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Quantum computing promises to provide machine learning with computational advantages. How-
ever, noisy intermediate-scale quantum (NISQ) devices pose engineering challenges such advantages.
Recently, a series of quantum machine learning computational models inspired by the noise-tolerant
dynamics on the brain have emerged as a means to circumvent the hardware limitations of NISQ
devices. In this article, we introduce a quantum version of a recurrent neural network (RNN), a well-
known model for neural circuits in the brain. Our quantum RNN (qRNN) makes use of the natural
Hamiltonian dynamics of an ensemble of interacting spin-1/2 particles as a means for computation.
In the limit where the Hamiltonian is diagonal, the qRNN recovers the dynamics of the classical
version. Beyond this limit, we observe that the quantum dynamics of the qRNN provide quantum
computational features that can aid in computation. To this end, we study a qRNN based on arrays
of Rydberg atoms, and show that the qRNN is indeed capable of replicating the learning of several
cognitive tasks such as multitasking, decision making, and long-term memory by leveraging several

key features of this platform such as interatomic interactions, and quantum many-body scars.

I. INTRODUCTION

Quantum computing promises to enhance machine
learning algorithms. However, implementing these ad-
vantages often relies on either fault-tolerant quantum
computers not yet available [1-5], or on decoherence-
limited, variational quantum circuits which may experi-
ence training bottlenecks [6, 7]. Thus, currently available
noisy intermediate-scale quantum (NISQ) devices thwart
quantum advantages in machine learning algorithms.

Recently, to counteract these challenges, several quan-
tum machine learning architectures have emerged in-
spired by models for computation in the brain [8-10].
These brain-inspired algorithms are motivated by the in-
herent robustness of input- and hardware-noise in brain-
like computation, and by the possibility to use the ana-
logue dynamics of controllable, many-body quantum sys-
tems for computation without relaying on a digital cir-
cuit architecture. Broadly speaking, these brain-inspired
algorithms can be put into two categories. The first
of which encompasses systems quantizing the dynamics
of biological computational models at the single-neuron
level. Thus, the dynamics of single qubits or groups
of qubits resemble the dynamics of a neurons in a neu-
ral circuit of interest. Examples of these include quan-
tum memristors [11], which are electrical circuits with a
history-dependent resistance, quantum versions of the bi-
ologically realistic Hodgkin-Huxley model for single neu-
rons [12, 13], and unitary adiabatic quantum perceptron
[14].

The second category of brain-inspired algorithms are
those that rely on a macroscopic resemblance between
many-body quantum systems and neural circuits. In
this regard, the algorithms that has received the most
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attention are quantum reservoir computers. Quantum
reservoir computers use ensembles of quantum emitters
with fixed interactions as means to perform versatile ma-
chine learning tasks relying on the complexity of the uni-
tary evolution of the system. Since these systems can
couple with both classical and quantum devices, which
may encode the tasks’ input, quantum reservoirs have
been used for time-series prediction [15-17], entangle-
ment measurement [18, 19], quantum state preparation
[20], continuous-variable computation [21] which can be
made universal [22], reduction of depths in quantum cir-
cuit [23], ground state finding [24], and for long-term
memory employing ergodicity-breaking dynamics [25-
27]. A comprehensive review of quantum reservoir com-
puting can be found in [10].

In both categories, however, a thorough understand-
ing of the potential computational advantages, and their
origins is slowly emerging. In this article we contribute
to this direction by proposing a quantum extension of
a well-known neural circuit model called recurrent neu-
ral networks (RNNs), of which reservoir computers are a
special case [28]. Our extension makes use of the Hamil-
tonian dynamics of ensembles of two-level systems, and
in the limit where the Hamiltonian is diagonal, we recover
the classical single-neuron dynamics naturally encoding
RNNs into quantum hardware. Recently, another natural
encoding of a reservoir computer has been proposed us-
ing superconducting qubits [29]. In our case, the general
dynamics of the quantum RNN (qRNN) present several
new features that can aid in the computation of both
classical and quantum tasks. In particular, a qRNN used
to simulating stochastic dynamics can exhibit speedups
compared to classical RNNs.

To show that our scheme is experimentally realizable,
we propose that arrays of Rydberg atoms can be used as
qRNNs (Sec. IV). Although our Rydberg qRNNs have
restricted connectivity, we are motivated to use Ryd-
berg arrays due to recent studies with equally restricted
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gqRNNs which show significant computational capacity
when driven near criticality [17, 24]. Moreover, recent ex-
periments using optical tweezers [30-37] have catapulted
the community’s interest in Rydberg arrays as they ex-
hibit long coherence times, controllable and scalable ge-
ometries, and increasing levels of single-atom control [38].
Additionally, Rydberg arrays can be used for novel, pro-
grammable quantum simulations and universal computa-
tions [30, 39-43].

We numerically implement Rydberg qRNNs, and we
successfully perform cognitive tasks even when a few
atoms are available (Sec. V). The success of these tasks
is explained by the physics of Rydberg atoms. For ex-
ample, our Rydberg qRNNs excel at learning to multi-
task since it can naturally encode RNNs with inhibitory
and excitatory neurons which are vitals for many cog-
nitive tasks [44]. This encoding relies on the differ-
ent types of interactions between Rydberg atoms with
different principal quantum numbers [45]. Likewise, a
Rydberg qRNN exhibits long-term memory due to the
weak-ergodicity breaking dynamics of many-body quan-
tum scars [35, 46, 47]. Lastly, we discuss possible further
research directions in Sec. VI.

We remark that the notion of gqRNNs has been previ-
ously coined relying on universal quantum circuits and
using measurements to implement the nonlinear dynam-
ics of an RNN [48]. Insted, what we define as a “quantum
RNN” leverages the inherent unitary dynamics of ensem-
bles of two-level systems to compute, deviating from the
quantum digital circuit model for computation.

II. CLASSICAL RECURRENT NEURAL
NETWORKS

We begin by reviewing an archetypal RNN consisting
of N binary neurons. Each neuron is in one of two possi-
ble states s, (t) € {—1,1} and is updated from the time-
step t to t + 1 following the update rule

Sn(t+ 1) = sign (hy,(t)sn(t)),
ho(t) = —An(t) + Z Jrmsm(t), (1)

where J,,, = Jmn are symmetric synaptic connections
between neurons n and m. The time-dependent biases
A, (t) encode the RNN’s inputs. In order to avoid mem-
orization during a learning task with inputs u's%(t), the
RNN receives Gaussian-whitened inputs

An(t) = up*(t) + &n, (2)

where £, is a zero-mean Gaussian random variable with
variance o2,, making the evolution of the RNN stochas-
tic. In RNNS, the value of 02, is proportional to the value
of the tasks’ inputs uf®s¥.

When studying learning tasks similar to those in the
mammalian cortex [44] one turns to a continuous version

of the rule in (1) obtained in the case that the time-
interval 7 in which neurons are updated is small com-
pared to Jy,.,. In this limit,

T8a(t) = —sa(t) +sign (ha(Dsa(D) . (3)

Thus, the RNN obeys a system of nonlinear differential
equations. Note that (3) imply that s, € [-1,1] is a
continuous and bounded variable [28].

A third way to describe an RNN is via the probability
distribution p;(s) of observing each of the 2%V different
configurations s at the ' time-step. Due to the noise in
the the inputs A,,, the dynamics of the distribution fol-
lows a Markov chain description [28]. This description is
particularly useful for analyzing the stochastic dynamics
simulatable by an RNN. As we shall see in Sec IIT A, this
representation will be useful in explaining how, relative
to classical RNNs, the unitary dynamics of a qRNN can
speed-up stochastic process simulations.

Lastly, we describe how an RNN is used for compu-
tation. After the RNN evolves for a time t;, a subset
of M neurons are used to collect the vector r(ty) =
(Sny (tf), ooy Sna (Er), 1) with the last entry accommodat-
ing for a bias. The N — M neurons which are not used for
readout, are called hidden neurons. The RNN’s output
is obtained via a linear transformation y°"* = W°Ur(ts)
where W°" is a real-valued matrix. Thus, the computa-
tional complexity of the RNN comes from the nonlinear
activation function in (1) which enables y°"* to be a non-
linear function of the inputs.

In a learning task with a target output ¢'%®, the RNN
is trained by minimizing a loss function L(y°u, y'are)
with respect to the network parameters such as W°ut,
Jnms etc. subject to the task-determined inputs in (2).
We choose the square-loss
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where 7 labels the Ny different input instances. For the
tasks in Sec. V, we fix the connections J,,, such that our
gqRNNSs more closely resemble quantum reservoir comput-
ers.

