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Quantum sensors are used for precision timekeeping, field sensing, and quantum communica-
tion [1–3]. Comparisons among a distributed network of these sensors are capable of, for example,
synchronizing clocks at different locations [4–8]. The performance of a sensor network is limited by
technical challenges as well as the inherent noise associated with the quantum states used to realize
the network [9]. For networks with only local entanglement at each node, the noise performance of
the network improves at best with square root of the number of nodes [10]. Here, we demonstrate
that nonlocal entanglement between network nodes offers better scaling with network size. A shared
quantum nondemolition measurement entangles a clock network with up to four nodes. This net-
work provides up to 4.5 dB better precision than one without nonlocal entanglement, and 11.6 dB
improvement as compared to a network of sensors operating at the quantum projection noise limit.
We demonstrate the generality of the approach with atomic clock and atomic interferometer proto-
cols, in scientific and technologically relevant configurations optimized for intrinsically differential
comparisons of sensor outputs.

Distributed quantum sensors detect and compare
phase shifts between spatially distinct modes of quan-
tum systems with high precision [4–6]. For example, the
gravitational potential can induce relative phase shifts
between spatially separated atomic clocks [1] or atom in-
terferometers [11]. Quantum systems are an attractive
platform for networks as they have the unique ability
to directly benefit from both local and nonlocal entan-
glement. Experiments have demonstrated entanglement-
enhanced networks in both discrete [12] and continuous
variable [13] configurations. In general, quantum net-
works will play an important role in future technolo-
gies. Significant progress has been made with networks
of quantum systems [2, 7, 14–18] for enhanced commu-
nication [19, 20] and timekeeping [21, 22] at the global
scale.

At small length scales, optical atomic clocks have
pushed precision to record levels. In the work of Zheng
et al. [10], up to six multiplexed Sr atomic clocks spaced
over 1 cm are implemented to achieve a fractional fre-
quency precision at the 10−20 level. Another work by
Bothwell et al. [8] has measured the gravitational redshift
over 1 mm within a single, spatially distributed sample
of atomic Sr. In these systems, each clock’s precision is
limited by the Quantum Projection Noise (QPN) limit.
In these mode-separable (MS) systems, the absence of
correlation between the modes causes the total precision
to scale as 1/

√
M where M is the number of identical

clocks being compared.

Through entanglement, a spin-squeezed clock or sensor
is able to achieve precision beyond the QPN limit [9,
23]. However, if a network of squeezed clocks is MS,

then the total precision still scales as 1/
√
M . If nonlocal

entanglement does exist, then the total precision of such
a mode-entangled (ME) system has the potential to scale
with the Heisenberg limit, 1/M [21, 22, 24–26]. Guo et al.
have demonstrated this scaling in a photonic system [3],
and Nichol et al. have measured this in a system of two
Sr+ ions connected by a photonic link [27]. Our work
addresses a spin-squeezed 87Rb ME network whose noise
scales better than a MS network.

Several methods exist for generating spin-squeezing
between spatially separate modes. In the pioneering
work of Julsgaard et al. [29], two spatially separated Rb
vapor cells were probed via a photonic quantum non-
demolition (QND) measurement. In Bose Einstein Con-
densates (BECs), on the other hand, spin-squeezing can
be generated through local collisions before the state is
allowed to expand to several micrometers [30–32]. Each
part of the cloud can then be imaged separately. More
recently, Anders et al. separated an entangled BEC state
even further, to 80 µm, with the application of velocity-
dependant Raman transitions [33]. Not only does the
spin system now occupy separate spatial modes, but the
modes consist of states with differing momenta. Finally,
atom-cavity interactions can entangle two momentum
states with different spin states [34].

