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Abstract 
We present a new approach for debugging two router 
configurations that are intended to be behaviorally equivalent. 
Existing router verification techniques cannot identify all differences 
or localize those differences to relevant configuration lines. Our 
approach addresses these limitations through a modular analysis, 
which separately analyzes pairs of corresponding configuration 
components. It handles all router components that affect routing 
and forwarding, including configuration for BGP, OSPF, static routes, 
route maps and ACLs. Further, for many configuration components 
our modular approach enables simple structural equivalence checks 
to be used without additional loss of precision versus modular 
semantic checks, aiding both efficiency and error localization. We 
implemented this approach in the tool Campion and applied it to 
debugging pairs of backup routers from different manufacturers 
and validating replacement of critical routers. Campion analyzed 30 
proposed router replacements in a production cloud network and 
proactively detected four configuration bugs, including a route 
reflector bug that could have caused a severe outage. Campion also 
found multiple differences between backup routers from different 
vendors in a university network. These were undetected for three 
years, and depended on subtle semantic differences that the 
operators said they were "highly unlikely" to detect by "just 
eyeballing the configs." 
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1 Introduction 

Networks today are manually configured through low-level 
configuration directives at individual routers that enforce 
complex policies for access control and routing. Manual 
programming often introduces subtle configuration errors that 
induce costly and disruptive outages [7, 19, 23, 25, 27, 30]. While 
researchers have developed many verification tools that can 
analyze network configurations to find bugs [1, 3, 4, 12, 13, 17, 
18, 21, 24, 29, 32–34], there has been less focus on helping 
operators to understand and fix the identified bugs. 

This paper presents an approach to router configuration 
debugging in the context of a specific, but common, verification 
task: checking behavioral equivalence of two individual router 
configurations. This task arises often in large networks. First, it is 
common for pairs of routers from different manufacturers (to 
avoid replicating implementation bugs) to serve as backups for 
one another in case of failure. Whenever one router in the pair is 
updated, the other must be consistently updated, which is non-
trivial if they use different configuration formats. A second 
important use case is router replacement. As shown in (§5), 
routers are periodically upgraded from one manufacturer (e.g., 
Juniper) to one another (e.g., Arista) with better features, cost, or 
performance. Since the Arista configuration has to be manually 
translated from the Juniper, the operation is difficult and perilous. 
The first use case shows the need for behavioral equivalence 
checking in space, while the second is an example of the need for 
such checking in time. 

Existing tools for network control-plane verification, such as 
Minesweeper [3], can be used to verify behavioral equivalence of 
two router configurations. However, while these tools can detect 
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equivalence violations, they provide very little help in debugging 
such errors. In particular, existing tools have two key limitations 
that our work aims to address. First, they provide only a single 
counterexample and hence identify only a single behavioral 
difference between the two configurations. Second, the provided 
counterexample consists of a concrete packet whose forwarding 
exhibits a behavioral difference in the two configurations, leaving 
to the operator the difficult tasks of identifying the set of packets 
that is impacted and the specific configuration lines that caused 
the difference. We call the first challenge header localization and 
the second text localization. 

We present a concrete example of header and text localization in 
§2. Figure 1 shows two example configuration snippets from real 
configurations for a Cisco and Juniper router, and Table 2 shows the 
differences output by our tool. The first few rows of each difference 
represent header localization and the last three rows represent text 
localization. While the configurations used in Figure 1 are small, 
they have subtle behavioral differences. Further, many enterprises 
have large route maps and ACLs of thousands of lines (see §5.1). 

Our tool, Campion, performs localization through a novel 
modular approach. Rather than representing the behavior of each 
router configuration monolithically, for example as a set of SMT 
constraints [3], Campion compares pairs of corresponding 
components between the two configurations (route maps, ACLs, 
OSPF costs, etc., see Table 1) separately. Performing equivalence 
checks on a per-component basis immediately helps: every pair of 
components that are not behaviorally equivalent is reported, and 
each such violation is by construction localized to the relevant 
configuration components. 

In the context of modular checking, two configuration 
components !1 and !2 are considered equivalent if any 
configuration containing !1 could instead use !2 without changing 
the configuration’s behavior. How should each pair of components 
be checked for equivalence? Observe that there are two distinct 
types of configuration components from the point of view of 
modular checking. 

Many configuration components have the property that any 
structural difference implies a possible behavioral difference. For 
example, two OSPF link costs are only guaranteed to be behaviorally 
equivalent, for all possible configurations, if they are identical. The 
same is true for static routes in two configurations. For these 
configuration components, we compare them with a simple 
structural equivalence check that we call StructuralDiff. This check is 
efficient, reports and localizes all behavioral differences — all 
structural mismatches — and makes it trivial for users to understand 
the error. On the other hand, a few configuration components, 
specifically 
ACLs and route maps, encode sophisticated policies, so there are 
many possible structures for the same behavior, especially when 
considering multiple vendors. For example, Juniper and Cisco route 
maps are structured in very different ways. For these configuration 
components, we compare them with a semantic equivalence check 
that we call SemanticDiff. To identify all differences, we model the 
two components !1 and !2 as functions (e.g., an ACL is a function 

from a packet to a boolean). Then, for each path "1 through !1 and 
"2 through !2, we check whether there is some input that traverses 
along "1 and "2 through their respective components and exhibits a 
behavioral difference. This algorithm is conceptually similar to prior 
approaches to checking equivalence in C functions [26] and network 
data planes [9]. To our knowledge ours is the first approach that can 
precisely check equivalence of network control-plane structures, 
notably route maps. 

The SemanticDiff algorithm localizes each behavioral difference 
to a specific path through each component. To help users 
understand the difference, we also introduce a novel algorithm 
called HeaderLocalize that localizes each difference to the relevant 
space of inputs. Specifically, SemanticDiff produces the impacted 
set of 

Feature Check Used 
ACLs SemanticDiff 

Route Maps (BGP, Route Redistribution) SemanticDiff 
Static Routes StructuralDiff 

Connected Routes StructuralDiff 
Other BGP Properties StructuralDiff 

OSPF Properties (costs, areas, etc.) StructuralDiff 
Administrative Distances StructuralDiff 

Table 1: Components supported by Campion and the check used 
for each. 

inputs # as a binary decision diagram (BDD). Given this BDD and 
the original configurations, HeaderLocalize produces a 
representation of all destination IP addresses in # in terms of the 
constants (prefixes or prefix ranges) that appear in the 
configurations, and does so in a minimal way. 

Perhaps surprisingly, Campion is protocol-free: it does not need 
to model or reason about routing protocols like BGP and OSPF. 
Our modular approach obviates the need for such reasoning, as 
equivalence of each corresponding pair of configuration 
components implies that those protocols will behave identically 
on the two routers. We formally prove this theorem, thereby 
justifying our approach. A potential downside of our modular 
approach is that it can produce false positives: it is possible for 
two configuration components to cause a behavioral difference 
for some configuration, and hence be flagged as erroneous by 
Campion, but still be behaviorally equivalent in the context of the 
two given router configurations. However, our experiments 
indicate that false positives are rare. Intuitively this makes sense 
because configurations are created and maintained in a modular 
fashion, with different aspects of the configuration responsible 
for different aspects of the behavior. 

