result as a first approximation. Making
this correction has two physical consequences [39]: i) the
effective nonlinearity χ(N− n̄)/2 driving pair production
is reduced relative to the UPA, and ii) the pair produc-
tion is no longer resonant as the Zeeman shift δ = χN/2
is static and does not completely cancel the mean-field
shift introduced by the self-interaction terms in Eq. (2).
For 1 � n̄ � N we then obtain the beyond-UPA sensi-
tivity [39]

(∆φ)2 ≈ 1

2Nn̄
+

n̄3

2N3
+

n̄(n̄+ 2)

4N2
tan2 φ. (6)

The optimal sensitivity remains enhanced relative to the
standard quantum limit (SQL), with a lower bound of
(∆φ)2 = 2/(33/4N3/2) that occurs for n̄ =

√
N/31/4, in

agreement with the TWA results in Fig. 1(d).
Decoherence – Dissipative noise in our system intrin-

sically arises from superradiant decay, at a rate Γ ≈
g2Fκ/∆

2, due to leakage of the photons that mediate the
effective atom-atom interaction from the cavity, and sin-
gle particle spontaneous emission into free space at the
rate γ. While both are deleterious for sensing, we show
that our protocol can achieve sub-SQL sensitivity even
with these sources of decoherence.
The effects of collective decay can be treated by

solving a Lindblad master equation with jump opera-
tor L̂ =

√
Γ(Ŝ−

A + Ŝ−
B ), which captures the dominant
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FIG. 3. (a) Sensitivity versus time for different cavity detun-
ings ∆, and C = 10 and N = 105. The best sensitivity is
achieved at an optimum time for each ∆. (b) Scaled best sen-

sitivity, N3/4∆φ, versus ∆. In each case, the minima occur at
similar ∆/(

√
Nκ), and have similar values (up to logarithmic

corrections).

process where an emitted photon polarized along the
quantization axis is lost from the cavity [39]. Spon-
taneous emission is included through jump operators
L̂i =

√
γ(σ̂−

A,i + σ̂−
B,i), where σ̂−

m,i is the spin-lowering
operator in the manifold with azimuthal quantum num-
ber m for the ith atom.
In Fig. 3(a) we plot the sensitivity as a function of

time in the presence of decoherence for a range of cavity
detunings. We observe that for every detuning there is an
optimum time when the best sensitivity is achieved. This
optimum time balances the gain obtained by reaching a
higher n̄ versus the loss in squeezing due to decoherence.
By optimising this interplay via ∆ (thus tuning χ relative
to Γ and γ) we obtain a best achievable sensitivity [39]

(∆φ)2 =

√
2 ln(2NC)

N3/2
√
C

, (7)

for ∆ = κ
√
NC

2
√

ln(2NC)
, with C = 4g2F /κγ the single-atom

cooperativity. This sensitivity is only slightly reduced
relative to the ideal case [see Fig. 1(d) and Eq. (6)] and
is competitive with the best sensitivities achievable with
the paradigmatic approach of one-axis twisting when de-
coherence is properly accounted for [64–66].
Outlook – Our proposal offers new opportunities to

study and exploit the exponentially rapid generation of
entanglement in atomic systems, driven by connections to
well established concepts in quantum optics. Moreover,
our proposal highlights new possibilities for the realiza-
tion and investigation of diverse models of bosonic pair
production in highly tunable quantum simulators featur-
ing spin-spin interactions.
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PROPOSED EXPERIMENTAL
IMPLEMENTATION

In the main text we introduced a proposal to realize
an analog of bosonic four-wave mixing by coupling mul-
tilvel atoms to a far-detuned optical cavity mode. Here,
we present a detailed discussion of the full atom-light
Hamiltonian describing this system and show that it can
be reduced to an effective spin model, which is presented
as Eq. (1) in the main text.

Atom-light model

We consider multilevel atoms with a ground manifold
and an excited manifold separated by an energy ~ωa,
and 2F + 1 Zeeman levels in each manifold. We de-
note the excited states as |e,m〉 and the ground states
as |g,m〉 where the index m ∈ [−F, F ] specifies the Zee-
man level. The cavity supports a pair of photon modes
with degenerate angular frequency ωc but different po-
larization. Without loss of generality, we take one of the
cavity modes to be linearly polarized along the atomic
quantization axis, which we call Π-polarization, and the
other cavity mode to be linearly polarized perpendicular
to the quantization axis, which we call Σ-polarization.
The atoms couple to these two cavity modes with single-
photon Rabi frequency 2g0.