In this work, we demonstrate a spatially distributed
multimode atomic clock network with noise below the
QPN limit. Velocity-dependent Raman transitions create
up to four modes, each separated from an adjacent mode
by ∼ 20 µm, before a nonlocal QND measurement is per-
formed to entangle the modes. Nonlocal entanglement-
enhanced precision is verified with networks of identi-
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FIG. 1. Atomic sensor sequence. (Single-mode preparation) A localized ensemble of atoms (purple circles) are prepared
in a Jz = 0 CSS. The purple distribution on the Bloch sphere is the CSS’s Wigner function with a variance of N/4. (Two-mode
preparation) Counter-propagating Raman lasers split the ensemble into two spatially distinct modes (red and blue circles).
Each mode is located opposite each other on their respective Bloch spheres (red and blue distributions). Note that since the
modes are separable here, the two distributions are not dependent on each other. At this stage, a π/2 microwave pulse brings
both of these states to Jz = 0. (Entanglement) A probe laser performs a QND measurement to create mode-entanglement.
Measuring each mode independently does not give enhanced precision on the total measurement (gray shaded distribution
represents the CSS of each mode). To show how simultaneous measurement improves precision, an example of marginal (light
distributions) and conditional (black outlined distributions) Wigner functions [28] are shown on the Bloch spheres. Here, the
red mode squeezed above the equator is conditional on the blue mode being found below the equator. (Sensor operation) The
sensor requires an initial application of a π/2 microwave pulse which rotates the SSS to a vertical (phase sensitive) orientation
on the Bloch sphere. The observable being measured dictates the series of microwave and Raman pulses applied during the
sensor sequence. The atomic interferometer sequence is pictured here, with a detailed description of its sequence described
in Fig. 6 in Methods. Mean trajectories of spin down (up) states are represented by solid (dotted) lines. (Relative times are

not to scale.) In the presence of a field gradient, the phases of the modes shift by δθ(m) (dashed arrows). (Readout) A π/2
microwave pulse then rotates the states back to a horizontal orientation and a second measurement (either QND or fluorescence
population spectroscopy) is performed to measure the shift in the sum of all spin values.

cal clocks, each containing 45,000 atoms per mode. The
ME four-mode network exhibits noise roughly 4.5(0.8)
dB lower than that of an equivalent MS network of spin-
squeezed states (SSS) and 11.6(1.1) dB lower than a net-
work of coherent spin states (CSS) operating at the QPN
limit. Finally, we employ an M = 2 node network to
demonstrate an entangled differential atom interferome-
ter.

The methods and apparatus used to generate and
detect SSS are detailed in Refs. [35, 36]. In sum-
mary, ensembles of up to 220,000 87Rb atoms are
cooled to 25 µK and trapped in a 1,560 nm 1D lat-
tice within a dual wavelength optical cavity. This cav-
ity enables QND measurements via a 780 nm probe de-
tuned from the D2 transition. These projective mea-
surements detect and squeeze the ensemble’s collective

spin, Jz = (N↑ − N↓)/2, where Ni are the popula-
tions of atoms in each state after the measurement.
This spin-1/2 system is defined by the hyperfine ground
states of 87Rb, |↓〉 = 52S1/2 |F = 1,mF = 0〉 and |↑〉 =
52S1/2 |F = 2,mF = 0〉.

In order to generate spatially separate modes, velocity-
dependent stimulated Raman transitions couple these
spin states to momentum p, where eigenstates are de-
noted as |spin,p〉. The relevant transitions are driven by
π pulses that take |↓,pI〉 → |↑,pI + 2~k〉 and |↑,pI〉 →
|↓,pI − 2~k〉, where k is the effective wavevector asso-
ciated with the Raman transition. Without loss of gen-
erality, the initial momentum pI can be set to zero. A
laser system drives Raman transitions between ground-
state hyperfine levels (see Methods). The π pulse time is
short enough to address nearly the entire velocity distri-
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FIG. 2. Differential phase shift detection. (a) For the two-mode case depicted in the space-time diagram, the expected
value of θ̄ is measured after the final microwave pulse is phase shifted. Solid lines are linear fits to the expected values for the
positive momentum mode (blue), negative mode (red), and ME (green) cases. θ̄ in the single-mode cases are offset by 1 and -1
mrad respectively for visual clarity. The enlarged region contains the average of the single momentum modes, ie. MS states,
(purple) which are offset by -0.4 mrad for visual clarity. In all subfigures, error bars represent the standard error of the mean
(SEM) for a set of 200 samples and shaded areas represent 68% confidence intervals of the fits. (b) Distributions of 200 sample
measurements for the two-mode sensor with coherent states (black), single-mode states (blue and red), MS states (purple),
and ME states (green). Corresponding curves are Gaussian fits. (c) Response of a two-mode, ME sensor to a magnetic field
gradient applied in the second half of the echo sequence (green circles). For reference, when the sensor sequence’s microwave
pulses are not performed (black circles), there is negligible change in θ̄ as the applied field increased. The relative magnetic
field strength was determined by the relative voltage applied to the MOT coils.