We evaluated Campion on the network configurations of a 
large cloud provider and a large university campus. We highlight 
two key results, with details in §5. First, the operators of the cloud 
provider were in the process of replacing 30 Cisco routers with 
Juniper routers due to a corporate policy decision. This required 
them to manually translate the original Cisco IOS configurations 
to JunOS. They used Campion to proactively check equivalence, 
identifying four configuration errors that they fixed before they 
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could cause service disruption, including one error that would 
have been a severe outage. Second, the university network has a 
pair of core routers and a pair of border routers from different 
device vendors and intended to be backups of one another. 
Campion identified and localized configuration errors across 
these two pairs. These errors have been present in the 
configurations for nearly three years, and the operators said that 
they were "highly unlikely" to detect them by "just eyeballing the 
configs." Campion only takes a few seconds to compare a pair of 
routers. Our work does not raise any ethical issues. 

To summarize, the contributions of this paper are: 
• A modular approach that identifies all behavioral differences 

between two configurations and localizes them to the relevant 
configuration lines (§3). For each configuration component, we 
determine whether a full semantic analysis (SemanticDiff) is 
needed or a simple structural equivalence check (StructuralDiff) 
suffices (see Table 1). We also describe a novel algorithm for 
localizing the relevant inputs (HeaderLocalize). 

• A theorem (§3.4) that shows our modular approach to 
equivalence checking of configuration components suffices to 
ensure router behavioral equivalence, despite not reasoning 
about the network protocols. 

• A tool, Campion (§4), that localizes behavioral differences 
between router configurations. Campion supports all of the 
routing and forwarding components modeled by Minesweeper. 
Campion is available as open-source software.1 

• An experimental evaluation of Campion on routers from a large 
cloud vendor and a university network. (§5). 

2 Campion by Example 

This section shows two examples of Campion’s output that 
identified behavioral differences in routers from a large university 
network. We present one case involving differences between BGP 
route maps, which Campion identified and localized using 
SemanticDiff and HeaderLocalize, and a second case involving 
differences in static routes, which Campion identified and localized 
using StructuralDiff. In both cases, we also demonstrate the 
advantages of Campion by comparing its output to that of 
Minesweeper [3], a state-of-the-art network configuration 
verification tool. 

2.1 Route Map Diffs via Semantic Checks 

Figure 1 shows simplified versions of route maps from two core 
routers in a large university network (see § 5.2). The two route maps 
are intended to be behaviorally identical, with the first written for a 
Cisco router and the second for a Juniper router. Both 
configurations define a prefix list NETS to match a specific set of IP 
prefixes (lines 1-2 in Figure 1(a) and 1-4 in Figure 1(b)), as well as a 
community list COMM to match the community tags 10:10 and 
10:11 (4-5 in Figure 1(a) and 5 in Figure 1(b)). The remainder of 
each snippet defines a route map POL for each router, which rejects 

 
1 https://github.com/atang42/batfish/tree/rm-localize 

route advertisements that match prefixes from NETS or are tagged 
with communities from COMM and accepts all other advertisements 
(7-12 in Figure 1(a) and 6-21 in Figure 1(b)). 

Despite the superficial similarity of the two configurations, there 
are large behavioral differences. Campion uses SemanticDiff and 
HeaderLocalize to find and localize these differences. Table 2 shows 
Campion’s output when given the two route maps in Figure 1. The 
output has two results, each of which represents a distinct 
configuration error. For each error, Campion identifies all the route 
advertisement prefixes that are treated differently by the two route 
maps, namely route advertisements for prefixes that are in the set 
Included Prefixes but not the set Excluded Prefixes. We call 
the process of identifying and representing all problematic inputs 
header localization. Further, Campion also shows the action that 
each route map takes on these advertisements as well as the 
configuration lines responsible for that action. We call the process 
of identifying all relevant lines of the configuration text localization. 

In the output shown in Table 2(a), the Action and Text rows 
indicate that advertisements for the relevant prefixes match the 
NETS prefix list in the Cisco route map and are therefore rejected, 
but these prefixes fall through to the last term in the Juniper route 
map and are accepted. Careful inspection reveals the problem: in 
the Cisco route map, NETS matches prefixes with lengths between 
16 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

(a) Excerpt from the Cisco route map 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

ip prefix-list NETS permit 10.9.0.0/16 le 32 
ip prefix-list NETS permit 10.100.0.0/16 le 
32 ! 
ip community-list standard COMM permit 10:10 
ip community-list standard COMM permit 10:11 
! 
route-map POL deny 10 
match ip address NETS 

route-map POL deny 20 
match community COMM 

route-map POL permit 30 
set local-preference 30 

prefix-list NETS { 
10.9.0.0/16; 
10.100.0.0/16; } community COMM 

members [10:10 10:11]; policy-
statement POL { term rule1 { from 
prefix-list NETS; then reject; 

} term rule2 { from 
community COMM; then 
reject; 
} term rule3 { then { 
local-preference 30; 
accept; 

} 
} 

} 
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(b) Excerpt from the Juniper route map 

Figure 1: Cisco and Juniper route maps with subtle differences 

and 32, while in the Juniper route map it only matches prefixes 
with lengths of exactly 16. Thus, a prefix like 10.9.1.0/24 is 
matched by the Cisco route map but not by the Juniper route 
map. 

The second result that Campion produces (Table 2(b)) 
identifies a second, unrelated configuration difference. The 
Included Prefixes and Excluded Prefixes rows show that 
this difference occurs for advertisements of all prefixes other than 
those in the ranges of the NETS prefix list. While Campion can 
find all differences and identify all relevant IP prefixes, for other 
fields of the route advertisement it currently provides a single 
example. In this case, the output indicates that this difference 
occurs when the route advertisement contains only the 
community 10:10. The Action and Text rows show that the 
Cisco route map matches the advertisement against the 
community list COMM and rejects it, while the Juniper route map 
again falls through to the last rule. This difference reveals a subtle 
error: COMM in the Cisco route map matches route advertisements 
containing either the community 10:10 or 10:11, whereas COMM 
in the Juniper route map erroneously matches only 
advertisements tagged with both communities. 

Campus network operators confirmed both of the above 
behavioral differences as configuration errors. Further, the errors 
are subtle and have existed since at least July 2017. The network 
operator commented, "your config-analysis tool is great. It’s 
highly 
unlikely anyone would detect the functional discrepancies just by 

Included 

Prefixes 
10.9.0.0/16 : 16-32 
10.100.0.0/16 : 16-32 

Excluded 

Prefixes 
10.9.0.0/16 : 16-16 
10.100.0.0/16 : 16-16 

Policy Name POL POL 
Action REJECT SET LOCAL PREF 30 

ACCEPT 

Text 
route-map POL deny 10 
match ip address 
NETS 

rule3 { 
then { 
local-preference 
30; accept; 

} 
} 

(a) Difference 1 

 cisco_router juniper_router 

Included 

Prefixes 0.0.0.0/0 : 0-32 

Excluded 

Prefixes 
10.9.0.0/16 : 16-32 
10.100.0.0/16 : 16-32 

Community 10:10 
Policy Name POL POL 

Action REJECT SET LOCAL PREF 30 
ACCEPT 

Text route-map POL deny 20 
match community COMM 

rule3 { 
then { 
local-preference 
30; accept; 

} 
} 

(b) Difference 2 

Table 2: Campion result when checking equivalence of 
configurations in Figure 1 using a Semantic Check 

Route received (Cisco) Prefix: 10.9.0.0/17 
Route received (Juniper) Prefix: 10.9.0.0/17 

Packet dstIp: 10.9.0.0 

Forwarding Juniper router forwards (BGP) 
Cisco router does not forward 

Table 3: Minesweeper result when checking equivalence of 
configurations from Figure 1 

eyeballing the configs." As described in §5.2, Campion found 
additional differences that have been removed here to keep the 
example simple. 

