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Introduction 

Identified as the central context within which culture evolves and is appropriated within 

early childhood years, play has long been key to early childhood education (ECE) (Brooker et 

al., 2014; Vygotsky, 1978). Though play, children learn cultural norms and traditions, and 

negotiate their place within their community (Vygotsky, 1978). But this does not mean that ECE 

teachers sit back as young children play. Rather, ECE teachers arrange types and sequences of 

play experiences that can help young children gain cognitive, socio-emotional, and 

communicative competencies (Aras, 2016; Ashiabi, 2007). Often, play may only involve 

children and their own imagination. However, play can also involve manipulables, such as 

educational robots (Bers, 2008). Educational robots can serve as co-players in children’s 

dramatic play. Using robots in such a way can improve (a) executive function (Di Lieto et al., 

2017), (b) problem solving abilities (Toh et al., 2016), (c) interest in engineering and technology 

(Sullivan & Bers, 2019), and (d) spatial awareness (Torres et al., 2018) among early childhood 

learners. But facilitating this is no small feat, and thus careful teacher preparation is needed. 

Specifically, prospective teachers need to learn to engage in programming, work with robots, and 

integrate such into well-designed lesson plans. In this paper, we investigate classifiers of the 

quality with which prospective, early childhood teachers integrated robots and block-based 

coding in lesson plans. In the next section we review the literatures on how prospective teachers 

learn to design lesson plans, teacher identity, teacher motivation, and the use of robots in early 

childhood education. Next, we state our research questions, How can prospective teachers’ 

lesson plan quality be classified using motivation and process variables, which prospective 

teachers’ lesson plans are misclassified, and why, and how do motivation and process variables 

predict prospective teachers’ lesson plan quality? Then, we advance our methodology using (a) 
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discriminant analysis and ordinal logistic regression to classify and predict lesson plan quality 

using process and motivation variables, and (b) support vector machines to identify misclassified 

lesson plans. Next, results are presented, and after that discussed in light of the literature, 

including limitations and conclusions.  

Conceptual Framework: Teachers as Learners for Lesson Design with Robots 

The present study’s conceptual framework is grounded in two fundamental perspectives 

on teacher learning: teachers as learners (e.g., Kwo, 2010; Middlewood et al., 2005; Plate & 

Peacock, 2021) and teachers as designers (e.g., Kali et al., 2015; Laurillard, 2012; McKenney et 

al., 2015). The teachers as learners perspective considers the ongoing and deep learning required 

to become and be a teacher (Näykki et al., 2021a; Shulman & Sherin, 2004). There is much to 

learn as a prospective teacher, including, but not limited to, strategies to (a) teach different 

content, (b) maintain classroom discipline, (c) sustain student motivation, and (d) write plans for 

effective and engaging lessons. Teacher learning then needs to continue as a practicing teacher. 

But just as prospective teachers need to learn these things, their own motivation and learning 

processes are critical to how well they proceed in their journeys to become teachers. It is critical 

to carefully examine the process by which prospective teachers learn, and indicators that can 

explain the quality with which skills are learned. Inasmuch as prospective teachers are learners, 

both prospective and practicing teachers are designers (Asensio-Pérez et al., 2017; Kali et al., 

2015). Teachers not only design lessons but also engage in an engineering-style design process, 

which requires that teachers produce an optimal solution given the constraints of materials, 

resources, and time. For example, Kali et al. (2015) referred to teaching as a design science and 

argued for the critical role of design in teacher learning of technology and with technology. The 
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present study reports empirical data on how prospective ECE teachers learned to design 

technology (robots) and design lessons using their designed robots.  

The present study advances the relevant literatures by integrating two perspectives into 

early childhood teacher education for CS learning and robotics inclusion. Such integrated 

perspectives enabled three research-based foci that guided the study. First, positioning teachers 

as learners should begin from teacher preparation programs. Being teachers as learners involves 

continuous, self-activated learning in response to emergent needs (Middlewood et al., 2005). 

This is unlikely to occur without practice, and practice is needed starting in prospective teacher 

years, and continuing throughout teaching careers. In a teachers-as-learners community designed 

for self-regulated learning of both prospective and practicing teachers, prospective teachers 

reported the importance of motivation in engagement with continuous teacher learning (Näykki 

et al., 2021b). Second, learning to work with new but nonmandatory content and methods is also 

critical in becoming teachers as learners who respond to emergent needs. While robot inclusion 

is not mandatory in ECE, it responds to emergent needs of young children to explore STEM 

pathways (Çetin & Demircan, 2020) and engage with a world in which technology is ever more 

present and central to life (Zviel-Girshin et al., 2020). While some robots can be controlled using 

buttons, many are programmed using block-based programming, defined as visual 

representations of programming functions, loops, and variables (Grover & Basu, 2017). Key to 

promoting the use of robots in ECE is inviting and supporting ECE teachers to learn to code 

(Jaipal-Jamani & Angeli, 2018; Kidd et al., 2020). Thus, ECE teacher learning of robotics is part 

of their becoming teachers as learners. Such learning is also possible through design. Design has 

been used in teacher education (e.g., Koehler et al., 2007; C.-J. Lee & Kim, 2014). The literature 

on teachers as designers highlights the importance of teacher learning through design (Cober et 
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al., 2015; Kali et al., 2015; Matuk et al., 2015; Svihla et al., 2015; Voogt et al., 2015). Design 

thinking is emphasized in teacher education especially on technology use (C.-C. Tsai & Chai, 

2012). Learning to “think like designers” can enable learners to overcome difficulties and solve 

real-world problems (Razzouk & Shute, 2012, p. 343). Last, the process of design and learning 

through reflection is crucial because reflection is required in design (Røise et al., 2014) and 

central to learning to teach (Hofer, 2017; Martinez et al., 2019). Each of these research-based 

foci is described further in the next three sections: motivation of teachers as learners, robot 

inclusion by teachers as designers, and process of learning and design through reflection.  

Motivation of Teachers as Learners 

Motivation to teach can be considered from a variety of perspectives that consider the 

role of goal orientations (Parker et al., 2012; Runhaar et al., 2010), expectancy for success (Liang 

& Tsai, 2008; Sak, 2015), beliefs in the value of an outcome (Foley, 2011), identification with 

the subject being taught (Akkerman & Meijer, 2011), and perceptions of belongingness (Arndt, 

2018) and autonomy (Skaalvik & Skaalvik, 2014). Individuals can hold mastery goal 

orientations, in which they strive to master content when engaging in learning tasks, or 

performance goal orientations, in which they strive to perform better than others (Pintrich, 2000). 