bution of the atom source. The transitions occur with a
Rabi frequency of ΩR = 2π× 500 kHz and the maximum
transition probability for a single Raman π pulse is 88%.

When a spin state in an equal superposition of |↓, 0〉
and |↑, 0〉 experiences a Raman π pulse, it coherently
evolves into a linear superposition of the two modes
|↑,+2~k〉 and |↓,−2~k〉 (see Fig. 1). To determine the
coherence between the two modes, we apply a second Ra-
man π pulse a time T after the first Raman pulse such
that the states have drifted apart by a distance vrelT
where vrel = 4~|k|/mRb = 2.4 cm/s is the relative ve-
locity induced by the stimulated Raman interaction and
mRb is the mass of an atom. A final microwave π/2
pulse is then used to probe the coherence between the
two modes (the microwave Rabi frequency is ∼ 2π × 3
kHz here and in the work described below). As T in-
creases, the coherence is observed to decay as e−T/β with
a time constant β = 0.46 µs due to the velocity spread
(∼ 6.9 cm/sec) of the atomic source (see Methods). After
roughly T = 1.5 µs (36 nm of separation) the contrast
becomes negligible, indicating mode separation.

If no effort is made to coherently recombine these
modes, the system can now be treated as a two-mode
quantum network, where each mode m has a collective

spin length of
〈
J
(m)
x

〉
= CN (m)/2 and a QPN limited

variance (∆J
(m)
z )2 = N (m)/4. Modes with nearly equal

mean atom number N can each be represented on com-
posite Bloch spheres with radii CN/2, where the contrast
C = 78(3)% is determined by fluorescence imaging. Spin-
squeezing improves the measurement of a linear combi-

nation of the polar angle shifts δθ(m) = δJ
(m)
z /(CN/2),

where δJ
(m)
z are the differences in spin values between a

first and second measurement (see Fig. 1). In the remain-
der of this work the measurable quantity θ̄, determined

from the shift in the collective δJz =
∑
δJ

(m)
z value, will

refer to the mean of the angles

θ̄ =
1

M

M∑
m=1

δθ(m) =
1

CMN/2

M∑
m=1

δJ (m)
z , (1)

and ∆θ̄ to the square root of its variance. The second
observation of the collective Jz is accomplished with a
second cavity QND measurement in the case of a clock
network demonstration (following Ref [35]) or a precision
fluorescence measurement in the case of an atom inter-
ferometer demonstration (following Ref. [36]).

To first demonstrate the effect of phase shifts on each
mode, ensembles of 80,000 atoms are prepared in three
different initial states: |↑, 2~k〉, |↓,−2~k〉, or a super-
position of the two. In the superposition case, waiting
0.9 ms separates the modes by roughly 20 µm, a signifi-
cantly greater distance than the 36 nm coherence length
identified above. The two modes’ spins now point to-
wards opposite poles on their respective Bloch spheres.
As shown in Fig. 1, a π/2 microwave pulse is then applied
to the atoms. The pulse brings their vectors to the equa-
tor of their Bloch spheres (with radius 20,000 in the third
case). The mode with positive momentum, for example,
is now in a superposition of |↓, 2~k〉 and |↑, 2~k〉. Since
the microwave π/2 pulse simultaneously addresses both
modes, the Bloch vectors remain anti-parallel. Finally, a
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(now nonlocal) QND measurement is performed to pro-
jectively squeeze the distributed states. This operation
leads to a nonlocal correlation of Jz values between the
modes while increasing the variance of the spin distribu-
tions in the x-y plane, as illustrated in Fig. 1.