III. QUANTUM RECURRENT NEURAL
NETWORKS

A. Quantum update rule

Let us now extend the classical RNN in (1) to the
quantum setting. We replace each of the N neurons by a
spin-1/2 particle for which a spin measurement along the
z-axis yields the values {—1,1}. Thus, each neuron n is
in a normalized quantum state in the Hilbert space H,,
with basis vectors {|-1),,|1),} which are eigenstates of
the Pauli-Z operator ¢z = |1)(1|,, —|-1){-1|,,. The state of
the composite system lives in the product Hilbert space

H=Q_ Hn



We choose spins interacting via the time-dependent
Hamiltonian

N
Z A, (t)oZ + Z JnmZor,

n=1 N nm
Z (5)

where 0% = |1){(-1|,, + |-1)(1], is the Pauli-X operator.
Indeed, the evolution under (5) encompasses the update
rule in (1). To see this, note that in the classical case of
(1), the RNN evolves under the rules

[O
M=

If h, >0, s, doesn’t change.
If h, <0, s, flips.

(1C)
(2€)

Here “C” stands for “classical”. Now, consider a qRNN
starting in the configuration |s1, g, ..., sy ) and evolving
for a time t = 27Q71. In the limit where A, > Q
or Jnm > (2, each spin experiences the HamT7iltonian
H, = h,oZ + %aﬁ where hy, = —=Ap+ 3", Jumsm is the
effective field generated by the rest of the spins where s,
stands for the measurement result of o7, on the initial
configuration. We then obtain the quantum update rules

(1Q)
(2Q)

Here, “Q” stands for “quantum”. Therefore, (5) can im-
plement (1C)-(2C) but without the use of the nonlinear
activation function in (1). Nonetheless, (5) allows for
more general dynamics beyond the perturbative limit for
which (1Q)-(2Q) holds. We now highlight three features
arising from the quantum evolution of the qRNN: (i) the
ability to compute complex functions on the input by
using quantum interference, (ii) exploiting the choice of
measurement basis, and (iii) efficiently achieving stochas-
tic processes inaccessible to classical RNNs with no hid-
den neurons.

If |hn| > Q, |sn) doesn’t change.
If |hy| < Q, |s,) flips.

Quantum feature 1: quantum interference as a means for
computation

The computational power of (1) is a result of its non-
linear dynamics. For example, an RNN with linear dy-
namics is incapable of computing the parity function
XOR(s1, 82) = $152 between two classical binary inputs.
On the other hand, quantum mechanics is a unitary the-
ory, and yet this does not limit a qRNN to linear compu-
tation. Indeed, a qRNN can compute XOR by leveraging
quantum interference, a resource fundamental to quan-
tum computation. This demonstrates that a qRNN can
be used for complex computing tasks.

As illustrated in Fig. 1, we can compute XOR(s1, s2)
using a qRNN of three spins initially in the state
|s1,82,-1). The third spin is used as an outcome spin
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FIG. 1. Computing the parity, XOR(s1, s2), of two inputs s1
and sz with a qRNN. Spin 3 (the output spin) experiences
an effective field J = J(s1 + s2) with J > Q. Upon evolving
for a time ¢ = 27Q~!, the output spin is measured. The
measurement outcome +1 is obtained when s1 = —s»o since
J = 0. If s; = s3 so that J # 0, the inputs constructively
interfere to generate a large detuning on the output such that
measurement yields the outcome -1.

which is measured to tell us information about the par-
ity of s; and s3. We let these spins evolve under the
dynamics dictated by (5) choosing A,,Ji12 = 0 and
Jig = Jog = J > Q. Let J = J(Sl + 82). In the frame
rotating at the rate J, the output spin experiences the
Hamiltonian

% (ewww (1] + h.c.) . (6)
It’s clear that if the spins have odd parity (i.e. s1 = —s9
so that J = 0), the output spin flips to the state |1)
when we choose to evolve by t = 27rQ~!. On the other
hand, if J # 0, Hs contains only fast-rotating terms,
and the rotating-wave approximation (RWA) allows us
to neglect the evolution of the output spin [49]. Phys-
ically, the RWA can be thought of as the spin rotat-
ing along the z-axis by a small amount followed by a
rapid precession of the spin around the z-axis. Indeed,
as illustrated in Fig. 1, J > t~! amounts to averag-
ing out the spin’s position so that the spin is along the
z-axis. Overall, this computation realizes the operation
|81, 82, =1) = |51, 82, XOR(s1, 52))

Note that this is a result of s1 4 so constructively inter-
fering to produce a large effective detuning on the output
and blocking it’s evolution. Thus, interference serves as
a means for computation in qRNNs.

Hs =

Quantum feature 2: arbitrary measurement basis as a means
for computation

Equations (1Q)-(2Q) recover (1) when t = 27Q~1.
However, t = 2rQ~! is not a necessary restriction. This
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FIG. 2. Detection of a Z-error on three spins Li 23 using a
quantum RNN. A Z-error is conjugated into a bit-flip-like er-
ror using a Hamiltonian generating a rotation along the x-axis
where ¢t = 7/2Q and 2 is the dominant field of the Hamilto-
nian. The state of each of the L; after the rotation (orange
region) depends on whether a Z-error occurs, as it’s illustrated
at the bottom of the Fig.. As exemplified here for L3, a Z-
error results on a spin flipping from what we would expect in
the absence of errors. To detect the Z-error, a set of auxiliary
qubits Aj 2 is brought in to perform a parity measurements of
pairs (L1, L2) and (L2, Ls). Since under no Z-error the parity
measurements must match, the parity measurements allow us
to detect the location of the Z-error as specified in Table I.

freedom results in the ability to rotate each quantum
neuron which can be used as means for computing in dif-
ferent basis. and thus revealing the quantum correlations
which enhance the performance of a qRNN relative to its
classical counterpart. In this section, we show how to
use the qRNN’s evolution to change the basis in which
an error occurs. This freedom can be used to detect a
Z-error, an error proper to quantum computation.

Consider the repetition code [0r) = |-,)®% and |11) =
|4+,)®3 on qubits labeled L; 3 where |+,) = %(H} +
1|1)). Suppose we prepare the state |1) = a|0) + b|1L),
and consequently a Z-error occurs, we can detect the er-
ror by rotating all three spins Ly 2 3 using (5) with the
dominant field being Q for a time ¢ = 7/2Q. Note that
the rotation conjugates the Z-error by

; x . x
e~ imo /4O,zez7r0' /4 x oY (7)

where 0¥ = i]-1)(1] —i|1)(-1] is like a bit-flip error except
for a state-dependent phase. A bit-flip error can then
be detected by bringing two extra spins A2 and per-
forming parity measurements of the pairings (L1, L2),
and (Lo, L3) as described in Sec. IITA. Using Table I,
the final parity of (L1, L2), and (Ls, L3) gives the mea-

surement results a; and as which can be used to discern
where the Z-error occured.

As an example, Fig. 2 illustrates the two final states
of L3 if no error occurs (bottom left), and if a Z-error
occurs on L3 (bottom right).

Detecting the Z-error hinges on (7) which can be
achieved by using the gRNNs evolution to rotate the mea-
surement basis. Note that rotation allows us to measure
the error-syndrome of the stabilizer state |¢), bringing
out the quantum correlations of the state. Thus, the
qRNN’s native evolution can be used to perform quan-
tum computational tasks. After the error is detected on
spin L;, all qubits are rotated again by UT and 7 can be
applied to correct the error. We note that using a repe-
tition code for error detection is a well known technique
to the quantum computing community.

The previous two quantum features show that gRNNs
are naturally suited to solve important problems in
machine learning and quantum computing. Recently,
gRNNs have been used to compress quantum circuits
[23]. However, studies on using qRNNs for error cor-
rection in circuit-like quantum computing are warranted,
and left for further studies.

ai
a2

-1 +1

-1 Error in Lo |Error in L;
+1 ||Error in L3| No error

TABLE I. Results of parity measurements for detection of a
Z-error. Measuring spin A; results in the outcome a;. By
comparing the outcomes, one can detect the location of the
Z-error.
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FIG. 3. Comparing a classical and a quantum RNN to

stochastically evolve a distribution p;, from an initial distri-
bution po. Here, we consider po(s) = p, (s') when s, = —s),
for all n. In this case, the RNN needs to produce a stochastic
process matrix L'*'® that flips all the spins through several
time-steps. The classical RNN (top) requires O(2~ ~™) time-
steps (i.e applications of P) while using m hidden neurons.
A qRNN (bottom) requires one time-step and no hidden neu-
rons.



Quantum feature 3: stochastic processes accessible to a
qgRNN

We now explore how a qRNN can be used to stochas-
tically evolve a probability distribution faster than any
classical RNN. Firstly, we note that if we initialize an
RNN according to an initial distribution pg(s), the dy-
namics in (1) dictate that for ¢ > 0 the RNN obeys a
distribution given by the Markov-chain dynamics

pi(s) =D P(s|s)pi_1(s)) (8)

where P(s|s’) is the transition probability between
states s’ and s, which particular value is given by (1)
[28] (see Appendix A for details).

Given this observation, we see that an RNN can be
used for the task evolving a probability distribution pg
into py = L*8p, by a series of stochastic transition ma-
trices L°" = P/, The goal is to adjust the parameters
of the RNN (i.e. biases and connection weights) in order
to simulate the stochastic matrix encoded in LU ~ Ltare
in as few steps as possible. One may then ask if a qRNN
can do this more efficiently than any RNN.