Comparison with Minesweeper. Minesweeper [3] builds a logical 
representation of the network behavior, modeling the routing 
process and forwarding behavior. It then uses a satisfiability modulo 
theories (SMT) solver to answer verification queries. Minesweeper 
supports a behavioral equivalence check of individual routers, but it 
does so by checking that the logical representation of both routers’ 

entire 

configurations are equivalent. A major drawback of this monolithic 
approach is the difficulty to diagnose the source of the error — any 
identified difference could be caused by BGP configuration, OSPF 
configuration, ACLs, or static routes. 

Prefix 10.1.1.2/31  

Next Hop 10.2.2.2 None 
Admin. Distance 1 None 

Text ip route 10.1.1.2 
255.255.255.254 10.2.2.2 None 

Table 4: Campion result when checking equivalence of static routes 
using a Structural Check 

 cisco_router juniper_router   cisco_router juniper_router 
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In order to make the comparison more fair, we adapted 
Minesweeper to only check behavioral equivalence of two route 
maps. Specifically, Minesweeper checks that its logical 
representations of the two route maps are equivalent: whenever 
they receive the same set of route advertisements, they produce 
the same forwarding behavior for all packets. Table 3 shows the 
output of this modified version of Minesweeper on the above 
example. There is a single counterexample indicating that, when 
both routers receive a route advertisement with prefix 
10.9.0.0/17, they will produce different rules for forwarding 
packets with destination IP address 10.9.0.0: the Juniper router 
will forward them, while the Cisco router will not. 

Minesweeper’s output identifies a behavioral difference 
between the two route maps that corresponds to Campion’s 
output shown in Table 2(a). However, Minesweeper’s output is 
lacking in several important ways. (1) It only provides information 
about a single behavioral difference. However, as explained 
earlier, there are actually two unrelated configuration differences 
between these route maps (Table 2(a) and Table 2(b)). (2) For the 
error that Minesweeper does identify, it only provides a single 
concrete example, with a specific route advertisement and 
destination IP prefix. To fully fix the problem of unintended 
differences between the two route maps, operators must 
understand the set of all route advertisements that produce this 
behavioral difference. Having this set explicitly also provides an 
indication of the scope of the problem. (3) Minesweeper provide 
no information about what parts of the route maps are 
responsible for the behavioral difference. 

It is possible to modify Minesweeper again, this time to 
produce multiple concrete examples. This can be done by simply 
querying the SMT solver multiple times, each time including 
additional logical constraints that disallow previously generated 
counterexamples. This approach could potentially alleviate the 
first two issues described in the previous paragraph, but our 
experiments with this approach illustrate that it is not very 
effective. On the above example, running Minesweeper does 
provide counterexamples from both classes of differences from 
Table 2 but it takes 7 counterexamples in order to have at least 
one for each prefix range that is relevant for Difference 1. Further, 
the approach is fragile: when we replaced the number 32 in the 
second line of the Cisco configuration (Figure 1(a)) with 31, it took 
27 counterexamples for Minesweeper to provide a violation of 
Difference 1 instead of Difference 2. 

2.2 Static Route Diffs via Structural Checks 

Campion detects differences in configuration components such as 
static routes and OSPF costs using a structural equivalence check. 
For example, for static routes Campion simply considers the set 

Packet dstIp: 10.1.1.2 

Forwarding Cisco router forwards (static) 
Juniper router does not forward 

Table 5: Minesweeper result when checking equivalence of static 
routes 

of static routes in each router and identifies all structural 
differences: cases where a route is present in one set but not the 
other, or where a route is present in both but with different 
attributes such as the next hop and administrative distance. This 
technique illustrates another advantage of our modular approach. 
Because we are checking configuration components in isolation 
from the rest of the configurations, for many components a simple 
structural check is as precise as a behavioral check via a semantic 
representation, while providing better localization and 
understandability for users. 

An example of an output produced by Campion when checking 
static routes is shown in Table 4. This output shows that in the Cisco 
router, a static route exists that sends packets destined to 
10.1.1.2/31 to 10.2.2.2, but there is no such route in the Juniper 
router. Differences like this were found in both the university and 
cloud networks. 

Table 5 shows the output that Minesweeper produces for the 
same example. Minesweeper can identify that the forwarding was 
caused by a static route, but it does not determine the prefix of the 
static route, the other relevant fields like the administrative 
distance, or the lines of the configuration. Hence operators have to 
search through a potentially large set of static routes and determine 
which one would affect the routing of packet to a 10.1.1.2. 
Further, if there were multiple static-route differences, 
Minesweeper would only find one, while Campion would identify 
all. 

3 Design and Algorithms 

We describe Campion’s design and core algorithms. Campion’s 
overall algorithm for identifying and localizing behavioral 
differences between configurations !1 and !2 is as follows: 

 

1 func ConfigDiff (!1, !2) 
2 result ← [ ] 
3 pairs ← MatchPolicies(!1, !2) 
4 for ("1, "2) ∈ pairs do 
5 differences ← Diff("1, "2) 

6 for % ∈ differences do 

7 result ← result.append(Present(%, {!1,!2})) 
8 return result 

 
This algorithm consists of three main parts: 

(1) The corresponding components (ACLs or BGP route maps) for 
!1 and !2 are paired up by the MatchPolicies function. This 
can be done with heuristics such as matching components by 
name or matching components that relate to the same 
neighboring node, or this information can be provided by the 
user. 

(2) For each component pair, the Diff function invokes either 
SemanticDiff or StructuralDiff to produce a set of differences, 
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each of which can include a set of inputs, the actions taken 
by each component, and the locations in the configurations. 

(3) The Present function formats the results for output to the 
user, including invoking HeaderLocalize on the results of 
SemanticDiff in order to produce an understandable 
representation of the set of inputs. 

We now describe SemanticDiff, HeaderLocalize, and 
StructuralDiff in more detail. We then discuss the general 
applicability of SemanticDiff and StructuralDiff and show how our 
modular approach can find and localize behavioral differences 
across entire router configurations. 

3.1 SemanticDiff 

SemanticDiff takes a pair of configuration components as input 
and returns a list of all behavioral differences. The same basic 
algorithm applies to both ACLs and route maps. Each difference 
is a quintuple of the form: (&,'1,'2,(1,(2). In this quintuple, & refers 
to a set of inputs to the components, represented as a logical 
formula over message headers. For dataplane ACLs the inputs are 
sets of packets, and for route maps they are route 
advertisements. '1 and '2 are the respective actions taken by the 
two components when given an input from &. The action for ACLs 
is either accept or reject, but for route maps the accept action can 
also set fields such as local preference. (1 and (2 are the 
respective lines of text from the two components that process 
inputs from & and result in '1 and '2. 

The SemanticDiff algorithm has two main steps. First, for each 
configuration component, the space of inputs is divided into 
equivalence classes, based on their paths through the 
component. Both ACLs and route maps can be viewed as a 
sequence of if-then-else statements, so two inputs are in the 
same equivalence class if and only if they take the same set of 
branches through these statements. Each equivalence class is 
represented symbolically as a logical predicate on the input 
(either a packet header or route advertisement). Our 
implementation uses BDDs to represent these predicates. Each 
equivalence class is also associated with the text lines that are on 
the corresponding path as well as the action taken. This step 
consequently produces two lists of triples: 

)1 = [(&1,1,'1,1,(1,1), (&1,2,'1,2,(1,2), . . . , (&1,!,'1,!,(1,!)] 
)2 = [(&2,1,'2,1,(2,1), (&2,2,'2,2,(2,2), . . . , (&2,!,'2,!,(2,!)] 

