

748

Campion: Debugging Router Configuration Differences

 Alan Tang Siva Kesava Reddy Kakarla Ryan Beckett
 UCLA UCLA Microsoft
 atang42@cs.ucla.edu sivakesava@cs.ucla.edu ryan.beckett@microsoft.com

 Ennan Zhai Matt Brown Todd Millstein
 Alibaba Intentionet UCLA / Intentionet
ennan.zhai@alibaba-inc.com matt@intentionet.com todd@cs.ucla.edu

 Yuval Tamir George Varghese
 UCLA UCLA
 tamir@cs.ucla.edu varghese@cs.ucla.edu

Abstract
We present a new approach for debugging two router
configurations that are intended to be behaviorally equivalent.
Existing router verification techniques cannot identify all differences
or localize those differences to relevant configuration lines. Our
approach addresses these limitations through a modular analysis,
which separately analyzes pairs of corresponding configuration
components. It handles all router components that affect routing
and forwarding, including configuration for BGP, OSPF, static routes,
route maps and ACLs. Further, for many configuration components
our modular approach enables simple structural equivalence checks
to be used without additional loss of precision versus modular
semantic checks, aiding both efficiency and error localization. We
implemented this approach in the tool Campion and applied it to
debugging pairs of backup routers from different manufacturers
and validating replacement of critical routers. Campion analyzed 30
proposed router replacements in a production cloud network and
proactively detected four configuration bugs, including a route
reflector bug that could have caused a severe outage. Campion also
found multiple differences between backup routers from different
vendors in a university network. These were undetected for three
years, and depended on subtle semantic differences that the
operators said they were "highly unlikely" to detect by "just
eyeballing the configs."

CCS Concepts

• Networks → Network reliability; Network manageability.

Keywords
Network Verification, Equivalence Checking, Error Localization,
Modular Reasoning

ACM Reference Format:
Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett, Ennan Zhai, Matt
Brown, Todd Millstein, Yuval Tamir, and George Varghese. 2021. Campion:

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCOMM ’21, August 23–27, 2021, Virtual Event,
USA © 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8383-7/21/08.

https://doi.org/10.1145/3452296.3472925
Debugging Router Configuration Differences. In ACM SIGCOMM 2021
Conference (SIGCOMM ’21), August 23–27, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3452296.3472925

1 Introduction

Networks today are manually configured through low-level
configuration directives at individual routers that enforce
complex policies for access control and routing. Manual
programming often introduces subtle configuration errors that
induce costly and disruptive outages [7, 19, 23, 25, 27, 30]. While
researchers have developed many verification tools that can
analyze network configurations to find bugs [1, 3, 4, 12, 13, 17,
18, 21, 24, 29, 32–34], there has been less focus on helping
operators to understand and fix the identified bugs.

This paper presents an approach to router configuration
debugging in the context of a specific, but common, verification
task: checking behavioral equivalence of two individual router
configurations. This task arises often in large networks. First, it is
common for pairs of routers from different manufacturers (to
avoid replicating implementation bugs) to serve as backups for
one another in case of failure. Whenever one router in the pair is
updated, the other must be consistently updated, which is non-
trivial if they use different configuration formats. A second
important use case is router replacement. As shown in (§5),
routers are periodically upgraded from one manufacturer (e.g.,
Juniper) to one another (e.g., Arista) with better features, cost, or
performance. Since the Arista configuration has to be manually
translated from the Juniper, the operation is difficult and perilous.
The first use case shows the need for behavioral equivalence
checking in space, while the second is an example of the need for
such checking in time.

Existing tools for network control-plane verification, such as
Minesweeper [3], can be used to verify behavioral equivalence of
two router configurations. However, while these tools can detect

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

749

equivalence violations, they provide very little help in debugging
such errors. In particular, existing tools have two key limitations
that our work aims to address. First, they provide only a single
counterexample and hence identify only a single behavioral
difference between the two configurations. Second, the provided
counterexample consists of a concrete packet whose forwarding
exhibits a behavioral difference in the two configurations, leaving
to the operator the difficult tasks of identifying the set of packets
that is impacted and the specific configuration lines that caused
the difference. We call the first challenge header localization and
the second text localization.

We present a concrete example of header and text localization in
§2. Figure 1 shows two example configuration snippets from real
configurations for a Cisco and Juniper router, and Table 2 shows the
differences output by our tool. The first few rows of each difference
represent header localization and the last three rows represent text
localization. While the configurations used in Figure 1 are small,
they have subtle behavioral differences. Further, many enterprises
have large route maps and ACLs of thousands of lines (see §5.1).

Our tool, Campion, performs localization through a novel
modular approach. Rather than representing the behavior of each
router configuration monolithically, for example as a set of SMT
constraints [3], Campion compares pairs of corresponding
components between the two configurations (route maps, ACLs,
OSPF costs, etc., see Table 1) separately. Performing equivalence
checks on a per-component basis immediately helps: every pair of
components that are not behaviorally equivalent is reported, and
each such violation is by construction localized to the relevant
configuration components.

In the context of modular checking, two configuration
components !1 and !2 are considered equivalent if any
configuration containing !1 could instead use !2 without changing
the configuration’s behavior. How should each pair of components
be checked for equivalence? Observe that there are two distinct
types of configuration components from the point of view of
modular checking.

Many configuration components have the property that any
structural difference implies a possible behavioral difference. For
example, two OSPF link costs are only guaranteed to be behaviorally
equivalent, for all possible configurations, if they are identical. The
same is true for static routes in two configurations. For these
configuration components, we compare them with a simple
structural equivalence check that we call StructuralDiff. This check is
efficient, reports and localizes all behavioral differences — all
structural mismatches — and makes it trivial for users to understand
the error. On the other hand, a few configuration components,
specifically
ACLs and route maps, encode sophisticated policies, so there are
many possible structures for the same behavior, especially when
considering multiple vendors. For example, Juniper and Cisco route
maps are structured in very different ways. For these configuration
components, we compare them with a semantic equivalence check
that we call SemanticDiff. To identify all differences, we model the
two components !1 and !2 as functions (e.g., an ACL is a function

from a packet to a boolean). Then, for each path "1 through !1 and
"2 through !2, we check whether there is some input that traverses
along "1 and "2 through their respective components and exhibits a
behavioral difference. This algorithm is conceptually similar to prior
approaches to checking equivalence in C functions [26] and network
data planes [9]. To our knowledge ours is the first approach that can
precisely check equivalence of network control-plane structures,
notably route maps.

