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Introduction

Identified as the central context within which culture evolves and is appropriated within
early childhood years, play has long been key to early childhood education (ECE) (Brooker et
al., 2014; Vygotsky, 1978). Though play, children learn cultural norms and traditions, and
negotiate their place within their community (Vygotsky, 1978). But this does not mean that ECE
teachers sit back as young children play. Rather, ECE teachers arrange types and sequences of
play experiences that can help young children gain cognitive, socio-emotional, and
communicative competencies (Aras, 2016; Ashiabi, 2007). Often, play may only involve
children and their own imagination. However, play can also involve manipulables, such as
educational robots (Bers, 2008). Educational robots can serve as co-players in children’s
dramatic play. Using robots in such a way can improve (a) executive function (Di Lieto et al.,
2017), (b) problem solving abilities (Toh et al., 2016), (¢) interest in engineering and technology
(Sullivan & Bers, 2019), and (d) spatial awareness (Torres et al., 2018) among early childhood
learners. But facilitating this is no small feat, and thus careful teacher preparation is needed.
Specifically, prospective teachers need to learn to engage in programming, work with robots, and
integrate such into well-designed lesson plans. In this paper, we investigate classifiers of the
quality with which prospective, early childhood teachers integrated robots and block-based
coding in lesson plans. In the next section we review the literatures on how prospective teachers
learn to design lesson plans, teacher identity, teacher motivation, and the use of robots in early
childhood education. Next, we state our research questions, How can prospective teachers’
lesson plan quality be classified using motivation and process variables, which prospective
teachers’ lesson plans are misclassified, and why, and how do motivation and process variables

predict prospective teachers’ lesson plan quality? Then, we advance our methodology using (a)



Classifying the quality of robotics-enhanced lesson plans Page 3 of 48

discriminant analysis and ordinal logistic regression to classify and predict lesson plan quality
using process and motivation variables, and (b) support vector machines to identify misclassified
lesson plans. Next, results are presented, and after that discussed in light of the literature,
including limitations and conclusions.
Conceptual Framework: Teachers as Learners for Lesson Design with Robots

The present study’s conceptual framework is grounded in two fundamental perspectives
on teacher learning: teachers as learners (e.g., Kwo, 2010; Middlewood et al., 2005; Plate &
Peacock, 2021) and teachers as designers (e.g., Kali et al., 2015; Laurillard, 2012; McKenney et
al., 2015). The teachers as learners perspective considers the ongoing and deep learning required
to become and be a teacher (Néykki et al., 2021a; Shulman & Sherin, 2004). There is much to
learn as a prospective teacher, including, but not limited to, strategies to (a) teach different
content, (b) maintain classroom discipline, (c) sustain student motivation, and (d) write plans for
effective and engaging lessons. Teacher learning then needs to continue as a practicing teacher.
But just as prospective teachers need to learn these things, their own motivation and learning
processes are critical to how well they proceed in their journeys to become teachers. It is critical
to carefully examine the process by which prospective teachers learn, and indicators that can
explain the quality with which skills are learned. Inasmuch as prospective teachers are learners,
both prospective and practicing teachers are designers (Asensio-Pérez et al., 2017; Kali et al.,
2015). Teachers not only design lessons but also engage in an engineering-style design process,
which requires that teachers produce an optimal solution given the constraints of materials,
resources, and time. For example, Kali et al. (2015) referred to teaching as a design science and

argued for the critical role of design in teacher learning of technology and with technology. The



Classifying the quality of robotics-enhanced lesson plans Page 4 of 48

present study reports empirical data on how prospective ECE teachers learned to design
technology (robots) and design lessons using their designed robots.

The present study advances the relevant literatures by integrating two perspectives into
early childhood teacher education for CS learning and robotics inclusion. Such integrated
perspectives enabled three research-based foci that guided the study. First, positioning teachers
as learners should begin from teacher preparation programs. Being teachers as learners involves
continuous, self-activated learning in response to emergent needs (Middlewood et al., 2005).
This is unlikely to occur without practice, and practice is needed starting in prospective teacher
years, and continuing throughout teaching careers. In a teachers-as-learners community designed
for self-regulated learning of both prospective and practicing teachers, prospective teachers
reported the importance of motivation in engagement with continuous teacher learning (Naykki
et al., 2021b). Second, learning to work with new but nonmandatory content and methods is also
critical in becoming teachers as learners who respond to emergent needs. While robot inclusion
is not mandatory in ECE, it responds to emergent needs of young children to explore STEM
pathways (Cetin & Demircan, 2020) and engage with a world in which technology is ever more
present and central to life (Zviel-Girshin et al., 2020). While some robots can be controlled using
buttons, many are programmed using block-based programming, defined as visual
representations of programming functions, loops, and variables (Grover & Basu, 2017). Key to
promoting the use of robots in ECE is inviting and supporting ECE teachers to learn to code
(Jaipal-Jamani & Angeli, 2018; Kidd et al., 2020). Thus, ECE teacher learning of robotics is part
of their becoming teachers as learners. Such learning is also possible through design. Design has
been used in teacher education (e.g., Koehler et al., 2007; C.-J. Lee & Kim, 2014). The literature

on teachers as designers highlights the importance of teacher learning through design (Cober et
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al., 2015; Kali et al., 2015; Matuk et al., 2015; Svihla et al., 2015; Voogt et al., 2015). Design
thinking is emphasized in teacher education especially on technology use (C.-C. Tsai & Chai,
2012). Learning to “think like designers” can enable learners to overcome difficulties and solve
real-world problems (Razzouk & Shute, 2012, p. 343). Last, the process of design and learning
through reflection is crucial because reflection is required in design (Roise et al., 2014) and
central to learning to teach (Hofer, 2017; Martinez et al., 2019). Each of these research-based
foci is described further in the next three sections: motivation of teachers as learners, robot
inclusion by teachers as designers, and process of learning and design through reflection.
Motivation of Teachers as Learners