Figure 2 shows the equivalence classes for the example route 
map from Figure 1(a). NETS and COMM correspond to the names 
of the attribute filters — NETS for prefix filters and COMM for 
communities. We use NETS to denote the set of accepted 

prefixes, and similarly COMMJ to denote the set of accepted 

communities. WeK also denote the complement of a setJ K * as ¬ 
*. There are three equivalence classes, one per clause in the route 
map — the first clause is associated with the space NETS , the 
second clause is associated with ¬ NETS ∩ COMM , the space of 

routes matchingJ K COMM but not NETSJ , and the third clause is 

for all remainingK J K routes. Each equivalence class is also 

associated with whether itJ K J K accepts or rejects routes and 
what fields are set. 

Once the inputs are partitioned into equivalence classes for 
both components, the SemanticDiff algorithm then performs a 
pairwise comparison to identify behavioral differences. For each 
pair of 
equivalence classes (&1,",'1,",(1,") and (&2,#,'2,#,(2,# ) from the two 
components, if &1," and &2,# have a non-empty intersection and the 
actions '1," and '2,# differ, then there is a behavioral difference. 
In 
route-map POL deny 10 Inputs: NETS 
 J K 

match ip address NETS Action: Reject route-map POL 

deny 20 Inputs: ¬ NETS ∩ COMM 
 J K J K 

match community COMM Action: Reject route-map POL 

permit 30 Inputs: ¬ NETS ∩ ¬ COMM 
 J K J K 
 set local-preference 30 Action: Accept, local-pref=30 

Figure 2: Partitioning the space of route advertisements based on 
route map definitions. 
that case, we add 

(&1," ∩ &2,#, '1,", '2,#, (1,", (2,# ) 

to the list of differences returned by SemanticDiff. 

3.2 HeaderLocalize 

SemanticDiff produces the set of packets that exhibit behavioral 
differences as a logical predicate. The HeaderLocalize algorithm 
produces a more human-understandable representation in terms of 
the constants (e.g. IP prefixes) that appear in the configuration, 
handling the header localization problem. Specifically, 
HeaderLocalize produces a compact representation of the set of all 
destination IP addresses relevant to an ACL difference and the set 
of all IP prefix ranges relevant to a route map difference. For ease 
of presentation, we only describe finding prefix ranges relevant to 
route map differences, but the process for ACLs is analogous. In 
principle, HeaderLocalize can also be extended to other route fields 
such as communities, but we have not yet done so. Currently, 
instead of producing all communities relevant to a route map 
difference, Campion outputs a single example. 

For route maps, sets of IP prefixes are represented by prefix 
ranges, each of which is a pair of a prefix and a range of lengths. For 
example, (1.2.0.0/16, 16-32) is a prefix range where the prefix is 
1.2.0.0/16 and the length range is 16-32. A prefix " is a member 
of a prefix range + if both of the following hold: 

(1) The IP address of " matches the prefix of + 
(2) The length of " is included inside the range of + 
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For example, 1.2.3.0/24 is a member of the prefix range 
(1.2.0.0/16, 16-32), (0.0.0.0/0, 0-32) is the set of all prefixes, 
and (1.0.0.0/8, 24-24) is the set of all prefixes with length 24 and 
1 as the first octet. We say that a prefix range +1 is contained in 
another prefix range +2, denoted +1 ⊂ +2, if the members of +1 are 
a subset of those of +2. 

The input to HeaderLocalize is a BDD - representing the set of 
messages affected by an identified policy difference, along with the 
original configurations !1 and !2. The output is a representation of 
-’s prefix ranges in terms of the prefix ranges that are in the two 
configurations. First, all prefix ranges from the two configurations 
are extracted to get the set R = {+1, +2, . . . +!}. If the set of all 
prefixes (0.0.0.0/0, 0-32), which we will call . , is not in R, then 
it is added. Furthermore, R is extended so that it is closed under 
intersection. Since each line of a route map can allow or reject route 
advertisements based on prefix ranges in the configuration, it is 
always possible to represent the set - as a combination of 
complements, unions, and intersection of sets from R. The goal of 
HeaderLocalize is to identify the minimal such representation. 

To find this minimal representation, HeaderLocalize builds a 
directed acyclic graph (DAG) that relates the prefix ranges in R to 
one another. This data structure is analogous to the ddNF data 
structure previously used for packet header spaces [8], but here 
we associate each node with prefix ranges rather than tri-state bit 
vectors representing data-plane packets. HeaderLocalize’s ddNF 
data structure consists of a set of nodes /, a set of edges 0 ⊆ / 
×/, a labeling function 2 mapping nodes to prefix ranges, and a 
root node. It satisfies the following properties: 

(1) The root node is labeled with . , the set of all prefixes, and 
all other nodes are reachable from it. 

(2) Each node has a unique label (and thus in the following 
explanation, we will sometimes refer to a node by its prefix 
range or vice versa). 

(3) The set of prefix ranges used as labels contains R and is closed 
under intersection. 

(4) For any nodes 3,4 ∈ /, there is an edge (3,4) ∈ 0 exactly 
when 2(4) ⊂ 2(3) and there is no node 3ʹ such that 2(4) ⊂ 
2(3ʹ) ⊂ 2(3). 

An example DAG is shown in Figure 3 for a set of seven prefix 
ranges. There is one node per prefix range, and each node’s prefix 
range is a subset of those of its ancestors. For example 5 is 
contained in 6 and 7. The DAG is built by inserting one prefix 
range at a time, starting with. [8]. We also associate each 
internal node, with prefix range + and outgoing edges to nodes 
labeled !1,!2, . . . ,!", with the set of prefixes + −!1−!2 · · ·−!". 
We call this set the remainder set, as it is the set of prefixes that 
remain in + after prefixes of the children nodes are removed. For 
example, the remainder set of node 
6 in Figure 3 is 6 − 5 − 0. The remainder and leaf node sets are 
all disjoint from one another, and their union is. . Importantly, 
because the set - of interest was created through unions, 
intersections, and complements of the prefix ranges in R, each 

remainder set and leaf prefix range has the property that either 
it is contained in - or disjoint from -. 

Next HeaderLocalize uses the DAG to produce a representation 
of - in terms of the prefix ranges in R. This is done by traversing 
the DAG with the recursive function GetMatch shown below. If 
the current node is a leaf, then its prefix range + is included in the 
result if that range is contained in -. If the current node is internal, 
then there are two cases. If the node’s remainder is contained in 
-, then its prefix range + should be included in the result, after 
removing any of the node’s child prefixes in the DAG that are not 
contained in -. This latter process is done through a recursive call 
to GetMatch with the complement set of -. if the node’s 
remainder is not contained in -, then we simply recurse on the 
children and union the results. 

The GetMatch algorithm produces a representation of - that is 
a union of terms of the form + − *1 − *2 − . . . *", where + is a 
prefix range, but each *# is also in the form + − *1 − *2 − . . . *". 
For example, running GetMatch on the DAG in Figure 3 produces 
{6 − 5,! − (8 − 9)}, and the nodes in the figure are colored to 
illustrate the algorithm’s process. As a final simplification step, we 
remove all nested differences from the result through a single 
pass over it. In our example, the result ! − (8 − 9) is transformed 
into {!−8,9}, so the final representation of the set - is 
{6−5,!−8,9}. 