The SemanticDiff algorithm localizes each behavioral difference
to a specific path through each component. To help users
understand the difference, we also introduce a novel algorithm
called HeaderLocalize that localizes each difference to the relevant
space of inputs. Specifically, SemanticDiff produces the impacted
set of

Feature Check Used
ACLs SemanticDiff

Route Maps (BGP, Route Redistribution) SemanticDiff
Static Routes StructuralDiff

Connected Routes StructuralDiff
Other BGP Properties StructuralDiff

OSPF Properties (costs, areas, etc.) StructuralDiff
Administrative Distances StructuralDiff

Table 1: Components supported by Campion and the check used
for each.

inputs # as a binary decision diagram (BDD). Given this BDD and
the original configurations, HeaderLocalize produces a
representation of all destination IP addresses in # in terms of the
constants (prefixes or prefix ranges) that appear in the
configurations, and does so in a minimal way.

Perhaps surprisingly, Campion is protocol-free: it does not need
to model or reason about routing protocols like BGP and OSPF.
Our modular approach obviates the need for such reasoning, as
equivalence of each corresponding pair of configuration
components implies that those protocols will behave identically
on the two routers. We formally prove this theorem, thereby
justifying our approach. A potential downside of our modular
approach is that it can produce false positives: it is possible for
two configuration components to cause a behavioral difference
for some configuration, and hence be flagged as erroneous by
Campion, but still be behaviorally equivalent in the context of the
two given router configurations. However, our experiments
indicate that false positives are rare. Intuitively this makes sense
because configurations are created and maintained in a modular
fashion, with different aspects of the configuration responsible
for different aspects of the behavior.

We evaluated Campion on the network configurations of a
large cloud provider and a large university campus. We highlight
two key results, with details in §5. First, the operators of the cloud
provider were in the process of replacing 30 Cisco routers with
Juniper routers due to a corporate policy decision. This required
them to manually translate the original Cisco IOS configurations
to JunOS. They used Campion to proactively check equivalence,
identifying four configuration errors that they fixed before they

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

750

could cause service disruption, including one error that would
have been a severe outage. Second, the university network has a
pair of core routers and a pair of border routers from different
device vendors and intended to be backups of one another.
Campion identified and localized configuration errors across
these two pairs. These errors have been present in the
configurations for nearly three years, and the operators said that
they were "highly unlikely" to detect them by "just eyeballing the
configs." Campion only takes a few seconds to compare a pair of
routers. Our work does not raise any ethical issues.

To summarize, the contributions of this paper are:
• A modular approach that identifies all behavioral differences

between two configurations and localizes them to the relevant
configuration lines (§3). For each configuration component, we
determine whether a full semantic analysis (SemanticDiff) is
needed or a simple structural equivalence check (StructuralDiff)
suffices (see Table 1). We also describe a novel algorithm for
localizing the relevant inputs (HeaderLocalize).

• A theorem (§3.4) that shows our modular approach to
equivalence checking of configuration components suffices to
ensure router behavioral equivalence, despite not reasoning
about the network protocols.

• A tool, Campion (§4), that localizes behavioral differences
between router configurations. Campion supports all of the
routing and forwarding components modeled by Minesweeper.
Campion is available as open-source software.1

• An experimental evaluation of Campion on routers from a large
cloud vendor and a university network. (§5).

2 Campion by Example

This section shows two examples of Campion’s output that
identified behavioral differences in routers from a large university
network. We present one case involving differences between BGP
route maps, which Campion identified and localized using
SemanticDiff and HeaderLocalize, and a second case involving
differences in static routes, which Campion identified and localized
using StructuralDiff. In both cases, we also demonstrate the
advantages of Campion by comparing its output to that of
Minesweeper [3], a state-of-the-art network configuration
verification tool.

2.1 Route Map Diffs via Semantic Checks

Figure 1 shows simplified versions of route maps from two core
routers in a large university network (see § 5.2). The two route maps
are intended to be behaviorally identical, with the first written for a
Cisco router and the second for a Juniper router. Both
configurations define a prefix list NETS to match a specific set of IP
prefixes (lines 1-2 in Figure 1(a) and 1-4 in Figure 1(b)), as well as a
community list COMM to match the community tags 10:10 and
10:11 (4-5 in Figure 1(a) and 5 in Figure 1(b)). The remainder of
each snippet defines a route map POL for each router, which rejects

1 https://github.com/atang42/batfish/tree/rm-localize

route advertisements that match prefixes from NETS or are tagged
with communities from COMM and accepts all other advertisements
(7-12 in Figure 1(a) and 6-21 in Figure 1(b)).

Despite the superficial similarity of the two configurations, there
are large behavioral differences. Campion uses SemanticDiff and
HeaderLocalize to find and localize these differences. Table 2 shows
Campion’s output when given the two route maps in Figure 1. The
output has two results, each of which represents a distinct
configuration error. For each error, Campion identifies all the route
advertisement prefixes that are treated differently by the two route
maps, namely route advertisements for prefixes that are in the set
Included Prefixes but not the set Excluded Prefixes. We call
the process of identifying and representing all problematic inputs
header localization. Further, Campion also shows the action that
each route map takes on these advertisements as well as the
configuration lines responsible for that action. We call the process
of identifying all relevant lines of the configuration text localization.