Motivation to teach can be considered from a variety of perspectives that consider the
role of goal orientations (Parker et al., 2012; Runhaar et al., 2010), expectancy for success (Liang
& Tsai, 2008; Sak, 2015), beliefs in the value of an outcome (Foley, 2011), identification with
the subject being taught (Akkerman & Meijer, 2011), and perceptions of belongingness (Arndt,
2018) and autonomy (Skaalvik & Skaalvik, 2014). Individuals can hold mastery goal
orientations, in which they strive to master content when engaging in learning tasks, or
performance goal orientations, in which they strive to perform better than others (Pintrich, 2000).
Expectancy for success refers to one’s perception of the probability of success doing different
activities, such as using the Internet (Liang & Tsai, 2008), and integrating technology (Y. Lee &
Lee, 2014). Having low expectancy for success in teaching science may lead an ECE teacher to
avoid teaching science as much as possible, or to not exude confidence when teaching science
(Mintzes et al., 2013). This, in turn, can lead to poor science learning outcomes among ECE
students (Mintzes et al., 2013), which is especially problematic because early success sets the

stage for continued refinement and deeper learning (Bransford & Schwartz, 1999). If teachers
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have insufficient belief in the value of teaching in a particular way (e.g., with robots), they will
likely not invest considerable time designing a lesson to teach in that way (Foley, 2011).

The ways in which teachers identify with particular people, perspectives, and content
areas also have an outsize influence on the way that they teach (Akkerman & Meijer, 2011).
Teachers’ identities incorporate their views on the role of teachers as authority figures and either
the source of knowledge or facilitator of construction of knowledge among students (Friesen &
Besley, 2013). Furthermore, teachers’ identities influence the way that they learn, including how
to plan lessons (Beijaard, 2017). For example, teachers who see their identity as that of an expert
who needs to convey that expertise to students will likely design lecture-based lessons. Still,
teacher identity is not a monolithic construct; rather, teacher identity is shaped by and evolves
through an accumulation of experiences acquired before, during, and after teacher education
(Akkerman & Meijer, 2011). One cannot understand how a teacher teaches without also
understanding how she frames her own identity (Olsen, 2008). Within the context of learning to
teach computer science content, it is important to address teachers’ identification with
mathematics, engineering, and computer science (Ni & Guzdial, 2012).

The present study was expected to produce knowledge about critical motivation, among
these possible motivational factors, of teachers as learners related to their teaching with robots.
It was expected that the unique context of the present study, with participants who were neither
teachers yet (considering they were prospective teachers) nor learners alone (considering they
taught two days per week in preschools) but becoming teachers as learners, would produce
knowledge about critical motivation of teachers as learners related to their teaching with robots.
Robot Inclusion by Teachers as Designers

As discussed earlier, learning to work with new but nonmandatory content and methods
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is critical part of becoming teachers as learners. Such learning can be achieved through design
beyond lesson planning alone. This is partly because new content or method /earning is
necessary to teach the new content or with the new method. While design-based learning has
been widely used in STEM education for a variety of students (e.g., Doppelt, 2009), design is
used also for feacher learning of STEM in teacher education (e.g., Kim et al., 2015). But design
in teacher learning contexts does not stop at learning of new STEM content and methods. Design
goes into planning to teach with what is designed. Learning through design and design for
teaching is crucial to becoming teachers as designers (Kali et al., 2015).

One can determine the preparedness of teachers as designers to integrate robotics
effectively into teaching by rating their lesson plans in which the robots that they designed are
used. Prospective teachers need to learn to design coherent lesson plans that help diverse
children meet learning objectives, defined as plans for teaching that carefully document learning
objectives, learner characteristics (e.g., prior knowledge and interests), and lesson activities and
assessment (Pashler et al., 2007; Sias et al., 2017). Lesson plans are used to guide teaching, but
the best lesson plans are sufficiently detailed to include specific teaching strategies, yet flexible
enough to allow for reaction to student struggles (Y.-A. Lee & Takahashi, 2011; Sias et al.,
2017). A good lesson plan should be seen as a framework to guide teaching, rather than a
sequence of activities to be followed in a lock-step manner (Ding & Carlson, 2013; John, 2006).

Lesson planning skills are often considered so critical that prospective and practicing
teacher quality is often assessed by rating lesson plan quality (Backfisch et al., 2020;
Musselwhite & Wesolowski, 2018; Ozogul et al., 2008; P.-S. Tsai & Tsai, 2019). Rating lesson
plans can provide insight into teachers’ intentions for teaching, including their intentions to

meaningfully integrate technology (Janssen & Lazonder, 2016; Pringle et al., 2015; P.-S. Tsai &
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Tsai, 2019) and their use of constructivist approaches (Backfisch et al., 2020; Konig et al., 2020;
Milner et al., 2011). Rating criteria often focuses on such areas as instructional planning (e.g.,
specifying and responding to students’ prior knowledge), instructional strategies (e.g., providing
guidance), and assessment (e.g., quality with which lesson provides for assessing students).
Process of Learning and Design through Reflection

Critical reflection on learning processes is central to learning to teach (Hofer, 2017;
Martinez et al., 2019) and in design (Reise et al., 2014). Such reflection can take many forms,
including retrospective reflection and just-in time reflection (Hofer, 2017). In retrospective
reflection, teachers think back to events and processes that took place in the past, and about what
such events and processes mean to their evolving teaching skills and inclinations. Just in time
reflection involves thinking about events and processes as they are happening, and the
implications of such for the teacher’s evolving teaching skills and inclinations. One way to judge
depth of reflection is to apply a rubric to each reflection entry (Molee et al., 2011). But when
prospective teachers engage in multiple reflections, and the goal is to count the number of words
used in the reflection, using a rubric to assess each reflection can be cumbersome. Furthermore,
using a rubric in such a way cannot provide the type of just-in-time information needed to
intervene among prospective teachers who are on track to produce a low-quality lesson plan. An
alternative that provides reasonably valid information about depth of reflection is word count
(Davis, 2006; Wulff et al., 2021). Notably, longer word counts can evidence deeper reflection.