 

Sele  
 

 
 

  
 

  
    

    
 

 
 

 
  

 
 

 
  

 
 

 
 

  

 ort 
 

 
 

 
 

 

  



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al. 

755 

Figure 4: Basic features of routing and forwarding. Blue nodes(✓) 
represent fixed processes. Yellow nodes (incoming 

 
1 func GetMatch (S, node) 2 C 
← Children(node) 
3 R ← PrefixRange(node) 

4 if IsLeaf(node) then 
5 if R ⊆ S then 

6 return {R} ▶ node is a leaf, and $ ⊆ & 
7 else 

8 return ∅ ▶ node is a leaf, and $ ∩ & = ∅ 

9 if Remainder(node, C) ⊆ - then 
▶ checks if 

$ −(1 −(2 . . .(! ⊆ & 

10 nonmatches ← Ð"∈( GetMatch(¬ -, k) 
11 return {+ − nonmatches} ▶ returns {$ − *1 − *2 . . .*!} 
12 else 
13 return Ð+∈( GetMatch(-, k) ▶ returns {*1,*2 . . .*"} 

 

3.3 StructuralDiff 

It would be possible to use a semantic approach like SemanticDiff to 
reason about all configuration components, just as we do for route 
maps and ACLs. However, we observe that other configuration 
components typically have a very stylized structure, as a single 
atomic value (e.g., integer or boolean) or a simple collection of such 
values. Hence, when considered modularly, the equivalence of two 
such components is tied to their structure. 

That is, two components are behaviorally equivalent, for all 
possible configurations, if and only if their structural representation 
is identical. Thus we can use a simple structural check without 
incurring additional false positives versus a semantic approach. 
Since the structural approach does not require logical modeling, it 
is more efficient. Further, localization is trivial since the structural 

check directly identifies the portions of the two components that 
differ. 

Our StructuralDiff function implements this approach. All 
components are represented as atomic values, tuples, or 
unordered sets. Atomic values are tested for equality. Tuples are 
compared by testing that the corresponding values are equal. 
Finally, sets are compared using set difference. 

For example, to check two OSPF configurations are equivalent 
(excluding route redistribution which is handled by SemanticDiff), 
it suffices to check equivalence for all corresponding attributes on 
all corresponding links. That means both routers must have OSPF 
edges to the same peers, and the corresponding edges are 
configured with the same costs, areas, passive status, etc. We can 
think of the configuration of each OSPF link as a tuple of its 
configured attributes and check each corresponding attribute. 
The same approach works for BGP properties not implemented 
with route maps, such as which edges are to route reflector 
clients and whether communities are propagated. 

Other components that affect routing include connected and 
static routes. Connected routes are formed by the set of subnets 
connected to the router’s interfaces, and the difference between 
routers is the set of such subnets present in one router but not 
the other. Similarly, a single static route can be represented as a 
tuple consisting of a destination prefix, a next-hop, an 
administrative distance, and optional fields like tags; so the 
difference is the set of tuples present in one router but not the 
other. Administrative distances can also be compared as values 
configured per protocol. 

As mentioned earlier, localization for these components is 
straightforward because the equivalence check is performed 
directly on the components’ structures. Further, unlike route 
maps and ACLs, these components have no explicit notion of 
input. Hence there is no need for, or analogue to, HeaderLocalize 
for such differences. 

3.4 Debugging an Entire Router 

We now formalize our approach to checking full router 
equivalence. We observe that many crucial parts of routing, such 
as the route selection process, are fixed. They are implemented 
according to a standard and depend only on the provided inputs 
and configurations. All of the various processes in Figure 4 need 

 

Figure 3: DAG created from prefix ranges. Green (✓) nodes represent leaves or remainders contained in a set -, and red (✕) nodes represent 
those that are not. - can be represented by the union of 6 − 5, ! − 8, and 9 
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to be modeled to fully simulate a router or network, but only the 
configured aspects (shown in brown) need to be modeled to find 
behavioral differences. 

Figure 4 provides a flow diagram illustrating the processes 
supported by Campion. For routing, there is both a BGP process (top 
of figure) and an OSPF process (middle of figure), as these are the 
most common inter-domain and intra-domain routing protocols; 
other protocols could be added similarly. The bottom of the figure 
shows the router’s process for forwarding routes. The brown 
(unmarked) nodes represent parts of the router configuration, while 
the other components are fixed processes like routing protocols 
(in blue (✓)), or input routes and packets (in yellow (incoming ) ), 
or outputs and byproducts like selected routes and forwarded 
packets (in green (outgoing )). 

Assuming that these are the only routing components used in the 
configurations being compared, then Campion is a sound verifier for 
router configuration equivalence: If Campion identifies no 
differences, then the two router configurations are behaviorally 
equivalent. We formalize the fact that behavioral equivalence can 
be verified without reasoning about the routing protocols as follows 
(our formalization considers behavioral equivalence of entire 
networks, but it therefore also applies to the special case of 
individual routers). 

Definition 3.1. A network N = (;, R, CP, FP, ⪯P) is a topology 
T = (V, E) of vertices and edges, a set of routes R, a family of 
configuration functions CP : E → Ω that maps each edge in the 
topology to a configuration Ω, a family of transfer functions 
FP : Ω × E × R → R that transforms a route along an edge for a 
protocol, and a protocol preference relation ⪯P: R × R that compares 
two routes for a protocol. 

Definition 3.2. For two networks N = (;, R, CP, FP, ⪯P) and N∗ = 

(;∗, R, CP∗ , FP∗, ⪯P) and an isomorphism I between T and T∗, we say 
that the two networks are locally equivalent if for all protocols " ∈ 
P, edges = ∈ E, and routes > ∈ R then 
F% . 

Theorem 3.3 (Soundness). If networks N and N∗ are locally 
equivalent for isomorphism I, then they have the same set of routing 
solutions. 

Proof. The proof is by a reduction to the stable routing problem 
[4] and is described in the appendix. □ 

4 Implementation and Limitations 

Campion operates on a vendor-independent representation 
produced by Batfish [12]. Real routers support an enormous 
number of features. For Campion, we have focused on the most 
common components used for routing and forwarding. Campion 
currently supports all of the configuration components and features 
that are supported by Minesweeper (Table 1). This includes 
common features of BGP route maps, like communities, local 
preference, and MEDs, as well as other configurable aspects of BGP 

like route redistribution. It also includes configurable OSPF 
attributes like link cost and areas, static routes, and ACLs. Sets of 
packets and route advertisements are represented by BDDs that are 
handled with the JavaBDD library, extending code from Bonsai [4] 
used to encode import filters, output filters, and ACLs. 

As mentioned in the previous section, it is sometimes necessary 
to match up corresponding components between two routers. We 
used a few simple heuristics instead of manually specifying 
matching components. For BGP properties and route maps, we 
match up connections with the same neighbor id, and we report the 
neighbors that occur in one router but not the other. We match 
ACLs with the same name. For OSPF attributes, we match interfaces 
using a combination of their interface names, Batfish’s inferred 
topology, and their IP address masks. This is necessary since 
interfaces in backup routers usually have different IP addresses. 
While these heuristics are not perfect, they allow Campion to be run 
quickly and easily. 