In the output shown in Table 2(a), the Action and Text rows
indicate that advertisements for the relevant prefixes match the
NETS prefix list in the Cisco route map and are therefore rejected,
but these prefixes fall through to the last term in the Juniper route
map and are accepted. Careful inspection reveals the problem: in
the Cisco route map, NETS matches prefixes with lengths between
16

1
2
3
4
5
6
7
8
9

10
11
12

(a) Excerpt from the Cisco route map

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

ip prefix-list NETS permit 10.9.0.0/16 le 32
ip prefix-list NETS permit 10.100.0.0/16 le
32 !
ip community-list standard COMM permit 10:10
ip community-list standard COMM permit 10:11
!
route-map POL deny 10
match ip address NETS

route-map POL deny 20
match community COMM

route-map POL permit 30
set local-preference 30

prefix-list NETS {
10.9.0.0/16;
10.100.0.0/16; } community COMM

members [10:10 10:11]; policy-
statement POL { term rule1 { from
prefix-list NETS; then reject;

} term rule2 { from
community COMM; then
reject;
} term rule3 { then {
local-preference 30;
accept;

}
}

}

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

751

(b) Excerpt from the Juniper route map

Figure 1: Cisco and Juniper route maps with subtle differences

and 32, while in the Juniper route map it only matches prefixes
with lengths of exactly 16. Thus, a prefix like 10.9.1.0/24 is
matched by the Cisco route map but not by the Juniper route
map.

The second result that Campion produces (Table 2(b))
identifies a second, unrelated configuration difference. The
Included Prefixes and Excluded Prefixes rows show that
this difference occurs for advertisements of all prefixes other than
those in the ranges of the NETS prefix list. While Campion can
find all differences and identify all relevant IP prefixes, for other
fields of the route advertisement it currently provides a single
example. In this case, the output indicates that this difference
occurs when the route advertisement contains only the
community 10:10. The Action and Text rows show that the
Cisco route map matches the advertisement against the
community list COMM and rejects it, while the Juniper route map
again falls through to the last rule. This difference reveals a subtle
error: COMM in the Cisco route map matches route advertisements
containing either the community 10:10 or 10:11, whereas COMM
in the Juniper route map erroneously matches only
advertisements tagged with both communities.

Campus network operators confirmed both of the above
behavioral differences as configuration errors. Further, the errors
are subtle and have existed since at least July 2017. The network
operator commented, "your config-analysis tool is great. It’s
highly
unlikely anyone would detect the functional discrepancies just by

Included

Prefixes
10.9.0.0/16 : 16-32
10.100.0.0/16 : 16-32

Excluded

Prefixes
10.9.0.0/16 : 16-16
10.100.0.0/16 : 16-16

Policy Name POL POL
Action REJECT SET LOCAL PREF 30

ACCEPT

Text
route-map POL deny 10
match ip address
NETS

rule3 {
then {
local-preference
30; accept;

}
}

(a) Difference 1

 cisco_router juniper_router

Included

Prefixes 0.0.0.0/0 : 0-32

Excluded

Prefixes
10.9.0.0/16 : 16-32
10.100.0.0/16 : 16-32

Community 10:10
Policy Name POL POL

Action REJECT SET LOCAL PREF 30
ACCEPT

Text route-map POL deny 20
match community COMM

rule3 {
then {
local-preference
30; accept;

}
}

(b) Difference 2

Table 2: Campion result when checking equivalence of
configurations in Figure 1 using a Semantic Check

Route received (Cisco) Prefix: 10.9.0.0/17
Route received (Juniper) Prefix: 10.9.0.0/17

Packet dstIp: 10.9.0.0

Forwarding Juniper router forwards (BGP)
Cisco router does not forward

Table 3: Minesweeper result when checking equivalence of
configurations from Figure 1

eyeballing the configs." As described in §5.2, Campion found
additional differences that have been removed here to keep the
example simple.

Comparison with Minesweeper. Minesweeper [3] builds a logical
representation of the network behavior, modeling the routing
process and forwarding behavior. It then uses a satisfiability modulo
theories (SMT) solver to answer verification queries. Minesweeper
supports a behavioral equivalence check of individual routers, but it
does so by checking that the logical representation of both routers’

entire

configurations are equivalent. A major drawback of this monolithic
approach is the difficulty to diagnose the source of the error — any
identified difference could be caused by BGP configuration, OSPF
configuration, ACLs, or static routes.

Prefix 10.1.1.2/31

Next Hop 10.2.2.2 None
Admin. Distance 1 None

Text ip route 10.1.1.2
255.255.255.254 10.2.2.2 None

Table 4: Campion result when checking equivalence of static routes
using a Structural Check

 cisco_router juniper_router cisco_router juniper_router

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

752

In order to make the comparison more fair, we adapted
Minesweeper to only check behavioral equivalence of two route
maps. Specifically, Minesweeper checks that its logical
representations of the two route maps are equivalent: whenever
they receive the same set of route advertisements, they produce
the same forwarding behavior for all packets. Table 3 shows the
output of this modified version of Minesweeper on the above
example. There is a single counterexample indicating that, when
both routers receive a route advertisement with prefix
10.9.0.0/17, they will produce different rules for forwarding
packets with destination IP address 10.9.0.0: the Juniper router
will forward them, while the Cisco router will not.

Minesweeper’s output identifies a behavioral difference
between the two route maps that corresponds to Campion’s
output shown in Table 2(a). However, Minesweeper’s output is
lacking in several important ways. (1) It only provides information
about a single behavioral difference. However, as explained
earlier, there are actually two unrelated configuration differences
between these route maps (Table 2(a) and Table 2(b)). (2) For the
error that Minesweeper does identify, it only provides a single
concrete example, with a specific route advertisement and
destination IP prefix. To fully fix the problem of unintended
differences between the two route maps, operators must
understand the set of all route advertisements that produce this
behavioral difference. Having this set explicitly also provides an
indication of the scope of the problem. (3) Minesweeper provide
no information about what parts of the route maps are
responsible for the behavioral difference.