One can also assess the sentiment reflected in the reflection posts (Liu, 2012; Wen et al.,
2014). This process involves feeding the writing into a computer algorithm that assesses the
writing on a scale of -1 to 1, where -1 indicates the most negatively valanced writing, while 1

represents the most positively valanced writing. Sentiment analysis has been applied in
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educational research, often evaluating open ended course evaluation comments (Dolianiti et al.,
2019). In addition, sentiment analysis can provide a relatively objective metric related to
motivation. Motivation is often measured using self-report surveys and qualitative analyses of
observation and prompted, retrospective interview data (Fulmer & Frijters, 2009). Limitations to
self-report data include presentation bias (Kopcha, 2007) and the extent to which children can be
expected to understand the constructs being assessed (Fulmer & Frijters, 2009). Still, when
assessing such constructs such as expectancy for success and belongingness among adults,
presentation bias and ability to understand the constructs seem to be of little concern. Still, it is
wise to consider other methodologies with which one can gather additional data on motivation.
Research Questions and Hypotheses

While lesson plan quality ratings are a good indicator of the preparedness of prospective
teachers as designers to integrate robotics, it is also clear that such ratings often come too late to
intervene to help prospective teachers improve. Notably, identifying prospective teachers who
are on track to successfully design robots and integrate the robots that they design into their
lesson plans is critical so that there is enough time to provide additional support to those who are
not on track. One can do so using discriminant analysis to assign prospective teachers to classes
corresponding to different lesson plan qualities (Lachenbruch & Goldstein, 1979). Lesson plans
are often produced at the end of a unit or an entire course, at which point it is often too late for
just-in-time scaffolding. Discriminant analysis produces coefficients of linear discriminants that
can be used to predict membership in low, average, or high-quality lesson plan classes.

As discussed in the conceptual framework of the present study, relevant inputs to such
linear discriminant models include prospective teachers’ motivation to teach with robots, their

identity, and the depth with which they reflect on their processes of learning to teach with robots
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and teaching in field experience. Hence, this study seeks to answer the following research
questions:

1. How can prospective teachers’ lesson plan quality be classified using motivation and

process variables?

2. How do motivation and process variables predict prospective teachers’ lesson plan

quality?

Relative to research question 1, we hypothesized that at least one of the following
variables - perception of mathematics, CS and engineering emphasis in STEM career, views of
coding, perceptions of computer science and technology, science interest, performance goal
orientation, perceptions of English, mastery goal orientation, perceptions of computer science,
STEM emotions, and word count - can be used to classify lesson plan quality.

Relative to research question 2, we hypothesized that at least one of the following
variables - perception of mathematics, CS and engineering emphasis in STEM career, views of
coding, perceptions of computer science and technology, science interest, performance goal
orientation, perceptions of English, mastery goal orientation, perceptions of computer science,
STEM emotions, and word count - can be used to predict lesson plan quality.

Method
Participants and Setting

The research setting was an early childhood education course on integrating performing
and visual arts to enhance communication, inquiry, and engagement in P-5 education, which was
offered by a large public university in the United States. The course also included a field
experience component at local preschools. Robotics activities took place in three class sessions

that covered robotics in early childhood education, STEM education, robot programming, and
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sample lessons. Prospective teachers in the course programmed robots and designed preschool
lessons using the robots. Forty-six prospective teachers participated. Seven participants were
excluded because they did not complete the culminating lesson plan. All participants were
female; 32 (82.05%) were white, 3 (7.7%) were Hispanic, 2 (5.13%) were Asian, 1 (2.56%) was
black, and 1 (2.56%) was multi-racial. The age range was 19-22 (M =20.31, SD = 0.92). On the
presurvey, 22 participants (56.41%) self-reported having no computer programming knowledge,
10 (25.64%) self-reported having low computer programming knowledge, and 7 (17.95%) self-
reported having intermediate computer programming knowledge. Thirty-two (82.05%)
participants had no experience with educational robot programming, while 7 (17.95%) had
educational robot programming experience.
Materials
Ozobot and OzoBlockly

Ozobot Bit is a small robot that can (a) create diverse movements and lights, (b) sense
lines and colors, and (c) be integrated into problem-solving tasks and school curriculums
(Hunsaker, 2018). Ozobot Bit follows block-based code created using the OzoBlockly platform.
Lesson Plan Template

Participants were required to design a lesson using robots that they programmed, and
implement the lesson in their field experience class. A lesson plan template included essential
lesson plan components. The template was organized into the sections of lesson goals,
objectives, considerations (e.g., materials, prior knowledge), and details of class activities.
Data Collection
Presurvey

We conducted principal components analysis with varimax rotation using data from 8
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class sections (N = 176) that participated in the overall project. The Kaiser-Meyer-Olkin value (=
0.801) indicated that the sample size was adequate (Kaiser, 1974). The presurvey contained 100
items and covered ten latent variables of motivation. Parallel analysis, in addition to the criterion
of eigenvalues, indicated a ten-factor solution (see Section A in the supplementary material)
explaining 62.38% of the variance.

Items loading on Factor 1, perceptions of mathematics, addressed participants’ interest,
self-efficacy, and achievement emotions in mathematics. This factor included 16 items with
factor loadings larger than 0.414 and for which Cronbach’s a was 0.952 (note: all cronbach’s a
values presented here were calculated from the current dataset). Factor 2, computer science and
engineering emphasis in STEM career, covered interest in computer science and engineering-
related careers. Fifteen items with factor loadings larger than 0.427 loaded on this factor and
Cronbach’s a was 0.946. Factor 3, views of coding, covered students’ attitudes toward coding
knowledge and skills. Twelve items with factor loadings larger than 0.394 were included and the
Cronbach’s a for this factor was 0.902. Factor 4, perceptions of computer science and
technology, is associated with interest and self-efficacy in computer science, technology, and
engineering. Eleven items with factor loadings larger than 0.365 loaded on this factor and
Cronbach’s o was 0.882. Factor 5, science interest, covered interest in science. Ten items with
factor loadings larger than 0.400 were included in this factor and the Cronbach’s a was 0.887.
Factor 6, performance goal orientation, covered performance-approach and performance-avoid
goal orientations. Eleven items with factor loadings larger than 0.355 loaded on this factor and
Cronbach’s a was 0.870. Factor 7, perceptions of English, covered interest and self-efficacy in
English. Seven items with factor loadings larger than 0.596 were included in this factor and the