We answer this in the positive. It is worth noting
that not all stochastic transition matrices L'*¢ are em-
beddable in a Markov process (for a review of classical
and quantum embeddability see Appendix A). To sim-
ulate a stochastic system’s future behavior, information
about its past must be stored, and thus memory is a key
resource. Quantum information processing promises a
memory advantage for stochastic simulation [50]. In sim-
ulating stochastic evolution with classical resources there
is a trade-off between the temporal and physical resources
needed [51], and it’s been shown that certain stochastic
evolutions, when simulated with quantum hardware, may
not suffer from such trade-off since the evolution aris-
ing from quantum Lindbladian dynamics are far more
general than classical Markovian evolution [52]. That
is, there exist matrices L' that are quantum embed-
dable but not classically embeddable. Moreover, even if
L'%¢ is embeddable, the quantum evolution can lower
the number of steps needed to produce L' due to the
fact that the unitary dynamics of a quantum system al-
lows a simultaneous, continuous, and coherent update of
every neuron. This separation in capabilities illustrates
the computational advantages from quantizing an RNN.

Let us now give an example of a matrix L'3® that can
be achieved exponentially faster in a qRNN. Consider the
task of realizing a transformation F' corresponding to a
global “spin-flip”

1 ifV, s, #s
Fyo = ’ " 9
| {0 otherwise. (9)

Realizing F' on N neurons using a classical Markov pro-
cess requires a number of time steps of order O(2V-™)
where m is the number of hidden neurons (for details, see

Sec. IIL.A in Ref. [52]). In other words, a classical RNN
cannot produce F' efficiently when all available neurons
must be flipped. This is a result of (1), and the fact that
flipping neuron n is done by ensuring that there is an-
other neuron m in the opposite state so that J,,, > 0
dominates h,,.

On the other hand, a qRNN can perform F in a sin-
gle step regardless if all neurons need to be flipped. To
see this, one can consider the case of (5) with Q > h,,.
In this case, all neurons simultaneously flip with no hid-
den neurons and in a single time-step evolving under a

unitary U. That is, if [¢0) = >, /Po(s)|s), then

[Wp) =U) = \/ps(s)]s). (10)

While the realization of the matrix F via (5) signal a
quantum advantage, we highlight that this advantage is
extremely sensitive to the decoherence arising from spon-
taneous emission (i.e. spontaneous relaxations from |1)
to |-1)), a main source of noise in NISQ devices (see Ap-
pendix A). It remains an open problem whether there
exist stochastic processes enabled by (5) which are ro-
bust to noise, and in the future we hope to explore how
to shield unitary stochastic processes against noise in ex-
perimentally realizable NISQ devices.

The spin-flip process F' can be efficiently simulated us-
ing a classical computer. However, F' exemplifies the
gRNN’s ability to access stochastic processes inacces-
sible to classical RNNs without hidden neurons. This
implies that if an RNN is employed simulate evolving
po to p¢, stochasticallyby passing it through a number
of linear transformations, there are instances where the
gRNN requires exponentially fewer steps. Stochastic sim-
ulation, of course, has applications in finance, biology,
ecology, among other fields. As an example, Ref. [53]
used this quantum advantage to propose a quantum cir-
cuit algorithm for stochastic process characterization and
presented applications in finance and correlated random
walks. The separation above illustrates the computa-
tional advantages from quantizing an RNN.

B. gRNNs under spontaneous emission

Having seen how (5) recovers the discrete update rule
(1), we now show that a qRNN under dissipation natu-
rally evolves under continuous-time dynamics analogous
to (3). This establishes only mathematical similarities
between the evolution of NISQ devices and neural cir-
cuits, allowing us to use available quantum hardware for
cognitive tasks, an idea that we explore further in Sec.
V.

Consider the qRNN in (5) under spontaneous emission
where a spin relaxes from |1) to |-1) at a rate v. In order
to extract the dynamics of continuous variables, we focus
on the dynamics of the expectation values of local Pauli
operators. The expectation value of an observable A is



(A) = Tr(Ap) where p is the density matrix describing
the system. In particular, we focus on the expectations
of the operators o2, and o¥ = i|-1)(1|,, — ¢|1){-1]|,. If we
start the qRNN at a state for which (¢7(0)) = —1 then
(see Appendix B)

(@) == 7 (@00} = 3= 3 um (G211 0)
AWt (), (1)

where we have defined the neural time-scale 77! =

7v/2+Q? /4~ which is different than that in (3) but bears
the analogous significance of the time-scale in which (c¥)
decays.

Differently that (3), notice that the dynamics of (c¥)
are influenced by the spin’s value along the z-axis, a con-
sequence of the nontrivial commutation relation of spin
variables. The commutation relations also make (11)
quadratic, and therefore nonlinear. The quadratic term
in (11) is analogous to the nonlinear term that give RNNs
their computational power.

In Appendix B, we explore the dynamics of (o) as well
and show that together with (c¥), we recover dynamics
analogous to integrate-and-fire RNN model [54], a more
realistic model of neural networks in the brain than the
one in (3).

IV. QRNNS USING RYDBERG ATOMS: AN
EXPERIMENTAL PROPOSAL

The similarities between (11) and the evolution of
RNNs suggest the ability of qRNNs to emulate neurolog-
ical learning. To explore neurological learning in gRNNs,
we propose to fix the architecture of the qRNN coupling
constants J,,, based on optical-tweezers arrays of Ryd-
berg atoms.

The natural Hamiltonian of a Rydberg array closely
resembles the one in (5). A Rydberg atom is a single
valance-electron atom that can be coherently driven be-
tween an atomic ground state |g) and a highly excited
state |r) with a much larger principal quantum num-
ber. These states can represent our |-1) and |1) neu-
ronal states respectively. A Rydberg atoms in its excited
state exhibits a large electronic dipole moment, and, con-
sequently, a collection of Rydberg atoms interact via a
1/R% van der Waals potential where R denotes the phys-
ical distance between the two atoms. For an array of
Rydberg atoms where the atoms are at fixed positions,
the Hamiltonian of the system is [35]

Hrga =AY 0+ 9S00 43 i (12

where 7, = |1)(1],,, © is the coherent Rabi drive cou-
pling the |-1) and |1) states, A < 0 is a global drive
frequency mismatch to the atomic spacing of the atoms,
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FIG. 4. Schematic picture of RNNs with classical and quan-
tum neurons. (A) Classical RNN. The inputs are local bi-
ases, and the inter-neural connections Jy,, are arbitrary. A
set of neurons is used for readout to produce the output
Yo't = W', (B) qRNN made from Rydberg atoms which
restrict the connections to Jpm ~ l/R?Lm where R, is the
physical distance between atoms n and m. Here we depict in-
teractions between nearest and next-nearest neighbors, how-
ever each neuron interacts with all others in the chain via
Jum ~ 1/RS .. Local expectation values of a subset of atoms
are used for readout. (C) A schematic of the array of Ryd-
berg atoms of the RNN in (B) using optical tweezers. Each
atom experiences a Rabi-drive 2, and a local detuning A,
which encodes the RNN’s inputs. One of the main sources of
decoherence in Rydberg atoms is spontaneous emission at a
rate 7.

(a8 ()

and V is the nearest neighbor interaction strength. Using
acusto-optical deflectors (AOD) and spatial light modu-
lator (SLM), one can create spatially depending light-
shifts resulting in site and time-dependent detunings
An(t) = A+ «a(t)A, where a(t) is a time-dependent
envelope. With this in mind, the Hamiltonian in (12)
can be mapped to a Hamiltonian like that in (5) with
Joum = V/RS, since 7, = (02 + 1,)/2. In this pa-
per, for concreteness, we compare our numerics against
the experimental realization of Rydberg arrays in Ref.
[35, 38], where the rates Q,A,,V are all in units of
mega-Hertz, while time constants are in units of micro-
seconds. In these experiments, an off-resonance interme-
diate state, |6P;/9, F' = 3, Mp = —3), is used to couple
lg) = |5S51/2, F = 2,mp = —2) and |r) = [70S}/5,m; =
—1/2,mr = —3/2) of Rubidium-87 atoms through a two-
photon transition. Thus, photon-scattering off the inter-
mediate state is the dominant source of decoherence. As
we show in Appendix D, we can model this with a modi-
fied spontaneous emission process given by the jump op-
erator

LT = \Alg) (alr| + Blg]) (13)



instead of the typical \/¥|g)(r| jump operator. In the
equation above, v = 27/(20 us), and («, 8) = (0.05, 0.16)
for the realistic settings we simulate. With the full uni-
tary and dissipative dynamics, we can think of an array of
Rydberg atoms as a quantum analogue of a continuous-
time RNN. Fig. 4 compares the architecture of a classical
RNN in Fig. 4A, and a Rydberg RNN in Fig.s 4B-C.

We note that training RNNs can be unstable as that of-
ten relies on (truncated) back-propagation through time
or real time recurrent learning. One way to circum-
vent this problem is by keeping the system’s parameters
fixed, and instead only training the output filter T/°ut,
This easier training schedule motivated the introduction
of reservoir computers [55] and their quantum analogues
[10, 1525, 27]. Thus, in the following numerical exper-
iments we fix the position of the atoms in either a 1D
chain or a 2D square lattices and train only W' and
some temporal parameters depending on the task. Logi-
cally, successful performance on the tasks here presented
sufficiently shows qRNNs computational ability. While
we include the effect of small imperfections on the po-
sitions of the atoms, we see no significant effect on the
performance of the tasks after averaging our results over
10 realizations of the atom’s positions. We leave full op-
timization of the qRNN for future work.