It is possible to modify Minesweeper again, this time to
produce multiple concrete examples. This can be done by simply
querying the SMT solver multiple times, each time including
additional logical constraints that disallow previously generated
counterexamples. This approach could potentially alleviate the
first two issues described in the previous paragraph, but our
experiments with this approach illustrate that it is not very
effective. On the above example, running Minesweeper does
provide counterexamples from both classes of differences from
Table 2 but it takes 7 counterexamples in order to have at least
one for each prefix range that is relevant for Difference 1. Further,
the approach is fragile: when we replaced the number 32 in the
second line of the Cisco configuration (Figure 1(a)) with 31, it took
27 counterexamples for Minesweeper to provide a violation of
Difference 1 instead of Difference 2.

2.2 Static Route Diffs via Structural Checks

Campion detects differences in configuration components such as
static routes and OSPF costs using a structural equivalence check.
For example, for static routes Campion simply considers the set

Packet dstIp: 10.1.1.2

Forwarding Cisco router forwards (static)
Juniper router does not forward

Table 5: Minesweeper result when checking equivalence of static
routes

of static routes in each router and identifies all structural
differences: cases where a route is present in one set but not the
other, or where a route is present in both but with different
attributes such as the next hop and administrative distance. This
technique illustrates another advantage of our modular approach.
Because we are checking configuration components in isolation
from the rest of the configurations, for many components a simple
structural check is as precise as a behavioral check via a semantic
representation, while providing better localization and
understandability for users.

An example of an output produced by Campion when checking
static routes is shown in Table 4. This output shows that in the Cisco
router, a static route exists that sends packets destined to
10.1.1.2/31 to 10.2.2.2, but there is no such route in the Juniper
router. Differences like this were found in both the university and
cloud networks.

Table 5 shows the output that Minesweeper produces for the
same example. Minesweeper can identify that the forwarding was
caused by a static route, but it does not determine the prefix of the
static route, the other relevant fields like the administrative
distance, or the lines of the configuration. Hence operators have to
search through a potentially large set of static routes and determine
which one would affect the routing of packet to a 10.1.1.2.
Further, if there were multiple static-route differences,
Minesweeper would only find one, while Campion would identify
all.

3 Design and Algorithms

We describe Campion’s design and core algorithms. Campion’s
overall algorithm for identifying and localizing behavioral
differences between configurations !1 and !2 is as follows:

1 func ConfigDiff (!1, !2)
2 result ← []
3 pairs ← MatchPolicies(!1, !2)
4 for ("1, "2) ∈ pairs do
5 differences ← Diff("1, "2)

6 for % ∈ differences do

7 result ← result.append(Present(%, {!1,!2}))
8 return result

This algorithm consists of three main parts:

(1) The corresponding components (ACLs or BGP route maps) for
!1 and !2 are paired up by the MatchPolicies function. This
can be done with heuristics such as matching components by
name or matching components that relate to the same
neighboring node, or this information can be provided by the
user.

(2) For each component pair, the Diff function invokes either
SemanticDiff or StructuralDiff to produce a set of differences,

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

753

each of which can include a set of inputs, the actions taken
by each component, and the locations in the configurations.

(3) The Present function formats the results for output to the
user, including invoking HeaderLocalize on the results of
SemanticDiff in order to produce an understandable
representation of the set of inputs.

We now describe SemanticDiff, HeaderLocalize, and
StructuralDiff in more detail. We then discuss the general
applicability of SemanticDiff and StructuralDiff and show how our
modular approach can find and localize behavioral differences
across entire router configurations.

3.1 SemanticDiff

SemanticDiff takes a pair of configuration components as input
and returns a list of all behavioral differences. The same basic
algorithm applies to both ACLs and route maps. Each difference
is a quintuple of the form: (&,'1,'2,(1,(2). In this quintuple, & refers
to a set of inputs to the components, represented as a logical
formula over message headers. For dataplane ACLs the inputs are
sets of packets, and for route maps they are route
advertisements. '1 and '2 are the respective actions taken by the
two components when given an input from &. The action for ACLs
is either accept or reject, but for route maps the accept action can
also set fields such as local preference. (1 and (2 are the
respective lines of text from the two components that process
inputs from & and result in '1 and '2.

The SemanticDiff algorithm has two main steps. First, for each
configuration component, the space of inputs is divided into
equivalence classes, based on their paths through the
component. Both ACLs and route maps can be viewed as a
sequence of if-then-else statements, so two inputs are in the
same equivalence class if and only if they take the same set of
branches through these statements. Each equivalence class is
represented symbolically as a logical predicate on the input
(either a packet header or route advertisement). Our
implementation uses BDDs to represent these predicates. Each
equivalence class is also associated with the text lines that are on
the corresponding path as well as the action taken. This step
consequently produces two lists of triples:

)1 = [(&1,1,'1,1,(1,1), (&1,2,'1,2,(1,2), . . . , (&1,!,'1,!,(1,!)]
)2 = [(&2,1,'2,1,(2,1), (&2,2,'2,2,(2,2), . . . , (&2,!,'2,!,(2,!)]

Figure 2 shows the equivalence classes for the example route
map from Figure 1(a). NETS and COMM correspond to the names
of the attribute filters — NETS for prefix filters and COMM for
communities. We use NETS to denote the set of accepted

prefixes, and similarly COMMJ to denote the set of accepted

communities. WeK also denote the complement of a setJ K * as ¬
*. There are three equivalence classes, one per clause in the route
map — the first clause is associated with the space NETS , the
second clause is associated with ¬ NETS ∩ COMM , the space of

routes matchingJ K COMM but not NETSJ , and the third clause is

for all remainingK J K routes. Each equivalence class is also

associated with whether itJ K J K accepts or rejects routes and
what fields are set.