Cronbach’s a was 0.920. Factor 8, mastery goal orientation, measures students’ goals to master
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learning content. Five items with factor loadings larger than 0.725 were included in this factor
and Cronbach’s o was 0.892. Factor 9, perceptions of computer science, addressed participants’
views and self-efficacy in computer science. Seven items with factor loadings larger than 0.329
loaded on this factor and Cronbach’s o was 0.768. Factor 10, STEM emotions, covered academic
emotions related to STEM. Five items with factor loadings larger than 0.424 loaded on this
factor and Cronbach’s o was 0.702.
Reflection Card

All participants were asked to respond to a series of reflection questions in class about
their (a) learning through design of robots and lessons, and (b) experience teaching the lesson.
Both while learning to design robots and at the conclusion of robot design, participants were
invited to reflect about the processes of their learning and design (e.g., what challenges did you
have with your Ozobot programming? Explain what you did to address the challenges.). Also,
participants were prompted to reflect on their teaching (e.g., What challenges did you face when
using the lesson in your field experience preschool classroom? Why?). Participants were
provided a total of 40 reflection questions throughout the robotics unit.
Lesson Plans Using Designed Robots

Thirty-nine participants’ lesson plans were evaluated. Twenty-eight participants were
teamed up as a pair and created 14 lesson plans and 11 lesson plans were created by solo work.
Procedure

Participants took the presurvey prior to the unit, and it took about 20-30 minutes. In class
1, participants were introduced to block-based robot programming and robotics in ECE. Then,
they were provided a sample lesson plan, including an Ozobot Bit coding sample for

preschoolers. Subsequently, they discussed the sample code and completed reflections about the
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sample lesson. Afterwards, participants created code in OzoBlockly by themselves and
completed another reflection about the challenges in using Ozobots and programming. In field
experience at local preschools after class 1, they practiced teaching the sample lesson with the
given code. In class 2, reflections related to field experiences using the sample lesson plan were
completed at the beginning. Then, participants worked on the coding task and completed
reflections about their experiences with the Ozobot and OzoBlockly. After that, they were asked
to use a lesson plan template to design or modify an existing lesson in one of three ways: (a)
create a new lesson with new code, (b) create a new lesson with code given in class, or (c)
modify the sample lesson with the codes given in the class. Subsequently, participants completed
the last reflections about the process of integrating coding into their lesson plans. During field
experience , participants were asked to practice teaching using the lesson plans they designed. In
class 3, reflections related to field experiences using the lesson plan they designed were
completed at the beginning. Then, participants were introduced to other kinds of robots, and they
completed reflections about their further interest in robots and programming. At the end of class
3, participants took the postsurvey, which took about 20-30 minutes.
Data Analysis
Lesson Design Quality Evaluation Rubric

A modified version of the robotic lesson plan evaluation rubric (Authors, 2015) was used
to evaluate lesson plan quality (see Section B in the supplementary material). Zero, one, or two
points could be assigned to the lesson for each of 16 categories: (a) Learning goal specification,
(b) Standards specification, (c) Objectives specification, (d) Key vocabulary, (e) Multi-subject
inclusion, (f) STEM integration, (g) Consideration of children’s prior knowledge, (h) Listing

common misconceptions, (i) Considering children’s interest, (j) Providing age-appropriate
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support, (k) Activity specification, (1) Providing opportunities for collaboration, (m) Closure, (n)
Assessment, (0) Robot integration, (p) Programming concepts integration.

When there was no evidence in the designed lesson plan for the criterion, 0 point was
given. One point (average-quality) was given to indicate that the designed lesson plan meets the
criterion partially. For example, 1 point was assigned for the learning goal specification criterion
when learning goals were described but not aligned with the rest of the lesson plan. Two points
(high-quality) were given if the lesson plan met the criterion. For example, 2 points were given
to the learning goal specification criterion when the described learning goals aligned with the
designed lesson’s content. The minimum possible total lesson plan score was 0, and the
maximum possible score was 32. Reliability of coding of six randomly chosen lesson plans was
high (intraclass correlation coefficient = 0.857).

Three raters evaluated lesson plans independently using the lesson design quality
evaluation rubric and met to come to a consensus on scores. The scores for each evaluation
criteria listed in the rubric were grouped into three categories — front-end analysis quality,
programming and STEM integration within the lesson plan, and instructional activity quality (see
Section B in the online supplement for details of the rubric sections). In the analysis, scores for
each category were used as indicators of lesson plan quality.

RQI1: How can prospective teachers’ lesson plan quality be classified using motivation and
process variables?

Preprocessing analyses.

Sentiment analysis. The SentimentAnalysis package for R (Feuerriegel & Proellochs,
2021) was used to determine whether the students’ writing was positive, negative, or neutral. The

quantitative discourse analysis package (QDAP) dictionary (Rinker et al., 2014) was used in the
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analysis (see Section C in the supplementary material for details of sentiment analysis).

Word count. A word count was assigned to each student’s responses to questions both
about field experience teaching and coding challenges (Sheskin, 2011).

Analytic strategy. Multiple imputation was used to estimate missing data, which
constituted less than 5% of the data. We used the MASS (Ripley et al., 2020) and KlaR (Roever
et al., 2020) packages for R to conduct linear discriminant analysis (Lachenbruch & Goldstein,
1979) to predict lesson plan quality. For each predictor variable, linear discriminant coefficients
were generated to form an equation to predict membership classes representing low, average, and
high quality lesson plans. We created a linear combination of the following predictors that could
optimally characterize the differences of three levels of lesson plan quality: : (i) Perceptions of
mathematics, (ii) CS and engineering emphasis in STEM career, (iii) views of coding, (iv)
Perceptions of computer science and technology, (v) Science interest, (vi) Performance goal
orientation, (vii) Perceptions of English, (viii) Mastery goal orientation, (ix) Perceptions of
computer science, (x) STEM emotions, (xi) Sentiment analysis — field experience teaching (see
Appendix for details), (xii) Sentiment analysis — coding tasks (see Section C in the
supplementary material for analytic strategy details), (xiii) Word count — field experience
teaching, (xiv) Word count — coding tasks.

