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The classic self-referenced frequency comb acts as an unrivaled ruler for precision optical metrology
in both time and frequency'?. Two decades after its invention, the frequency comb is now used in
numerous active sensing applications®>. Many of these applications, however, are limited by the
tradeoffs inherent in the rigidity of the comb output and operate far from quantum-limited
sensitivity. Here we demonstrate an agile programmable frequency comb where the pulse time and
phase are digitally controlled with £2 attosecond accuracy. This agility enables quantum-limited
sensitivity in sensing applications since the programmable comb can be configured to coherently
track weak returning pulse trains at the shot-noise limit. To highlight its capabilities, we use this
programmable comb in a ranging system, reducing the detection threshold by ~5,000-fold to enable
nearly quantum-limited ranging at mean pulse photon number of 1/77 while retaining the full
accuracy and precision of a rigid frequency comb. Beyond ranging and imaging® ', applications in
time/frequency metrology'>>!*!8, comb-based spectroscopy'’?’, pump-probe experiments®®, and
compressive sensing””-** should benefit from coherent control of the comb-pulse time and phase.

As applications of frequency combs have expanded, their uses have extended beyond functioning
simply as a reference ruler’>. For example, many experiments combine two or more frequency
combs for active sensing including precision ranging and imaging® ', linear and non-linear
spectroscopy'® 27, and time transfer'>183132_ In these applications, the multiple fixed combs serve
as differential rulers by phase-locking them to have a vernier-like offset between their frequency
comb lines, or their pulses in time. These applications do exploit the accuracy and precision of
frequency combs; however, despite the use of heterodyne detection, they operate nowhere near the
quantum (or shot noise) limit because of effective dead time due to sensing the incoming signal-
comb light via a comb with a deliberately mismatched repetition frequency. Consequently, there
are strong tradeoffs in measurement speed, sensitivity and resolution'®3*34, In some dual-comb
ranging and spectroscopy demonstrations, these penalties have been partially addressed by
incoherent modulation of the comb?®>® but not eliminated.

Here, we overlay a self-referenced optical frequency comb with synchronous digital electronics for real-
time coherent control of the comb’s pulse train output. We manipulate the frequency comb’s two phase
locks to dynamically control and track, the time and phase of the frequency comb’s output pulses at will.
The temporal placement of the comb pulses is set with +2 attoseconds accuracy and with a range limited
only by slew rate considerations. This time programmable frequency comb (TPFC) goes beyond the
“mechanical gear box” analogy often applied to optically self-referenced combs®, replacing it with a
digitally controllable, agile, coherent optical pulse source. The agility of the TPFC enables many more
measurement modalities than a rigid frequency comb. In sensing applications, the TPFC can enable
quantum-limited detection with the full accuracy and precision of the frequency comb, avoiding the
penalties discussed previously. To achieve these combined advantages, the TPFC is configured as a tracking
optical oscillator in time and phase so that it effectively locks onto an incoming weak signal pulse train for
coherent signal integration.



As an immediate example, we incorporate the TPFC into a dual-comb ranging system. The result is
quantum-limited sensing that sacrifices none of the exquisite accuracy and precision of frequency-comb
measurements. Here, we show a precision floor of 0.7 nm (4.8 attoseconds in time-of-flight) in ranging,
which exceeds previous conventional dual-comb ranging demonstrations®®3%#!, In addition, the tracking
dual-comb ranging detects a weak reflected signal-comb pulse-train with a mean photon number per pulse
of only 1/77 at a sensitivity within a factor of two of the quantum limit. Quantum-limited detection of
signals at even lower mean photon per pulse numbers are possible by reducing the measurement bandwidth,
depending on the application. In contrast, conventional dual-comb ranging would require a return signal
37 dB or 5000x stronger to reach the same level of performance.

The uses of the TPFC go well beyond acting as a tracking optical oscillator. It should enable many more
time-based measurement schemes than the conventional vernier approaches using fixed frequency combs.
For example, in multi-comb sensing, the relative time offset between the frequency combs can be adjusted
so as to effectively mimic a higher repetition rate system while retaining the benefits of a lower repetition
rate system, e.g. higher pulse energy and tight stabilization. Arbitrary patterns can enable future
compressive sampling®®. In time/frequency metrology, the comb can provide accurately adjustable timing
signals, modulation capabilities for noise suppression, and optically-based time interval standards*.
Multiple TPFCs could be used for pump-probe experiments with digital control of pulse spacing replacing
delay lines or chirp-induced delays?®.

In this article, we first describe the TPFC and its capabilities generally. We then explore a specific
application by integrating the TPFC into a dual-comb ranging system. Finally, we discuss the potential
benefits of a TPFC in comb-based sensing more generally, including in LIDAR, spectroscopy, and time
transfer.
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Figure 1: A time programmable frequency comb (TPFC). (a) The TPFC output is measured with
respect to a second fixed frequency comb through linear optical sampling against a third frequency
comb with an offset repetition frequency. All frequency combs are fiber-based operating at f.., ~200
MHz with a resulting 5-ns pulse spacing. All pulses are spectrally filtered to a Gaussian 10.1-nm wide
shape, corresponding to 355 fs pulse duration (See Methods). (b) Schematic of the TPFC made from
a self-referenced Er:fiber frequency comb controlled with digital electronics clocked off the detected
comb repetition rate signal (V). The digital section receives the carrier-envelope offset signal (V),

the optical beat signal (Vx), and the comb pulse timing and phase commands, X © and 6, which are
combined to give the control phases (90C and 916 through the (trivial) matrix M. These are passed to
their respective digital control loop (see Methods). The control efforts for 6’0C and 916 adjust the
phase-locked loops (PLLs) controlling the comb’s two degrees of freedom. The system tracks the
actual phases, 0, and 6, as fixed point numbers, which are combined to give the actual pulse timing
and phase, X (k) and ﬁ(k) , for every comb pulse number 4. IQ: in-phase/quadrature
demodulator, PII: proportional-integral-integral controller, NCO: numerically controlled oscillator,
ro and ry: offset frequencies of the 6, and @, phase locks in units of £, (see Methods). (c) Linear
optically sampled signal of the fixed comb (at X =0) and the TPFC at the given (X R 6’) values. Here,

time is scaled such that fmp =200 MHz.