Once the inputs are partitioned into equivalence classes for
both components, the SemanticDiff algorithm then performs a
pairwise comparison to identify behavioral differences. For each
pair of
equivalence classes (&1,",'1,",(1,") and (&2,#,'2,#,(2,#) from the two
components, if &1," and &2,# have a non-empty intersection and the
actions '1," and '2,# differ, then there is a behavioral difference.
In
route-map POL deny 10 Inputs: NETS
 J K

match ip address NETS Action: Reject route-map POL

deny 20 Inputs: ¬ NETS ∩ COMM
 J K J K

match community COMM Action: Reject route-map POL

permit 30 Inputs: ¬ NETS ∩ ¬ COMM
 J K J K
 set local-preference 30 Action: Accept, local-pref=30

Figure 2: Partitioning the space of route advertisements based on
route map definitions.
that case, we add

(&1," ∩ &2,#, '1,", '2,#, (1,", (2,#)

to the list of differences returned by SemanticDiff.

3.2 HeaderLocalize

SemanticDiff produces the set of packets that exhibit behavioral
differences as a logical predicate. The HeaderLocalize algorithm
produces a more human-understandable representation in terms of
the constants (e.g. IP prefixes) that appear in the configuration,
handling the header localization problem. Specifically,
HeaderLocalize produces a compact representation of the set of all
destination IP addresses relevant to an ACL difference and the set
of all IP prefix ranges relevant to a route map difference. For ease
of presentation, we only describe finding prefix ranges relevant to
route map differences, but the process for ACLs is analogous. In
principle, HeaderLocalize can also be extended to other route fields
such as communities, but we have not yet done so. Currently,
instead of producing all communities relevant to a route map
difference, Campion outputs a single example.

For route maps, sets of IP prefixes are represented by prefix
ranges, each of which is a pair of a prefix and a range of lengths. For
example, (1.2.0.0/16, 16-32) is a prefix range where the prefix is
1.2.0.0/16 and the length range is 16-32. A prefix " is a member
of a prefix range + if both of the following hold:

(1) The IP address of " matches the prefix of +
(2) The length of " is included inside the range of +

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

754

For example, 1.2.3.0/24 is a member of the prefix range
(1.2.0.0/16, 16-32), (0.0.0.0/0, 0-32) is the set of all prefixes,
and (1.0.0.0/8, 24-24) is the set of all prefixes with length 24 and
1 as the first octet. We say that a prefix range +1 is contained in
another prefix range +2, denoted +1 ⊂ +2, if the members of +1 are
a subset of those of +2.

The input to HeaderLocalize is a BDD - representing the set of
messages affected by an identified policy difference, along with the
original configurations !1 and !2. The output is a representation of
-’s prefix ranges in terms of the prefix ranges that are in the two
configurations. First, all prefix ranges from the two configurations
are extracted to get the set R = {+1, +2, . . . +!}. If the set of all
prefixes (0.0.0.0/0, 0-32), which we will call . , is not in R, then
it is added. Furthermore, R is extended so that it is closed under
intersection. Since each line of a route map can allow or reject route
advertisements based on prefix ranges in the configuration, it is
always possible to represent the set - as a combination of
complements, unions, and intersection of sets from R. The goal of
HeaderLocalize is to identify the minimal such representation.

To find this minimal representation, HeaderLocalize builds a
directed acyclic graph (DAG) that relates the prefix ranges in R to
one another. This data structure is analogous to the ddNF data
structure previously used for packet header spaces [8], but here
we associate each node with prefix ranges rather than tri-state bit
vectors representing data-plane packets. HeaderLocalize’s ddNF
data structure consists of a set of nodes /, a set of edges 0 ⊆ /
×/, a labeling function 2 mapping nodes to prefix ranges, and a
root node. It satisfies the following properties:

(1) The root node is labeled with . , the set of all prefixes, and
all other nodes are reachable from it.

(2) Each node has a unique label (and thus in the following
explanation, we will sometimes refer to a node by its prefix
range or vice versa).

(3) The set of prefix ranges used as labels contains R and is closed
under intersection.

(4) For any nodes 3,4 ∈ /, there is an edge (3,4) ∈ 0 exactly
when 2(4) ⊂ 2(3) and there is no node 3ʹ such that 2(4) ⊂
2(3ʹ) ⊂ 2(3).

An example DAG is shown in Figure 3 for a set of seven prefix
ranges. There is one node per prefix range, and each node’s prefix
range is a subset of those of its ancestors. For example 5 is
contained in 6 and 7. The DAG is built by inserting one prefix
range at a time, starting with. [8]. We also associate each
internal node, with prefix range + and outgoing edges to nodes
labeled !1,!2, . . . ,!", with the set of prefixes + −!1−!2 · · ·−!".
We call this set the remainder set, as it is the set of prefixes that
remain in + after prefixes of the children nodes are removed. For
example, the remainder set of node
6 in Figure 3 is 6 − 5 − 0. The remainder and leaf node sets are
all disjoint from one another, and their union is. . Importantly,
because the set - of interest was created through unions,
intersections, and complements of the prefix ranges in R, each

remainder set and leaf prefix range has the property that either
it is contained in - or disjoint from -.

Next HeaderLocalize uses the DAG to produce a representation
of - in terms of the prefix ranges in R. This is done by traversing
the DAG with the recursive function GetMatch shown below. If
the current node is a leaf, then its prefix range + is included in the
result if that range is contained in -. If the current node is internal,
then there are two cases. If the node’s remainder is contained in
-, then its prefix range + should be included in the result, after
removing any of the node’s child prefixes in the DAG that are not
contained in -. This latter process is done through a recursive call
to GetMatch with the complement set of -. if the node’s
remainder is not contained in -, then we simply recurse on the
children and union the results.

The GetMatch algorithm produces a representation of - that is
a union of terms of the form + − *1 − *2 − . . . *", where + is a
prefix range, but each *# is also in the form + − *1 − *2 − . . . *".
For example, running GetMatch on the DAG in Figure 3 produces
{6 − 5,! − (8 − 9)}, and the nodes in the figure are colored to
illustrate the algorithm’s process. As a final simplification step, we
remove all nested differences from the result through a single
pass over it. In our example, the result ! − (8 − 9) is transformed
into {!−8,9}, so the final representation of the set - is
{6−5,!−8,9}.