The dynamics of the atom-light system is modeled by
the Lindblad master equation,

~
dρ

dt
= −i[Ĥtot, ρ] + Lc[ρ] + Ls[ρ]. (S.1)

Here, Ĥtot = ĤA+ ĤL+ ĤAL is a Hamiltonian including
contributions from the atoms, cavity modes, and atom-
light coupling:

ĤA = ~ωan̂e + ~(δgF̂
z
g + δeF̂

z
e ),

ĤL = ~ωc
∑

α=Π,Σ

ĉ†αĉα,

ĤAL = ~g0

(
ĉΠΠ̂+ + ĉΣΣ̂+ + h.c.

)
. (S.2)

In the above equations, n̂e is the occu-
pation in the excited manifold, F̂ zg(e) =

∑N
i=1

∑F
m=−F m |g(e),m〉i 〈g(e),m| is the azimuthal

spin operator for the ground (excited) manifold, and
ĉα annihilates a photon in the cavity mode with
polarization α. The terms ~δgF̂ zg and ~δeF̂ ze arise
from Zeeman shifts due to an applied magnetic field.
The operators Σ̂+(Σ̂−) and Π̂+(Π̂−) are collective
atomic operators that excite (de-excite) atoms by
absorbing a Σ-polarized and Π-polarized cavity photon,
respectively, given by Π̂+ =

∑
i,m C

0
m |e,m〉i 〈g,m|

and Σ̂+ = i
∑
i,m,q=±1 C

q
m |e,m+ q〉i 〈g,m| /

√
2, where

Cqm = 〈F,m; 1, q|F,m+ q〉 is the Clebsch-Gordan
coefficient associated with exciting from |g,m〉 to
|e,m+ q〉.

It is convenient to move to a rotating frame that
rotates at the atomic frequency ωa. In this frame,
the atomic angular frequency and cavity frequency are
shifted by ωa, yielding the Hamiltonian

Ĥtot =~(δgF̂
z
g + δeF̂

z
e ) + ~∆

∑

α=Π,Σ

ĉ†αĉα

+ ~g0

(
ĉΠΠ̂+ + ĉΣΣ̂+ + h.c.

)
, (S.3)

and we define the detuning of the cavity from the atomic
transition, ∆ = ωc − ωa.

There are two Lindblad terms in the master equation
(S.1), Lc[ρ] and Ls[ρ] that describe decoherence of the
photon and atomic degrees of freedom. The former term
captures leakage of photons out of the cavity at rate κ,
and is given by

Lc[ρ] = ~κ
∑

α=Π,Σ

(
ĉαρĉ

†
α −

1

2
ĉ†αĉαρ−

1

2
ρĉ†αĉα

)
. (S.4)

The second Lindblad term, Ls[ρ], models spontaneous
decay of atoms from the excited manifold at rate γ,

Ls[ρ] =
N∑

i=1

∑

l=π,σ±

(
L̂−l,iρL̂

+
l,i −

1

2
L̂+
l,iL̂
−
l,iρ−

1

2
ρL̂+

l,iL̂
−
l,i

)
.

(S.5)
This expression is further decomposed into
three kinds of Lindblad jump operators:
L̂−π,i =

√
~γ
∑
m C

0
m |g,m〉i 〈e,m| for sponta-

neous decay that preserves magnetization, and
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L̂−σ±,i =
√
~γ
∑
m C

±1
m |g,m〉i 〈e,m± 1| for sponta-

neous decay that leads to a change in magnetization by
±1.

Effective spin model

When the cavity is detuned sufficiently far from the
atomic transition, |∆| � g0

√
N , we can adiabatically

eliminate the cavity photons and obtain an effective mas-
ter equation for the atoms, ~dρdt = −i[Ĥ, ρ]+Lc[ρ]+Ls[ρ]
[1]. The effective Hamiltonian is

Ĥ = ~χ0

(
Σ̂+Σ̂− + Π̂+Π̂−

)
+ ~(δgF̂

z
g + δeF̂

z
e ), (S.6)

where χ0 ' −g2
0/∆ and the Lindblad terms are

Lc[ρ] =~Γ0

(
Π̂+ρΠ̂− − 1

2
Π̂+Π̂−ρ− 1

2
ρΠ̂+Π̂−

)

+ ~Γ0

(
Σ̂+ρΣ̂− − 1

2
Σ̂+Σ̂−ρ− 1

2
ρΣ̂+Σ̂−

)
,

Ls[ρ] =
N∑

i=1

∑

l=π,σ±

(
L̂−l,iρL̂

+
l,i −

1

2
L̂+
l,iL̂
−
l,iρ−

1

2
ρL̂+

l,iL̂
−
l,i

)
,

(S.7)

where Γ0 ≈ g2
0κ/∆

2. The terms in Ĥ proportional to χ0

are cavity photon-mediated exchange of atomic excita-
tions, and the terms in Lc[ρ] capture collective decay of
atoms from the excited manifold, also called superradiant
decay.