Expectancy for success refers to one’s perception of the probability of success doing different 

activities, such as using the Internet (Liang & Tsai, 2008), and integrating technology (Y. Lee & 

Lee, 2014). Having low expectancy for success in teaching science may lead an ECE teacher to 

avoid teaching science as much as possible, or to not exude confidence when teaching science 

(Mintzes et al., 2013). This, in turn, can lead to poor science learning outcomes among ECE 

students (Mintzes et al., 2013), which is especially problematic because early success sets the 

stage for continued refinement and deeper learning (Bransford & Schwartz, 1999). If teachers 
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have insufficient belief in the value of teaching in a particular way (e.g., with robots), they will 

likely not invest considerable time designing a lesson to teach in that way (Foley, 2011).   

The ways in which teachers identify with particular people, perspectives, and content 

areas also have an outsize influence on the way that they teach (Akkerman & Meijer, 2011). 

Teachers’ identities incorporate their views on the role of teachers as authority figures and either 

the source of knowledge or facilitator of construction of knowledge among students (Friesen & 

Besley, 2013). Furthermore, teachers’ identities influence the way that they learn, including how 

to plan lessons (Beijaard, 2017). For example, teachers who see their identity as that of an expert 

who needs to convey that expertise to students will likely design lecture-based lessons. Still, 

teacher identity is not a monolithic construct; rather, teacher identity is shaped by and evolves 

through an accumulation of experiences acquired before, during, and after teacher education 

(Akkerman & Meijer, 2011). One cannot understand how a teacher teaches without also 

understanding how she frames her own identity (Olsen, 2008). Within the context of learning to 

teach computer science content, it is important to address teachers’ identification with 

mathematics, engineering, and computer science (Ni & Guzdial, 2012).  

The present study was expected to produce knowledge about critical motivation, among 

these possible motivational factors, of teachers as learners related to their teaching with robots. 

It was expected that the unique context of the present study, with participants who were neither 

teachers yet (considering they were prospective teachers) nor learners alone (considering they 

taught two days per week in preschools) but becoming teachers as learners, would produce 

knowledge about critical motivation of teachers as learners related to their teaching with robots.  

Robot Inclusion by Teachers as Designers 

As discussed earlier, learning to work with new but nonmandatory content and methods 
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is critical part of becoming teachers as learners. Such learning can be achieved through design 

beyond lesson planning alone. This is partly because new content or method learning is 

necessary to teach the new content or with the new method. While design-based learning has 

been widely used in STEM education for a variety of students (e.g., Doppelt, 2009), design is 

used also for teacher learning of STEM in teacher education (e.g., Kim et al., 2015). But design 

in teacher learning contexts does not stop at learning of new STEM content and methods. Design 

goes into planning to teach with what is designed. Learning through design and design for 

teaching is crucial to becoming teachers as designers (Kali et al., 2015).  

One can determine the preparedness of teachers as designers to integrate robotics 

effectively into teaching by rating their lesson plans in which the robots that they designed are 

used. Prospective teachers need to learn to design coherent lesson plans that help diverse 

children meet learning objectives, defined as plans for teaching that carefully document learning 

objectives, learner characteristics (e.g., prior knowledge and interests), and lesson activities and 

assessment (Pashler et al., 2007; Sias et al., 2017). Lesson plans are used to guide teaching, but 

the best lesson plans are sufficiently detailed to include specific teaching strategies, yet flexible 

enough to allow for reaction to student struggles (Y.-A. Lee & Takahashi, 2011; Sias et al., 

2017). A good lesson plan should be seen as a framework to guide teaching, rather than a 

sequence of activities to be followed in a lock-step manner (Ding & Carlson, 2013; John, 2006).  

Lesson planning skills are often considered so critical that prospective and practicing 

teacher quality is often assessed by rating lesson plan quality (Backfisch et al., 2020; 

Musselwhite & Wesolowski, 2018; Ozogul et al., 2008; P.-S. Tsai & Tsai, 2019). Rating lesson 

plans can provide insight into teachers’ intentions for teaching, including their intentions to 

meaningfully integrate technology (Janssen & Lazonder, 2016; Pringle et al., 2015; P.-S. Tsai & 
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Tsai, 2019) and their use of constructivist approaches (Backfisch et al., 2020; König et al., 2020; 

Milner et al., 2011). Rating criteria often focuses on such areas as instructional planning (e.g., 

specifying and responding to students’ prior knowledge), instructional strategies (e.g., providing 

guidance), and assessment (e.g., quality with which lesson provides for assessing students).  

Process of Learning and Design through Reflection 

Critical reflection on learning processes is central to learning to teach (Hofer, 2017; 

Martinez et al., 2019) and in design (Røise et al., 2014). Such reflection can take many forms, 

including retrospective reflection and just-in time reflection (Hofer, 2017). In retrospective 

reflection, teachers think back to events and processes that took place in the past, and about what 

such events and processes mean to their evolving teaching skills and inclinations. Just in time 

reflection involves thinking about events and processes as they are happening, and the 

implications of such for the teacher’s evolving teaching skills and inclinations. One way to judge 

depth of reflection is to apply a rubric to each reflection entry (Molee et al., 2011). But when 

prospective teachers engage in multiple reflections, and the goal is to count the number of words 

used in the reflection, using a rubric to assess each reflection can be cumbersome. Furthermore, 

using a rubric in such a way cannot provide the type of just-in-time information needed to 

intervene among prospective teachers who are on track to produce a low-quality lesson plan. An 

alternative that provides reasonably valid information about depth of reflection is word count 

(Davis, 2006; Wulff et al., 2021). Notably, longer word counts can evidence deeper reflection.  