RESULTS

Generation of a Time Programmable Frequency Comb

The TPFC requires two parts: an optically self-referenced frequency comb and the electronics to track and
control the time and phase of the comb pulses. (See Methods Eqn. 3 for a definition of the time and phase
of the comb pulses.) While the electronic system need not be exclusively digital, it does need to track the
programmed comb time and phase at the attosecond level over long (hours to weeks) durations. Here, we
use a fixed-point number whose least significant bit corresponds to < 1 attosecond shift in time. When
combined with an integer pulse number in an 80-bit number, the pulse timing can be specified with zero
loss of accuracy for over 1 week at 1-as precision, thereby providing well beyond 10'-level control of the
comb timing commensurate with next-generation optical clocks. As for the comb, any self-referenced comb
could be converted into a TPFC; here, we generate a TPFC using a fiber-based comb.

Figures 1 and 2 describe the TPFC and its output characterization. In a self-referenced comb, phase-locked
loops (PLLs) stabilize the frequency of the N comb tooth, f), , with respect to a CW reference laser, and

the frequency of the 0™ comb tooth, f, (the carrier-envelope offset frequency). The PLL locks both
frequencies to a known fraction of f,, , which is self-referentially defined as f,,, = (fy = /o) N 224,
These PLLs also set the phases of the N™ and 0" comb tooth frequencies, 6, and 6, , to arbitrary but fixed

values. Here, we manipulate these phases to control both the comb-pulse phase, &, and the comb-pulse
time offset which is given by X = (90 -0, ) / (277Nf

rep) in direct analogy to fmp ’s definition above. The
digital control exploits the optical frequency division of N inherent for optically self-referenced combs since
a single 2m shift in the phase of either PLL leads to a time shift ~ 5 femtoseconds. The TPFC outputs both

a train of optical pulses and the corresponding synchronous digital values (Fig. 1b).

The TPFC is both agile and accurate (Figure 1c¢ and Figure 2): at any point the output time of a comb pulse
can be adjusted arbitrarily. Yet at all points, we know exactly, to fractions of an optical cycle, by how much
the output time (and phase) has been shifted. For rapid changes in the TPFC output, the settling time of the
PLLs can be taken into account either via modeling or by including the digital phase error signal from the
two PLLs. It is the exactness of the performed step relative to the commanded step (Fig. 2b) and the ability
to control the steps in real time that stands in contrast to earlier work. Shown in Fig. 2b, the accuracy of the
timing control, X, with respect to the underlying CW reference laser is 0.77 £ 2.05 attoseconds. The TPFC
enables easy determination of the mode number N, which is always required in optical frequency metrology,

by applying a shift A6 =27zNf,,,, which will lead to a time shift of exactly AX = fr; for the correct N.

Any integer error in N appears as a 5-fs offset in time, which is easily resolved.
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Figure 2: Measurements of the TPFC pulse time, X (¢), when stepping 6, (t) , using the sampling

setup in Fig 1a. (a) Actual time offset between the TPFC and fixed comb for an arbitrary X (7) step

pattern (surface plot) compared to the commanded time (solid red line). (b) Staircase modulation of
the comb pulse timing to verify the accuracy. We apply a 1-Hz square wave modulation to X (¢) with

an amplitude that is stepped by 1-ns every 3 minutes. The 1-Hz modulation removes measurement
noise from drifts in the fiber optic paths in Fig. 1a. The TPFC position is then measured by the linear
optical sampling (LOS) frequency comb at a 6 kHz update rate (blue trace) and compared to the
commanded time step (red line). (¢) The average difference between the actual and commanded pulse
time for both the data in (b) and additional data runs. The uncertainty bars are based on the LOS
measurement and residual comb timing jitter. The average difference is 0.77 attoseconds £2.05
attoseconds (standard error). There is no observed reduction in accuracy or precision associated with
the step scan despite moving the TPFC over the full 5 ns ambiguity range. The pulses can be
successfully commanded to shift in time by more than S ns, although then an additional pulse slips in
between. For these data, the maximum slew rate was 40 ns/s.



Example Application: Dual-Comb Ranging with a TPFC

To demonstrate the advantages of the TPFC in dual-comb sensing, we consider ranging®®. In dual-comb
ranging, pulses with bandwidth T;l from a comb are reflected off an object, and their time-of-flight is
detected by coherently heterodyning them against a second comb. This time-of-flight has a resolution of

AR =ct,/2 and a non-ambiguity range R, =c/ (2 . p), associated with “which pulse” is detected.

(This ambiguity can be removed by changing f

. ; .
-, and repeating the measurement’). The accuracy is set

by the comb’s reference oscillator or knowledge of the index of refraction. The precision is, at best, equal
to the resolution divided by the SNR:

C AR
O'R =
2In(2) SNR,

(1

where the (2In(2))"! factor arises from the assumption of Gaussian pulses (see Methods). The shot-noise

limited signal-to-noise ratio, SNR, = 1/77115 where 77 is the detector quantum efficiency and

n =P,.T / (hv) is the number of signal photons for a received power P, and integration time, 7. The

constant C quantifies how far the precision is from the quantum limit. It can be related to the power penalty

as P =C * . An optimal quantum-limited ranging system operates at C = P =1.
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Figure 3: Dual-comb ranging with a time programmable frequency comb. (a) System diagram. The
TPFC can be run in two modes: Acquisition Mode where the TPFC is moved to an a priori X(t) and
0(t), and Tracking Mode where feedback maintains temporal overlap between the TPFC and
returning signal-comb pulses. By combining the feedback control effort and error signal for X(t) we
measure the range, R(t). The velocity, V(t), is derived from d0(t)/dt. (b) The timing discriminator is
a dual Mach-Zehnder interferometer constructed with polarization-maintaining fiber optics in which
(1) both comb pulses enter with the same polarization and (2) the TPFC pulse is rotated to the fast-
axis. Then (3) the pulses are mixed, a delay between pulses is added to one arm and (4) the pulses are
projected back into the same polarization for balanced heterodyne detection. The output signals for
the two timing discriminator channels, Vcni and Venz, are combined to generate a power-insensitive
error signal fed back to the tracking controller. (c) Range precision (deviation) or (left axis) and
corresponding time deviation (TDEV, right axis) at 200-ms averaging time versus the total received
signal-comb power at the balanced photodetectors. The measured precision follows the quantum
limit (Eq. (1)) from 0.33 £0.03 pW to 10 = 1.0 nW with a penalty of C = 2.16, reaching a systematic
noise floor below 1 nm (7 as), which floor is 2-10x below previous dual-comb ranging experiments®
83941 (See also Methods and Extended Data Figure 1.) (d) Example handover between Acquisition
and Tracking modes, as described in the text. Here the TPFC was commanded to move from X(t) =
-5 ps to X(t) = 0 ps where the signal pulse is located, and then lock onto the signal pulse.