As discussed in the main text, we consider initial condi-
tions where half of the atoms are in |g,m = −F 〉 and half
in |e,m = F 〉. Thus of all the exchange processes medi-
ated by the cavity photons and written in Eq. (S.6), the
dominant exchange occurs in the m = −F and m = F
sublevels, mediated by Π-polarized photons. The reason
for this is that the Clebsch-Gordan coefficients are largest
for these processes, C0

±F = ±
√
F/(F + 1). The exchange

process with the next highest amplitude, that exchanges
atoms from |g,−F 〉 |e, F 〉 to |e,−F + 1〉 |g, F − 1〉 me-
diated by the exchange of Σ-polarized photon, has a
smaller amplitude due to a smaller Clebsch-Gordan coef-
ficient, (C−1

F )2 = 1/(F + 1). Therefore, the populations
in |e,−F + 1〉 and |g, F − 1〉 grow at an exponentially
slower rate than in |e,−F 〉 and |g, F 〉. The amplitude of
the process mediated by the Π-polarized photons, which
exchanges atoms from |g,−F 〉 |e, F 〉 to |e,−F 〉 |g, F 〉, is
proportional to Nχ0(C0

F )2. At early times, the ampli-
tudes of all the other exchange processes are at most
O(
√
Nχ0).

Thus, keeping only the dominant exchange terms, from
Eq. (S.6) we obtain the effective spin model [Eq. (1)]
of the main text. The spin raising and lowering
operators in Eq. (1) in the main text are the rais-
ing and lowering operators in Π± projected into the

A and B manifolds, i.e. Ŝ+
A =

∑
i |e,−F 〉i 〈g,−F |,

Ŝ+
B = −∑i |e, F 〉i 〈g, F |, and the inversion operators

are ŜzA =
∑
i(|e,−F 〉i 〈e,−F | − |g,−F 〉 |g,−F 〉)/2 and

ŜzB =
∑
i(|e, F 〉i 〈e, F | − |g, F 〉 |g, F 〉)/2. The Clebsch-

Gordan coefficients that appeared in Π̂± now do not ap-
pear in the spin operators Ŝ±A,B , but are instead included

the definition of the parameters in Eq. (1) as χ ≈ −g2
F /∆,

where gF = g0

√
F/(F + 1), and δ = F (δe − δg).

To justify our argument that the effective spin model
[Eq.(1) in the main text] is the full spin Hamiltonian
[Eq. (S.6)] projected into the m = ±F manifolds, we
demonstrate that a numerical simulation of the dynamics
of the full spin model [Eq. (S.6)] with all 2F+2 spin levels
produces results consistent with an analytical prediction
of the dynamics for the reduced effective spin model. In
the next section, we describe how to analytically model
the dynamics with an equivalent bosonic description of
Eq.(1) and a subsequent approximation. In the section
following that, we describe the numerical method that
we use to simulate the full spin model [Eq.(1)].

DYNAMICS IN EQUIVALENT BOSONIC
DESCRIPTION

In the main text, we reported analytic expressions
for the internal state occupations n1(t) and n2(t) based
on the reduction of the multilevel system discussed in
Sec. [and Eq. (1) of the main text] to an ideal bosonic
two-mode squeezing process. Here, we derive these an-
alytic expressions within UPA. The expressions in the
main text are for δ = Nχ/2.

We start from the equivalent representation of Eq. (1)
in the main text in terms of Schwinger bosons,

H =~χ(â†e,Aâg,A + â†e,B âg,B)(â†g,Aâe,A + â†g,B âe,B)

+
~δ
2

(â†e,B âe,B − â†g,B âg,B − â†e,Aâe,A + â†g,Aâg,A).

(S.8)

Under the UPA, we replace â†g,Aâg,A = N
2 − â†e,Aâe,A,

â†e,B âe,B = N
2 − â

†
g,B âg,B , and â†g,A ≈ â†e,B ≈

√
N
2 . Then,

the Hamiltonian (S.8) reduces to

H ≈N~χ
2

(â†e,A + âg,B)(âe,A + â†g,B)

−N~δ(â†e,Aâe,A + â†g,B âg,B). (S.9)

Since the Hamiltonian (S.9) is quadratic in Schwinger
boson operators, the Heisenberg time evolution of these
operators can be analytically solved by integrating the
matrix equation

i∂t

(
âe,A
â†g,B

)
=

(
Nχ
2 − δ

Nχ
2

−Nχ2 −Nχ2 + δ

)(
âe,A
â†g,B

)
. (S.10)
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The occupations are then obtained as,

ne,A(t) = ng,B(t) =
(Nχ)2

4δ(Nχ− δ) sinh2
(
t
√
δ(Nχ− δ)

)
.

(S.11)
When δ = Nχ/2 the Zeeman shift cancels the mean-
field energy shift [corresponding to the elastic interac-
tion terms in (S.8)], making the pair production reso-
nant. Then, the occupations grow the fastest as ne,A(t) =

ng,B(t) = sinh2 Nχt
2 .