Lastly, several features of the many-body dynamics
of arrays of Rydberg atoms are particularly well suited
for emulating biological tasks. In Sec. VA, we show
how Rydberg arrays can be used to implement inhibitory
and excitatory neurons which are vital in many biolog-
ical tasks such as multitasking [56]. The key idea be-
hind encoding inhibitory neurons will be leveraging pos-
itive and negative interactions between Rydberg atoms
with different principal quantum numbers [45]. Addi-
tionally, in Sec. VD we show that Rydberg arrays can
store long-term memory by taking advantage of the weak-
ergodicity breaking dynamics of quantum many-body
scars [35, 46, 47].

V. LEARNING BIOLOGICAL TASKS VIA
QRNNS

We focus on analyzing the Rydberg qRNNs’ potential
to learn biologically plausible tasks. In the tasks ana-
lyzed, we fixed the geometry of the atoms depending on
the task at hand, which makes our qRNNs into quantum
reservoir computers. As a proof of principle, we focus on
four simple neurological task which indicate good per-
formance even with a small number of atoms. We show
that a Rydberg qRNN can encode inhibitory and excita-
tory neurons vital for successful multitasking. Likewise,
we show that Rydberg qRNNs can learn to make deci-
sion by distinguishing properties of stimuli, have work-
ing memory, and exhibit long-term memory enhanced by
quantum many-body scars. Simulation details of each
task can be found in Appendix D.
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FIG. 5. Encoding inhibitory neurons using Rydberg atoms
and using them for multitasking. Multitasking consists in fix-
ing the qRNN’s parameters, and training W°"* to produce
three conflicting outputs. (A) Shows the scheme for encod-
ing inhibitory neurons. Rydberg atoms with different prin-
cipal quantum numbers are used such that pairs (ng)(ng)
interact attractively while (ng)(ng) and (ng)(ng) pairs in-
teract repulsively. The network receives two binary inputs
z,y. (B) Square error for learning the functions XOR, OR,
and AND on the inputs with different numbers of inhibitory
neurons. Better performance is observed when 1 in every 4
neurons is inhibitory. (C)-(E) Example of learnt functions
using eight neurons and two inhibitory neuron, which results
on performing 40% better than without inhibitory neurons.
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A. Multitasking

A hallmark of classical RNNs is their ability to multi-
task by learning several output functions at once. Dale’s
principle defines an inhibitory neuron, indexed by n, as
one with a negative sign in its interactions with all other
neurons [57]

Jom <0 Vm. (14)

On the other hand, a neuron i is excitatory if Jp,, > 0
for all m. In an RNN; it is conjectured that multitasking
requires that inhibitory neurons are present at a ratio of
1:4 [56]. In this section, we show that Rydberg atoms
offer with a simple way to implement networks with a
mixture of inhibitory and excitatory neurons, thereby
demonstrating the versatility of neutral atoms at mim-
icking the behavior of realistic neural circuits.

Two Rydberg atoms with different principal quan-
tum numbers ng, and n’Q and angular momentum quan-
tum numbers the same can interact with a 1/r% attrac-
tive potential VnQ,n/Q [45]. Using the Python package
PairInteraction [58], we note that if ng represents the



state |r) = [70S1/2,m; = —=1/2,m; = —3/2), and ng
represents [r’) = 7353, m; = —1/2,m; = —3/2), then
the interaction Vi, n, =V =~ _V”Qv”b where V' is the
strength between atoms with principal quantum numbers
ng (see Appendix D). We can use this fact to encode in-
hibitory neurons. We restrict the concentration of ny,
Rydberg atoms to be sparse such that pairs of n’Q atoms
are placed as far as possible at a distance d,,q, in a 1D
chain arrangement. We choose the field strength V' so
that V/dS,,, = 1072, and as a result we can neglect the
interactions between pairs of nb atoms, but not the in-
teractions between pairs (nq)(ng) and (ng)(ng). This
amounts to saying that if atom n is driven to n’Q then
for all m Jy. <0 as in (14). By implementing this in on
our reservoir we can learn XOR, AND, and OR simulta-
neously for different concentrations of inhibitory neurons
as illustrated in Fig. 5(A).

Fig. 5(B) shows the errors of simultaneously learning
XOR, OR, and AND as a function of the system size
N for different number of inhibitory neurons in the ar-
ray. The network is initialized in the state |g)®", and
the network receives two binary inputs x,y € {0,1} (in
units of MHz) for a time A¢ (in units of us) with input
noise 0;, = 0.1. Afterwards, the network is interrogated
to give XOR(z,y), OR(z,y), and AND(z,y). W is
trained using the loss in (4). The errors shown in Fig.
5(B) are the minimum achieved over a wide range of
choices of interaction time A¢ € [0,5] us. This shows
that in some cases our qRNN can benefit from having
a connectivity matrix Jy,, with both positive (excita-
tory) and negative (inhibitory) values, analogously to the
mammalian brain. For small system sizes, it seems that a
ratio of 1:4 inhibitory neurons betters the learning perfor-
mance, similar to the results in [56]. This is supported
by the performance at 4 and 8 neurons in Fig. 5(B).
Particularly, N = 8 neurons, two of which are inhibitory,
results in a 40% decrease of the loss. Nonetheless, we
observe that having no inhibitory neurons is best when
dealing with N =6 and 10 neurons. No inhibitory neu-
rons is never the worse choice. Fig. 5(C)-(E) shows the
results of learning XOR, OR, and AND simultaneously
using N = 8 and two inhibitory neuron. Note that the
network is fully capable of classification with errors well
below the input noise threshold ;.

Lastly, while this task shows the success of the gRNN
at approximating Boolean functions of the input, we note
that one may also want to calculate different nonlin-
ear functions of the input. We remark that our qRNN
can approximate biologically relevant nonlinear functions
such as ReLu and sigmoid.

B. Decision making

One of the great successes of classical RNNs is their
ability to integrate sensory stimuli in order to choose be-
tween two actions. Here, we present the Rydberg qRNN
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FIG. 6. Decision making task using a Rydberg qRNN. (A)
Schematic of the input stimuli as a pair of time-dependent
detunings on two atoms. The stimuli are turned on for a nor-
mally distributed time At with standard deviation o, = 0.1.
The network decides on a relaxation time t,,: to output the
decision sign (A{" — A5*). (B) The psychometric response
of the decision making task which maps the accuracy towards
deciding that A" is largest as a function of the inputs’ dif-
ference. The simulated response (dotted) is well fitted by a
sigmoid function (solid curve).

with a variant of the dot motion decision making task
initially studied in monkeys in which several inputs are
analyzed to produce a scalar nonlinear function of them
which represents a decision [59]. This task shows the Ry-
dberg qRNN’s ability to produce nonlinear functions of
the input and perform simple cognitive tasks, a feature
of most qRNNs proposed thus far [60].

In this task, a qRNN is presented with two inputs Af"®
and AZ", and the goal is to train the network to choose
which input is the largest. That is,

y"'e = sign (A" — AL . (15)

The stimuli, which in the case of a qRNN are local de-
tunings on a pair of atoms, are turned on for a normally
distributed time At with variance also o;, = 0.1 and
mean (At) = 0.1 ps (see Fig. 6(A)). The stimuli are
then turned off, and the network chooses a relaxation
time t,¢ after which it “makes a decision” by approxi-
mating (15). This is known as the fixed-duration proto-
col since the experimentalist fixes the stimulation period,
and the subject, the qRNN in this case, learns to choose
a response time t,q¢.

In the brain, we expect the performance of a decision
making task to follow a sigmoidal psychometric response
[44, 59]. A psychometric response maps out the accuracy
of a decision making task as a function of stimuli distin-
guishability. As an example of a psychometric response,
the reader could think about paying a routine visit to
the eye-doctor and having to discern letters “b” and “p”
written on the wall. If the letters are large enough, they
become distinguishable, and if the letters are too small
one often fails to make out the right letter.

Classically, a decision-making task benefits from con-
nectivity between all neurons. Since our connectivity is
limited by physical constraints, a 2D square lattice struc-
ture was chosen to prevent neurons from being isolated



from the rest. Moreover, a 2D square lattice is experi-
mentally friendly. We set up a Rydberg qRNN of 3 x 2
atoms with two input atoms and two different output
atoms (for details see Appendix D). The qRNN is then
trained by optimizing over t,,:, and W°"' such that the
qRNN’s output approximates (15) while keeping the net-
work parameters J,,,,,, Q2 and A" fixed. We observe that
tout = 1 us is regularly obtained as this is the time scale
in which the information about ’1"2 propagates through
the network. In our case, ¢; = A — A" is a natural
choice for a measure of stimuli distinguishability. Fig.
6(B) shows the psychometric response of the task which
is qualitatively similar to the ones obtained in classi-
cal RNNs [44]. Moreover, we see in Fig. 6(B) that if
|e1] > o4n such that it is above the input noise level our
network success more than 80% of the time. The success
of this task shows the Rydberg qRNN’s ability to emulate
simple cognitive tasks.