Campion can identify differences and perform header 
localization for any vendor format that Batfish supports. 
However, currently Campion can only output exact text lines for 
configurations in Cisco IOS and Juniper JunOS formats, since we 
must write unparsers to convert Batfish’s representation back to 
the original configuration text. For other formats, Campion does 
not produce exact text lines, but it still provides substantial 
localization information, including the component name, affected 
headers, and actions. Similarly, for some formats we do not show 
the exact text lines for StructuralDiff results, for example OSPF 
costs. But in these cases the localization information that 
Campion provides typically allows operators to find the relevant 
lines with simple text searches. 

HeaderLocalize for route maps currently only provides 
exhaustive information for IP prefix ranges. For other relevant 
parts of a route advertisement such as community tags, Campion 
provides a single example. It is possible to extend HeaderLocalize 
to provide exhaustive information across multiple parts of a route 
advertisement, but doing so increases the complexity both of the 
algorithm and of its output. The current approach has been 
sufficient for operators to understand Campion’s results and 
localize the errors. 

5 Evaluation 

We applied Campion to debug router configuration differences 
from a large cloud provider and the campus network of a large 
university, both of which employ a diversity of hardware router 
vendors. Our experiments demonstrate Campion’s ability to 
identify cross-vendor configuration differences and to provide 
actionable localization information to operators. 

5.1 Differencing in a large Data Center 

Network 7 is from a global cloud vendor that uses routers from 
different manufacturers. We tested Campion on a data center 
network from vendor 7 that employs a Clos topology with 
hundreds of routers and thousands of servers. All routers are 
either Juniper or Cisco, whose configuration languages are 
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supported by Campion. The data center network uses eBGP, iBGP, 
OSPF, static routes, ACLs, and route redistribution for the layer-3 
routing topology. It carries business traffic for multiple global 
services. Each router configuration is thousands of lines. 

Scenarios. We asked the network operators to employ Campion 
on three frequent, real and challenging tasks: 

Scenario 1: Debugging redundant routers. Some routers (e.g., 
Topof-Rack) are configured to be backups of one another with 
equivalent modular policies handling BGP, OSPF and static routes. 
For diversity, the operators deploy redundant routers from 
different vendors (e.g., Juniper, Cisco). Because network 7 took 
months to build, its current configuration comprises fragments 
written by 

Scenario Component Structural or Semantic Differences 

Scenario 1 
BGP Semantic 5 

Static 
Routes 

Structural 2 

Scenario 2 BGP Semantic 4 

Scenario 3 ACLs Semantic 3 
Table 6: Data Center Network Results 

different operators for diverse purposes, making hidden 
inconsistencies likely. It is important to not only ensure equivalence 
of multi-vendor, redundant routers, but also to quickly localize the 
root causes of any errors. Network 7 is constantly being 
reconfigured as more policies are added for upcoming production 
traffic. Campion allows greater agility by allowing new policies to be 
more quickly deployed in diverse backup routers. The operators 
used Campion to compare all pairs of backup routers. 

Scenario 2: Router replacement. Network 7 has an important 
update called router replacement, where operators replace a router 
from one vendor with one from a different vendor. Such 
replacements occur several times a month to take advantage of the 
price, performance, and newer features. For example, the operators 
of network 7 might replace lower-version Cisco routers with higher-
version Juniper routers in order to avoid a Cisco bug. Router 
replacement is one of the riskiest update operations in network 7, 
since operators must manually rewrite the old configurations to the 
new format; many critical errors have occurred as a result. The 
operators used Campion to check for differences between old and 
new configurations before performing a scheduled replacement, in 
order to proactively detect errors. 

Scenario 3: Access control in gateway routers. In network 7, many 
ACL rules are applied in gateway routers for traffic control. All of 
network A’s gateway routers should have identical access-control 
policies, but it is difficult for network A’s operators to guarantee this 
since: (1) the number of ACL rules is very large, and (2) the use of 
nested ACL rules makes their logic complex. The operators used 
Campion to check the equivalence of ACL rules in the gateway 
routers of the data center network. 

Output evaluation. Note that network 7’s operators used 
Campion and its user interface without any feedback or help from 
us in interpreting results. The operators gave us very positive 
feedback on the practicality and usability of Campion. By using 
Campion, they found several risky, hidden configuration errors, as 
summarized in Table 6. All differences that Campion found were 
unintentional and considered to be errors by the operators. The 
network configurations had recently undergone a standardization 
process to replace ambiguous and “uncommonly-used” 
configuration commands with unambiguous and standard ones. 
Hence any differences found by Campion were likely to be 
erroneous, and indeed this was borne out by the lack of any false 
positives. 

Scenario 1: Debugging redundant routers. Campion detected 
seven configuration bugs across all of the redundant router pairs 
that it analyzed. Five of the bugs represent missing fragments of 
BGP policy, and two of them were incorrect next hops in static 
routes. For four BGP bugs, Campion was able to accurately localize 
the difference. For example, Campion pointed out that a prefix for 
an import filter was missing in the primary router but present in the 
backup one. Why were these bugs not detected by customers or 
real-time monitoring systems? This was because the missing 
prefixes had not been used for production traffic yet, but would 
have been in the near future. Once a service using this prefix is 
enabled, a service problem would have occurred. Thus, Campion 
proactively prevented a future service disruption. 

The fifth BGP error that Campion detected used a version of 
the Cisco IOS format which Campion does not fully support yet. 
Campion still detected the error and produced useful localization 
information, such as the relevant input space and the actions 
taken by each router, but the output configuration text was 
inaccurate. Due to this inaccuracy, the operator reported the 
need to spend more time to understand the precise bug location, 
but they still said that it was easy to spot the deviant 
configuration lines from Campion’s output. 

The two static route errors Campion detected were 
misconfigured next hops. Backup routers in network 7 should 
forward the same prefix to the same next hop, but Campion 
detected that they were configured to forward a particular prefix 
" to different next hops. This is very dangerous: a cascading 
failure would have triggered when the production traffic 
corresponding to " is turned on in the near future. Campion 
accurately pointed out non-equivalent next hops of this kind in 
two pairs of backup routers. 

Scenario 2: Router replacement. We used Campion to test 
more than 30 router replacements. Campion successfully 
detected four bugs: one was an incorrect community number and 
three were incorrect local preferences. One local preference bug 
was for the replacement of a reflector device for iBGP. If this bug 
were not detected, the proposed replacement would have 
caused a severe outage. 

Further, network 7’s operators also tested Campion on a 
synthetic case based on a static route replacement which resulted 
in a significant outage one year ago. The tags of two static routes 
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were configured differently due to a misunderstanding of the 
semantics of the two vendors. Campion accurately pointed out 
the difference between the static routes. In other words, a 
significant outage could have been avoided if Campion had been 
used a year ago. 

Scenario 3: Access control in gateway routers. Campion 
successfully detected three ACL differences between gateway 
routers from Cisco and Juniper. Table 7 shows Campion’s output 
for one of these differences. 2  Campion’s text localization 
identified the exact line in the Cisco ACL where traffic was 
rejected. The Juniper ACL equivalent is divided into terms, and 
Campion’s text localization was able to locate which term 
accepted the traffic. Further, Campion’s header localization also 
identified header information like the relevant source IP prefix. 

Running Time. For each of the above three scenarios, although 
the configuration files of each device in network 7 contains 
thousands of lines, Campion finished its localization task within 
five seconds for each pair of routers. 