THE TRUNCATED WIGNER APPROXIMATION

In the main text, we used UPA to predict the popu-
lation growth and sensitivity of our protocol. UPA also
assumed that only four out of 4F + 2 levels were relevant
for the dynamics, with relevant interactions mediated by
Π-polarized photons only, and gave analytic solutions for
the ensuing dynamics. In Fig. 1(d) in the main text, we
benchmarked the UPA predictions for the squeezing with
results obtained from the truncated Wigner approxima-
tion (TWA). In this section, we describe the TWA, and
benchmark the dynamics of pair creation.

The TWA is a semiclassical method where we obtain
expectation values of observables by averaging over an
ensemble of trajectories, and each trajectory is obtained
by integrating classical equations of motion for initial val-
ues of operators sampled from a probability distribution
which properly accounts for quantum fluctuations [2].

Specifically, we integrate classical equations of mo-
tion for collective multilevel spin operators Ŝαβ =∑
i |α〉i 〈β|i, where α and β can be a ground state (g,m)

or an excited state (e,m). There are (4F + 2)2 such spin
operators. Their initial values are sampled from a multi-
variate Gaussian distribution with mean and covariance
matrix given by the mean and covariance in the initial
state,

µαβ = 〈Ŝαβ〉 ,

σαβ,γδ =

√
1

2
〈ŜαβŜγδ + ŜγδŜαβ〉 − 〈Ŝαβ〉 〈Ŝγδ〉. (S.12)

After creating an ensemble of initial values {Sαβ(t = 0)},
each initial value is then propagated according to their
equations of motion (see below).

To obtain the equations of motion, it is convenient to
first write the Hamiltonian in short-hand notation as

Ĥ =
∑

αβ

hαβŜαβ +
∑

αβγδ

hαβγδŜαβŜγδ. (S.13)

Here, hαβ are single-particle terms due to the magnetic
field, and hαβγδ are interaction terms. For our system,
hαβ is a diagonal matrix. The Heisenberg equations for
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FIG. S.1. Growth of number of entangled particles n̄ for δ =
Nχ/2. Solid curves obtained from TWA agree well with the
UPA prediction (dashed curve) until n̄ ∼ 0.1N

the multilevel operators can be written schematically as

i∂tŜαβ(t) = [Ŝαβ , Ĥ] =
∑

µν

ΛµναβŜµν +
∑

µνλσ

Λµνλσαβ Ŝµν Ŝλσ

(S.14)
where Λµναβ depends on the single-particle terms, and

Λµνλσαβ depends on the interactions. To obtain the clas-
sical equations of motion, we replace quantum opera-
tors with their classical counterparts. Monomial oper-
ators are replaced as Ŝαβ → Sαβ , and quadratic oper-
ators are replaced by a symmetric decoupling scheme,
1
2{Ŝαβ , Ŝγδ} → SαβSγδ. Subsequently, we integrate these
equations using a standard differential equation solver.

Observables are computed by averaging over trajec-
tories. For instance, occupations are obtained from
nα(t) = Sαα(t), where · · · denotes ensemble average.

The numerical results in Fig. 1(d), computed by simu-
lating for the full spin model [Eq. (S.6)] under the TWA,
agree excellently with the UPA prediction for the squeez-
ing. In Fig. S.1, we again find excellent agreement be-
tween the UPA prediction and TWA calculation of the
number of entangled pairs produced, n̄. These results
support our arguments that the effective spin model is
given by Eq.(1) in the main text, and that the dynamics
can be reasonably treated under UPA.

DESCRIPTION OF THE SQUEEZING IN JOINT
BLOCH SPHERES

An important and well known feature of the bosonic
model of pair production [Eqs. (S.8) and (S.9)] is that
it generates squeezing in joint quadratures of the two
bosonic modes. In this section, we show that this implies
that, within UPA, our spin model is also capable of gen-
erating spin squeezing of combined spin quadratures of
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the A and B ensembles.
To be concrete, we consider only the case with δ =

Nχ/2 so that our effective spin Hamiltonian Ĥ [see
Eq. (1) of the main text)] reduces to

Ĥ = ~χ(Ŝ+
A Ŝ
−
B + Ŝ+

B Ŝ
−
A ). (S.15)

We begin by rewriting this Hamiltonian in a more con-
venient form,

Ĥ = 2~χ(ŜxAŜ
x
B + ŜyAŜ

y
B), (S.16)

which can be alternatively factorized as,

Ĥ = ~χ
(
ŜyB + ŜxA

)(
ŜxB + ŜyA

)

− ~χ
(
ŜyB − ŜxA

)(
ŜxB − ŜyA

)
. (S.17)