Conventional dual-comb ranging operates far from this optimum unity power penalty (later Fig. 5) and with
significant tradeoffs. In these systems, the second comb’s repetition rate is offset by Af, and it serves as a

linear sampling comb. It repeatedly scans the entire non-ambiguity range, Ry,4, at a measurement rate
T =Af.< SropAR / (4R,,) (Extended Data Table 1). The inherent tradeoffs in T, Ry, and AR have led

to dual-comb ranging implementations using very different frequency combs and covering three orders of
magnitude in 7 and AR but all facing these strong constraints %3, Moreover, in all cases, the power
penalty P, = AR/ R,, = f.z, is severe, ranging from 14 dB to 38 dB"*, because of the repeated scanning

of the entire non-ambiguity range.

Here, as shown in Figure 3, we replace the second sampling frequency comb by the TPFC to overcome
these tradeoffs and stiff power penalty. This system runs in two modes: acquisition mode and tracking
mode, both of which differ from conventional dual comb ranging. In both modes, the relative time and
phase between the TPFC pulses and the strongly attenuated signal-comb pulses and are detected by a power-
insensitive, coherent timing discriminator (Fig. 3b), followed by a 26-kHz bandpass filter for coherent
averaging. (The 26 kHz bandwidth was chosen to be well above typical ~kHz mechanical vibrations, but
lower bandwidths are also possible.) The timing discriminator effectively shapes the TPFC pulse to

optimize detection of the time of the incoming signal-comb pulses,*** independent of their energy.

In acquisition mode, X(t) is scanned until the tracking comb’s timing matches the input pulse train. While
it is possible to scan the entire non-ambiguity range, we can also make use of a priori information to scan
the TPFC’s X(¢) linearly over a tunable range that can be much less than the non-ambiguity range. The

information could be provided from external sources or from a Kalman filter if previous range/Doppler
measurements are available. Once the system acquires the appropriate reflection, it switches to tracking
mode (Fig. 3d). Tracking mode implements a pulse-timing lock and a carrier-frequency lock based on the
timing discriminator outputs. The former keeps the signal and tracking comb pulse trains overlapped in
time at the detector by adjusting X (¢) . The latter adjusts for Doppler shifts in the return signal by applying

feedback to the direct digital synthesizer used in demodulating the timing discriminator signals. The
combination of the control and error signals from the time and frequency locks in turn yield the range and
Doppler velocity of the target object.

In tracking mode, the ranging precision nearly reaches the quantum limit of Eq. (1) (Fig. 3c). This nearly
quantum-limited precision ranging is demonstrated at a rapid 26-kHz measurement rate with as little as
0.33 + 0.03 pW of return power (SNRs = 9.5), which corresponds to only 0.013 mean photons per pulse.
There is a slight penalty of C =2.16x due primarily to differential dispersion between the comb pulses (see
Methods). With additional optimization, C could be reduced to 1, and with squeezing, to <1 per Ref. 43.
With these same 200-MHz combs, a conventional dual-comb ranging would suffer from a power penalty
P,=37dB (C =T71). Finally, momentary loss of signal is not an issue. If brief enough, the object does not
move by more than ~ +24R = ~+100 pm and the acquisition resumes. If longer, the system can transition
to acquisition mode using previous data to limit the scan, as discussed above.
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Figure 4: Ranging and velocity data for a moving retroreflector. (a) The range (top, left axis, dark
blue trace) is measured from the summed control and error signals for X(t) in tracking mode at a 26
kHz rate. The velocity (right, middle axis, red trace) is based on the measured Doppler shift between
the signal and TPFC combs calculated from the 0(t). At 150 seconds, the beam was blocked and the
target moved, triggering a re-acquisition. Before and after re-acquisition the measured range agrees
with a commercial FMCW ranging system (black circles), to within the FMCW uncertainty driven
by target vibrations (see Methods). The relative range also agrees well with the unwrapped carrier
phase (yellow trace in the two insets), after applying an overall offset. (b) Difference between the
dual-comb range and FMCW range (black circles) with standard deviation error bars and difference
between the absolute range from X(7) and the unwrapped carrier phase (grey and black traces) for
the initial period of continuous signal. The range deviation of this latter difference reaches 10 nm and
5 nm at 10-s averaging for the time periods with received powers of 3.2 =+ 0.3 and 32 £+ 3.0 pW,

respectively. (See Extended Data Figure 1.)



Figure 4 shows range data taken while arbitrarily moving the rail-mounted retroreflector. The dual comb
system tracks the retroreflector as it reverses direction at velocities up to 20 cm/s. The signal is blocked at
150 s and the retroreflector moved, after which the absolute range was reacquired by scanning over a £37.5
cm window. The frequency shift of the returning reflection yields the velocity. To validate absolute ranging,
we compare to a commercial frequency-modulated continuous-wave (FMCW) system at a few static rail
positions after calibrating out differential range offsets. The two agree to within the FMCW measurement
uncertainty of 40 um whose extent is due to target vibrations amplified by the FMCW’s intrinsic range-
doppler coupling (Extended Data Figure 2). Finally, the tracking dual-comb system also outputs the phase,

Q(t) , whose derivative yielded the velocity above. However, the relative phase, (9(1) - 9(0) can also be

unwrapped to provide relative range during periods of continuous signal (Fig. 4, yellow trace) as in Ref. 7
and similar to CW interferometry (except avoiding systematic errors from spurious reflections). This
unwrapped carrier phase agrees with the tracking range to a precision limited by the tracking range noise
and follows Eq. (1), after accounting for a ~1.5x chirp-induced penalty in C from the fiber optic path to
reach the rail system.