To understand how well motivational variables, sentiment analysis, and word count
classify lesson plan quality, we investigated the classification error rate using both linear
discriminant analysis and support vector machine approaches. We used a support vector machine
approach with linear, radial, sigmoid, and polynomial kernels to predict lesson plan quality for
each participant (Roever et al., 2020). In support vector machines, a kernel projects a set of

inputs into a high dimensional space and transforms the inputs into the required form. The use of
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kernel can also speed up the calculation process. This resulted in a prediction of lesson plan
quality, which then could be compared to the actual rated lesson plan quality. The error rate is
calculated as the number of misclassified lesson plans divided by the total number of lesson
plans (Efron, 1983).

RQ2: How do motivation and process variables predict prospective teachers’ lesson plan
quality?

We used an ordinal logistic regression approach to predict lesson plan quality using
motivation and process variables. Ordinal logistic regression is used when the outcome variable
is at the ordinal scale, as was the case with our lesson plan quality rating scale. Betas within
logistic regression indicate the amount the outcome changes in terms of log-odds.

Results
RQ1: How can prospective teachers’ lesson plan quality be classified using motivation and
process variables?

Coefficients of linear discriminants for classification according to front-end analysis
quality, STEM and programming integration quality, and instructional activities quality are listed
in Tables 1, 2, and 3, respectively. Note that the coefficients of Linear Discriminant 1 and Linear
Discriminant 2 provide the linear combination of the 14 variables that are used to form the

Table 1. Coefficients of linear discriminants for front-end analysis quality classification.

Linear Discriminant 1 Linear Discriminant 2
Perceptions of mathematics -0.036 -0.019
CS and engineering emphasis in 0.072 0.015
STEM career
Views of coding -0.080 -0.088
Perceptions of computer science and -0.031 0.019
technology
Science interest -0.163 -0.031

Performance goal orientation 0.110 0.099
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Perceptions of English 0.094 -0.129
Mastery goal orientation 0.225 -0.302
Perceptions of computer science -0.007 -0.026
STEM emotions 0.291 0.126
Word count: teaching 0.185 -0.223
Word count: Ozobot -0.173 0.361
Sentiment analysis: teaching 0.156 -3.872
Sentiment analysis: Ozobot -2.533 -1.862

classification boundary decision. The coefficient magnitude indicates how strong a variable is in
terms of determining the classification boundary for a linear discriminant (see Section D in the
supplementary material for graphs demonstrating classification decision boundaries of front-end
analysis quality, STEM and programming integration quality, and instructional activity quality
for the first and the second linear discriminants).

The three strongest contributors for the classification decision boundary of front-end
analysis quality are: sentiment score: Ozobot, STEM emotions, and mastery goal orientation for
the first linear discriminant; sentiment score: Ozobot, sentiment score: teaching, and word count:
Ozobot for the second linear discriminant

The three strongest contributors for the classification decision boundary of STEM and
programming integration quality are: sentiment score: Ozobot, sentiment score: teaching, and

Table 2. Coefficients of linear discriminants for STEM and programming integration quality
classification.

Linear Discriminant 1  Linear Discriminant 2

Perceptions of mathematics -0.042 -0.007
CS and engineering emphasis in STEM 0.020 0.005
career

Views of coding -0.071 -0.008
Perceptions of computer science and 0.039 -0.008
technology

Science interest 0.020 0.141
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Performance goal orientation 0.0301 -0.034
Perceptions of English -0.002 -0.020
Mastery goal orientation 0.155 -0.191
Perceptions of computer science 0.024 -0.161
STEM emotions 0.240 0.019
Word count: teaching -0.156 -0.077
Word count: Ozobot 0.217 0.049
Sentiment analysis: teaching -3.715 11.459
Sentiment analysis: Ozobot 1.103 3.993

STEM emotions for the first linear discriminant; sentiment score: Ozobot, sentiment score:
teaching, and mastery goal orientation for the second linear discriminant. The three strongest
contributors for the classification decision boundary of instructional activity quality are:
sentiment score: Ozobot, sentiment score: teaching, and word count: teaching for the first linear
discriminant; sentiment score: Ozobot, sentiment score: teaching, and word count: Ozobot for the
second linear discriminant.

We conducted classification using linear discriminant analysis and support vector
machine algorithms. Note that in this section, the entire discriminant functions were used, rather
than just the most important classifiers. Table 4 displays the classification error rate of linear
discriminant analysis for front-end analysis quality, STEM and coding integration quality, and
lowest classification error rate for front-end analysis quality, STEM and programming

Table 3. Coefficients of linear discriminants for instructional activity quality classification.

Linear Discriminant 1  Linear Discriminant 2

Perceptions of mathematics 0.004 -0.029
CS and engineering emphasis in STEM 0.042 0.007
career

Views of coding -0.092 0.032
Perceptions of computer science and 0.000 -0.064
technology

Science interest -0.029 0.069
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Performance goal orientation 0.034 -0.097
Perceptions of English -0.023 -0.097
Mastery goal orientation -0.123 0.286
Perceptions of computer science -0.113 0.035
STEM emotions 0.147 -0.052
Word count: teaching -0.185 0.188
Word count: Ozobot 0.164 -0.293
Sentiment analysis: teaching -8.962 -2.411
Sentiment analysis: Ozobot 5.364 8.946

Table 4. Linear discriminant analysis misclassification rate.