To proceed, let us denote the terms appearing in
Eq. (S.17) as S1,+ = ŜxB + ŜyA, S2,+ = ŜyB + ŜxA, S1,− =

ŜxB− ŜyA, and S2,− = ŜyB− ŜxA. As we will see below, this
new notation will enable us to gain physical intuition by
visualizing the physics as occurring on two independent
Bloch spheres. We define a third axis, S3,− = ŜzB − ŜzA,
which enables us to identify that (S1,+,S2,+,S3,−) and
(S1,−,S2,−,S3,−) each independently satisfy the canoni-
cal commutation relations of SU(2) spins. Therefore, we
can construct two Bloch spheres with a shared axis, with
the first sphere’s axes as (S1,+,S2,+,S3,−) and the sec-
ond sphere’s axes as (S1,−,S2,−,S3,−). The first line of
Eq. (S.17) acts only on the first Bloch sphere, and the
second line acts only on the second Bloch sphere.

The generation of squeezing by Ĥ can be understood
by mapping the axes of the Bloch spheres to bosonic
quadratures, which translates Ĥ to a form that is fa-
miliar in quantum optics. At the mean-field level (equiv-
alently, in the UPA), S3,− is a constant of motion with
value N/2. Therefore, in this approximation, S1,+ and

S2,+ can be mapped to bosonic quadratures X̂+ and Ŷ+

as S1,+ ≈
√

N
2 X̂+ and S2,+ ≈

√
N
2 Ŷ+, which satisfy the

canonical commutation relation [X̂+, Ŷ+] = i. We simi-

larly define S1,− ≈
√

N
2 X̂− and S2,− ≈

√
N
2 Ŷ−, where

[X̂−, Ŷ−] = i. The Hamiltonian, written in terms of these
bosonic quadratures, is

Ĥ =
N~χ

2
Ŷ+X̂+ −

N~χ
2

Ŷ−X̂−. (S.18)

It is well-known that this Hamiltonian generates squeez-
ing along Ŷ+ and X̂− for χ > 0 (and conversely, along X̂+

and Ŷ− for χ < 0) [3]. Equivalently, we must have that
our Hamiltonian generates squeezing in two spin quadra-
tures along S2,+ and S1,− respectively for χ > 0. This is
the two-mode squeezing that we report in the main text.
The squeezing manifests itself as reduced quantum noise,

var(S1,−) = var(S2,+) =
N

4
e−χNt, (S.19)

and the anti-squeezing as increased quantum noise,

var(S2,−) = var(S1,+) =
N

4
eχNt. (S.20)

The squeezing/anti-squeezing is well-defined relative to
the isotropic projection noise associated with a typical
coherent spin state on each of the independent collective
Bloch spheres, characterized by var(S1,±) = var(S2,±) =
N/4 for our initial state polarized along S3,−.

Lastly, we briefly discuss the illustrations of the quan-
tum noise in Fig. 1(c) of the main text. The dynamics,
and in particular the squeezing, produced by the bosonic
Hamiltonian Ĥ = N~χ

2 Ŷ+X̂+− N~χ
2 Ŷ−X̂− can be under-

stood via the Wigner function computed in terms of the
bosonic quadratures. It is well known that the Wigner
function of two-mode squeezed vacuum factorizes into
a pair of single-mode squeezed states with respect to
the independent phase-spaces defined by (X+, Y+) and
(X−, Y−). The axes describing these two phase spaces
commute with each other. Strictly, when the UPA is
satisfied we can transplant each of these bosonic phase-
spaces (up to prefactors) to lie on the surface of the
independent Bloch spheres defined by (S1,+,S2,+,S3,−)
and (S1,−,S2,−,S3,−) by ignoring the curvature effects
[i.e., the spin Wigner functions are effectively limited to
the 2D planes (S1,+,S2,+) and (S1,−,S2,−), where the
spin Wigner functions on each Bloch sphere lie on axes
that commute with their counterparts on the other Bloch
sphere, assuming the pump populations are equal]. We
adopt this correspondence for Fig. 1(c) to schematically
illustrate the spin-squeezing in this spirit. For illustra-
tive purposes, we enlarge the area covered by the spin
Wigner functions, while strictly within the UPA, they
are restricted to an infinitesimal surface perpendicular
to S3,−.

EVOLUTION OF THE JOINT BLOCH SPHERES
DURING THE RAMSEY SEQUENCE

In the main text, we visualized the Ramsey sequence
as rotations of the spin distribution on the lower Bloch
sphere of Fig. 1(c). Here, we describe the evolution of
the spin distribution on the upper Bloch sphere during
the Ramsey sequence.