C. Parametric working memory

Our next neurological task is that of parametric work-
ing memory. Working memory, which is one of the most
important cognitive functions, deals with the brain’s abil-
ity to retain and manipulate information for the later
execution of a task. Here, we train a network to per-
form a task based on the decision making task in Sec.
V B but with two temporally separate stimuli (see Fig.
7(A)). We use the fixed-time protocol where the separa-
tion between stimuli, denoted by tgejqy, if fixed by us.
The stimuli are both turned on for a time At, and after
the second input the network is left to relax for a time
tout before two output neurons are used to approximate
(15. To avoid overfitting, we add Gaussian noise to the
times At, tout, and tgejqy With zero mean and standard
deviation o;, = 0.1. The network optimizes over TW°ut,
Thus, the network has to retain information about A?"
for a few “seconds” to then compare against AL and
make a decision.

We set a Rydberg qRNN of 3 x 2 atoms with two input
atoms and two different output atoms (for details see Ap-
pendix D). Fig. 7(B) shows the loss of the network as a
function of the total time the inputs are injected into the
network (7 = 2At + tgeiay). We note that the loss func-
tion is high for small 7 since it takes the input neurons to
correlate with the rest of the qRNN. Accordingly, in Fig.
7(B) we show that growth of the entanglement entropy
of the input qubits accompanies a decrease in the loss
function. For Fig. we fixed t,; = 0.1, a choice which,
according to Fig. 7(C), has little effect on the qRNN’s
performance.

In Fig. 7(C) we show the accuracy of the qRNN at
reproducing (15) as a function of the time the inputs are
turned on (At) and for different choices of ¢,,;. For these
plots tgeiqy = 0.1 is fixed. We notice that the accuracy is
largely invariant to our sampled choices of t,;.

Lastly, in Fig. 7(D), we probe the qRNN’s accuracy
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FIG. 7. Working memory of a Rydberg RNN. (A) Schematic
of the network’s inputs where two atoms are detuned for a
time At but temporally separated by a time tgeiay. Two dif-
ferent output neurons are used for readout at a time t,,: after
the second input is turned off. (B) Loss of the working mem-
ory task as a function of the total input time 2At¢ + tgeiay
(gray). Entanglement entropy between the input qubits and
the rest of the qRNN as a function of 2At+tgeiay (blue). Here,
the mean value of ¢, is 0.1. The loss stays large for small in-
put times until the input qubits start entangling with the rest
of the qRNN. (C) Accuracy as a function of the time the input
are turned on (At) for four different choices of tou: and with
fixed tgeiay = 0.1. These curves show that accuracy is largely
independent of tou: and At as long as At < 0.3 (D) Accu-
racy of the working memory task at At = 0.15 and tou: = 0.5
as a function of tgeiay. The blue curve is the performance
when V' >  which puts the qRNN in the Rydberg blockaded
regime, while the red curve is the performance when V < )
which puts the qRNN in the disordered regime. This plots
show that when V' > €, the Rydberg qRNN can hold mem-
ory for later manipulation better than when V' < Q. Shaded
regions indicate error bars.

as a function of tgeiqy. For these experiments, we fix
tout = 0.5 and At = 0.15. Importantly we set V = 27 x10
MHz and Q = 27 x 4.2 MHz such that V' > Q and neigh-
boring Rydberg excitations are off-resonance putting our
qRNN in the so-called blockaded regime [61, 62]. While
one initially might expected the accuracy to decrease
for increasing tqeiqy, we found that this is not the case
and instead the accuracy oscillates persistently reaching
high accuracies as shown in Fig. 7(D) blue curve. In-
terestingly, this behavior disappears when the coupling
V =27 x 0.1 MHz such that V < Q as shown in the red
curve in Fig. 7(D), although the performance is statis-
tically significant even for long tzelay with an accuracy
greater than 50%. We can conclude that, in the block-
aded regime, the qRNN is able to hold information for
longer periods of time. We can understand this depen-
dence on V/Q as follows. In the disordered regime atoms
are mostly uncorrelated and the atoms are allowed to
freely oscillate with the dynamics being dominated by
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FIG. 8. A state encoding a memory m is prepared. The
state evolves under it’s natural Hamiltonian before being in-
terrogated via local measurements in order to retrieve m. If
the evolution time is short, the system is yet out of equilib-
rium and remembers its initial condition. Thus, m can be
retrieved. On the other hand, after a long time the system
may thermalize and local measurements fail to provide infor-
mation of the initial state. Thus, the memory retrieval time
is upper bounded by the thermalization time of the initial
state |9 (0)) under the system’s dynamics. In the example
in Sec. VD, the system is a chain of Rydberg atoms, and
final measurements are performed on a single atom which are
then linearly post-processed so to retrieve m. In this case, a
thermal state can be observed by measuring if the entangle-
ment entropy of ring obeys a volume-law. If the dynamics
can be stabilized against thermalization, the memory can be
retrieved at larger times.

the drive Q. Thus, after a short period of time, the in-
puts coming through a z-field are largely irrelevant and
the network is unable to hold the information about the
first input. On the other hand, when V' > ) the atoms
are largely correlated since neighboring excitations of Ry-
dberg atoms are blockaded and the dynamics are slowed
down. These slow dynamics in the system allow for
longer memory times. In Sec. VD, we will explore the
longer-term memory in the blockaded regime and show
that long-term memory in a gRNN can be stabilized due
to the presence of quantum many-body scars.

D. Long-term Memory via Quantum Many-body
Scars

Finally, we turn to examine a qRNNs ability to en-
code long-term memory. The task consists of encoding
a classical bit m in the initial state of a qRNN [¢,,,(0))
so that after the system is left to evolve under its in-
herit dynamics for a time 7', local measurements of the
state |, (T)) are used to recover m. However, m can-
not be recovered from local measurements if the dynam-
ics obey the eigenstate-thermalization hypothesis (ETH)
[63]. Instead, local measurements of |¢,,(T)) obey ther-
mal statistics described by the energy spectrum of the
Hamiltonian and bear no information of the initial con-
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dition |¢,,(0)). Thus, qRNNs which violate the ETH
are naturally suited for memory tasks, since they can lo-
cally retain information about their initial state. Indeed
this notion has began to be studied in quantum reser-
voirs [25, 27]. Recent experiments using quench dynam-
ics in arrays of Rydberg atoms have revealed quantum
many-body scaring behavior [35], which can be stabilized
[46, 47] to delay the thermalization of the system. Here,
we use these results to enlarge the memory lifetime of a
qRNN. Simulation details are found in Appendix D.

In the case of a kicked ring of Rydberg atoms experi-
encing nearest-neighbor blockade, the dynamics are cap-
tured by the so-called PXP-model [35, 47, 64, 65]

H(t) = Hpxp+ N> _ 0p5(t — k) (16)
kEZ

N
Hpxp=QY Pu10iPoyr  N=Y n, (17)
n=1 n
where P,, = |g){(gl|, projects the atom at the n*" site onto
the ground state and we choose periodic boundary con-
ditions to mitigate edge effects. In (16) we let 0 = m+¢x
where €, is a Gaussian random variable with mean € and
variance o2 . That is, € plays the role of added noise
in the qRNN. For this discussion we let v = 0 since we
know from experiments that the quantum scaring behav-
ior is robust to the atom’s decoherence, and the choice
to work with the Hamiltonian evolution helps speed up

the acquisition of numerical data.

We denote x, = exp (—inN)exp(—itHpxp). It has
been empirically observed that x, approximately ex-
changes the Neel states |AF) = |1010...) and |AF') =
|0101...) for 7 ~ 1.517Q~! [35]. Note that x,x, = 1,
and so under no noise, any state |1} is recovered after a
cycle of evolution of 27. However, the noise ¢, destroys
the revival of all initial states except for |AF) and |AF”)
(see Appendix C). This leads to many-body quantum
scars stabilized by the operator exp (—imN) [46, 47].

Given the dynamics in (16), we propose the following
scheme for encoding a binary memory m € {0,1}. We
choose a reference state |¢), and let [¢)9(0)) = |¢) and
[11(0)) = x+|¢). Subsequently, the state |1,,(0)) is left
to evolve for n cycles of duration 27 = 2(1.51x) after
which the populations r,,(n) = (P;(2n7t|m), P.(2n1|m))
of the single-atom reduced density matrix are used to
retrieve m. The retrieval is done by training a vector
WU on M instances of 7,,(n) in order to minimize
(4) with y**™8 = m the binary vector of memories and
y°'(n) = WU r(n) our networks’ output after n cycles.