Front-end analysis STEM and coding Instructional
quality integration quality activities quality
Misclassification rate  15.385% 33.333% 38.462%

integration quality, and instructional activities quality were radial, radial, and polynomial with a
misclassification error rate of 12.821%, 7.692%, and 23.077%, respectively (see Section D in the
supplementary material). Misclassification can be attributed to the kernel function used for the
algorithm and the non-linear relationship between predictor variables and classification
outcomes. We used different kernel functions to find the best input transformation functions that
result in the lowest misclassification rate. The numeric variations of the kernel functions can
exert an influence on classification results. Table 5 displays the classification error rate of the
support vector machine with four different kernels: linear, polynomial, radial, and sigmoid. More
detailed information can be found in section D of the supplementary material.

Table 5. Support vector machine misclassification rate.

Front-end analysis STEM and coding Instructional
quality integration quality activities quality
Linear 15.385% 25.641% 30.769%
Polynomial 28.205% 20.513% 23.077%
Radial 12.821% 7.692% 25.641%
Sigmoid 46.154% 48.718% 56.410%
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Research Question #2: How do motivation and process variables predict prospective
teachers’ lesson plan quality?

All predictors were entered into ordinal logistic regression. For front-end analysis quality,
the ordinal logistic regression deviance is 58.587 compared to the null model deviance of 84.643.
For STEM and programming integration quality, the ordinal logistic regression deviance is
77.042 compared to the null model deviance of 85.074. For instructional activity quality, the
ordinal logistic regression deviance is 72.753 compared to the null model deviance of 83.739.
Front-end Analysis Quality

There was one significant negative predictor for front-end analysis quality: views of
coding (see Table 6). With a one-unit increase in a participant’s views of coding score, we would
expect a 0.202 unit decrease in the expected value of front-end analysis quality in the log-odds
scale. We found two significant positive predictors: performance goal orientation and STEM
emotions. With a one-unit increase in a participant’s performance goal orientation score, we
would expect a 0.219 unit increase in the expected value of front-end analysis quality in the log-
odds scale. With a one-unit increase in a participant’s STEM emotion score, we would expect a
0.371 unit increase in the expected value of front-end analysis quality in the log-odds scale.
STEM and Programming Integration Quality

The ordinal logistic regression did not detect any significant predictor variable or
intercept (see Table 1 in Section D of the supplementary materials).

Table 6. Ordinal logistic model summary for front-end analysis quality.

Beta Standard Error t-value p-value
Perceptions of mathematics -0.049 0.038 -1.267 0.205
CS and engineering emphasis in STEM 0.072 0.040 1.794 0.073

career
Views of coding -0.202 0.089 -2.273 0.023
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Perceptions of computer science and 0.003 0.066 0.043 0.965
technology

Science interest -0.140 0.072 -1.936 0.053
Performance goal orientation 0.219 0.079 2.791 0.005
Perceptions of English -0.167 0.107 -1.562 0.118
Mastery goal orientation -0.322 0.209 -1.544 0.123
Perceptions of computer science -0.041 0.134 -0.309 0.757
STEM emotions 0.371 0.177 2.097 0.036
Word count: teaching -0.173 0.192 -0.900 0.368
Word count: Ozobot 0.401 0.298 1.347 0.178
Sentiment analysis: teaching -1.057 7.962 -0.133 0.894
Sentiment analysis: Ozobot -3.912 7.661 -0.511 0.610
Average|High -8.688 5.602 -1.551 0.121
High|Low -6.464 5.500 -1.175 0.240

Instructional Activity Quality

The ordinal logistic regression did not detect any significant predictor variable or

intercept (see Table 2 in Section D of the supplementary materials).
Discussion

See table 7 for a summary of findings.

This research contributes to the literature in two major ways. First, it provides a vision for
the use of dynamic assessment to differentiate prospective teachers who are on a path to
producing high quality lesson plans and those who need further help. In this way, prospective
teachers who need further support can be given such before creating lesson plans that are then
used in field experience. Second, it provides insights into how learning analytics and motivation

Table 7. Summary of findings

Findings

RQI1 a. For front-end analysis quality, sentiment score: Ozobot, STEM emotions, and
mastery goal orientation were the three strongest contributors for the first linear
discriminant. Sentiment score: Ozobot, sentiment score: teaching, and word
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count: Ozobot were the three strongest contributors for the second linear
discriminant.

b. For STEM and programming integration quality, sentiment score: Ozobot,
sentiment score: teaching, and STEM emotions were the three strongest
contributors for the first linear discriminant. Sentiment score: Ozobot, sentiment
score: teaching, and mastery goal orientation were the three strongest
contributors for the second linear discriminant.

c. For instructional activity quality, sentiment score: Ozobot, sentiment score:
teaching, and word count: teaching were the three strongest contributors for the
first linear discriminant. Sentiment score: Ozobot, sentiment score: teaching, and
word count: Ozobot were the three strongest contributors for the second linear
discriminant.

For front-end analysis quality, the radial kernel resulted in the lowest misclassification
rate of 12.821%. For STEM and programming integration quality, the radial kernel
resulted in the lowest misclassification rate of 7.692%. For instructional activities
quality, the polynomial kernel resulted in the lowest misclassification rate of 23.077%.

RQ2 a. For front-end analysis quality, we found STEM emotion and performance goal
orientation as significant positive predictors and views of coding as a significant
negative predictor.

b. For STEM and programming integration quality, we did not find any significant
predictor.

c. For instructional activities quality, we did not find any significant predictor.

variables may explain cognitive outcomes.
Vision for Dynamic Assessment of Prospective Teachers Learning to Plan Lessons
Creating new lesson plans is no small feat for prospective teachers (Kang et al., 2013;
Lim et al., 2018; Ruys et al., 2012), even those who are already at the field experience stage
(Lim et al., 2018). Within field-experience linked classes, prospective teachers are often asked to
produce a lesson that they then implement in the field experience placement. This leaves little
time for teacher educators to provide formative feedback before the lesson plans are used within
field experience teaching. The results of the present study point to the potential for dynamic
assessment of prospective teachers’ work that can indicate who is on track to produce high
quality lesson plans, and who needs further support. Dynamic assessment is an important
strategy for supporting continual improvement, in that it can provide real time feedback on