We first consider the Ramsey sequence that measures
the differential phase [illustrated in Fig. 2(a) in the main

text]. After the first pulse, realized by exp
(
−iπ2 Ŝ2,+

)
,

the axes on the upper Bloch sphere are rotated from
(S1,−,S2,−,S3,−) to (−S3,+,S2,−,S1,+). This is illus-
trated in Fig. S.2(a). The Bloch vector points along S1,+,
which is now a shared axis with the other Bloch sphere
[see Fig. 2(a)]. At this step, the system is a null state of
S1,−, assuming the initial pump populations were equal.

The next step in the Ramsey sequence is a small rota-
tion φ of the Bloch vector. In the main text, we consid-
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FIG. S.2. Evolution of the spin distributions in the upper
Bloch sphere in Fig. 1(c) in the main text, during the Ramsey
sequence for measuring (a) the differential phase, (b) the sum
phase. Information about the imprinted phase is not captured
in the spheres shown here. Dashed blue arrows show the Bloch
vector.

FIG. S.3. Rotation of the Bloch vectors in the A and B en-
sembles during the Ramsey sequence for measuring (a) the
differential phase, (b) the sum phase.

ered a rotation generated by exp(−iφS3,−). This opera-
tion does not rotate the spin distribution in Fig. S.2(a).
This is because in UPA, the spin distribution lies entirely
in the plane (S3,+,S2,−), and these two axes commute
with exp(−iφS3,−), if the initial pump populations were
equal. The rotation generated by exp(−iφS3,−) only ro-
tates the spin distribution in the Bloch sphere shown in
the main text.

The final step in the Ramsey sequence is a rotation

implemented by exp
(
−iπ2S1,+

)
, which rotates the spin

distribution by 90◦. Figure S.2(a) shows that the to-
tal atomic inversion encodes no information about φ, i.e.
〈ŜzA + ŜzB〉 = 0. Conversely, Fig. 2(a) (main text) showed

that the difference in atomic inversions, 〈ŜzB − ŜzA〉, en-
coded information about φ.

Fig. S.2(b) shows how the upper Bloch sphere in
Fig. 1(c) evolves during the Ramsey protocol that mea-
sures the sum phase. No information about the imprinted
sum phase is captured by the sphere in Fig. S.2(b).

For ease of understanding, we also show in Fig. S.3 how
the Bloch vectors in the A and B ensembles separately
evolve during the two Ramsey protocols.

ACHIEVABLE SENSITIVITY INCORPORATING
INTRINSIC DECOHERENCE

In this section, we sketch how we compute the sensi-
tivity of our protocol in the presence of decoherence. We
begin by writing the master equation for Ŝ±A and Ŝ±B ,
analogous to Eq. (S.10), but now including decoherence
as well. The two sources of decoherence that we consider
are collective decay and independent spontaneous decay
of atoms from the excited states. These two decoherences
have two main effects: they reduce coherences, and cause
depletion of the excited modes. This will require us to
go beyond the UPA, since the excited mode in the B en-
semble is a pump mode, and it gets depleted by decay to
the ground state. As a further effect of pump depletion,
the Zeeman shift does not cancel the mean-field energy
shift. We will account for this as well.

The master equation is

∂t

(
〈Ŝ−A 〉
〈Ŝ−B 〉

)
≈
(
−γ2 + iδ 0

0 −γ2 − iδ

)(
〈Ŝ−A 〉
〈Ŝ−B 〉

)

+ (Γ + 2iχ)

(
〈ŜzA〉 〈ŜzA〉
〈ŜzB〉 〈ŜzB〉

)(
〈Ŝ−A 〉
〈Ŝ−B 〉

)
,

(S.21)

where we have approximated that 〈ŜzAŜ−B 〉 ≈ 〈ŜzA〉 〈Ŝ−B 〉
and similarly for A↔ B. Since spontaneous decay causes
the excited populations to decrease with time, we have to
modify the undepleted pump approximation, 〈ŜzB〉 = N

4 ,

to 〈ŜzB〉 = N
4 (2e−γt − 1). We set 〈ŜzA〉 = −N/4, since

there is no initial excited population in the A ensemble.
We choose δ = Nχ

2 as we did in the main text.

Equation (S.21) is a time-dependent coupled differen-
tial equation which is non-trivial to solve. Instead, we
solve Eq. (S.21) to first order in Γ and γ. Separating the
matrix on the right hand side as M = M0 +M1(t), where
M0 is the contribution at Γ = γ = 0, and M1(t) is the
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remaining contribution, the solution to Eq. (S.21) is

(
〈Ŝ−A (t)〉
〈Ŝ−B (t)〉

)
=

(
eM0t +

∫ t

0

dτ eM0(t−τ)M1(τ)eM0τ

)

×
(
〈Ŝ−A (0)〉
〈Ŝ−B (0)〉

)
. (S.22)