Once the ME state has been prepared, a microwave
π/2 − π − π/2 spin echo sequence with Tint = 110 µs
between each pulse is performed. The phases of the mi-
crowave pulses are adjusted to accomodate the AC Stark
shift (∼ 1 rad) induced by the entangling QND pulse so
that the Jz distributions are in metrologically sensitive
configurations, as illustrated in Fig. 1. This is accom-
plished through observation of Jz for the independently
prepared modes |↑, 2~〉 and |↓, 2~k〉. A second QND mea-
surement determines the phase shift applied to the last
microwave pulse. The two single-mode cases, θ̄ = δθ(m),
experience nearly equal and opposite responses due to
their anti-parallel spins (see Fig. 2a). θ̄ in the ME case
is consistent with the mean of the single-mode cases, in-
dicating that each mode reacts oppositely to the applied
shift. Therefore, a sensor utilizing this method will sup-
press phase noise associated with the pulses used for co-
herent spin manipulation. This property is useful for
suppressing local oscillator noise in clock comparisons
and optical phase noise in light-pulse atom interferom-
etry applications (as demonstrated below).

On the other hand, this type of sensor will measure
a differential phase shift between the two modes due to,
for example, position dependent fields [37]. We demon-
strate a non-zero differential measurement via the ap-
plication of a magnetic field gradient across the 20 µm
separation between the two modes. To introduce a clock
frequency imbalance between the two modes, the mag-
netic field coils of the magneto-optical trap (MOT) are
pulsed on during the second half of the echo sequence.
As the magnetic field gradient (determined by the MOT
coil current) increases, θ̄ is observed to shift away from
zero (see Fig. 2c). The measured shift of 1.7(0.3) mrad/A
corresponds to an average clock frequency shift of δω =
θ̄/Tint = 2π × 15.7(2.8) Hz/A. Second order Zeeman
shifts of this magnitude require 4.0(0.8) G/cm/A while
the 87Rb atoms are in the presence of the 600 mG bias
field. This value is consistent with the gradient estimated
from the geometry of the MOT coils. We observed no sig-
nificant increase in the width of the detection histograms
(as shown in Fig. 2b) for the relatively small (∼ 1 mrad)
differential phase shifts used in this work. These data
demonstrate that this protocol can be used to measure
the frequency difference between two distant entangled
clocks through the observed (conditional) shift in Jz. Ad-
ditional modes can be added, as described below, to de-
tect higher order spatial correlations between modes.

Next, we evaluate the noise performance of entangled,
multimode clock networks with N = 45, 000 atoms per
mode. The metrological improvement, relative to their
respective M-mode network of N-atom coherent states,

can be quantified by a parameter ξ2net derived from the
generalized version [38] of the Wineland squeezing pa-
rameter [39]. For example, when M = 2,

ξ2net ≡
1

C2

Var
(
δJ

(1)
z + δJ

(2)
z

)
Var
(
δJ

(1),CSS
z

)
+ Var

(
δJ

(2),CSS
z

) , (2)

where the CSS variances are N/4 (see Methods). This
parameter accounts for both the local and nonlocal en-

tanglement since Var
(
δJ

(2)
z + δJ

(1)
z

)
is the sum of both

individual variances and the covariance between the two
modes.

A two-mode SSS is prepared and a pair of π/2 mi-
crowave pulses separated by a time Tint = 100 µsec
constitute a standard Ramsey sequence. Squeezing re-
duces the variance of the joint measurement to ∆θ̄ =
1.3(0.1) mrad (as shown in Fig. 3), which corresponds
to ξ2net = −8.6(1.0) dB. This precision is near that of a
two-mode SSS in the absence of the Ramsey sequence
(∆θ̄ = 1.2(0.1) mrad without technical noise from the
sensor sequence). A single-mode clock, on the other
hand, has 3.6(0.6) mrad of technical noise. In this differ-
ential clock configuration, low measurement variance can
be achieved without the need for high performance local
oscillators, thus circumventing a limit of previous SSS
sensor demonstrations [35]. This configuration will also
suppress environmental noise common to both modes,
such as a time varying bias magnetic field. This suppres-
sion is achieved with a single collective read-out measure-
ment.