To quantify the quality of the memory retrieval R(n),
we use the squared Pearson’s r-factor

_ cov?(m,y°"(n))
B = sty o (n)) (18)

Fig. 9(a) shows the memory retrieval error as a function
of the number of cycles for three different choices of ref-
erence states. Fig. 9(b) shows the average entanglement




entropy (Sg) of the left-most atom in the ring. Satura-
tion of Sg signals a growth in the memory retrieval error
as the state “forgets” the initial condition. From other
studies, we see that memory is retreived at longer times
due to the slow in thermalization of the Neel states due to
quantum many-body scars [35, 46, 47, 64, 65]. The time-
crystalline nature of the qRNN using |¢)) = |AF) signals
long-time correlations, and thus the gqRNN can be used
to encode and predict series with long-time correlations
[17].

The Neel states exhibit long-term memory due to the
evolution’s scaring behavior. This can be understood by
analyzing the average evolution produced by a single cy-
cle. Up to second order in e, the state at time 27n, p(n),
evolves to the state at time 27(n + 1), p(n + 1), where
(see Appendix C)

p(n+1) = p(n) —ie[HT, p(n)]

+ b, (H 0 = SO ) )

+ofy (B p ™ — S H o))
(19)

Here, H* = N + XTNXT are Hermitian operators. We
can rewrite (19) as p(n+ 1) = p(n) + L »(p(n)). Since
[HT,x-] =0, the operator H* has an emergent Zs sym-
metry which means that the ground states of H* are well
approximated by the states |£) = % (|AF) + |AF"))
[47]. Note that

HY|+) = N|+),
H+|_> ~ N|+>7

H™|+)~0, (20
H-|-)~0, (21)

were N is the size of the system. We conclude that if
p(n) = |AF)Y(AF| then p(n + 1) ~ p(n) as this state
is (approximately) in the kernel of L. ,. Therefore, the
Neel states are suitable memory states.

Equation (19) also tell us that any density matrix in
the kernel of L, , may also serve as a memory state since
it is a steady states of the evolution. This would al-
low us to enlarge the number of memories accessible in a
gRNN. In Appendix C we show the existence of a large
number of steady states, and we present a scheme to
prepare a number of them. It’s worth noting, however,
that these memory may have to be distinguished from
one another via global measurements. The questions of
how to efficiently prepare and distinguish these memory
states remain importantly both opened and key in telling
us if a memory quantum advantage can be claimed in
gqRNNs. As it stands, using quantum scars signals that
Rydberg-inspired RNNs may present enhanced memory
since quantum scars are classically simulatable due to
their low entanglement entropy. However, it’s unclear
whether the system can be classically simulated at late
times due to the onset of the thermalization. These ques-
tions are left for future studies.
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FIG. 9. Dependence of memory retrieval on different refer-
ence states. We use a ring of N = 8 Rydberg atoms with
e = o = 0.1, and M = 100,30 samples for the training
and testing sets respectively. The memories are chosen from
a balanced Bernoulli distribution. (a) Shows the memory
retrieval error for three different choices of reference state,
|AF) = |grgrgrgr), |9g) = |gg...9) and |d2) = |grggggrg).
Due to the scaring behavior of |AF), the memory length is
greatly improved. (b) Shows the left-most atom’s entangle-
ment entropy averaged over the M memory instances (Sg).
Saturation of Sg signals the thermalization of the system and
thus a decrease in R.

Quite recently, another proposal to enlarge the num-
ber of memories accessible in a qRNN has been intro-
duced using the emergent scale-free network dynamics
of a melting discrete time-crystal in an Ising chain [25].
The proposal in [25] can be seen as generalization of the
qRNN presented in (16) by dropping the constraint of
the Rydberg blockade. Our results, as well as those in
[25], pose the possibility of having an RNN with a mem-
ory capacity that outpaces that of classical RNNs such
as the Hopfield network [66].

VI. CONCLUSIONS AND OUTLOOK

In this article, we present a quantum extension of
a classical RNN on binary neurons. This implies a
deep connection between controllable many-body quan-
tum systems and brain-inspired computational models.
Our qRNN facilitates the ability to employ the analogue
dynamics of quantum systems for computation instead
of the circuit-based paradigm. We show how features
of the quantum evolution of our qRNN can be used for
quantum learning tasks, and to speedup simulation of
stochastic dynamics. We implement a qRNN using arrays
of Rydberg atoms and show how Rydberg atoms analo-
gously perform biological tasks even in the presence of a
few atoms. This can be explained via the physics of the



system. For example, we showed how weak-ergodicity
breaking collective dynamics in Rydberg atoms can be
employed for long-term memory.

While this article takes a first step forward in connect-
ing controllable quantum systems and neural networks
from a fundamental perspective, several questions remain
unanswered. Firstly, from the first two quantum features
hereby presented, studies of how qRNNs can be used for
quantum error correction in circuit-like quantum com-
puting are warranted. Directly from this work, investi-
gations into advantageous stochastic processes in qRNNs
which are robust to decoherence are enticing. These ad-
vantages will likely emerge from collective behavior of
quantum neurons. Therefore, the field will soon require
a thorough understanding of the collective dissipative
dynamics of neurons in qRNNs, which would also shed
light into rigorous studies of the computational power
of these architectures. Guided by the fact that neural
networks become universal approximators by intercon-
necting many neurons, one may also consider the spatial
and control requirements necessary for universal brain-
inspired quantum machine learning.

Given the vast number of classical computational mod-
els for the brain, there are several immediate research di-
rections. One of these is the exploration of a systematic
way to quantize more biologically realistic models of neu-
ral circuit. A possible starting point for translating dif-
ferent neural circuits would be to exploit key engineering
and fundamental features of different NISQ platforms.
For example, recent experiments using Rydberg atoms in
photonic cavities may provide us with the ability to cap-
ture neural plasticity on qRNNs by arbitrarily tuning the
inter-neural interactions [67]. Likewise, superconducting
circuits have lately been used to encode biologically real-
istic single-neuron models [13]. Along these explorations,
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it will be imperative to establish a variety of methods to
analyze how quantum neural networks recover the clas-
sical protocols in certain limits, as well as the source and
extend of the quantum advantages that each platform
can offer.

Lastly, while our memory encoding scheme in Sec. VD
offers a possibility to encode a binary memory, whether
a higher number of memories can be encoded efficiently
remains an important open question. In Appendix C we
offer a proposal based on the steady states of the effective
dissipative evolution in the pre-thermalization regime in-
troduced by the noise in the qRNN. This already shows
a theoretical number of memories greater than those at-
tainable by the vanilla Hopfield network [66]. However,
distinguishing these memories, or producing Hamiltoni-
ans with a desired memory state in mind, is left for fu-
ture research. It is clear, however, that memory in a
quantum reservoir relies on ergodicity breaking dynam-
ics [25, 27]. Hamiltonian engineering techniques, together
with more general driven Hamiltonians such as those in
[25], may pave the way towards programmable memories
in a qRNN.
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{28 we can derive that P(s|s’) in (8) is given by

N
P(sls) =]

i=1

(1 + sig [ha(s) /o7, — 1])

DO =

where g[z] = Erf[z/v?2] is the error function due to
the Gaussian noise. Regarding the task in Sec. IIT A of
flipping all neurons at once, one could naively think that
this can be done classically by taking the inputs A,, —
00, however, since the noise’s strength o2, scales as the
size of the inputs, one obtains P(s|s’) — va:l 1(1+si/2)
which is a completely random update independent of the
original state.

A transition matrix L obeys Lg|s > 0and ), Ly s =
1. L is said to be classically embeddable if it can be
generated by a continuous Markov process via

d
ZP(1) = K()P(0)

where K is called a generator matrix that preserves the
positive nature of P via the constraint Ky, > 0 for s #
s’, and normalization via the constraint ) Ko = 0.
Applied to out setup, a classically embeddable stochastic
process is one that can transform p;, = Lpo via an RNN
without employing any hidden neurons (i.e. M = N
neurons are used for readout), and in a single step. In
general, determining if a matrix L is embeddable is an
open question, but any embeddable matrix must neces-
sarily satisfy [68]

PO)=1, P(t;) =L, (A1)

[ Lss > detL > 0. (A.2)

From (A.2), it immediately follows that the global “spin-
flip” matrix F defined in (9) is not classically embed-
dable. That is, det FF = 1 and [], Fys = 0, violating
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(A.2). Notice that the impossibility of performing F
without hidden neurons is quite general, and it is not
limited to the stochastic process allowed by (1). More-
over, the number of time-steps needed to achieve F using
m hidden neurons is of order O(2N¥~™) (for details, see
Sec. ITL.A in Ref. [52]).

Similar definitions of embeddability exist in the quan-
tum setting. A stochastic process L is said to be quantum
embeddable if there exist a Markovian quantum channel
& such that

Lys = (s'|E(Is)(s])Is"). (A.3)
A Markovian quantum channel £ is a channel arising
from the time-evolution under a master equation, and
thus £ may include unitary and dissipative terms. As
pointed out in Ref. [52], all classically embeddable
stochastic processes. Moreover, permutations such as F'
in (9) are quantum embeddable since all permutations
are unitary operators.

We highlight that realizing F' is extremely sensitive
to the decoherence arising from spontaneous emission, a
main source of noise in NISQ devices. If v is the decay
rate at which spin |1) relaxes to |-1), one can show that
the unitary evolution leads to the stochastic process F7
where detF? = e=©2"). Notice that whether F¥ violates
(A.2) becomes rapidly inconclusive with an increasing
system size.