One can also assess the sentiment reflected in the reflection posts (Liu, 2012; Wen et al., 

2014). This process involves feeding the writing into a computer algorithm that assesses the 

writing on a scale of -1 to 1, where -1 indicates the most negatively valanced writing, while 1 

represents the most positively valanced writing. Sentiment analysis has been applied in 
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educational research, often evaluating open ended course evaluation comments (Dolianiti et al., 

2019). In addition, sentiment analysis can provide a relatively objective metric related to 

motivation. Motivation is often measured using self-report surveys and qualitative analyses of 

observation and prompted, retrospective interview data (Fulmer & Frijters, 2009). Limitations to 

self-report data include presentation bias (Kopcha, 2007) and the extent to which children can be 

expected to understand the constructs being assessed (Fulmer & Frijters, 2009). Still, when 

assessing such constructs such as expectancy for success and belongingness among adults, 

presentation bias and ability to understand the constructs seem to be of little concern. Still, it is 

wise to consider other methodologies with which one can gather additional data on motivation.  

Research Questions and Hypotheses 

While lesson plan quality ratings are a good indicator of the preparedness of prospective 

teachers as designers to integrate robotics, it is also clear that such ratings often come too late to 

intervene to help prospective teachers improve. Notably, identifying prospective teachers who 

are on track to successfully design robots and integrate the robots that they design into their 

lesson plans is critical so that there is enough time to provide additional support to those who are 

not on track. One can do so using discriminant analysis to assign prospective teachers to classes 

corresponding to different lesson plan qualities (Lachenbruch & Goldstein, 1979). Lesson plans 

are often produced at the end of a unit or an entire course, at which point it is often too late for 

just-in-time scaffolding. Discriminant analysis produces coefficients of linear discriminants that 

can be used to predict membership in low, average, or high-quality lesson plan classes. 

As discussed in the conceptual framework of the present study, relevant inputs to such 

linear discriminant models include prospective teachers’ motivation to teach with robots, their 

identity, and the depth with which they reflect on their processes of learning to teach with robots 
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and teaching in field experience. Hence, this study seeks to answer the following research 

questions: 

1. How can prospective teachers’ lesson plan quality be classified using motivation and 

process variables? 

2. How do motivation and process variables predict prospective teachers’ lesson plan 

quality? 

Relative to research question 1, we hypothesized that at least one of the following 

variables - perception of mathematics, CS and engineering emphasis in STEM career, views of 

coding, perceptions of computer science and technology, science interest, performance goal 

orientation, perceptions of English, mastery goal orientation, perceptions of computer science, 

STEM emotions, and word count - can be used to classify lesson plan quality. 

Relative to research question 2, we hypothesized that at least one of the following 

variables - perception of mathematics, CS and engineering emphasis in STEM career, views of 

coding, perceptions of computer science and technology, science interest, performance goal 

orientation, perceptions of English, mastery goal orientation, perceptions of computer science, 

STEM emotions, and word count - can be used to predict lesson plan quality. 

Method 

Participants and Setting 

The research setting was an early childhood education course on integrating performing 

and visual arts to enhance communication, inquiry, and engagement in P-5 education, which was 

offered by a large public university in the United States. The course also included a field 

experience component at local preschools. Robotics activities took place in three class sessions 

that covered robotics in early childhood education, STEM education, robot programming, and 
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sample lessons. Prospective teachers in the course programmed robots and designed preschool 

lessons using the robots. Forty-six prospective teachers participated. Seven participants were 

excluded because they did not complete the culminating lesson plan. All participants were 

female; 32 (82.05%) were white, 3 (7.7%) were Hispanic, 2 (5.13%) were Asian, 1 (2.56%) was 

black, and 1 (2.56%) was multi-racial. The age range was 19-22 (M = 20.31, SD = 0.92). On the 

presurvey, 22 participants (56.41%) self-reported having no computer programming knowledge, 

10 (25.64%) self-reported having low computer programming knowledge, and 7 (17.95%) self-

reported having intermediate computer programming knowledge. Thirty-two (82.05%) 

participants had no experience with educational robot programming, while 7 (17.95%) had 

educational robot programming experience. 

Materials 

Ozobot and OzoBlockly  

Ozobot Bit is a small robot that can (a) create diverse movements and lights, (b) sense 

lines and colors, and (c) be integrated into problem-solving tasks and school curriculums 

(Hunsaker, 2018). Ozobot Bit follows block-based code created using the OzoBlockly platform.  

Lesson Plan Template 

Participants were required to design a lesson using robots that they programmed, and 

implement the lesson in their field experience class. A lesson plan template included essential 

lesson plan components. The template was organized into the sections of lesson goals, 

objectives, considerations (e.g., materials, prior knowledge), and details of class activities. 

Data Collection 

Presurvey 

We conducted principal components analysis with varimax rotation using data from 8 
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class sections (N = 176) that participated in the overall project. The Kaiser-Meyer-Olkin value (= 

0.801) indicated that the sample size was adequate (Kaiser, 1974). The presurvey contained 100 

items and covered ten latent variables of motivation. Parallel analysis, in addition to the criterion 

of eigenvalues, indicated a ten-factor solution (see Section A in the supplementary material) 

explaining 62.38% of the variance.  

Items loading on Factor 1, perceptions of mathematics, addressed participants’ interest, 

self-efficacy, and achievement emotions in mathematics. This factor included 16 items with 

factor loadings larger than 0.414 and for which Cronbach’s α was 0.952 (note: all cronbach’s α 

values presented here were calculated from the current dataset). Factor 2, computer science and 

engineering emphasis in STEM career, covered interest in computer science and engineering-

related careers. Fifteen items with factor loadings larger than 0.427 loaded on this factor and 

Cronbach’s α was 0.946. Factor 3, views of coding, covered students’ attitudes toward coding 

knowledge and skills. Twelve items with factor loadings larger than 0.394 were included and the 

Cronbach’s α for this factor was 0.902. Factor 4, perceptions of computer science and 

technology, is associated with interest and self-efficacy in computer science, technology, and 

engineering. Eleven items with factor loadings larger than 0.365 loaded on this factor and 

Cronbach’s α was 0.882. Factor 5, science interest, covered interest in science. Ten items with 

factor loadings larger than 0.400 were included in this factor and the Cronbach’s α was 0.887. 