This method can be extended to M = 2P clocks by
further dividing the atomic ensemble into smaller subsets
with P Raman π pulses. For example, we demonstrate
a four-mode system by inserting an additional Raman π
pulse, followed by a microwave π/2 pulse, before the first
QND measurement to generate spatially distinct modes.
In this case, we adjust the total initial number of atoms
to maintain N = 45, 000 atoms per mode. With four
modes, the metrological enhancement is ξ2net = 11.6(1.1)
dB (see Methods). For comparison, this is a 4.5(0.8) dB
relative improvement over the projected MS limit (see
Fig. 3). Here, the network gain is driven by the improved
squeezing efficiency for larger numbers of atoms since the
total number of atoms initially entangled is MN . The
observed network gain is consistent with the measured
atom number dependence of squeezing efficacy observed
in Ref. [35] for this system. This four-mode network
could be used to search, for example, for spatially pe-
riodic clock frequency shifts.

Finally, we apply this method to an atom interferom-
eter configuration, as illustrated in Figs. 1 and 6. In
this case, two atomic modes are initially entangled as
described above in an optical lattice. Atoms are then
released from the lattice and subject to an atom interfer-
ometer pulse sequence after an interval of approximately
7 msec, after which they have separated by ∼ 0.16 mm.
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FIG. 3. Clock network sensitivity. Measured sensitiv-
ity for a clock network utilizing SSS. The QPN limit for
N = 45, 000 atoms is given by the black line, which is propor-
tional to 1/

√
M . A MS network is realized by taking indepen-

dent measurements of a single-mode clock for each δθ(m) com-
ponent of θ̄. When observing the second QND measurement
only (black squares) the sensitivity is above the QPN limit
due to the QPN and local oscillator noise. The difference in
QND measurements (blue circles) detects the spin-squeezing
and brings the sensitivity below the QPN, however, the local
oscillator noise remains. A one parameter fit to these data
(dashed blue line) is consistent with 1/

√
M scaling. Reduc-

ing the local oscillator noise would push the sensitivity lower
in the blue shaded area, where the lower limit (solid blue line)
is determined by the M = 1 sensitivity measured without a
Ramsey sequence (purple point). The ME networks (green
circles) exist below this limit, where the green area represents
sensitivities obtainable exclusively through simultaneous mea-
surements of a ME network. Error bars represent the pooled
variance of three sets of 200 measurements. (Inset) Space-
time diagram of the state preparation for a four-mode ME
network.

Specifically, a Raman π pulse acts as a beamsplitter by si-
multaneously imparting opposite momentum to the spin
states in each branch (resulting in a relative momentum
between interfering wavepackets of 4~k, as depicted in
Fig. 1 and 6). Tint = 50 µs later, a sequence of a Ra-
man π pulse, microwave π pulse and Raman π pulse act
as a mirror, while a final Raman π pulse recombines the
states. The duration of the interferometer pulse sequence
is 270 µsec, dominated by the ∼ 160 µsec microwave π
pulse time. Each mode of N = 110,000 atoms accumu-
lates a phase proportional to its local acceleration (see
Methods). Fluorescence imaging (Ref. [36]) detects of

the sum of the final J
(m)
z (the modes are too closely

spaced to resolve individually on the camera). This dif-
ferential method suppresses large common mode optical
phase fluctuations associated with the optical stimulated
Raman transitions (measured to be 10 mrad, or roughly
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FIG. 4. Interferometer performance. (a) Distributions
of 200 sample measurements for the two-mode sequence with
ME squeezed states (green), MS coherent states (black), and
for the single-mode sequence (purple). (b) The fractional sta-
bility for a two-mode interferometer with ME squeezed states
(green) and MS coherent states (black) is calculated from a
single data set of 200 samples. Error bars represent 68% confi-
dence intervals. (c) Response of a single-mode interferometer
to a phase shift φ in the final Raman π pulse of the sequence.
The coherence is determined from the peak-to-peak value of
a sinusoidal fit.