Appendix B: Continous-time dynamics for a gRNN

A successful neural circuit model is the integrate and
fire RNN (IF-RNN). In an IF-RNN each of the N neurons
is influenced by pre-synaptic firing rates and produces a
post-synaptic firing rate as an output. Each neuron is en-
dowed with a firing rate s, (t), where n denotes the n'”
neuron. The pre-synaptic firing rates arriving at the n*
neuron are integrated to produces a pre-synaptic current
I,(t). In turn, the neuron produces a firing rate s, in-
fluenced by it’s current and the firings of other neurons.
Additionally, each neuron can receive a temporal input
stimulus A*(t) which affects both the currents and the
firing rates. Generally, the firing rates and currents are
described by non-linear, coupled differential equations of
the form

In = =17 4 G (s(t), I(t), Jum, A™(t))  (B.1)
—7 sy A+ Fn(s(t), I(t), Jum, A™(t))  (B.2)

Sp = —T,
where 77, are relaxation time-constants for the currents
and firing rates respectively. The vector s(t) is defined
as s(t) = (s1(t), ..., sn(t)), with I(t), and A" (t) defined
analogously. The functions G and F' ensure the dynam-
ics are non-linear which gives RNNs their vast computa-
tional complexity. The specific forms of G and F' depend
on the application and relation between the currents and
the firing rates one is trying to capture by the model.

15

The gRNN in Sec. IIIB follows the Heisenberg-
Langevine equations of motion

A=A+ Y (Zof + £1) 14,07

+Y Aot (Fon+ 1) (B3

for any operator A. In (B.3), o;f = |1)(-1],, o;f = (o)1,
and f, is a Langevin noise operator with Gaussian statis-
tics (f,,(£)) = 0 and (fn(t) f,(t')) & 6pnd(t —t'). In the
equation above [A, B] = AB — BC stands for the com-
mutator between matrices A and B.

In order to extract the statistics of the system, one
may choose to look at the dynamics of two different local
observables’ expectation values. For example, the equa-
tions of motion for expectations of the local Pauli opera-
tors o = |-1) (1] +]1)(-1]n, and 0¥ = i|-1) (1], —3|1){-1|,
are given by

0 = 2 on +iH,08) (B4

(08) = =L (o¥) + 3 ([H(1), 0Y))

; (B.5)

with H(t) specified by (5). The expectation values are
calculated in the quantum-mechanical sense such that
for an operator A, (A) = Tr(Ap), and terms linear in f,
cancel out. Notice that the commutators in equations
(B.4)-(B.5) play the role of the functions G and F in

(B.1)-(B.2).
For o7, (B.3) gives
. . Q -
Jrzz = _7/20—77, - 505/7, + 7]1/2 - 2fn0n . (BG)
This can be integrated out to give
t , Q
o7(t) — 07,(0) = / dt'e= /2= (-203@’)
0
S @) +a/) ()
We choose to start the network at (oZ) = —1 for all n.

We plug this back into (B.5), and we take the expectation
values to eliminate terms linear in f,. We obtain

K Q N ¢ /
<0’%> =— % <O’Z> + b) Z Jnm/o dt'e—7E=t") <U£(t)0%(t/)>
m=1

02

+ 8,00 (o) = [ o) e

(B.8)

Similar equations can be found for (o). Equation (B.8)
tells us that (c¥) depends on past statistics, and thus
our network has a memory time bounded by 1/~. Let J
denote the matrix J,.,,. For vt > 1, we can extend the



lower bound of integration to —oo. Using the approxi-

mation fioo e V=) F()dt &~ —~ 1 f(t), we obtain
(o3) = =3 (o) — Al (o8)
_ 2 > Tum (ohol,) (B.9)
27 — nm n-m
ol 2
% — _ (L Y AL T
o) == (F+7 ) o)+ a7 o)
— % a Jnm (ohol) (B.10)

thus leading to (11).
dence is implied.

Let us now define s,(t) = (o¥(t)) and I,
(cX(t)) so that s(t) = (s1(t),..., )
(I1(t), ..., In(t)). We see that (B. 10 -(B.9) match (B.1)-
(B.2) where

In (B.10)-(B.9), the time depen-

Q v o 02
F, = A'rLI o Inm (InSm 3 =2 -
(B.12)

Equations (B.9)-(B.10) allow us to naturally interpret
(o¥) as the firing rate of the n'" neuron, and (o%) as
the current. That is, the rate of the pre-synaptic neuron
(o}) amounts to a current in the post-synaptic neuron
(oF) that drives its rate (o¥).

Equations (B.9)-(B.10) comprise a system of coupled
quadratic differential equations, where the quadratic
terms arise from the nontrivial commutation relation of
the Pauli-operators [0, 05,] = i6ag€as,0) Where €44+ is
the Levi-Cevita symbol. These quadratic terms in (B.9)-
(B.10) make a qRNN a powerful computational system
similar to how the functions G and F' make an RNN a
powerful computational system.

Appendix C: Memory and quantum many-body
scars

As described in the main text, and more thoroughly
discussed in Ref. [47], the scaring behavior of the kicked
PXP-model is robust to fixed imperfections in the drive.
The robustness persist even for random noise. Fig. 10
exemplifies the overlap with the initial condition for a
noisy, kicked PXP-model for different values of € and
Oin, which is a natural extension of the model in [47].
The Neel state |[AF) exhibits robust revivals invariant of
o2 . This fact can be explained with the effective theory
presented below.

To understand the robustness of the quantum scaring
behavior in the qRNN it is instructive to seek an effec-
tive description of the system’s evolution. Recall that a
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FIG. 10. Fidelities with the initial state after evolving for n =
100 cycles of noisy, kicked dynamics. The fidelity is defined
as F = |(¢|¢(2n7))|* where |¢) is the initial state. Here,
we used L = 8 Rydberg atoms and define |AF) = |grgrgr),

l99) = 199999999), and |d2) = |grggggrg). The Neel state
|AF) is robust to the noise in the drive since this state is

invariant to decoherence up to second order in ¢;.

cycle is defined as two imperfect applications of .. The
Hamiltonian in (16) produces the single-cycle unitary

e_i€2Ne_i£1XTNXT
(C.1)
where we use the fact that y, is both Hermitian and

unitary. Using the Baker-Campbell-Hausdorf formula to
second order in ¢;, we can rewrite (C.1) as

—iea N —iel N
U‘r(€17€2) =e Xr€ ! Xr =

i(62N+61X7NXT)

UT(El,EQ) ~e (02)

A state p(n) evolves to p(n+1) = U (€1, €2)p(n)Ul (€1, €2)
after a cycle. Expanding this to second order in ¢ and

using the fact that (ex) = € and (ex€;) = 02, k1, We obtain
the average evolution of the state

—p(n) = —ic[H™, p(n)]
+ % (N = 505 plo) )
+oi, (XTN X p(n) X N X7

7%{)(7']\72)(7'3 p(n)}) .

p(n+1)

(C.3)

Here, {A, B} = AB+ BA denote commutators and anti-
commutators respectively. We define H+ = N+ XTN Xr-
For times T' >> 27, we can take (C.3) to be a Lindbladian
evolution since the noise satisfies the Markovian proper-
ties. We can rewrite (C.3) as

p= ‘Ce,o(p) (04)
€ o? o?
)= —i—[HT. J+ 22Dt () 4+ 22D (. .
Leol) = =it ]+ 22D () + Z2D7() (C5)
1
D¥()y=H* . H* + i{HiHi, 3 (C.6)
where H~ = N — x;Nx,. For 7 = 1.517, the Neel states

are approximately simultaneous eigenstates of XTN Xr
and N with eigenvalues N for a system of size N. Thus,
they are simultaneous eigenstates of H* and thus
Leo(JAFYAF']) =~ 0.

Leo([AF)(AF]) ~ 0, (C.7)
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FIG. 11. Number of zero eigenvalues of the super-operator
L. - as a function of the system size. L., describes the effec-
tive dynamics of a qRNN composed of kicked Rydberg atoms.
The number of zeros surpasses the linear number of memories
available in the Hopfield network.
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FIG. 12. Empirical memory states pss(s) obtained from evolv-
ing the initial states |s) which are basis states of the Rydberg
blockaded Hilbert space. Ny, denotes the number of memories
found using this procedure. The different plots show the fi-
delities F'(pss(s), pss(s’)) between different steady states. The
red squares delimit the basis states with different number of
Rydberg excitations starting with the zero excitation sector
on the top-left square and ending with N/2 excitations sector
on the bottom-right square. Red arrows denote initial con-
figurations for each of the N, memories found empirically.
While this procedure produces a number of memory states
smaller than the number of zeros of L ,, N5 > N, a bound
unattainable by common classical RNNs.

Therefore, the Neel states are steady states of the evo-
lution. It is worth noting that L., captures the pre-
thermal evolution. Ultimately, higher order effects in
€ take over and lead to the thermalization of the Neel
states similar to the results in [47] and as seen in Fig.
9. Nonetheless, the thermalization of the Neel states is
delayed relative to other states due to (C.7).