Factor 6, performance goal orientation, covered performance-approach and performance-avoid 

goal orientations. Eleven items with factor loadings larger than 0.355 loaded on this factor and 

Cronbach’s α was 0.870. Factor 7, perceptions of English, covered interest and self-efficacy in 

English. Seven items with factor loadings larger than 0.596 were included in this factor and the 

Cronbach’s α was 0.920. Factor 8, mastery goal orientation, measures students’ goals to master 
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learning content. Five items with factor loadings larger than 0.725 were included in this factor 

and Cronbach’s α was 0.892. Factor 9, perceptions of computer science, addressed participants’ 

views and self-efficacy in computer science. Seven items with factor loadings larger than 0.329 

loaded on this factor and Cronbach’s α was 0.768. Factor 10, STEM emotions, covered academic 

emotions related to STEM. Five items with factor loadings larger than 0.424 loaded on this 

factor and Cronbach’s α was 0.702.  

Reflection Card 

All participants were asked to respond to a series of reflection questions in class about 

their (a) learning through design of robots and lessons, and (b) experience teaching the lesson. 

Both while learning to design robots and at the conclusion of robot design, participants were 

invited to reflect about the processes of their learning and design (e.g., what challenges did you 

have with your Ozobot programming? Explain what you did to address the challenges.). Also, 

participants were prompted to reflect on their teaching (e.g., What challenges did you face when 

using the lesson in your field experience preschool classroom? Why?). Participants were 

provided a total of 40 reflection questions throughout the robotics unit. 

Lesson Plans Using Designed Robots  

Thirty-nine participants’ lesson plans were evaluated. Twenty-eight participants were 

teamed up as a pair and created 14 lesson plans and 11 lesson plans were created by solo work.  

Procedure 

Participants took the presurvey prior to the unit, and it took about 20-30 minutes. In class 

1, participants were introduced to block-based robot programming and robotics in ECE. Then, 

they were provided a sample lesson plan, including an Ozobot Bit coding sample for 

preschoolers. Subsequently, they discussed the sample code and completed reflections about the 



Classifying the quality of robotics-enhanced lesson plans Page 14 of 48 

sample lesson. Afterwards, participants created code in OzoBlockly by themselves and 

completed another reflection about the challenges in using Ozobots and programming. In field 

experience at local preschools after class 1, they practiced teaching the sample lesson with the 

given code. In class 2, reflections related to field experiences using the sample lesson plan were 

completed at the beginning. Then, participants worked on the coding task and completed 

reflections about their experiences with the Ozobot and OzoBlockly. After that, they were asked 

to use a lesson plan template to design or modify an existing lesson in one of three ways: (a) 

create a new lesson with new code, (b) create a new lesson with code given in class, or (c) 

modify the sample lesson with the codes given in the class. Subsequently, participants completed 

the last reflections about the process of integrating coding into their lesson plans. During field 

experience , participants were asked to practice teaching using the lesson plans they designed. In 

class 3, reflections related to field experiences using the lesson plan they designed were 

completed at the beginning. Then, participants were introduced to other kinds of robots, and they 

completed reflections about their further interest in robots and programming. At the end of class 

3, participants took the postsurvey, which took about 20-30 minutes. 

Data Analysis 

Lesson Design Quality Evaluation Rubric 

 A modified version of the robotic lesson plan evaluation rubric (Authors, 2015) was used 

to evaluate lesson plan quality (see Section B in the supplementary material). Zero, one, or two 

points could be assigned to the lesson for each of 16 categories: (a) Learning goal specification, 

(b) Standards specification, (c) Objectives specification,  (d) Key vocabulary, (e) Multi-subject 

inclusion, (f) STEM integration, (g) Consideration of children’s prior knowledge, (h) Listing 

common misconceptions, (i) Considering children’s interest, (j) Providing age-appropriate 
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support, (k) Activity specification, (l) Providing opportunities for collaboration, (m) Closure, (n) 

Assessment, (o) Robot integration, (p) Programming concepts integration.  

When there was no evidence in the designed lesson plan for the criterion, 0 point was 

given. One point (average-quality) was given to indicate that the designed lesson plan meets the 

criterion partially. For example, 1 point was assigned for the learning goal specification criterion 

when learning goals were described but not aligned with the rest of the lesson plan. Two points 

(high-quality) were given if the lesson plan met the criterion. For example, 2 points were given 

to the learning goal specification criterion when the described learning goals aligned with the 

designed lesson’s content. The minimum possible total lesson plan score was 0, and the 

maximum possible score was 32. Reliability of coding of six randomly chosen lesson plans was 

high (intraclass correlation coefficient = 0.857).  

Three raters evaluated lesson plans independently using the lesson design quality 

evaluation rubric and met to come to a consensus on scores. The scores for each evaluation 

criteria listed in the rubric were grouped into three categories – front-end analysis quality, 

programming and STEM integration within the lesson plan, and instructional activity quality (see 

Section B in the online supplement for details of the rubric sections). In the analysis, scores for 

each category were used as indicators of lesson plan quality.  

RQ1: How can prospective teachers’ lesson plan quality be classified using motivation and 

process variables? 

Preprocessing analyses. 

Sentiment analysis. The SentimentAnalysis package for R (Feuerriegel & Proellochs, 

2021) was used to determine whether the students’ writing was positive, negative, or neutral. The 

quantitative discourse analysis package (QDAP) dictionary (Rinker et al., 2014) was used in the 
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analysis (see Section C in the supplementary material for details of sentiment analysis). 

Word count. A word count was assigned to each student’s responses to questions both 

about field experience teaching and coding challenges (Sheskin, 2011). 

Analytic strategy. Multiple imputation was used to estimate missing data, which 

constituted less than 5% of the data. We used the MASS (Ripley et al., 2020) and KlaR (Roever 

et al., 2020) packages for R to conduct linear discriminant analysis (Lachenbruch & Goldstein, 

1979) to predict lesson plan quality. For each predictor variable, linear discriminant coefficients 

were generated to form an equation to predict membership classes representing low, average, and 

high quality lesson plans. We created a linear combination of the following predictors that could 

optimally characterize the differences of three levels of lesson plan quality: : (i) Perceptions of 

mathematics, (ii) CS and engineering emphasis in STEM career, (iii) views of coding, (iv) 

Perceptions of computer science and technology, (v) Science interest, (vi) Performance goal 

orientation, (vii) Perceptions of English, (viii) Mastery goal orientation, (ix) Perceptions of 

computer science, (x) STEM emotions, (xi) Sentiment analysis – field experience teaching (see 

Appendix for details), (xii) Sentiment analysis – coding tasks (see Section C in the 

supplementary material for analytic strategy details), (xiii) Word count – field experience 

teaching, (xiv) Word count – coding tasks. 