15 dB above the projection noise limit, see Fig. 4a).
The smallest observed single-shot phase uncertainty

with a ME interferometer is 4.9(0.4) mrad (Fig. 4b),
which corresponds to an inferred differential acceleration
sensitivity of 1.4(0.1)×10−2 m/sec

2
(see Methods). This

sensitivity is limited by the relatively poor contrast (40%,
see Fig. 4c) associated with the interferometer pulse se-
quence. Entanglement-enhanced noise performance can
be characterized by comparing the observed ME sensor
noise to the noise observed for the same sensor sequence
implemented without the entangling probe, as shown in
Figs. 4a,b. With respect to the sequence which does not
employ entanglement, we observe an average metrolog-
ical improvement of 1.6(0.9) dB. The absolute noise is
0.1(0.7) dB above the QPN limit for the non-entangled
sensor which is likely due to imperfect suppression of Ra-
man laser phase noise. This configuration extrapolates
directly to high performance, single source, differential
gravity sensors (for example, Ref [11]).

In the future, a distributed array of cavities sharing a
common QND measurement [22], possibly via photonic
links and shared probe light [27, 40], would enable entan-
glement across longer distances. Adapting this method
to squeezed optical clocks [9] would further push the lim-
its of precision measurements of time [7, 10] and grav-
ity [8]. Applications in secure time transfer and quantum
communications can benefit from a distributed entangled
state [21] since an eavesdropper could not deduce the cor-
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relations through observation of one clock alone. For ex-
ample, information encoded by rotations on one network
node would only be detectable through a collective mea-
surement of all nodes. Finally, the atomic interferometer
protocol is technologically useful for future high perfor-
mance gravity gradient sensors and differential configu-
rations designed for gravitational wave detection [41, 42]
and dark matter searches [43–45].
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V. Orientation-dependent entanglement lifetime in a
squeezed atomic clock. Physical Review Letters 104
(2010).
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METHODS

Contrast

When determining mode separation, a second Raman
pulse removes the relative momentum after time T to
maintain the mode separation distance until detection
takes place. A π/2 microwave pulse with varying phase
addresses both modes simultaneously and the remain-
ing contrast is determined by the peak-to-peak Jz values
from fluorescence imaging (see Fig. 5). The coherence
falls to zero after roughly one thermal debroglie wave-
length λth = h/

√
2πmRbkBTens = 36 nm, where kB is

the Boltzmann constant, Tens is the temperature of the
ensemble, and mRb is the mass of the 87Rb atom. In the
absence of Raman transitions, the contrast is C = 79(1)%
due to decoherence in the lattice both before and after
the sensing times. Adding in the two Raman transitions
with T = 0 decreases the contrast to C = 73(1)%.
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FIG. 5. Mode separation. Contrast of the collective fluo-
rescent measurement as a function of separation time between
two 0.33 µs Raman π pulses. Solid curve is an exponential
fit to the data with a decay rate of 0.46 µs. Note that T = 0
corresponds to a single pulse with a total time of 2π. Error
bars represent a 95% confidence interval.

To determine C for the clock measurement, a fi-
nal microwave π/2 pulse temporarily introduced to
the single-mode case resolves C = 78(3)%. There-
fore, introducing a single Raman transition before the
QND measurement does not significantly reduce the fi-
nal coherence of the ensemble. The gravity gradiome-
ter has a lower final coherence, roughly 40%, due
to four additional Raman pulses. This is consistent
with the expected C = (88% population transfer)4 ×
(79% contrast without gradiometer).

Squeezing matrix for multiparameter
discrete-variable squeezing

The form of the metrological squeezing parameter ξ2net
is derived from Equation 13 in Gessner et al. [38]. For
a general multimode system, the squeezing matrix Ξ2

characterizes the level of metrological improvement due
to entangled quantum network. In other words, it com-
pares the covariances between each mode to the QPN
limit. The matrix elements can be defined as

Ξ2
kl =

√
N (k)N (l)Cov

(
Ĵ
(k)
z , Ĵ

(l)
z

)〈
Ĵ
(k)
x

〉〈
Ĵ
(l)
x

〉 , (3)

where Ĵ
(m)
x are the spin operators for each mode and the

mean spins are in the x̂ direction.
The metrological improvement in the multiparameter

estimation can be written as the ratio of variance of
the squeezed network to that of a network comprised of
coherent states: nTΣ2n/nTΣSN