strengths and weaknesses of approaches (Kalyuga & Sweller, 2005; Swanson & Lussier, 2001).
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But in this case, dynamic assessment is not meant to provide direct feedback related to the data
that was assessed, but to offer additional support to those who are on track to produce low-
quality lesson plans. In other words, this could lead to the provision of customized support for
lesson planning based on how the equations of linear discriminants classified the quality of
prospective teachers’ to-be-created lesson plan. Notably, equations of linear discriminants can be
used to classify prospective teachers according to lesson plan quality before they even write a
lesson plan. Front-end analysis quality of lesson plans can be classified using the extent to which
prospective teachers display a mastery goal orientation, the amount they write when reflecting on
coding tasks, and the sentiment reflected in their reflections on coding tasks and field experience
teaching (RQ1-a. in Table 7). STEM and coding integration quality of lesson plans can be
classified using the amount prospective teachers write when reflecting on coding tasks, and the
sentiment reflected in their reflections on coding tasks and field experience teaching (RQ1-b. in
Table 7). Instructional activities quality can be classified using the amount prospective teachers
write when reflecting on field experience teaching, and the sentiment reflected in their reflections
on coding tasks and field experience teaching (RQ1-c. in Table 7). This can be used to identify
prospective teachers who are on track and those who are not on track to integrate robotics and
coding in ECE so that additional support can be provided while there is still time.
Provide Insights into how Learning Analytics and Motivation Variables may explain
Cognitive Outcomes

While misclassification did occur, misclassification rates were relatively low. There was
no misclassification of lesson plans predicted to be of high and low front-end analysis quality,
average STEM and coding integration quality, and high and low instructional activities quality.

The strongest contributors to classification of lesson plan quality were metrics that are relatively
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easy to gather in real time: sentiment analysis: field experience teaching, sentiment analysis:
coding task, and word count: coding task. Having students write reflections in itself is a good
choice pedagogically (Blomberg et al., 2013; Yost, 2006). Computers can quickly and
dynamically conduct sentiment analysis and word counts on reflections on field experience
teaching and completion of coding tasks, thereby indicating in real time which prospective
teachers are on track to produce high quality lesson plans, and which need further support.

Of interest to motivation researchers from the goal orientation tradition are our findings
regarding mastery goal orientation and performance goal orientation. Specifically, mastery goal
orientation was one of the strongest contributors to classification of lessons plans’ front-end
analysis quality, while performance goal orientation was the only significant predictor in the
ordinal logistic regression predicting front-end analysis quality (RQ2-a. in Table 7). Researchers
familiar with the goal orientation literature may wonder why we refer to performance goals,
rather than differentiate between performance-approach and performance avoid goals (for an
overview, please see (A. Elliot & McGregor, 2001). Note that while some questions included in
our survey may often load on a performance avoid goal orientation factor while others may load
on a performance-avoid factor, in the factor analysis based on this dataset, they all loaded
together on a common performance goal orientation factor. This is not uncommon (Brophy,
2005; Linnenbrink-Garcia et al., 2012; Urdan & Mestas, 2006), especially when participants
harbor fear of failure or have low self-efficacy related to the task at hand (Linnenbrink-Garcia et
al., 2012). This finding clearly needs to be unpacked. While students who hold a mastery goal
approach are said to engage in learning tasks with the goal of gaining mastery in the learning
content (Covington, 2000; Pintrich, 2000), much research has shown performance goals,

particularly performance approach goals, to be conducive to strong learning outcomes (e.g.,
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Harackiewicz et al., 2000; Senko et al., 2011). Furthermore, the literature shows that it is
possible to hold two or more different goal orientations at the same time, and that this can be
adaptive (Pintrich, 2000). While we did not find evidence of low self-efficacy or fear of failure
on the part of students from the current study, we did see some evidence of dual goals of
performing well and avoiding appearing incompetent.

Of the three rubric sections, front-end analysis quality is the only one for which many
early childhood majors in the class would have had prior coursework. Few participants had
studied (a) the integration of robotics and STEM into early childhood education, or (b) how to
design a focused sequence of instructional activities to compose a lesson. But some had studied
such topics as analyzing learners’ prior knowledge and other characteristics. If they had
exhibited a strong mastery or performance goal orientation in prior classes in which front-end
analysis was covered, they likely would have learned more than other students who had neither a
strong mastery orientation nor a strong performance orientation. So it makes sense that both
mastery goal orientation and performance goal orientations were important to the classification
or prediction of front-end analysis quality. Further research is needed to address why mastery
goal orientation was a strong contributor to classification, but not prediction of, front-end
analysis quality, and vice versa for performance goal orientation. Another significant classifier
and positive predictor of front-end analysis quality of lesson plan was students’ emotional
responses to STEM (RQ2-a. in Table 7). Students who expressed positive emotions toward
STEM such as excitement, enjoyment, and positive self-concept demonstrated better quality in
their lesson plan front-end analysis. This result is aligned with previous literature showing a
strong positive relation between academic emotions and their academic achievement (Mega et

al., 2014; Murphy et al., 2019; Pekrun et al., 2002, 2017). We considered students having
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positive emotions towards STEM to be more likely to have higher motivation to teach STEM
content and exert increased efforts to create an effective lesson plan. Particularly, they seemed to
consider and specify learning goals, standards and objectives, and learner characteristics more
carefully when designing robots and coding enhanced class contents and activities. Our finding
also indicates that students’ positive emotions toward STEM not only impact their motivation to
teach better but also their actual strategies use including self-regulatory strategies and teaching
strategies. This implies that considering prospective teachers’ emotions helps to predict their
lesson plan quality in advance and fostering positive emotions can be an effective early
intervention that increases the quality of their lesson plan.

Last, we found that views of coding was a negative predictor of front-end quality of
lesson plan, indicating that students’ appreciation of the value of coding does not necessarily
correspond to their teaching practice using coding and robots (RQ2-a. in Table 7). This finding
stands in contrast to our expectations based on the expectancy-value theory that the higher
perceived value of a task influence positively on performance in the task (Eccles, 2005; Wigtfield
& Eccles, 2000). We considered this difference in the relation between students’ views of coding
and quality of robot and coding enhanced lesson plan to be partially related to their STEM
teacher professional identities. Considering they are undergraduate students who are learning to
teach STEM education, their STEM teacher professional identities are not fully formed yet.
They’re more likely undergoing the process of developing their own professional identities, with
having multiple identities such as leaners, curriculum designers, or collaborators.