To understand how well motivational variables, sentiment analysis, and word count 

classify lesson plan quality, we investigated the classification error rate using both linear 

discriminant analysis and support vector machine approaches. We used a support vector machine 

approach with linear, radial, sigmoid, and polynomial kernels to predict lesson plan quality for 

each participant (Roever et al., 2020). In support vector machines, a kernel projects a set of 

inputs into a high dimensional space and transforms the inputs into the required form. The use of 
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kernel can also speed up the calculation process. This resulted in a prediction of lesson plan 

quality, which then could be compared to the actual rated lesson plan quality. The error rate is 

calculated as the number of misclassified lesson plans divided by the total number of lesson 

plans (Efron, 1983).  

RQ2: How do motivation and process variables predict prospective teachers’ lesson plan 

quality? 

We used an ordinal logistic regression approach to predict lesson plan quality using 

motivation and process variables. Ordinal logistic regression is used when the outcome variable 

is at the ordinal scale, as was the case with our lesson plan quality rating scale. Betas within 

logistic regression indicate the amount the outcome changes in terms of log-odds. 

Results 

RQ1: How can prospective teachers’ lesson plan quality be classified using motivation and 

process variables? 

Coefficients of linear discriminants for classification according to front-end analysis 

quality, STEM and programming integration quality, and instructional activities quality are listed 

in Tables 1, 2, and 3, respectively. Note that the coefficients of Linear Discriminant 1 and Linear 

Discriminant 2 provide the linear combination of the 14 variables that are used to form the  

Table 1. Coefficients of linear discriminants for front-end analysis quality classification. 
 

 Linear Discriminant 1 Linear Discriminant 2 
Perceptions of mathematics -0.036 -0.019 
CS and engineering emphasis in 
STEM career 

0.072 0.015 

Views of coding -0.080 -0.088 
Perceptions of computer science and 
technology 

-0.031 0.019 

Science interest -0.163 -0.031 
Performance goal orientation 0.110 0.099 
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Perceptions of English 0.094 -0.129 
Mastery goal orientation 0.225 -0.302 
Perceptions of computer science -0.007 -0.026 
STEM emotions 0.291 0.126 
Word count: teaching 0.185 -0.223 
Word count: Ozobot -0.173 0.361 
Sentiment analysis: teaching 0.156 -3.872 
Sentiment analysis: Ozobot -2.533 -1.862 

 

classification boundary decision. The coefficient magnitude indicates how strong a variable is in 

terms of determining the classification boundary for a linear discriminant (see Section D in the 

supplementary material for graphs demonstrating classification decision boundaries of front-end 

analysis quality, STEM and programming integration quality, and instructional activity quality 

for the first and the second linear discriminants). 

The three strongest contributors for the classification decision boundary of front-end 

analysis quality are: sentiment score: Ozobot, STEM emotions, and mastery goal orientation for 

the first linear discriminant; sentiment score: Ozobot, sentiment score: teaching, and word count: 

Ozobot for the second linear discriminant 

The three strongest contributors for the classification decision boundary of STEM and 

programming integration quality are: sentiment score: Ozobot, sentiment score: teaching, and 

Table 2. Coefficients of linear discriminants for STEM and programming integration quality 
classification. 
 Linear Discriminant 1 Linear Discriminant 2 
Perceptions of mathematics -0.042 -0.007 
CS and engineering emphasis in STEM 
career 

0.020 0.005 

Views of coding -0.071 -0.008 
Perceptions of computer science and 
technology 

0.039 -0.008 

Science interest 0.020 0.141 
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Performance goal orientation 0.0301 -0.034 
Perceptions of English -0.002 -0.020 
Mastery goal orientation 0.155 -0.191 
Perceptions of computer science 0.024 -0.161 
STEM emotions 0.240 0.019 
Word count: teaching -0.156 -0.077 
Word count: Ozobot 0.217 0.049 
Sentiment analysis: teaching -3.715 11.459 
Sentiment analysis: Ozobot 1.103 3.993 

 

STEM emotions for the first linear discriminant; sentiment score: Ozobot, sentiment score: 

teaching, and mastery goal orientation for the second linear discriminant. The three strongest 

contributors for the classification decision boundary of instructional activity quality are: 

sentiment score: Ozobot, sentiment score: teaching, and word count: teaching for the first linear 

discriminant; sentiment score: Ozobot, sentiment score: teaching, and word count: Ozobot for the 

second linear discriminant. 

We conducted classification using linear discriminant analysis and support vector 

machine algorithms. Note that in this section, the entire discriminant functions were used, rather 

than just the most important classifiers. Table 4 displays the classification error rate of linear 

discriminant analysis for front-end analysis quality, STEM and coding integration quality, and 

lowest classification error rate for front-end analysis quality, STEM and programming 

Table 3. Coefficients of linear discriminants for instructional activity quality classification. 
 Linear Discriminant 1 Linear Discriminant 2 
Perceptions of mathematics 0.004 -0.029 
CS and engineering emphasis in STEM 
career 

0.042 0.007 

Views of coding -0.092 0.032 
Perceptions of computer science and 
technology 

0.000 -0.064 

Science interest -0.029 0.069 
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Performance goal orientation 0.034 -0.097 
Perceptions of English -0.023 -0.097 
Mastery goal orientation -0.123 0.286 
Perceptions of computer science -0.113 0.035 
STEM emotions 0.147 -0.052 
Word count: teaching -0.185 0.188 
Word count: Ozobot 0.164 -0.293 
Sentiment analysis: teaching -8.962 -2.411 
Sentiment analysis: Ozobot 5.364 8.946 

 

Table 4. Linear discriminant analysis misclassification rate. 
 Front-end analysis 

quality 
STEM and coding 
integration quality 

Instructional 
activities quality 

Misclassification rate 15.385% 33.333% 38.462% 
 
integration quality, and instructional activities quality were radial, radial, and polynomial with a 

misclassification error rate of 12.821%, 7.692%, and 23.077%, respectively (see Section D in the 

supplementary material). Misclassification can be attributed to the kernel function used for the 

algorithm and the non-linear relationship between predictor variables and classification 

outcomes. We used different kernel functions to find the best input transformation functions that 

result in the lowest misclassification rate. The numeric variations of the kernel functions can 

exert an influence on classification results. Table 5 displays the classification error rate of the 

support vector machine with four different kernels: linear, polynomial, radial, and sigmoid. More 

detailed information can be found in section D of the supplementary material. 