2n, where Σ and ΣSN



8

�int �int
�τ�τ� τ�τk τk τk τk

�� �� �� ��

π�� π��π πππ π

D
is

p
la

ce
m

en
t

Time

Pulse Strength

FIG. 6. Interferometer sequence timing. Space time
diagram in the inertial frame of a single-mode interferometer.
Solid (dashed) lines represent the trajectory of the spin down
(up) state. White (gray) waves represent the finite time of
the microwave (Raman) pulses.

are the covariance matrices of the squeezed and coher-
ent states respectively, and n is the vector of coefficients
for the linear combination of parameters being measured.
In the case of equally populated [N = N (m)] modes, the

expected length values are
〈
Ĵ
(m)
x

〉
= CN/2. For a mea-

surement of the average angular shift (nm = 1/M), it can
be shown that the metrological improvement reduces to
ξ2net = MnTΞ2n. More explicitly, in terms of the mea-
sured observables, it can be written as

ξ2net ≡
1

C2

Var
(∑M

m=1 δJ
(m)
z

)
M ×Var

(
δJCSS
z

) . (4)

Measurement Sensitivity

Since the QND measurement addresses all modes si-
multaneously, it cannot distinguish between spin states
with different momenta. The measured δJz is simply the

sum of δJ
(m)
z , with expectation value

〈
δJz
〉

=
M∑
m=1

δJ (m)
z = C

N

2

M∑
m=1

δθ(m) = C
N

2
Mθ̄. (5)

The sensitivity, σ, of this measurement to changes in θ̄ is
given by standard error propagation [3]:

σ =

√
Var(δJz)

∂
〈
δJz
〉
/∂θ̄

=
∆(δJz)

CMN/2
= ∆θ̄. (6)

Laser System

A low phase noise, 1,560 nm laser is frequency dou-
bled to 780 nm. This light is split and one mode passes

through an electro-optic modulator (EOM) driven at
6.434 GHz, 400 MHz lower than the hyperfine transition
frequency, ωHF. The driving signal is created by a low
phase noise crystal oscillator mixed with a direct digi-
tal synthesizer (DDS), which allows for power, frequency
and phase control. Next, both modes are amplified by
semiconductor-based optical amplifiers to 2.8 W each.

One mode is now up-shifted by a 200 MHz acousto-
optic modulator (AOM) and the other is down-shifted
by the same amount. Both AOMs are driven by a com-
mon signal from a low noise 200 MHz crystal oscillator.
The pulsed signal controls the time the AOMs couple
the light to optical fibers which deliver the light to the
atoms. The fibers launch the light into 5.4 mm diameter,
counter-propagating freespace beams at 45 deg angle to
the vertical and a 45 deg angle to the cavity axis. The
shifting places one sideband of the modulated beam ωHF

away from the un-modulated beam frequency. These two
frequencies drive the Raman transition between the two
hyperfine states. The two participating frequencies cre-
ate a transition which is red-detuned by 3.5 GHz from the
excited state. The other sidebands are used to balance
the AC-Stark shift and do not contribute significantly to
the population change.

Interferometer Phase Shift

The sequence provided in this work differs from a stan-
dard Mach-Zehnder configuration [46] in that both spin
states receive a momentum kick instead of just one state.
In addition, the microwave pulses are longer than the in-
terrogation time so terms including pulse durations must
be considered. The total phase shifts, δθ(m), of an in-
terferometer can be derived from the sensitivity func-
tion [47]:

δθ(m) = 2|k|a(m)(2T 2
int + 4TintT0 + 4Tintτ0

+6Tintτk + 4T0τk + 4τ0τk + 4τ2k ),
(7)

where a(m) is the acceleration in mode m projected along
k, T0 = 1 µsec is the time between sequential pulses,
τ0 = 80 µsec is the duration of a microwave π/2 pulse,
and τk = 2 µsec is the duration of a Raman π pulse (see
Fig. 6). For the data of Fig. 4b, where Tint = 50 µsec, we

infer a statistical sensitivity of ∆ā = (
∑M
m=1 a

(m))/M =

1.4(0.1)× 10−2 m/sec
2

for a single shot.
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