Similar equations can be set up and solved for the sec-
ond moments, 〈Ŝ+

A Ŝ
−
B 〉, 〈Ŝ+

A Ŝ
−
A 〉, and 〈Ŝ+

B Ŝ
−
B 〉, which are

necessary for calculating the squeezed quantum noise.
In the Ramsey protocol that measures the differential

phase, the value of the signal measured is

〈ŜzB − ŜzA〉final = 〈ŜzB(t)− ŜzA(t)〉 sinφ
+ 〈ŜyB(t) + ŜxA(t)〉 cosφ, (S.23)

where t is the time before the first π/2 pulse in the Ram-
sey sequence. The first term in the above equation is
−N2 e−γt sinφ, and the second term is zero. The fluctua-
tion in the signal is

〈∆(ŜzB − ŜzA)2〉final = 〈∆(ŜzB(t)− ŜzA(t))2〉 sin2 φ

+ 〈∆(ŜyB(t) + ŜxA(t))2〉 cos2 φ

+ cosφ sinφ 〈∆(ŜzB(t)− ŜzA(t))∆(ŜyB(t) + ŜxA(t))〉
+ cosφ sinφ 〈∆(ŜyB(t) + ŜxA(t))∆(ŜzB(t)− ŜzA(t))〉 .

(S.24)

The best sensitivity is achieved at φ = 0, therefore we set
φ = 0 hereafter. Solving for the second order moments
in a similar fashion to Eq. (S.22), the fluctuation in the
signal is

〈∆(ŜzB − ŜzA)2〉final =
N

4

(
e−Nχt +

Γ

2χ
+

γ

Nχ

+eNχt
(

Γ

4χ
+

γ

2Nχ
− γt

2

)2

+ eNχt
(

γ

2Nχ
− γt

2

)2
)
.

(S.25)

This yields the sensitivity as

(∆φ)2 =
e−Nχt

N
+

Γ

2Nχ
+

γ

N2χ
+
eNχt

N

(
γ

2Nχ
− γt

2

)2

+
eNχt

N

(
Γ

4χ
+

γ

2Nχ
− γt

2

)2

. (S.26)

An analysis for the Ramsey protocol that measures the
sum phase yields the same expression for the sensitivity.

SCALING OF (∆φmin)2 WITH N .

The best sensitivity is achieved at optimum values of
∆ and t. These optimum values aim to find the right
balance between the gain obtained by reaching a higher n̄

versus the loss in squeezing due to decoherence. We find
the optimum values of ∆ and t by setting the derivatives
of ∆φ2 with respect to ∆ and t as zero.

First, we find the optimum duration for our protocol.
This is obtained by setting d(∆φ)2/dt = 0, which yields
the implicit equation

γt =
Γ

4χ
+

√
2e−2Nχt +

(
γ

Nχ

)2

−
(

Γ

4χ

)2

. (S.27)

We approximate this time as γt ≈ Γ
4χ +

√
2e−NΓ/4γ . At

this optimum time, the sensitivity is given by

N(∆φ)2 = exp

(
−NΓ

4γ
−
√

2Nχ

γ
e−NΓ/4γ

)
+

Γ

2χ
+

γ

Nχ

+ exp

(
NΓ

4γ
+

√
2Nχ

γ
e−NΓ/4γ

)

×
(

γ2

N2χ2
+ e−NΓ/2γ −

√
2γ

Nχ
e−NΓ/4γ

)
.

(S.28)

The parameters Γ and χ depend on the cavity detuning

∆ and the cavity loss rate κ as χ =
g2F
∆ and Γ =

g2Fκ
∆2 .

Rewriting the sensitivity in terms of ∆, κ, and the cavity

cooperativity C =
4g2F
κγ , we optimize the sensitivity with

respect to ∆. This gives us an optimum value of ∆,

∆ ≈
√

NC

2 ln(2NC)
κ. (S.29)

The optimum sensitivity at this detuning is given by

N(∆φ)2 ≈
√

2 ln(2NC)

NC
. (S.30)

EFFECT OF PUMP POPULATION
FLUCTUATIONS ON THE SENSITIVITY

Here, we calculate the sensitivity for the case that the
initial pump populations are unequal. We denote the
populations in the pump states |g,A〉 and |e,B〉 as Ng,A
and Ne,B .

First we consider the symmetric choice Ng,A = N+δN
2 ,

Ne,B = N−δN
2 , and δN � N , which has nonzero differ-

ence Ng,A − Ne,B = δN but no fluctuation in the sum.
As before, we write the equivalent bosonic representation
of Eq.(1) in the main text in terms of Schwinger bosons,
and make the UPA. The Heisenberg equation of motion
for âe,A and âg,B are given by

i∂t

(
âe,A
â†g,B

)
=

(
Ng,Aχ− δ

√
Ng,ANe,Bχ

−
√
Ng,ANe,Bχ −Ne,Bχ+ δ

)(
âe,A
â†g,B

)
.