DISCUSSION

A number of existing or potential applications should benefit from the abilities illustrated in Fig. 1-3,
specifically to (1) set the time and phase of the comb’s output pulses, (2) coherently scan the relative
temporal spacing between two frequency combs over a specified limited range rather than the full inverse
repetition rate, thereby mimicking a higher repetition-rate comb while avoiding limitations of lower pulse
energy, and (3) operate as a precision optical tracking oscillator in time and frequency for shot-noise limited
sensing. Below we discuss three different general application areas: LIDAR, time metrology, and
spectroscopic sensing.

As already discussed, frequency combs have a natural connection to precision LIDAR. Figure 5 and
Extended Data Table 1 together compare conventional dual-comb ranging”-*-#!, tracking dual-comb
ranging and FMCW ranging®, which is the standard approach to high-resolution optical ranging. For all
three, the resolution is set by the optical bandwidth and the accuracy by the comb referencing or
knowledge of the index of refraction of air. (Comb-assisted FMCW ranging can transfer frequency-comb
accuracy to FMCW LIDAR?.) Both tracking dual-comb ranging and FMCW ranging can reach the shot-
noise limit and exploit the optical carrier phase. However, FMCW ranging’s update rate is limited by the
need to sweep the laser over the ~THz bandwidth. Moreover, it is also much more sensitive to vibration
because of its diagonal range-Doppler ambiguity function, which limits its precision for vibrating targets
as shown in Figure 4. Because dual-comb ranging operates directly in the time-domain, it could provide
range-resolved vibrometry in a cluttered environment or image through turbulent media. Moreover,
tracking dual-comb ranging could provide quantum-limited surface imaging since it can operate at very
high loss and should be robust to signal dropout from speckle. At 10-mW launch power, even a -100 dB
reflection from a diffusely scattering target will still provide sufficient 1-pW return power to enable a 26-
kHz measurement rate. More generally, there are strong overlaps with conventional RF pulse-Doppler
radar and the tracking comb could therefore have interesting applications to high-bandwidth synthetic
aperture LIDARY.
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S

ranging at f..,, = 200 MHz (blue line) and f.., = 10 GHz (green line), compared to tracking dual-comb
ranging (red line) and the standard quantum limit for heterodyne detection (black line). The
left/bottom axes are in normalized units while the right/top axes are scaled to values similar to those
used here. For all three ranging configurations, we require a minimum detection SNR of ~10, as
indicated by the SNR limit. For conventional dual-comb ranging (blue and green lines), the scaling
depends strongly on f..,, and the precision is always much worse than the standard quantum limit.
The tracking dual-comb ranging (red line) is independent of f.., and can reach the standard quantum
limit, though here shown with a 10% penalty. We assume a system noise floor of 0.7 nm, taken from
this work, for the tracking comb, and ~10 nm for the conventional dual-comb systems’-’.



In time-frequency metrology, a TPFC phase-locked to an optical atomic clock provides an optical timescale
with the ability to “adjust” its output time to synchronize with other signals. A TPFC could also enable
calibration of time interval counters or ranging instruments*?. The time-interval standard would follow Fig.
Ic, where the TPFC allows precisely defined variable pulse spacing from nanoseconds to femtoseconds.
This capability offers the prospect of a time interval standard that spans 6 orders of magnitude with
attosecond precision and an accuracy directly tied to a secondary representation of the second. In secure
optical communications, the programmable comb might enable quadrature pulse phase-position modulation
if implemented with high-speed actuators. Finally, the TPFC has interesting applications to comb-based
long-distance free-space time transfer '*-17-31:3 as it provides similar advantages as for dual-comb ranging*®.

The TPFC can also break tradeoffs that limit comb-based linear and non-linear spectroscopy. Relatively
low repetition-rate frequency combs (100-MHz to 1-GHz) provide the high pulse energies needed for
nonlinear spectroscopy or for spectrally broadening over the desired spectral band*>!. However, the
spectral resolution set by these low repetition rates is often poorly matched to the application leading to
significant “deadtime” or SNR reduction in multi-comb-based spectroscopy!®?!"2°05! The TPFC can
circumvent this problem by coherently scanning over a limited time offset between two or more frequency
combs, as first demonstrated incoherently in the early dual-comb spectroscopic work of Schliesser et al.®.
In this way, a low-repetition frequency TPFC can act as a frequency comb with an effectively much higher
repetition rate, set by the inverse of the temporal scan window, at shot-noise limited sensitivity. Going
further, the ability to jump the frequency comb pulse phase and timing could enable compressive sampling
in dual-comb or multi-comb sensing applications with a concomitant increase in measurement rate. Recent
modeling®® and preliminary experiments® have highlighted the advantages of this dynamic control for dual-
comb spectroscopy. Finally, in nonlinear spectroscopy, temporal control could enable time-ordered multi-
photon excitation, following the comb-based spectroscopy of Rubidium?® but with programmable control.

CONCLUSION

The time programmable frequency comb combines the precision and accuracy of a self-referenced
frequency comb with flexibility in time and phase and 2-attosecond accuracy. Here, the TPFC is based on
a fiber frequency comb, but in principle any self-referenced comb (or comb locked to widely separated
optical oscillators) with control electronics capable of tracking and manipulating phase could act as a TPFC.
Through a dual-comb ranging demonstration, we show the TPFC can operate as an optical tracking
oscillator in time and frequency, yielding nearly quantum-noise limited ranging with 0.7 nm precision.
Finally, dual-comb ranging is just one application and the TPFC has equal promise in relaxing tradeoffs
with repetition frequency and improving SNR in other multi-comb sensing and metrology applications
while retaining the hallmark accuracy of comb-based metrology.
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METHODS

I) Time Programmable Frequency Comb Control

The output of the frequency comb can be written as a function of time, ¢, in terms of a sum of
pulses, labeled by integer 4 , with repetition frequency £,

rep
E)=e") E(

where E, (1) =% A(t kfmp) ®

where @ and X are the comb pulse phase and time offset (to be controlled later), and 8., is the

ceo

carrier-to-envelope phase advance per pulse (and hence appears as k6. ) and is not to be

ceo

confused with @ . Alternatively, through the Poisson sum formula, the comb can be written as