Table 5. Support vector machine misclassification rate. 
 Front-end analysis 

quality 
STEM and coding 
integration quality 

Instructional 
activities quality 

Linear 15.385% 25.641% 30.769% 
Polynomial 28.205% 20.513% 23.077% 
Radial 12.821% 7.692% 25.641% 
Sigmoid 46.154% 48.718% 56.410% 
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Research Question #2: How do motivation and process variables predict prospective 

teachers’ lesson plan quality? 

All predictors were entered into ordinal logistic regression. For front-end analysis quality, 

the ordinal logistic regression deviance is 58.587 compared to the null model deviance of 84.643. 

For STEM and programming integration quality, the ordinal logistic regression deviance is 

77.042 compared to the null model deviance of 85.074. For instructional activity quality, the 

ordinal logistic regression deviance is 72.753 compared to the null model deviance of 83.739. 

Front-end Analysis Quality 

There was one significant negative predictor for front-end analysis quality: views of 

coding (see Table 6). With a one-unit increase in a participant’s views of coding score, we would 

expect a 0.202 unit decrease in the expected value of front-end analysis quality in the log-odds 

scale. We found two significant positive predictors: performance goal orientation and STEM 

emotions. With a one-unit increase in a participant’s performance goal orientation score, we 

would expect a 0.219 unit increase in the expected value of front-end analysis quality in the log-

odds scale. With a one-unit increase in a participant’s STEM emotion score, we would expect a 

0.371 unit increase in the expected value of front-end analysis quality in the log-odds scale. 

STEM and Programming Integration Quality 

The ordinal logistic regression did not detect any significant predictor variable or 

intercept (see Table 1 in Section D of the supplementary materials). 

Table 6. Ordinal logistic model summary for front-end analysis quality. 
 Beta Standard Error t-value p-value 
Perceptions of mathematics -0.049 0.038 -1.267 0.205 
CS and engineering emphasis in STEM 
career 

0.072 0.040 1.794 0.073 

Views of coding -0.202 0.089 -2.273 0.023 
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Perceptions of computer science and 
technology 

0.003 0.066 0.043 0.965 

Science interest -0.140 0.072 -1.936 0.053 
Performance goal orientation 0.219 0.079 2.791 0.005 
Perceptions of English -0.167 0.107 -1.562 0.118 
Mastery goal orientation -0.322 0.209 -1.544 0.123 
Perceptions of computer science -0.041 0.134 -0.309 0.757 
STEM emotions 0.371 0.177 2.097 0.036 
Word count: teaching -0.173 0.192 -0.900 0.368 
Word count: Ozobot 0.401 0.298 1.347 0.178 
Sentiment analysis: teaching -1.057 7.962 -0.133 0.894 
Sentiment analysis: Ozobot -3.912 7.661 -0.511 0.610 
Average|High -8.688 5.602 -1.551 0.121 
High|Low -6.464 5.500 -1.175 0.240 

 

Instructional Activity Quality 

The ordinal logistic regression did not detect any significant predictor variable or 

intercept (see Table 2 in Section D of the supplementary materials). 

Discussion 

See table 7 for a summary of findings.  

This research contributes to the literature in two major ways. First, it provides a vision for 

the use of dynamic assessment to differentiate prospective teachers who are on a path to 

producing high quality lesson plans and those who need further help. In this way, prospective 

teachers who need further support can be given such before creating lesson plans that are then 

used in field experience. Second, it provides insights into how learning analytics and motivation  

Table 7. Summary of findings 
 Findings 

RQ1  a. For front-end analysis quality, sentiment score: Ozobot, STEM emotions, and 
mastery goal orientation were the three strongest contributors for the first linear 
discriminant. Sentiment score: Ozobot, sentiment score: teaching, and word 
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count: Ozobot were the three strongest contributors for the second linear 
discriminant. 

b. For STEM and programming integration quality, sentiment score: Ozobot, 
sentiment score: teaching, and STEM emotions were the three strongest 
contributors for the first linear discriminant. Sentiment score: Ozobot, sentiment 
score: teaching, and mastery goal orientation were the three strongest 
contributors for the second linear discriminant. 

c. For instructional activity quality, sentiment score: Ozobot, sentiment score: 
teaching, and word count: teaching were the three strongest contributors for the 
first linear discriminant. Sentiment score: Ozobot, sentiment score: teaching, and 
word count: Ozobot were the three strongest contributors for the second linear 
discriminant. 

For front-end analysis quality, the radial kernel resulted in the lowest misclassification 
rate of 12.821%. For STEM and programming integration quality, the radial kernel 
resulted in the lowest misclassification rate of 7.692%. For instructional activities 
quality, the polynomial kernel resulted in the lowest misclassification rate of 23.077%. 

RQ2  a. For front-end analysis quality, we found STEM emotion and performance goal 
orientation as significant positive predictors and views of coding as a significant 
negative predictor. 

b. For STEM and programming integration quality, we did not find any significant 
predictor. 

c. For instructional activities quality, we did not find any significant predictor. 
 
variables may explain cognitive outcomes.  