Sele

 ort

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

755

Figure 4: Basic features of routing and forwarding. Blue nodes(✓)
represent fixed processes. Yellow nodes (incoming

1 func GetMatch (S, node) 2 C
← Children(node)
3 R ← PrefixRange(node)

4 if IsLeaf(node) then
5 if R ⊆ S then

6 return {R} ▶ node is a leaf, and $ ⊆ &
7 else

8 return ∅ ▶ node is a leaf, and $ ∩ & = ∅

9 if Remainder(node, C) ⊆ - then
▶ checks if

$ −(1 −(2 . . .(! ⊆ &

10 nonmatches ← Ð"∈(GetMatch(¬ -, k)
11 return {+ − nonmatches} ▶ returns {$ − *1 − *2 . . .*!}
12 else
13 return Ð+∈(GetMatch(-, k) ▶ returns {*1,*2 . . .*"}

3.3 StructuralDiff

It would be possible to use a semantic approach like SemanticDiff to
reason about all configuration components, just as we do for route
maps and ACLs. However, we observe that other configuration
components typically have a very stylized structure, as a single
atomic value (e.g., integer or boolean) or a simple collection of such
values. Hence, when considered modularly, the equivalence of two
such components is tied to their structure.

That is, two components are behaviorally equivalent, for all
possible configurations, if and only if their structural representation
is identical. Thus we can use a simple structural check without
incurring additional false positives versus a semantic approach.
Since the structural approach does not require logical modeling, it
is more efficient. Further, localization is trivial since the structural

check directly identifies the portions of the two components that
differ.

Our StructuralDiff function implements this approach. All
components are represented as atomic values, tuples, or
unordered sets. Atomic values are tested for equality. Tuples are
compared by testing that the corresponding values are equal.
Finally, sets are compared using set difference.

For example, to check two OSPF configurations are equivalent
(excluding route redistribution which is handled by SemanticDiff),
it suffices to check equivalence for all corresponding attributes on
all corresponding links. That means both routers must have OSPF
edges to the same peers, and the corresponding edges are
configured with the same costs, areas, passive status, etc. We can
think of the configuration of each OSPF link as a tuple of its
configured attributes and check each corresponding attribute.
The same approach works for BGP properties not implemented
with route maps, such as which edges are to route reflector
clients and whether communities are propagated.

Other components that affect routing include connected and
static routes. Connected routes are formed by the set of subnets
connected to the router’s interfaces, and the difference between
routers is the set of such subnets present in one router but not
the other. Similarly, a single static route can be represented as a
tuple consisting of a destination prefix, a next-hop, an
administrative distance, and optional fields like tags; so the
difference is the set of tuples present in one router but not the
other. Administrative distances can also be compared as values
configured per protocol.

As mentioned earlier, localization for these components is
straightforward because the equivalence check is performed
directly on the components’ structures. Further, unlike route
maps and ACLs, these components have no explicit notion of
input. Hence there is no need for, or analogue to, HeaderLocalize
for such differences.

3.4 Debugging an Entire Router

We now formalize our approach to checking full router
equivalence. We observe that many crucial parts of routing, such
as the route selection process, are fixed. They are implemented
according to a standard and depend only on the provided inputs
and configurations. All of the various processes in Figure 4 need

Figure 3: DAG created from prefix ranges. Green (✓) nodes represent leaves or remainders contained in a set -, and red (✕) nodes represent
those that are not. - can be represented by the union of 6 − 5, ! − 8, and 9

0.0.0.0/0,0-32

1.0.0.0/8,8-32

2.0.0.0/8,8-32

 1.2.0.0/16,16-32

1.3.4.0/24,24-32

2.0.0.0/8,24-32

2.5.6.0/24,24-32

Remainder:

Remainder: Remainder:

Remainder:

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

756

to be modeled to fully simulate a router or network, but only the
configured aspects (shown in brown) need to be modeled to find
behavioral differences.

Figure 4 provides a flow diagram illustrating the processes
supported by Campion. For routing, there is both a BGP process (top
of figure) and an OSPF process (middle of figure), as these are the
most common inter-domain and intra-domain routing protocols;
other protocols could be added similarly. The bottom of the figure
shows the router’s process for forwarding routes. The brown
(unmarked) nodes represent parts of the router configuration, while
the other components are fixed processes like routing protocols
(in blue (✓)), or input routes and packets (in yellow (incoming)),
or outputs and byproducts like selected routes and forwarded
packets (in green (outgoing)).

Assuming that these are the only routing components used in the
configurations being compared, then Campion is a sound verifier for
router configuration equivalence: If Campion identifies no
differences, then the two router configurations are behaviorally
equivalent. We formalize the fact that behavioral equivalence can
be verified without reasoning about the routing protocols as follows
(our formalization considers behavioral equivalence of entire
networks, but it therefore also applies to the special case of
individual routers).

Definition 3.1. A network N = (;, R, CP, FP, ⪯P) is a topology
T = (V, E) of vertices and edges, a set of routes R, a family of
configuration functions CP : E → Ω that maps each edge in the
topology to a configuration Ω, a family of transfer functions
FP : Ω × E × R → R that transforms a route along an edge for a
protocol, and a protocol preference relation ⪯P: R × R that compares
two routes for a protocol.

Definition 3.2. For two networks N = (;, R, CP, FP, ⪯P) and N∗ =

(;∗, R, CP∗ , FP∗, ⪯P) and an isomorphism I between T and T∗, we say
that the two networks are locally equivalent if for all protocols " ∈
P, edges = ∈ E, and routes > ∈ R then
F% .

Theorem 3.3 (Soundness). If networks N and N∗ are locally
equivalent for isomorphism I, then they have the same set of routing
solutions.