E(t) f;{pe 16’2 A e 127rf t— X) (3)

where 7 is the index of the comb tooth with complex amplitude A at frequency f, =nf, + f,

and the carrier-envelope offset frequency £, = (27[)_ 6. frep -

For a comb self-referenced to a reference CW laser, we stabilize the comb tooth frequencies, f,

and f, , where N is the tooth nearest the reference CW laser at f,, . Each of these frequencies
is stabilized with respect to the repetition frequency, i.e. f, =r,f,, and f, = fo, —r\f,, , where

both 7, and r, are user-chosen rational fractions. Note that the repetition rate itself is determined

= foy /[(N+r,+r,). This

stabilization is done through two phase-locked loops that combined also set the overall phase, &,
and time offset, X, to arbitrary but fixed values. If the phase and time offset were not fixed,

by the two frequencies as f,, ( fv— fo)/N Equivalently,

frep

variation in X would lead to an effective variation in the repetition frequency f,,, , and variation

in @ would similarly lead to a variation in

ceo *

Here, we alter the lock points of the two phase-locked loops in order to coherently change the
overall phase, €, and time offset, X . Consider the phase-lock of the tooth at » =0 (i.e. the
carrier-envelope offset stabilization). The phases satisfy the equation,

[0+27fit —2nf, X1, | 27 ], t—27f,, X | -6, =0 (4)

where the first term in brackets is the phase of the » =0 term in (3) assuming an unchirped A(t)

, the second term in brackets is the phase of the repetition signal, i.e. the digital clock signal for
the digital phase-locked loop which directly follows the detected comb pulse arrivals times, and
the final term is a calibration offset related to the difference in the total phase delays of the two
signals up to the IQ demodulation (phase comparison). In the standard fixed comb control,
feedback is applied to drive this phase difference to zero, as indicated by the right-hand side of the



equation. With synchronous digital electronics, we can replace the right-hand side with a time-
dependent control phase, 6; () so that

o) =6; (1) )

since f, =r,f,, and after dropping the calibration constant for simplicity. We apply the same

arguments to the phase of the n= N tooth, working from the stabilization of f = f,, =1y f,, t0

find,
O(t)—27(N + 1, + 1) £, X (1) = 0y (1) . (6)

A linear combination of Eqns. (5) and (6) (represented by the matrix M! in Fig. 1) gives us the
simple relationships,

0(1)=05 (1)

o (t)-65 (¢ (7)
RS0

These equations relate changes in the time-varying control phases to the comb pulse phase and
timing. They hold within the feedback bandwidth of the phase-locked loop. (In practice, we can
change the signal more rapidly provided we separately record the error signal quantifying the
difference between the set point and actual values.) For the particular locking conditions chosen
here of r,, =—7;, these equations reduce to the ones given in the main text. To set the TPFC output,
the inverse of Eqn. (7) generates the desired values of @, () and &, (¢) which are then translated

to the actuator controls. (See Fig. 1 and below for details on processing).

With appropriate choice of the control phases, we can control the comb’s time offset and phase, or
the phase of a particular tooth through Eq. (8). The phase change of the n'" tooth is

0,(t)=06(t)-27f,X

:[1_ n+r, ]Hoc(t)+ n+r, 6c (1) (8)

N+ry+ry N+ry+ry

For the tracking comb operation, we adjust &, and leave @5 =0. This leads to a time shift of

AX = A6 [(27N,

rep) while fixing the phase of the N comb tooth to zero even while the timing
of the TPFC comb pulses is shifting. As a result, the relative phase shift of the M comb tooth
between the TPFC and signal comb reflects the overall additional phase shift on the signal comb
alone. Therefore, in “unwrapping” the phase of the carrier signal measured during the retroreflector

motion, we must use an effective carrier frequency of Nf, .

rej



III) Physical setup information on the combs and the digital electronics system

II1.A Optical Hardware

The fiber-based frequency combs used in this work operate at a repetition frequency of about 200-
MHz and are based on the design in Ref. 2. The actuator for the carrier-envelope-offset phase-
lock is the oscillator pump power and the actuators for the lock of the N comb tooth to the optical
reference are two piezo-electric fiber stretchers which together adjust the oscillator cavity-length.
All combs are housed within temperature-controlled enclosures. The output of all combs are
filtered with a 10.1-nm wide Gaussian filter centered at 1560 nm, resulting in 5 mW of in-band
power, which was often strongly attenuated for these experiments. The optical reference for all
combs is a cavity-stabilized laser at 1535.04 nm. To minimize excess residual noise between the
frequency combs, all non-common fiber lengths between the cavity-stabilized laser and the three
combs are as short as possible and contained within the temperature-controlled housing as much
as possible.

In order to produce the required combination of TPFC, fixed comb and LOS comb pulses, fiber-
optic-based optical transceivers were constructed with polarization maintaining fiber optics (PM-
1550) and fiber optic components. The fiber-optic based timing discriminator described in Figure
1 was constructed with a differential pathlength of 50.5 cm of fiber which corresponds to a 980-
femtosecond delay between the lead and lag arms to match the full-width-half maximum of the
partially chirped cross-correlation (or interferogram) signal between the tracking and signal
frequency combs. Commercial balanced detectors are used throughout, including at the output of
the timing discriminator, to allow for shot-noise limited heterodyne detection with ~1.1 dB power
penalty.