Vision for Dynamic Assessment of Prospective Teachers Learning to Plan Lessons 

Creating new lesson plans is no small feat for prospective teachers (Kang et al., 2013; 

Lim et al., 2018; Ruys et al., 2012), even those who are already at the field experience stage 

(Lim et al., 2018). Within field-experience linked classes, prospective teachers are often asked to 

produce a lesson that they then implement in the field experience placement. This leaves little 

time for teacher educators to provide formative feedback before the lesson plans are used within 

field experience teaching. The results of the present study point to the potential for dynamic 

assessment of prospective teachers’ work that can indicate who is on track to produce high 

quality lesson plans, and who needs further support. Dynamic assessment is an important  

strategy for supporting continual improvement, in that it can provide real time feedback on 

strengths and weaknesses of approaches (Kalyuga & Sweller, 2005; Swanson & Lussier, 2001). 
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But in this case, dynamic assessment is not meant to provide direct feedback related to the data 

that was assessed, but to offer additional support to those who are on track to produce low-

quality lesson plans. In other words, this could lead to the provision of customized support for 

lesson planning based on how the equations of linear discriminants classified the quality of 

prospective teachers’ to-be-created lesson plan. Notably, equations of linear discriminants can be 

used to classify prospective teachers according to lesson plan quality before they even write a 

lesson plan. Front-end analysis quality of lesson plans can be classified using the extent to which 

prospective teachers display a mastery goal orientation, the amount they write when reflecting on 

coding tasks, and the sentiment reflected in their reflections on coding tasks and field experience 

teaching (RQ1-a. in Table 7). STEM and coding integration quality of lesson plans can be 

classified using the amount prospective teachers write when reflecting on coding tasks, and the 

sentiment reflected in their reflections on coding tasks and field experience teaching (RQ1-b. in 

Table 7). Instructional activities quality can be classified using the amount prospective teachers 

write when reflecting on field experience teaching, and the sentiment reflected in their reflections 

on coding tasks and field experience teaching (RQ1-c. in Table 7). This can be used to identify 

prospective teachers who are on track and those who are not on track to integrate robotics and 

coding in ECE so that additional support can be provided while there is still time.  

Provide Insights into how Learning Analytics and Motivation Variables may explain 

Cognitive Outcomes 

While misclassification did occur, misclassification rates were relatively low. There was 

no misclassification of lesson plans predicted to be of high and low front-end analysis quality, 

average STEM and coding integration quality, and high and low instructional activities quality. 

The strongest contributors to classification of lesson plan quality were metrics that are relatively 
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easy to gather in real time: sentiment analysis: field experience teaching, sentiment analysis: 

coding task, and word count: coding task. Having students write reflections in itself is a good 

choice pedagogically (Blomberg et al., 2013; Yost, 2006). Computers can quickly and 

dynamically conduct sentiment analysis and word counts on reflections on field experience 

teaching and completion of coding tasks, thereby indicating in real time which prospective 

teachers are on track to produce high quality lesson plans, and which need further support. 

Of interest to motivation researchers from the goal orientation tradition are our findings 

regarding mastery goal orientation and performance goal orientation. Specifically, mastery goal 

orientation was one of the strongest contributors to classification of lessons plans’ front-end 

analysis quality, while performance goal orientation was the only significant predictor in the 

ordinal logistic regression predicting front-end analysis quality (RQ2-a. in Table 7). Researchers 

familiar with the goal orientation literature may wonder why we refer to performance goals, 

rather than differentiate between performance-approach and performance avoid goals (for an 

overview, please see (A. Elliot & McGregor, 2001). Note that while some questions included in 

our survey may often load on a performance avoid goal orientation factor while others may load 

on a performance-avoid factor, in the factor analysis based on this dataset, they all loaded 

together on a common performance goal orientation factor. This is not uncommon (Brophy, 

2005; Linnenbrink-Garcia et al., 2012; Urdan & Mestas, 2006), especially when participants 

harbor fear of failure or have low self-efficacy related to the task at hand (Linnenbrink-Garcia et 

al., 2012). This finding clearly needs to be unpacked. While students who hold a mastery goal 

approach are said to engage in learning tasks with the goal of gaining mastery in the learning 

content (Covington, 2000; Pintrich, 2000), much research has shown performance goals, 

particularly performance approach goals, to be conducive to strong learning outcomes (e.g., 
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Harackiewicz et al., 2000; Senko et al., 2011). Furthermore, the literature shows that it is 

possible to hold two or more different goal orientations at the same time, and that this can be 

adaptive (Pintrich, 2000). While we did not find evidence of low self-efficacy or fear of failure 

on the part of students from the current study, we did see some evidence of dual goals of 

performing well and avoiding appearing incompetent. 

Of the three rubric sections, front-end analysis quality is the only one for which many 

early childhood majors in the class would have had prior coursework. Few participants had 

studied (a) the integration of robotics and STEM into early childhood education, or (b) how to 

design a focused sequence of instructional activities to compose a lesson. But some had studied 

such topics as analyzing learners’ prior knowledge and other characteristics. If they had 

exhibited a strong mastery or performance goal orientation in prior classes in which front-end 

analysis was covered, they likely would have learned more than other students who had neither a 

strong mastery orientation nor a strong performance orientation. So it makes sense that both 

mastery goal orientation and performance goal orientations were important to the classification 

or prediction of front-end analysis quality. Further research is needed to address why mastery 

goal orientation was a strong contributor to classification, but not prediction of, front-end 

analysis quality, and vice versa for performance goal orientation. Another significant classifier 

and positive predictor of front-end analysis quality of lesson plan was students’ emotional 

responses to STEM (RQ2-a. in Table 7). Students who expressed positive emotions toward 

STEM such as excitement, enjoyment, and positive self-concept demonstrated better quality in 

their lesson plan front-end analysis. This result is aligned with previous literature showing a 

strong positive relation between academic emotions and their academic achievement (Mega et 

al., 2014; Murphy et al., 2019; Pekrun et al., 2002, 2017). We considered students having 
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positive emotions towards STEM to be more likely to have higher motivation to teach STEM 

content and exert increased efforts to create an effective lesson plan. Particularly, they seemed to 

consider and specify learning goals, standards and objectives, and learner characteristics more 

carefully when designing robots and coding enhanced class contents and activities. Our finding 

also indicates that students’ positive emotions toward STEM not only impact their motivation to 

teach better but also their actual strategies use including self-regulatory strategies and teaching 

strategies. This implies that considering prospective teachers’ emotions helps to predict their 

lesson plan quality in advance and fostering positive emotions can be an effective early 

intervention that increases the quality of their lesson plan. 

Last, we found that views of coding was a negative predictor of front-end quality of 

lesson plan, indicating that students’ appreciation of the value of coding does not necessarily 

correspond to their teaching practice using coding and robots (RQ2-a. in Table 7). This finding 

stands in contrast to our expectations based on the expectancy-value theory that the higher 

perceived value of a task influence positively on performance in the task (Eccles, 2005; Wigfield 

& Eccles, 2000). We considered this difference in the relation between students’ views of coding 

and quality of robot and coding enhanced lesson plan to be partially related to their STEM 

teacher professional identities. Considering they are undergraduate students who are learning to 

teach STEM education, their STEM teacher professional identities are not fully formed yet. 