Comparing Campion with an existing tool. While provider 
7 has its own home-grown verification system that has been used 

Router Pair Route Map Outputted 

Differences 
Differences 

Reported Confirmed Pending 

Core 

Routers 
Export 1 5 5 4 1 
Export 2 1 1 1 0 

Border 

Routers 

Export 3 1 1 1 0 
Export 4 1 1 1 0 
Export 5 2 1 1 0 
Import 0 - - - 

(a) SemanticDiff results on route maps 

Router Pair Component Classes of Errors Differences 
Reported Confirmed Pending 

Core 
Routers 

Static Routes 2 1 0 0 
BGP Properties 1 1 0 0 

 (b) StructuralDiff results Table 8: 
University Network Results 

  Router 1 (current) Router 2 (reference) 

Included 
Packets 

srcIP: 9.140.0.3/32 
dstIP: 0.0.0.0/0 

Excluded 
Packets 

srcIP: 9.140.0.3/32 
dstIP: 0.0.0.0/0 
protocol: ICMP 

+28 more 
ACL Name VM_FILTER_1 VM_FILTER_1 

Action REJECT ACCEPT 

Text 2299 deny ipv4 9.140.0.0 
0.0.1.255 any 

set firewall family inet 
filter VM_FILTER term 
permit_whitelist 

 
2 The IP addresses and ACL name in this figure have been anonymized for 

confidentiality reasons. 

Table 7: An example for ACL rules debugging. Router 1 and Router 
2 are Cisco and Juniper routers, respectively. 

for 1.5 years, this system can only tell whether the network 
configuration meets operator intent, but does not provide any error 
localization capability. Thus, network 7’s operators spend 
considerable time localizing bugs even when the existing tool 
identifies bugs in the network. Campion therefore provides a new 
capability that can potentially reduce debugging time considerably 
for network 7’s operators. 

Localization efficiency. For the configurations checked, all 
localization results were less than five lines of configuration code. 
The configuration files tested vary in size from 300 lines to more 
than 1000 lines. Of these, the number of lines that are part of an 
ACL or route map definition is typically more than 100. Campion 
thus drastically reduces the amount of configuration that operators 
must search through to debug a difference. 

5.2 Differencing in a University Network 

The university network consists of approximately 1400 devices, 
including border routers that connect to external ISPs, backbone 
core routers and building routers. 

We ran Campion to compare the policies for a pair of core routers 
and a pair of border routers. In each pair, one used Cisco 
configuration format and the other used Juniper format. We chose 
these two pairs because they are the only Cisco-Juniper backup 
pairs with routing policy. The Cisco configurations and the Juniper 
core router configuration contain about 1800 lines of text. The 
Juniper border router configuration contains about 3500 lines of 
text. The results are shown in Table 8. 

We match route maps that are applied to the same BGP 
neighbor. In total, there were five pairs of operator-defined 
export route maps, and one pair of operator-defined import route 
maps. The differences that Campion found are summarized in 
Table 8(a). 

The prefix ranges, communities, and text lines produced by 
Campion made it straightforward to identify these discrepancies. 
The list of issues that we sent to the operators does not exactly 
correspond to the raw output of our tool. For example, since 
Campion divides sets of advertisements based on which lines 
process them, it is possible that a single underlying difference in 
the configuration results in multiple lines of outputted 
differences. In Table 8(a), the Outputted Difference column 
reports the number of raw outputs produced by Campion, 
whereas the Differences Reported column reports how many 
distinct issues we reported to the operators. We categorize a 
reported difference as Confirmed if the operator indicated that 
the identified difference was both an actual difference and 
unintentional. The last column indicates the number of reported 
differences whose status is unknown at this time. 
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As shown in the table, the operators confirmed that most of 
the differences Campion identified were in fact errors. Based on 
earlier snapshots, the differences have been present since at least 
July 2017. 

The route maps shown earlier in Figure 1 illustrate two issues 
from a pair of core-router route maps (labeled Export 1 in Table 
8(a)). These were differences in the definitions of a prefix list and 
a community set and were confirmed as unintentional 
discrepancies. For the difference in the prefix lists, the operator 
agreed it was a misconfiguration, but was not sure whether the 
Cisco or Juniper router was correct. For the community 
difference, the operator wrote: “The community group is an 
obvious mistake on our part. The Juniper config is wrong. We 
followed the wrong Juniper doc when 
configuring the community group.” 

In addition to the differences shown in Figure 1, the actual 
route maps contained different definitions for their third clause, 
with the Juniper router performing a match on communities that 
was not done in the Cisco router. They also have different 
redistribution behavior for certain addresses. Further, the two 
routers have different fall-through behaviors (accept vs. deny) 
when handling advertisements that fail to match any clause, 
which causes two additional behavioral differences. Operators 
confirmed all but the last of these issues, which is still pending. 
When asked about the difference between the third clauses of 
each route map, the operator replied: “The Juniper config is 
correct and the intent is obvious because of the English-language 
syntax. The Cisco config we’re not sure what change should be 
made, if any.” This demonstrates the challenge for operators 
when dealing with multi-vendor backups, and the need for a tool 
like Campion to ensure consistency and localize errors. 

Export 2, the other core router policy, also had the difference 
in prefix lists mentioned previously for Export 1 but did not have 
any other issues. The differences in the border router policies 
similarly affected the matched prefixes and communities but 
were of a different nature: there were differences in two regular 
expressions used to match communities for Export 3 and Export 
4. Campion reported that advertisements with a certain 
community were accepted in the Cisco router but not the Juniper 
router. For Export 5, there was one prefix that was absent in a 
prefix list in the Juniper router but present in the Cisco router list. 
These were also confirmed as errors by the operators. 

When comparing other properties of the core routers using 
Campion’s StructuralDiff, we found differences in the static route 
configuration and the BGP configuration. In the static routes we 
found two classes of differences. The first included many static 
routes that applied to the same prefix but had different next hops 
and different administrative distances. We deemed these as 
intentional differences, since the next hops had similar addresses, 
suggesting that their next hop routers were of the same role, and 
the administrative distances did not affect the relative priority of 
routes. The second class of static route differences included two 

 
3 https://github.com/google/capirca 

static routes that were present in one router but not the other, as 
demonstrated in § 2. These were reported to the operators, and 
they said that these were intentionally added as a workaround for a 
specific BGP routing issue. The BGP configuration difference was 
that certain iBGP neighbors of the Cisco router were missing a 
neighbor send-community command to propagates communities, 
while Juniper routers send communities by default. The operators 
indicated that this configuration difference does not cause a 
behavioral difference because the core routers do not set 
communities on routes. 

5.3 False Positives 

We distinguish between two types of false positives that Campion 
may produce, both of which were exhibited in the results for the 
university network. First, there can be intentional differences 
between routers. This was the situation for the static routes that 
were added in one configuration as a workaround for a specific BGP 
routing issue, as well as for the static routes that had differing next 
hops. Second, there can be spurious differences due to Campion’s 
modular approach. Specifically, any potential behavioral difference 
between corresponding components is reported by Campion, but 
these differences may not cause an actual behavioral difference in 
the current network, for example because the differences are 
shadowed or accounted for by other parts of the configuration. This 
was the situation for the iBGP neighbors of one router which were 
not configured to send communities. 