For the data of Fig. 1c and 2, we combine a fixed comb and a TPFC, both phase-locked with the
same values of N, ry, and v We then adjust the TPFC pulse time or phase, and subsequently probe
the relative phase and time between the TPFC and the fixed comb via a third linear optical
sampling (LOS) frequency comb. For the data of Figures 3 and 4, we do not use the third frequency
comb. In all cases, the LOS comb is phase-locked to the same CW reference laser but with carrier
frequency offset by 10 MHz. The heterodyne signal between the LOS and the other two combs is

digitized at f,,, s yielding an interferogram (IGM) with f, . /Af,,, points. For the data of

rep,
Figure 1c and 2a, the LOS comb was offset in repetition frequency by ~200 Hz while for the data
of Figure 2b (which required faster averaging), the LOS comb was offset in frequency by ~6 kHz,
very near the Nyquist limit for linear optical sampling given the pulse width. For Figure 2b we
additionally apply a matched filter prior to peak fitting. In these LOS sampled measurements, the
overlap between the LOS combs and the TPFC is sufficiently short that the full timing jitter of the
relative comb pulses is measured. For these combs, this timing jitter was about 3 fs. For the data
of Figure 2b, multiple measurements allow us to average down this jitter. At these longer averaging
times, differential out-of-loop fiber paths in the TPFC and LOS combs will lead to slow fs-level
time wander. We cancel some of this wander by applying the square-wave 1-Hz modulation to the
TPFC time offset.



In contrast to the LOS sampling method, the combination of the TPFC and timing discriminator
provides continuous measurements at each comb pulse. Low-pass filtering rejects most of the
technical timing jitter on the comb pulses that occurs at ~ 50 kHz (the PLL locking bandwidth).
The data for Extended Data Figure 1 and Fig. 3¢ was acquired using this continuous timing
comparison between the reflected signal frequency comb and TPFC. For these data, the signal-
comb pulses were reflected off a fiber FC/PC connector end located just outside the aluminum box
that housed the two combs in order to minimize temperature-induced path length changes or the
even larger atmospheric fluctuations that occur over the air path to the retroreflector.

For the ranging data of Figure 4, the retroreflector on the rail was aligned with 3 passes so that the
effective pathlength change and Doppler-shift of the comb pulses were a factor of 3 higher than
that of the reflector itself. The signal-comb light was attenuated significantly prior to launch to
reach the low picowatt power levels. The position of the retroreflector on the rail was simply
adjusted by hand in an arbitrary pattern. The alignment of the output signal-comb light to the
retroreflector was not perfect, leading to the power variations in the return signal observed in Fig.
4.

At each static location, a commercial FMCW ranging system took 25 range profiles over a 10
second acquisition period. The reported FMCW range in Figure 4 is the average of the peak values
extracted by a 3-point cubic spline fit of the peak. The uncertainty was generated by performing
the same fitting routine over 10 minutes of static range data and taking the standard deviation of
the resultant ranges. For both the dual-comb system and FMCW system, the range was calculated
using the group velocity calculated at the center frequency. The large uncertainty on the FMCW
range values is due to the systematic coupling between range and velocity in this frequency-
domain ranging system. For the FMCW ranging system used here with a 12.5 THz/s sweep rate,

the systematic ranging error is 12 pmx 61, » where 8, .. is the vibration-induced Doppler

shift. While Doppler shifts slower than the sweep rate can be compensated through the use of
up/down sweeps, vibration-induced Doppler shifts on timescales comparable with the sweep time
cannot be similarly cancelled, leading to the uncertainty bars on the FMCW ranging data in Figure
4. The tracking dual-comb ranging does not suffer from this strong Doppler-induced systematic
since the ambiguity function for a pulse does not have the large delay-Doppler coupling of a slow
FMCW sweep.

1I1.B Digital Electronics System

The implementation of the digital control of the TPFC was accomplished using available hardware
and consists of two field programmable gate arrays (FPGAs) and one Digital Signal Processor
(DSP), although these FPGAs and DSP could be combined into a single platform as the processing
load is not significantly larger than fixed comb control. The FPGAs are both clocked
synchronously at the comb repetition rate and the DSP processes samples synchronously at exactly
5000x slower (~40 kHz). Since the DSP is programmed in C++, it provides a more flexible
development environment than the FPGAs. The fixed and LOS frequency combs also each had a
dedicated FPGA>? for their phase-locking to the CW reference laser.



To control the TPFC output, Eqn. (7) generates the desired values of & (¢) and 65 (¢). (Note that

these are “unwrapped” quantities and are not restricted to a 0 to 27 range.) In the implementation,
all phase and frequencies are defined with respect to the clock cycles of the analog-to-digital
convertors (ADC), FPGAs and DSP that are synchronous with the instantaneous comb repetition

frequency. Within the FPGA, the values of 6 (t) and 0 (t) can be represented as large fixed-

point values such that there is no quantization noise variation across the full range (such as would
be inevitable with floating points). Here, we use a least significant bit (LSB) that corresponds to
a comb timing step of below 1 attosecond. All values are then otherwise exact and set with sub-
cycle accuracy, assuming no cycle slips in any clock signal, which is assured by the high-SNR
signal from the photo-detected frequency comb pulse-train.

Figure 1b shows the effective implementation for the phase trajectories for 6, (¢) and 6, (¢) . The

implementation is done via the numerical integration of a limited difference between desired and
actual trajectories. This allows enforcing rate limiting to respect the limits of the physical system,
for example the maximum rate that the system can change pulse timing via pump power or cavity
length. The phase change is done by changing the effective values of 7y and rx for a precisely
known time period inside the FPGA. The commands for setting the trajectories can be sent via
either a graphical user interface from a PC, via a serial port input from another real-time digital
system for tighter control (e.g. the DSP). It could also be done via a sequencer running directly on
the control FPGA, although that approach was not used for this manuscript. The rest of the control
algorithm for the phase locks is a PII with a phase extraction front-end, as in Ref. 2.

For large timing shifts, the system will also be limited by the maximum slew rate. Note that a
linear slew of the phase corresponds to a frequency shift in the relevant beat frequency. The slew
rate can then be limited by two factors: a) how far the beat frequencies for either fj or the optical
beat can be moved away from their nominal lock points while tracking the phase, and b) how fast
the actuators can implement the required frequency changes on the physical system. For a), the
limitation comes from a combination of SNR and sophistication of the demodulation scheme.
Indeed, with unlimited SNR, the beats can be tracked over the full Nyquist window of 0 to %f,e,/2.
If the SNR is limited, one could implement a tracking filter with feedforward to track dynamic
frequency changes, although this was not implemented here. In the current system, a maximum
slew rate of 40 ns/s was implemented although this rate was not optimized and was chosen
conservatively to avoid cycle slips even with limited SNR. This 40 ns/s slew rate was used for the
data of Figure 1 and 2. For the ranging data of Figure 3-4, a slower slew rate of 4 ns/s was chosen
to match the temporal duration of the overlap between the TPFC and signal comb with the inverse
of the 26-kHz measurement bandwidth.