(S.31)



7

Solving this equation analytically, we find that the
squeezing in S2,+ and S1,− are modified to

var(S2,+(t)) = var(S1,−(t)) ' N

4
e−Nχt +

δN

2
. (S.32)

The sensitivity of our Ramsey protocol at φ = 0 is

(∆φ)2 =
var(S1,−(t))

〈S3,−(t)〉2
. (S.33)

For the symmetric choice Ng,A = N+δN
2 , Ne,B =

N−δN
2 and within UPA, we have 〈S3,−(t)〉 ' N

2 , and
var(S1,−(t)) is in Eq. (S.32). These results lead to

(∆φ)2 ' e−Nχt

N
+
δN

N
. (S.34)

An ensemble of experiments typically have fluctuations
in populations δN ∼ O(

√
N). The correction to the sen-

sitivity for this magnitude of fluctuation scales with N
in the same way as the corrections obtained from deco-
herence and from effects beyond UPA.

A similar calculation of the sensitivity with fluctuation
in the sum population shows that the sensitivity only
depends quadratically on the sum fluctuation.

PAIR PRODUCTION WITH SPIN-1 BECS

In the main text we contrast our effective bosonic
model with alternative realization in quantum optics and
spinor Bose-Einstein condensates. In the latter case, de-
generate four-wave mixing is engineered through s-wave
atomic collisions that change the internal Zeeman state
of the atoms [4]. It is common to simplify the theoretical
treatment of the atomic collisions by invoking a single
mode approximation (SMA), wherein it is assumed that
all atoms share the same spatial wavefunction, regardless
of their internal Zeeman state. This is typically valid for
small systems and short to intermediate timescales, al-
though a range of factors contribute [5].

By freezing out the spatial degree of freedom via the
SMA the internal state dynamics for a spin-1 BEC is then
given by,

ĤBEC =
Us
2N

~̂S · ~̂S + q(n̂1 + n̂−1). (S.35)

Here, the spin operators are Ŝx = (â†1â0 + â†0â−1 +

h.c.)/
√

2, Ŝy = (â†1â0 + â†0â−1 − h.c.)/
√

2i, and Ŝz =

â†1â1− â†−1â−1, where â†m creates a boson in Zeeman sub-
level m = 0,±1. The first term of Eq. (S.35) describes

spin-mixing due to s-wave atomic collisions character-
ized by interaction strength Us, whereas the second term
describes a quadratic Zeeman shift q ∝ B2 due to an
applied magnetic field.

The Hamiltonian (S.35) can be rewritten in a more
insightful form, ĤBEC = Ĥinel + Ĥel + ĤZ with [6]

Ĥinel =
Us
N

(
â0â0â

†
1â
†
−1 + h.c.

)
,

Ĥel =
Us
N
n̂0 (n̂1 + n̂−1) +

Us
2N

(n̂1 − n̂−1)
2
,

ĤZ = q(n̂1 + n̂−1).

(S.36)

The first term, Ĥinel, describes spin-changing collisions
wherein a pair of m = 0 atoms collide and scatter into
an m = ±1 pair. Conversely, the second term, Ĥel, de-
scribes elastic collisions which preserve the relative spin
populations. Inspection of ĤBEC in this form shows that,
up to the distinguishing feature that the spin-1 BEC in-
volves only three bosonic modes, it is analogous to the
four-wave mixing Hamiltonian for our system described
in Eq. (S.8).

Many experiments probe the regime where a BEC is
prepared with the vast majority of atoms in the m = 0
state. For large systems the UPA then corresponds to
replacing â0 ≈

√
N where N is the number of atoms in

the condensate. Equation (S.35) then reduces to

ĤBEC ≈ (q + Us)(â
†
1â1 + â†−1â−1) + Us(â

†
1â
†
−1 + h.c.).

(S.37)

where we have ignored a term ∝ â†1â1 − â†−1â−1 as a
conserved quantity. Within the UPA, the spin-1 Hamil-
tonian is thus analogous to ĤTMS in Eq. (3) in the main
text, with Us = N~χ/2, and q = ~δ. The resonant con-
dition for pair production is met when q = −Us.

[1] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young,
J. R. K. Cline, A. M. Rey, and J. K. Thompson, Nature
580, 602 (2020).

[2] A. Polkovnikov, Ann. Phys. 325, 1790 (2010).
[3] G. S. Agarwal, Quantum optics (Cambridge University

Press, 2012).
[4] C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett.

81, 5257 (1998).
[5] J. Jie, Q. Guan, S. Zhong, A. Schwettmann, and

D. Blume, Phys. Rev. A 102, 023324 (2020).
[6] Q. Guan, G. W. Biedermann, A. Schwettmann, and R. J.

Lewis-Swan, arXiv:2108.09272 (2021).