Proof. The proof is by a reduction to the stable routing problem
[4] and is described in the appendix. □

4 Implementation and Limitations

Campion operates on a vendor-independent representation
produced by Batfish [12]. Real routers support an enormous
number of features. For Campion, we have focused on the most
common components used for routing and forwarding. Campion
currently supports all of the configuration components and features
that are supported by Minesweeper (Table 1). This includes
common features of BGP route maps, like communities, local
preference, and MEDs, as well as other configurable aspects of BGP

like route redistribution. It also includes configurable OSPF
attributes like link cost and areas, static routes, and ACLs. Sets of
packets and route advertisements are represented by BDDs that are
handled with the JavaBDD library, extending code from Bonsai [4]
used to encode import filters, output filters, and ACLs.

As mentioned in the previous section, it is sometimes necessary
to match up corresponding components between two routers. We
used a few simple heuristics instead of manually specifying
matching components. For BGP properties and route maps, we
match up connections with the same neighbor id, and we report the
neighbors that occur in one router but not the other. We match
ACLs with the same name. For OSPF attributes, we match interfaces
using a combination of their interface names, Batfish’s inferred
topology, and their IP address masks. This is necessary since
interfaces in backup routers usually have different IP addresses.
While these heuristics are not perfect, they allow Campion to be run
quickly and easily.

Campion can identify differences and perform header
localization for any vendor format that Batfish supports.
However, currently Campion can only output exact text lines for
configurations in Cisco IOS and Juniper JunOS formats, since we
must write unparsers to convert Batfish’s representation back to
the original configuration text. For other formats, Campion does
not produce exact text lines, but it still provides substantial
localization information, including the component name, affected
headers, and actions. Similarly, for some formats we do not show
the exact text lines for StructuralDiff results, for example OSPF
costs. But in these cases the localization information that
Campion provides typically allows operators to find the relevant
lines with simple text searches.

HeaderLocalize for route maps currently only provides
exhaustive information for IP prefix ranges. For other relevant
parts of a route advertisement such as community tags, Campion
provides a single example. It is possible to extend HeaderLocalize
to provide exhaustive information across multiple parts of a route
advertisement, but doing so increases the complexity both of the
algorithm and of its output. The current approach has been
sufficient for operators to understand Campion’s results and
localize the errors.

5 Evaluation

We applied Campion to debug router configuration differences
from a large cloud provider and the campus network of a large
university, both of which employ a diversity of hardware router
vendors. Our experiments demonstrate Campion’s ability to
identify cross-vendor configuration differences and to provide
actionable localization information to operators.

5.1 Differencing in a large Data Center

Network 7 is from a global cloud vendor that uses routers from
different manufacturers. We tested Campion on a data center
network from vendor 7 that employs a Clos topology with
hundreds of routers and thousands of servers. All routers are
either Juniper or Cisco, whose configuration languages are

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

757

supported by Campion. The data center network uses eBGP, iBGP,
OSPF, static routes, ACLs, and route redistribution for the layer-3
routing topology. It carries business traffic for multiple global
services. Each router configuration is thousands of lines.

Scenarios. We asked the network operators to employ Campion
on three frequent, real and challenging tasks:

Scenario 1: Debugging redundant routers. Some routers (e.g.,
Topof-Rack) are configured to be backups of one another with
equivalent modular policies handling BGP, OSPF and static routes.
For diversity, the operators deploy redundant routers from
different vendors (e.g., Juniper, Cisco). Because network 7 took
months to build, its current configuration comprises fragments
written by

Scenario Component Structural or Semantic Differences

Scenario 1
BGP Semantic 5

Static
Routes

Structural 2

Scenario 2 BGP Semantic 4

Scenario 3 ACLs Semantic 3
Table 6: Data Center Network Results

different operators for diverse purposes, making hidden
inconsistencies likely. It is important to not only ensure equivalence
of multi-vendor, redundant routers, but also to quickly localize the
root causes of any errors. Network 7 is constantly being
reconfigured as more policies are added for upcoming production
traffic. Campion allows greater agility by allowing new policies to be
more quickly deployed in diverse backup routers. The operators
used Campion to compare all pairs of backup routers.

Scenario 2: Router replacement. Network 7 has an important
update called router replacement, where operators replace a router
from one vendor with one from a different vendor. Such
replacements occur several times a month to take advantage of the
price, performance, and newer features. For example, the operators
of network 7 might replace lower-version Cisco routers with higher-
version Juniper routers in order to avoid a Cisco bug. Router
replacement is one of the riskiest update operations in network 7,
since operators must manually rewrite the old configurations to the
new format; many critical errors have occurred as a result. The
operators used Campion to check for differences between old and
new configurations before performing a scheduled replacement, in
order to proactively detect errors.

Scenario 3: Access control in gateway routers. In network 7, many
ACL rules are applied in gateway routers for traffic control. All of
network A’s gateway routers should have identical access-control
policies, but it is difficult for network A’s operators to guarantee this
since: (1) the number of ACL rules is very large, and (2) the use of
nested ACL rules makes their logic complex. The operators used
Campion to check the equivalence of ACL rules in the gateway
routers of the data center network.

Output evaluation. Note that network 7’s operators used
Campion and its user interface without any feedback or help from
us in interpreting results. The operators gave us very positive
feedback on the practicality and usability of Campion. By using
Campion, they found several risky, hidden configuration errors, as
summarized in Table 6. All differences that Campion found were
unintentional and considered to be errors by the operators. The
network configurations had recently undergone a standardization
process to replace ambiguous and “uncommonly-used”
configuration commands with unambiguous and standard ones.
Hence any differences found by Campion were likely to be
erroneous, and indeed this was borne out by the lack of any false
positives.

Scenario 1: Debugging redundant routers. Campion detected
seven configuration bugs across all of the redundant router pairs
that it analyzed. Five of the bugs represent missing fragments of
BGP policy, and two of them were incorrect next hops in static
routes. For four BGP bugs, Campion was able to accurately localize
the difference. For example, Campion pointed out that a prefix for
an import filter was missing in the primary router but present in the
backup one. Why were these bugs not detected by customers or
real-time monitoring systems? This was because the missing
prefixes had not been used for production traffic yet, but would
have been in the near future. Once a service using this prefix is
enabled, a service problem would have occurred. Thus, Campion
proactively prevented a future service disruption.