However, we argue that it is still worthwhile to report both kinds 
of false positives. Reporting intentional differences allows the 
operator to ensure that all and only expected differences exist 
between the two routers. In the case of static routes added as a 
workaround, the operator commented, "I just need to find another 
way to resolve this," indicating that this difference is intentional but 
still not optimal. Reporting spurious differences is valuable because 
they represent latent errors that can potentially be "activated" by a 
change elsewhere in the network configuration. In the case of the 
spurious difference for sending communities, if the core routers 
later start to set communities on routes then this difference will 
cause an important behavioral difference. Indeed, the operator 
commented that these kinds of spurious differences would likely be 
examined and addressed when the routers are next replaced. 

5.4 Scalability 

For each of the data center scenarios, Campion finished its 
localization task within five seconds for each pair of routers. For the 
university core and border pairs, the total runtime to compare the 
core and border pairs was 3 seconds. When combined with the 
parsing of the configurations, the total time was under 10 seconds, 
with configuration parsing taking a majority of the time. We 
additionally tested the scalability of SemanticDiff for ACLs. We used 
Capirca3 to randomly generate nearly equivalent ACLs for Cisco and 
Juniper configurations. We introduced 10 differences between the 
two ACLs and compared them. When the ACLs were generated with 
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1000 rules, SemanticDiff took less than a second. When the ACLs 
were generated with 10,000 rules, SemanticDiff took 15 seconds. 
These tests were done with a 2.2 GHz CPU. Moreover, Batfish’s 
parsing time for the 10,000 case is 13 seconds, which is comparable 
to the runtime of SemanticDiff. 

6 Related Work 

At a high level our work differs from prior work in network 
verification in two ways. First, we target verifying behavioral 
equivalence of two router configurations, while prior work 
typically targets network-wide reachability properties. Second, 
we localize identified errors to both relevant headers and 
configuration lines; most prior work simply provides individual 
concrete counterexamples. 

Data Plane Verification Tools: Many tools verify reachability 
properties of a network’s data plane, including its ACLs and 
forwarding tables [2, 15, 17, 18, 20, 21, 32]. Several tools focus on 
ACLs [22, 29] and localize errors to ACL lines [14, 15, 17, 29]. 
Closest to our work, netdiff [9] is a tool for checking data plane 
equivalence in networks using a similar symbolic execution 
approach, but it focuses on the data plane. Campion extends 
these capabilities to perform configuration localization for the 
control plane. HeaderLocalize and StructuralDiff have no 
analogue in netdiff. 

Control Plane Verification: Other tools verify properties of a 
network’s control plane routing processes [1, 3, 4, 10, 12, 24, 31, 
33]. These tools can be adapted to perform router equivalence 
checking, as we showed for Minesweeper [3] in § 2. However, 
when verification fails, these tools only provide individual, 
concrete counterexamples, while Campion localizes to both 
headers and configuration text. As we have seen by the 
experiment in Section 2, even if we extend Minesweeper to 
produce multiple counterexamples it is still not able to quickly 
find all errors. Further, this still leaves the question as to which 
parts of the text caused each error. Recent work extends 
Minesweeper to localize errors by leveraging an SMT solver’s 
ability to provide unsatisfiable cores when verification fails [28]. 
The approach localizes errors to specific SMT constraints, but not 
to configuration lines or headers. Campion leverages the BDD 
encoding of ACLs and route maps from Bonsai [4], which uses 
BDDs to perform network abstraction, not router differencing or 
debugging. Campion’s structural checks are reminiscent of rcc 
[11], but our checks are designed to ensure behavioral 
equivalence and to do so without incurring additional false 
positives over a modular semantic check. 

Outlier Detection: Benson et al. [5, 6] infer data-plane 
reachability specifications from a network’s forwarding tables and 
use these specifications in part to identify outliers. However, they 
only consider the data plane and cannot localize back to the 
original configurations. SelfStarter [16] infers parameterized 
configuration templates for ACLs and route maps and uses them 
for outlier detection. This approach uses sequence alignment and 
so requires router configurations to be structurally similar. 

Further, SelfStarter localizes configuration text but cannot 
localize headers. 

Equivalence Checking: Equivalence checking is an old idea 
beyond networks, and our SemanticDiff algorithm is similar in spirit 
to prior work. For example, Ramos et al. [26] perform equivalence 
checking of two C functions via pairwise comparisons of execution 
paths. Because network ACLs and route maps are loopfree, Campion 
is exhaustive, finding all differences and localizing to all IP prefixes; 
equivalence checking of software is undecidable in general. 

7 Conclusion 

Campion is a tool for debugging router configurations intended to 
be behaviorally equivalent but which in fact are not. Unlike prior 
work, Campion uses modular structural or semantic checks to 
localize errors to the affected message headers and relevant 
configuration lines. Our experience with a cloud provider and a 
university indicates that Campion satisfies a real need by localizing 
crucial errors. 

Prior control-plane verification tools model a configuration 
monolithically as a set of constraints. In contrast, Campion exploits 
the modular structure of configurations to break up complex checks 
of whole router behavior into smaller per-component checks. This 
"bottom up" style eases localization, sidesteps reasoning about the 
routing protocols, and allows simple structural checks to often be 
used without additional loss of precision. None of these capabilities 
would be possible without exploiting modularity. As in other forms 
of verification, we believe exploiting modularity will be critical to 
making real-world network verification and debugging effective. 
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Appendix 

Theorem 3.3 (Soundness). If networks N and N∗ are locally 
equivalent for isomorphism I, then they have the same set of routing 
solutions. 

Proof. The proof is by a reduction to the stable routing problem 
[4]. First, we show that each protocol " ∈ P forms a stable routing 
problem (SRP). In particular for any given destination router 

% ∈ V advertising initial route %& , # (%) ∈ V∗ must also advertise %& 
since the protocol-specific advertisement configurations must be 
the same. Given this, we can construct the SRP (T, R,%&, ⪯%, trans) 

for N and (T∗, R,%&, ⪯%, trans∗) for N∗, where: 
trans(=,>) = F% (C% (=),=,>) 
trans∗(=,>) = F%∗(C%∗(=),=,>) 

We further relate the two SRPs with the abstraction (? ,ℎ) where ? 
(=) = I(=) and ℎ(>) = >. 

The main theorem for abstract SRPs is that of equivalent routing 
solutions when the abstractions are sound [4]. Thus, we must simply 
prove that this is a sound abstraction. To do so, we prove each of 
the sufficient conditions in [4]: 
Dest-equivalence. We have ? (%) = I(%) which is the destination 
router for N∗ and ? (A) ≠ # (%) for any A ≠ % by virtue of I being an 
isomorphism. 

Orig-equivalence. We have ℎ(%- ) = %- since ℎ is the identify 
function, which by construction is the route used at N∗. 

Drop-equivalence. We have ℎ(>) = > since ℎ is the identity 
function, which trivially satisfies the drop-equivalence 
requirement that ℎ(>) = ⊥ ⇐⇒ > = ⊥. 

Rank-equivalence. By definition, we have >1 ⪯. >2 ⇐⇒ ℎ(>1) ⪯% 
ℎ(>2) since ℎ is the identity function. 

Trans-equivalence. From the fact that N and N∗ are equivalent for 
I, it follows that F% (C% (=),=,>) . This means 
that we have trans(=,>) = trans∗(# (=),>) by definition. Substituting 
the definition of ? and ℎ, this gives us the equivalence: 
ℎ(trans(=,>)) = trans∗(? (=),ℎ(>)), which is the desired result. 

Topology-abstraction. Finally, the topology requirements from [4] 
are trivially satisfied since I is a homomorphism. 

This result demonstrates that each protocol will compute the 
same set of routing solutions. Thus the composition of the 
protocols will also compute and select the same set of routes. 

□ 