When it comes to planning and practicing their STEM teaching, many students identified
themselves as more of an “interested but confused learner” (Jiang et al., 2021, p. 9). That is, even

though students understand the values of coding knowledge and skills and they believe it is
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worth pursuing following their career, when it comes for them to be actually asked to integrate
them into their teaching, they still feel less confident as effective teachers teaching with coding.
We found that many students, even when they perceived high task value, experienced challenges
and difficulties over the course of creating lesson plan using coding and robots. Particularly, they
felt confused and unsure about what they were doing while creating lesson plans when they
found mismatches between what they think STEM education would be and how they implement
their stem education ideas based on traditional learning standards, objectives, and learners’ prior
knowledge. This possibly caused them to think they are not ready to meet the expectations or the
requirements regarding creating STEM incorporated lesson plan. In turn, this could negatively
affect their performance in creating a quality lesson plan. As such, understanding prospective
teachers’ affective aspects and explicitly addressing them could be a critical strategy to improve
their lesson plan quality, especially considering that anxiety regarding STEM and coding is more
prevalent in female students and the majority of prospective teachers are female (Pelch, 2018).
Implications
Implications for Women in Computer Science

Our results point to the potential for dynamic assessment of prospective teachers’ work
and identified factors that are relevant to their work quality. These together can support continual
improvement in prospective teachers’ integrating robotics and coding in ECE by helping them
design a high-quality computer science-enhanced lesson plan. Our participants were exclusively
women, which is in line with preservice ECE education as a whole and the ECE field in general
(Laere et al., 2014). This means that some of our findings have potential implications for women
in the computer science field. Notably, women are severely underrepresented in computer

science: women account for only around 20% of undergraduates graduating with a degree in
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computer science, and around 25 % of those employed in computer related occupations (Beyer,
2014). This has been partially attributed to stereotype threat, in which women often perform
worse on tests of computer science than their skills would predict because they are reminded of
stereotypes that computer science is for men (Cheryan & Markus, 2020; Thoman et al., 2013).

Previous studies also report that women often have low computer self-efficacy, which in
turn lowers female students’ interest in the discipline and motivation to do well (Beyer, 2014).
They are less likely to identify with computer science and have a low sense of belongings and
expectancy for success in computer science (Falkner et al., 2015). By helping early childhood
prospective teachers to better design robot and coding enhanced lesson plans, female prospective
teachers can have increased confidence in teaching computer science concepts and skills, which
will increase a chance for them to incorporate more CS content and activities into their teaching.
Furthermore, this will help increase the number of adequate role models for female students by
providing examples of women who have high confidence and efficacy in dealing with robots and
coding. This can impact tremendously the students at an early age and can instill confidence and
interest particularly in girls who are learning computer science. Much literature has shown that
one of the most critical reasons for women’s low interest and self-efficacy in CS is the lack of
role models (Cheryan et al., 2011; Vitores & Gil-Juarez, 2016).
Implications for Teacher Educators

Dynamic assessment of prospective teachers learning to plan lessons requires that teacher
educators be ready and willing to provide additional support to those prospective teachers who
are deemed to be on track to produce a low-quality lesson plan. Indicating which students need
additional support may be done through the use of a teacher educator dashboard (Park & Jo,

2015). This will allow teacher educators to provide timely and individualized feedback to
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support prospective teachers. This can help ECE prospective teachers focus on the points that
need more attention (Korth & Baum, 2011). As the system is used more extensively, the
accuracy of the model will increase, thereby increasing the utility of the system.
Implications for Prospective Teachers as Learners and Designers

While the discriminant functions can indicate which prospective teachers are on track to
produce a low-quality lesson plan, and thus are in need of additional support, it can also indicate
to prospective teachers areas where additional effort may be required. That is, with timely
individualized feedback on their reflections, prospective teachers can be informed of what could
be the weakest design point that needs improvement in the lesson plan. Prospective teachers can
be timely notified of the reflections’ content, word counts, and sentiment scores in the process of
learning and design, which can enable them to mindfully monitor their lesson plan writing
process. This feedback may in turn generate the dispositions to engage in deeper reflection on the
part of prospective teachers, which then may be carried into their futures as practicing teachers.
This in turn would maximize their potential as teachers as designers.
Limitations and Suggestions for Future Research

Power was limited due to the relatively small sample size. This caused misclassification
rates to be higher than hoped, and for the logistic regression equations to have a relatively small
number of significant predictors. Still, the fact that the vast majority of lesson plans were
classified correctly in terms of front-end analysis quality, STEM and coding integration quality,
and instructional activities quality is noteworthy and provides good direction for future research.

There are several aspects that limit the generalizability of our findings. First of all, all
participants of our study were female and most of them were white. Because of the distinct

features of the early-childhood prospective teacher population (i.e., disproportionately female
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and white population), our findings are likely to be generalized to those populations. However,
certainly our results are confined to white female prospective teacher populations and may not be
generalized to male and other ethnicity/race groups (e.g., Latinx and African American). In
addition, our data were collected from a single institution. Considering that there exist
differences in institutional characteristics including student characteristics, our data limits our
ability to generalize findings to the total population of prospective teachers. As such, future study
needs to include prospective teachers who are from more diverse educational and socioeconomic
backgrounds. Also, a broader exploration of multiple variables that are relevant to prospective
teachers who are male and underrepresented minorities in the STEM+C field is much needed.
Conclusion

Learning to plan high-quality lessons is difficult for prospective teachers. In the present
study we discovered how front-end analysis quality, STEM and coding integration quality, and
instructional activities quality of lesson plans could be classified and predicted. Misclassification
rates were relatively low. These results have important implications for dynamic assessment of
prospective teachers engaging in lesson planning, indicating which prospective teachers are on
track to produce high quality lessons, and which ones need further support.
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