They’re more likely undergoing the process of developing their own professional identities, with 

having multiple identities such as leaners, curriculum designers, or collaborators. 

When it comes to planning and practicing their STEM teaching, many students identified 

themselves as more of an “interested but confused learner” (Jiang et al., 2021, p. 9). That is, even 

though students understand the values of coding knowledge and skills and they believe it is 
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worth pursuing following their career, when it comes for them to be actually asked to integrate 

them into their teaching, they still feel less confident as effective teachers teaching with coding. 

We found that many students, even when they perceived high task value, experienced challenges 

and difficulties over the course of creating lesson plan using coding and robots. Particularly, they 

felt confused and unsure about what they were doing while creating lesson plans when they 

found mismatches between what they think STEM education would be and how they implement 

their stem education ideas based on traditional learning standards, objectives, and learners’ prior 

knowledge. This possibly caused them to think they are not ready to meet the expectations or the 

requirements regarding creating STEM incorporated lesson plan. In turn, this could negatively 

affect their performance in creating a quality lesson plan. As such, understanding prospective 

teachers’ affective aspects and explicitly addressing them could be a critical strategy to improve 

their lesson plan quality, especially considering that anxiety regarding STEM and coding is more 

prevalent in female students and the majority of prospective teachers are female (Pelch, 2018). 

Implications 

Implications for Women in Computer Science 

Our results point to the potential for dynamic assessment of prospective teachers’ work 

and identified factors that are relevant to their work quality. These together can support continual 

improvement in prospective teachers’ integrating robotics and coding in ECE by helping them 

design a high-quality computer science-enhanced lesson plan. Our participants were exclusively 

women, which is in line with preservice ECE education as a whole and the ECE field in general 

(Laere et al., 2014). This means that some of our findings have potential implications for women 

in the computer science field. Notably, women are severely underrepresented in computer 

science: women account for only around 20% of undergraduates graduating with a degree in 
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computer science, and around 25 % of those employed in computer related occupations (Beyer, 

2014). This has been partially attributed to stereotype threat, in which women often perform 

worse on tests of computer science than their skills would predict because they are reminded of 

stereotypes that computer science is for men (Cheryan & Markus, 2020; Thoman et al., 2013).  

Previous studies also report that women often have low computer self-efficacy, which in 

turn lowers female students’ interest in the discipline and motivation to do well (Beyer, 2014). 

They are less likely to identify with computer science and have a low sense of belongings and 

expectancy for success in computer science (Falkner et al., 2015). By helping early childhood 

prospective teachers to better design robot and coding enhanced lesson plans, female prospective 

teachers can have increased confidence in teaching computer science concepts and skills, which 

will increase a chance for them to incorporate more CS content and activities into their teaching. 

Furthermore, this will help increase the number of adequate role models for female students by 

providing examples of women who have high confidence and efficacy in dealing with robots and 

coding. This can impact tremendously the students at an early age and can instill confidence and 

interest particularly in girls who are learning computer science. Much literature has shown that 

one of the most critical reasons for women’s low interest and self-efficacy in CS is the lack of 

role models (Cheryan et al., 2011; Vitores & Gil-Juárez, 2016). 

Implications for Teacher Educators 

Dynamic assessment of prospective teachers learning to plan lessons requires that teacher 

educators be ready and willing to provide additional support to those prospective teachers who 

are deemed to be on track to produce a low-quality lesson plan. Indicating which students need 

additional support may be done through the use of a teacher educator dashboard (Park & Jo, 

2015). This will allow teacher educators to provide timely and individualized feedback to 
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support prospective teachers. This can help ECE prospective teachers focus on the points that 

need more attention (Korth & Baum, 2011). As the system is used more extensively, the 

accuracy of the model will increase, thereby increasing the utility of the system. 

Implications for Prospective Teachers as Learners and Designers  

While the discriminant functions can indicate which prospective teachers are on track to 

produce a low-quality lesson plan, and thus are in need of additional support, it can also indicate 

to prospective teachers areas where additional effort may be required. That is, with timely 

individualized feedback on their reflections, prospective teachers can be informed of what could 

be the weakest design point that needs improvement in the lesson plan. Prospective teachers can 

be timely notified of the reflections’ content, word counts, and sentiment scores in the process of 

learning and design, which can enable them to mindfully monitor their lesson plan writing 

process. This feedback may in turn generate the dispositions to engage in deeper reflection on the 

part of prospective teachers, which then may be carried into their futures as practicing teachers. 

This in turn would maximize their potential as teachers as designers. 

Limitations and Suggestions for Future Research 

Power was limited due to the relatively small sample size. This caused misclassification 

rates to be higher than hoped, and for the logistic regression equations to have a relatively small 

number of significant predictors. Still, the fact that the vast majority of lesson plans were 

classified correctly in terms of front-end analysis quality, STEM and coding integration quality, 

and instructional activities quality is noteworthy and provides good direction for future research. 

There are several aspects that limit the generalizability of our findings. First of all, all 

participants of our study were female and most of them were white. Because of the distinct 

features of the early-childhood prospective teacher population (i.e., disproportionately female 
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and white population), our findings are likely to be generalized to those populations. However, 

certainly our results are confined to white female prospective teacher populations and may not be 

generalized to male and other ethnicity/race groups (e.g., Latinx and African American). In 

addition, our data were collected from a single institution. Considering that there exist 

differences in institutional characteristics including student characteristics, our data limits our 

ability to generalize findings to the total population of prospective teachers. As such, future study 

needs to include prospective teachers who are from more diverse educational and socioeconomic 

backgrounds. Also, a broader exploration of multiple variables that are relevant to prospective 

teachers who are male and underrepresented minorities in the STEM+C field is much needed. 

Conclusion 

Learning to plan high-quality lessons is difficult for prospective teachers. In the present 

study we discovered how front-end analysis quality, STEM and coding integration quality, and 

instructional activities quality of lesson plans could be classified and predicted. Misclassification 

rates were relatively low. These results have important implications for dynamic assessment of 

prospective teachers engaging in lesson planning, indicating which prospective teachers are on 

track to produce high quality lessons, and which ones need further support. 
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