Moreover, any density matrix pss in the kernel of L
can be used as a memory state. Expressing L., as a
super-operator on density matrices, we can look at it’s
spectrum which is in general complex. Fig. 11 shows
the number of zero eigenvalues of L., for different sys-
tem sizes N. It’s evident that the number of zeros scales
larger than linearly on N. Therefore, a qRNN evolving
under £, , may have a larger number of memory states
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than a classical RNN. To prepare these states, we propose
to initialize the qRNN on different string configurations
|s) satisfying the Rydberg blockade constraint. For ex-
ample, one can have s = rgg..g while s = rrg...g is not
allowed. The system is left to evolve for some time Ty
to reach a steady state pss(s) which can then be used
as memory. Different initial strings can lead to different
steady states as exemplified in Fig. 12. Fig. 12 shows the
fidelity between pss(s) and pss(s’) defined by the trace
norm

2

F(pus s = (T V000V )
(C.8)

The red arrows in Fig. 12 indicates the different memory
states obtained by this scheme. It’s worth noting that
this scheme offers us an empirical number of memories
NE that scales at most as ¢V, where ¢ ~ 1.62 is the
Golden ratio, since that’s the number of basis states re-
specting the Rydberg blockade. We see that N5 > N
in all instances, a bound unattainable by classical RNNs
such as the Hopfield network [66]. However, this scheme
relies on an efficient way to recognize the different mem-
ory states through measurements, a question that we
leave for future investigations.

Appendix D: Experimental values, and numerical
simulations

In this section we outline the details for the experi-
mental values used for the numerical simulation of Sec.
V. Firstly, for simulating Rydberg atoms we use the ex-
perimental values in Ref. [38] for concreteness ( see Fig.
13). In this experimental platform, a two-photon tran-
sition couples |g) = [651/2) and |r) = [505;/5) via an
off-resonance state |6P;/3). For this setup and for short
periods of time for the simulation (< 10 us), the dom-
inant source of decoherence are photon-scattering pro-
cesses out of the intermediate state. Using the fact that
the intermediate state is off-resonance, we can adiabati-
cally eliminate it to produce an effective decay operator
(see Sec. IV.B in Ref. [69])

- v/ 7420
Teff = o5 19) (Qa20(g| + Q013(r)

(C.1)
which is an effective spontaneous emission from |r) to |g)
accompanied with decoherence on the ground state.

We chose = 4.2 MHz. Additionally, a pair of |r)
atoms interact with a strength Cs = 862.9 GHz(um).
We used the PairInteraction python package from
[58] to determine that a pair of |r) = |70S;/;) and
|r') = |7351)2) has a similar interaction strength of

Crm' = —836.6 GHz(um)® ~ —Cs. We used this inter-
action to model the inhibitory and excitatory neurons
in Sec. VA (V, =V, Van/Q = —V). We denote

nQ,nq
V = Cg/af where ag is tuned to give us different nearest
neighbor interaction strengths.
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FIG. 13. Schematic of Rydberg atoms as used in Ref.
[38]. The ground state |g) = [5S1/2), and the Rydberg
state |r) = |50S1,2) are coupled via a two-photon transi-
tion. An off-resonance 420 nm laser (Q420 = 27 x 160 MHZ,
0 = 27 x 1 GHz) couples |g) with the intermediate |6P5/2)
state, and a 1013 nm laser (Qi013 = 27 x 50 MHz couples
the intermediate state and |r) creating an effective drive be-
tween |g) and |r) at rate Q = 242001015 = 27 x 4 2MHz.
Four spontaneous emission processes are at play: emission to
nearby Rydberg atoms due to black-body-radiation at a rate
vBBR = 27/(250 us), photon-scattering out of the intermedi-
ate state into the ground state at rate ya20 = 27/(20 us) and
into the Rydberg state at rate y1013 = 27 /(150 us), and spon-
taneous emission from |r) to |g) at rate ysg = 27/(375 us).
Since vBBr + YsE + Y1013 = 27/(75 ps) is smaller than ~azo,
the leading source of decoherence for short periods of time
(< 10 ps) is due to the yaz0 decay.

Next, we explain and report the numerical parameters
chose for each of the biological tasks.

1. Multitasking

Our scheme to encode inhibitory and excitatory neu-
rons relies on approximating (13), and as a result one
needs the “inhibitory neurons” to be as far away as pos-
sible from each other such that they do not interact pos-
itively with each other. For this reason, this task uses
a 1D open chain of atoms separated by a distance ag
with the inhibitory neurons being at opposite ends of the
chain and in the bulk with maximum spacing from each
other. The input neurons are chosen to be the two at one
end of the chain, while the output neuron is chosen to be
at the opposite end of the chain. This choice was made
to ensure that the input neurons interact with the whole
chain before readout.

The inputs are uniformly sampled from {0,27} MHz
with added Gaussian noise o;, = 0.1, and all At sam-
pled from a Gaussian with average (At) € [0, 5] (us) and
standard deviation o;,. For each size of the network and
number of inhibitory neurons, We choose ag such that
the separation between inhibitory neurons d,,., results
inV/d?,,, = 102, For example, for the case of 4 neurons

max
and two inhibitory neurons on either end, note that one
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needs V/3% = 1072, which amounts to choosing V = 7.2
MHz. Note that this value of V is of the order of mag-
nitude of 2 = 4.2 MHz and so the qRNN in this case is
well into the non-classical regime.

The learnt parameters in the output linear map Weut
which in this case is a matrix in R31*! with the last row
representing a bias term. Note that the dimension of the
map is so because only one neuron is measured but three
functions have to be fitted.

2. Decision making

In classical RNNs tasks such as decision making and
working memory require connectivity between all neu-
rons. Since our connectivity is limited by physical con-
straints, an open 2D square lattice structure was cho-
sen to prevent neurons from being isolated from the rest.
Moreover, a 2D square lattice is experimentally friendly.
In our case we use an open 2 x 3 lattice with the two
input neurons being at the top-left corner of the chain,
and two output neurons being the bottom-right corner.
Again, this architecture was chosen so that the input neu-
rons have to interact with the rest of the system before
readout. We use V' = 27 x 10 MHz for our simulations,
and choose At = 27/V as the time the inputs are turned
on as that’s the timescale in which the input atoms en-
tangle with the rest of the chain.

The inputs are uniformly sampled from
{0,7/2,m,3n/2,2r} (MHz) with added Gaussian
noise g;, = 0.1. In this task, the time that the stimuli
are turned on At is fixed to a mean of (At) = 0.1 us and
with added Gaussian noise o;, = 0.1. In this task we
optimize over the linear output map W°", a matrix in
R!'*1:2 gince one function is fitted and two neurons are
measured. Additionally, we train the output time tyq:
after the stimuli are turned off and before the network is
probed to come up with an input that satisfied (15). To
do the optimization, we make use of the Nelder-Mead
algorithm [70].

In order to compute the psychometric response plotted
in Fig. 6B, we measure the expectation values on the two
output neurons and produce the vector r(A Ar) =
((08401), (0Yu42), 1) which depends on the inputs A{", as
well as the temporal parameters (At, t,,¢). We then com-
pute yPU(A,) — WOU - p(AT) and (WO, ) are
optimized such that y°**(A{%) ~ y'"9 in 15. The op-
timization is done by generating about 40,000 different
values of Aj" of different levels of contrast |A]" — A%?|
ranging from 0 to 1 MHz. Once the optimization is done,
we look at the loss towards A%", which is obtained as the
error in classifying A%® as greater than A% when indeed
A > A" The error is quantified using the mean-
square loss in (4).



3. Working memory

This task’s setup is identical to the decision making
task except that the two inputs are separated by a delay
time ¢geiay. The values of the interaction strength V' used
for Fig. 7 are V =27 x 10 MHz and V = 27 x 0.1 MHz
corresponding to V/ > 1 and V/Q2 < 1 respectively.
The former of which sets us in the Rydberg blockaded
regime while the later is not. In this task, the times At
and tqeiqy are fixed up to an added Gaussian with noise
oin = 0.1. In this task we optimize over the linear output
map W°ut, a matrix in R'*12 since one function is fitted
and two neurons are measured.

4. Long-term memory

Although quantum scars are known to exist in other
geometries and dimensions [71], for this task we use a
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1D chain of Rydberg atoms since for this case quan-
tum many-body scars have been experimentally observed
[35, 46]. Furthermore, our chain has periodic bound-
ary conditions to avoid edge-effects. Since we know
that scars are robust to decoherence, we set 400 = 0
so that we can evolve our states for longer periods of
time. The number of cycles n in Fig. 9 corresponds
to n evolutions under the PXP hamiltonian for a time
27 = 1.51 x 7Q~ 1. In this case, we take V > Q and
renormalized @ = 1. The noisy field in (16) is sampled
according to € ~ N(u = 0.1,0 = 0.1). The input m is
sampled as a fair random coin. Lastly, after each number
of cycles n, the only trained parameter is Wout € RI+1x1
since only one atom is probed to calculate an answer as
to the input m.
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