With regard to the slew rate, the critical issue is that the system never loses track of the accumulated
phase error: once that is accomplished, the feedback loop is linearized and can work to coherently
follow the trajectory with respect to the optical reference despite limitations in the actuators. To
check if the system can robustly program the comb’s output without losing track of phase, e.g.
without any cycle slips, the TPFC is programmed to repeatedly move back and forth between two
target positions in time while comparing the results against the timing of a stationary comb pulse



train. As noted in the text in the context of the removing the mode number ambiguity, even a single
cycle slip will be evident as a measurable 5-fs shift in relative time offset.

For the dual-comb ranging demonstration of Figures 3 and 4, the system operates as nested phase-
locked loops. The timing discriminator demodulation is implemented in an FPGA+DSP system
with £13 kHz of bandwidth centered around a demodulation frequency. The 26 kHz bandwidth in
the demodulation limits the overall tracking bandwidth, but was chosen to demonstrate the high
sensitivity by allowing for coherent integration over ~(26 kHz)' = 38 us to detect weak return
signals. A broader bandwidth would sacrifice some sensitivity but allow for even faster tracking
bandwidths. The output of the timing discriminator provides both a time and phase error signal.
The phase error is sent to a PII implemented on the DSP, whose output is fed back to the
demodulator, with the resulting frequency adjustment timestamped against the FPGA clock. (This
timestamping allows the accurate unwrapping of the carrier phase to determine the relative range
change, as show in Figure 4.) The time error signal is sent to a PII implemented on the DSP. This
PII generates control trajectories for the tracking comb, which are sent via serial port to that comb’s

controller FPGA running the two PLLs for 6, (¢) and 6,,(¢) at 50-kHz closed-loop bandwidth.

IV) Shot Noise Limit for Ranging

In Fig. 3¢, we show our ranging measurements are shot-noise limited for received powers <10 nW
by comparing measured range deviation to the expected shot-noise limited range deviation. Here
we derive that theoretical shot-noise limited range deviation.

We first assume the comb pulses have zero differential chirp and are Gaussian with a full-width
half-maximum (FWHM) of 7, in intensity. (The comb pulses pass through a Gaussian spectral

filter before ranging.) Their cross-correlation then generates a Gaussian envelope, V , with a
FWHM of 27, (because there is a factor of J2 from the cross-correlation and the E-fields are

also /2 broader than the intensity of the comb pulses'.) The detected heterodyne voltage signal
has a carrier frequency set by the offset between the comb frequencies, but this carrier is removed
in the demodulation to generate just the envelope signal. We assume the lock point is chosen at
approximately the half-width at half-maximum (HWHM) point on this envelope. (The actual
maximum slope is one-sigma from the peak, but this is a minor 6% correction at the cost of a
reduced capture range.) In that case, the change in voltage for small changes in the arrival time of
the signal pulse with respect to the tracking (LO) comb, 6.X , will be determined by the slope at
the HWHM point, or

5V I/peak
S =@ [Vis] 9)

P

where V, is the maximum voltage measured when the signal and tracking comb pulses perfectly
overlap. The inverse of this slope maps changes in ¥ to changes in X . Voltage fluctuations from
shot noise with a root-mean squared (rms) value of V.

hotnoise Wil show up as white timing jitter
with an RMS value of



oX
O-t,l = W V;hot noise * (10)

In the strong local oscillator case (strong tracking comb pulses), the shot noise for the demodulated
output is

I/shot noise = eG ZP;I?/UB (1 1)

where e is the elementary charge constant, G is the transimpedance gain, F,, is the local

oscillator power, 4 is Planck’s constant, v is the carrier frequency, 7 is the quantum efficiency,
and B is the single-sided bandwidth with a corresponding averaging time 7" = (2B)71 3. The peak

signal, Vpeak , 18

Dol

V . =2enG
TN (v

peak

(12)

where P is the total received signal-comb power on the detector. Substitution of (11) and (12)
into (10) using = =(2B)71 and defining the total number of integrated signal photons in each

measurement as n, = P. T / (hv) gives

= 1 4 (13)

o, .
20(2) fyn,

Then, converting to range, the shot noise contribution to the range deviation is

o =[£j L _ % (14)
“\2)In@) 2nn,

In the actual implementation, a single heterodyne signal is insufficient as we need two

cak

measurements to normalize out the fluctuations in the received signal power (and therefore in V)

). Therefore, the timing discriminator generates two time-displaced copies of the tracking comb
pulses to generate the two displaced discriminator signals 7, and V,, each of which has the same

Gaussian shape and noise jitter as given above although with half the total power. The timing
discriminator signal is given by the linear combination, S :(V1 —Vz)/ (V1 +V2) An identical

analysis for the shot-noise limited timing jitter and ranging jitter yields exactly the same equations
(13) and (14), where n; is the total number of signal photons.

The quantity in Eq. (14) is plotted in Figure 3c as a function of P, at a set averaging time of
T =200 ms for the quantum efficiency 7 ~0.79 and 7, =355 fs, which is the time-bandwidth

limited pulse duration for the measured comb pulse spectral FWHM of 10.1 nm.



The above derivation assumed the optimal situation that the two comb pulses have no differential
chirp, are Gaussian, have unity mixing efficiency and the additive detector noise is zero. In Eq. (1)
, we include the numerical factor C to account for these and any other effects that increase the
noise above this quantum-limited floor. In our case, the FWHM of the timing discriminator signals

for pulses with zero differential chirp should be 27, =709 fs, based on the measured spectral
widths of the comb pulses, but we measure 824 fs for the data of Figure 3c, indicating a differential
dispersion between the pulses and corresponding timing jitter penalty of (824/709)2 =1.35

(assuming the broadening both reduces the slope and the peak height, preserving the area). In
addition, there is an SNR degradation of a factor of 1.39 due to detector noise, measured non-
idealities in interferogram slopes, and spectral overlap. Finally, we measure an additional additive
noise penalty of 1.065 in the RF chain. Combined, these imperfections give an expected value of
C = (1.35)%(1.39)%(1.065) = 2.0, to be compared to the value of C = 2.16 measured from the
upward displacement of the data points compared to the theoretical curve in Figure 3¢. These two
values agree to within 8%. For the data of Figure 4, the additional round-trip length of fiber optics
in the path to the rail-mounted retroreflector added chirp to the signal comb that led to an additional
1.49x penalty.

For the conventional dual-comb ranging using linear optical sampling, a similar analysis has been
provided in Appendix B of Ref. 1. The performance curves in Figure 5 are based on these equations
and assume no additional penalties.
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Extended Data Table 1: Comparison of parameters for FCMW ranging, conventional dual-comb ranging and the
current TPFC-based dual-comb ranging. Scaling relationships and values from the literature are used to illustrate
the trade-offs. All systems have a maximum range set by the laser coherence length.

B: 3-dB bandwidth, C: chirp rate, c: speed of light (for simplicity ignoring the group index of air), /cox: laser
coherence length, f;.,: repetition frequency of comb, Af..,: offset in comb repetition frequencies, S: pulse scan rate.

Resolution, Non-Ambiguity

; 1
Technique AR Range, Ry, Power penalty, P, Max. Update Rate, T

FMCW Ranging?
System 1°¢
B=5THz 30 um 1 Hz

(40 nm at 1550 nm) c cC

C=5THzs 40nm/s) | — ~— | >, ~1 0dB
System 2b,d 2B 4B
B=13THz

(10 nm 1535 nm)

C=12.5THz/s (100 nm/s)
Conventional Dual-
Comb Ranging

SR

115 pm 9.6 Hz

Microcomb©:

B=~25THz 0.15 em
frep =100 GHz 60 um 14 dB ~1 GHz
Aﬁep = 100 MHz

Er:fiber comb': f;ip
B=12THz c ¢ Jre ey
(10nmat1560mm) | 55 | 125um | o7 75em | o 38 dB 4B 8.3 kHz
ﬁep = 200 MHz 2B rep B
Afrep =2 kHz For margin,

in practice
Ti:Sapph combg: this is often"
B=0.3THz 2
(0.6 nm at 785 nm) 510 um 29 cm 27 dB g
_frep =513 MHz 16B
Afrep =130 kHz

220 kHz

Dual-Comb Ranging
with the TPFC o o
B=12THz Acquisition: 0to30 | Acquisition:

(10 nm at 1560 nm) AXB dB SAX

Acquisition scans over c
c 125 um

40 Hz

75 cm

0<AX < f] —
e 2B 2f’e‘” Tracking:
Update rate assumes f
rep

AX =1ns (15 cm) and Tracking: 1 0 dB

AX = 40n/s 4

*Scaling for FMCW based on Barber, Z. W., Babbitt, Wm. R., Kaylor, B., Reibel, R. R. & Roos,. Appl Opt 49, 213-219 (2010).

®The use of tradenames in this manuscript is necessary to specify experimental results and does not imply endorsement by the National Institute
of Standards and Technology.

¢System 1 specifications from Bridger Photonics datasheets (https://www.bridgerphotonics.conv).

dSystem 2 specifications from Luna Optical Backscatter Reflectometer (OBR) 4600 datasheet (https://lunainc.com).

¢ Values taken from Trocha, P. et al.. Science 359, 887-891 (2018). FWHM bandwidth estimated to be at 2.5 THz from the manuscript figures.
f Values taken from Er:fiber comb system used also for the dual-comb system presented here.

£ Values taken from Mitchell, T., Sun, J., Sun, J. & Reid, D. T.. Opt. Express 29, 4211942126 (2021).

"This expression often appears with only a factor of two in the denominator. However, if the widths are all FWHM and assuming a filter that is
not infinitely sharp, there would be significant aliasing in the signal if operated under these conditions leading to systematic range errors. We
have used a factor of “4”, which is still overly optimistic and the factor of “16” in the denominator is a more practical choice.

50 MHz
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Extended Data Figure 1: Range deviation (left axis) and time deviation (right axis) of dual comb range
measurements from a fixed reflection for signal-comb powers from 980 nW (top curve) down to 0.33 pW (bottom
curve) with the following power levels £ 10%: 980 nW, 190 nW, 86 nW, 38 nW, 21 nW, 9.6 nW, 1.8 nW, 1.2 nW,
390 pW, 200 pW, 89 pW, 33 pW, 23 pW, 8.5 pW, 4.1 pW, 1.9 pW, 990 fW, 550 fW and 330 fW. The vertical
dashed cyan line indicates the 200-ms averaging time for the data in Fig. 3c. Beyond 200-ms, the range deviation
increases due to temperature-induced fluctuations in the fiber path up to the fixed reflection. In addition, the range
and time deviations for the difference between the absolute range from the tracking comb timing and the relative
range from the unwrapped carrier phase shift, as given in Figure 4. The data are from the time periods of 60 to 100
seconds at 3.2 pW (green squares) and the period from 110 seconds to 150 seconds at 32 pW (green triangles),
respectively. For these data, the differential chirp between the signal and TPFC pulses was larger, leading to an
additional 1.5x penalty in C and thus lie slightly above the curves at the same power for ranging off the fixed
reflection (solid circles). However, because the path length variation is common mode, the difference continues to
average down beyond 200 ms.
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Extended Data Figure 2: Range Power Spectral Density (PSD) for the data from Figure 4 over the period of 60 s to
100 s at 3.2 pW return power for X(t) from the tracking comb (dark blue trace) and the unwrapped carrier-phase

0 (l‘ ) (purple trace). Also shown is the noise floor for the unwrapped carrier phase (black trace). The vibrations of

the nominally immobile retroreflector can be clearly seen in the carrier-phase data. At the low average power of 3.2
pW, the tracking dual-comb range shot-noise limited noise floor lies just above the minimal vibrations seen here.
The vertical magenta line indicates the maximum 10 Hz update rate of FMCW while the vertical dark green line
indicates the 13 kHz cutoff imposed by the 26 kHz measurement rate for the range data.