The fifth BGP error that Campion detected used a version of
the Cisco IOS format which Campion does not fully support yet.
Campion still detected the error and produced useful localization
information, such as the relevant input space and the actions
taken by each router, but the output configuration text was
inaccurate. Due to this inaccuracy, the operator reported the
need to spend more time to understand the precise bug location,
but they still said that it was easy to spot the deviant
configuration lines from Campion’s output.

The two static route errors Campion detected were
misconfigured next hops. Backup routers in network 7 should
forward the same prefix to the same next hop, but Campion
detected that they were configured to forward a particular prefix
" to different next hops. This is very dangerous: a cascading
failure would have triggered when the production traffic
corresponding to " is turned on in the near future. Campion
accurately pointed out non-equivalent next hops of this kind in
two pairs of backup routers.

Scenario 2: Router replacement. We used Campion to test
more than 30 router replacements. Campion successfully
detected four bugs: one was an incorrect community number and
three were incorrect local preferences. One local preference bug
was for the replacement of a reflector device for iBGP. If this bug
were not detected, the proposed replacement would have
caused a severe outage.

Further, network 7’s operators also tested Campion on a
synthetic case based on a static route replacement which resulted
in a significant outage one year ago. The tags of two static routes

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

758

were configured differently due to a misunderstanding of the
semantics of the two vendors. Campion accurately pointed out
the difference between the static routes. In other words, a
significant outage could have been avoided if Campion had been
used a year ago.

Scenario 3: Access control in gateway routers. Campion
successfully detected three ACL differences between gateway
routers from Cisco and Juniper. Table 7 shows Campion’s output
for one of these differences. 2 Campion’s text localization
identified the exact line in the Cisco ACL where traffic was
rejected. The Juniper ACL equivalent is divided into terms, and
Campion’s text localization was able to locate which term
accepted the traffic. Further, Campion’s header localization also
identified header information like the relevant source IP prefix.

Running Time. For each of the above three scenarios, although
the configuration files of each device in network 7 contains
thousands of lines, Campion finished its localization task within
five seconds for each pair of routers.

Comparing Campion with an existing tool. While provider
7 has its own home-grown verification system that has been used

Router Pair Route Map Outputted

Differences
Differences

Reported Confirmed Pending

Core

Routers
Export 1 5 5 4 1
Export 2 1 1 1 0

Border

Routers

Export 3 1 1 1 0
Export 4 1 1 1 0
Export 5 2 1 1 0
Import 0 - - -

(a) SemanticDiff results on route maps

Router Pair Component Classes of Errors Differences
Reported Confirmed Pending

Core
Routers

Static Routes 2 1 0 0
BGP Properties 1 1 0 0

 (b) StructuralDiff results Table 8:
University Network Results

 Router 1 (current) Router 2 (reference)

Included
Packets

srcIP: 9.140.0.3/32
dstIP: 0.0.0.0/0

Excluded
Packets

srcIP: 9.140.0.3/32
dstIP: 0.0.0.0/0
protocol: ICMP

+28 more
ACL Name VM_FILTER_1 VM_FILTER_1

Action REJECT ACCEPT

Text 2299 deny ipv4 9.140.0.0
0.0.1.255 any

set firewall family inet
filter VM_FILTER term
permit_whitelist

2 The IP addresses and ACL name in this figure have been anonymized for

confidentiality reasons.

Table 7: An example for ACL rules debugging. Router 1 and Router
2 are Cisco and Juniper routers, respectively.

for 1.5 years, this system can only tell whether the network
configuration meets operator intent, but does not provide any error
localization capability. Thus, network 7’s operators spend
considerable time localizing bugs even when the existing tool
identifies bugs in the network. Campion therefore provides a new
capability that can potentially reduce debugging time considerably
for network 7’s operators.

Localization efficiency. For the configurations checked, all
localization results were less than five lines of configuration code.
The configuration files tested vary in size from 300 lines to more
than 1000 lines. Of these, the number of lines that are part of an
ACL or route map definition is typically more than 100. Campion
thus drastically reduces the amount of configuration that operators
must search through to debug a difference.

5.2 Differencing in a University Network

The university network consists of approximately 1400 devices,
including border routers that connect to external ISPs, backbone
core routers and building routers.

We ran Campion to compare the policies for a pair of core routers
and a pair of border routers. In each pair, one used Cisco
configuration format and the other used Juniper format. We chose
these two pairs because they are the only Cisco-Juniper backup
pairs with routing policy. The Cisco configurations and the Juniper
core router configuration contain about 1800 lines of text. The
Juniper border router configuration contains about 3500 lines of
text. The results are shown in Table 8.

We match route maps that are applied to the same BGP
neighbor. In total, there were five pairs of operator-defined
export route maps, and one pair of operator-defined import route
maps. The differences that Campion found are summarized in
Table 8(a).

The prefix ranges, communities, and text lines produced by
Campion made it straightforward to identify these discrepancies.
The list of issues that we sent to the operators does not exactly
correspond to the raw output of our tool. For example, since
Campion divides sets of advertisements based on which lines
process them, it is possible that a single underlying difference in
the configuration results in multiple lines of outputted
differences. In Table 8(a), the Outputted Difference column
reports the number of raw outputs produced by Campion,
whereas the Differences Reported column reports how many
distinct issues we reported to the operators. We categorize a
reported difference as Confirmed if the operator indicated that
the identified difference was both an actual difference and
unintentional. The last column indicates the number of reported
differences whose status is unknown at this time.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

759

As shown in the table, the operators confirmed that most of
the differences Campion identified were in fact errors. Based on
earlier snapshots, the differences have been present since at least
July 2017.

The route maps shown earlier in Figure 1 illustrate two issues
from a pair of core-router route maps (labeled Export 1 in Table
8(a)). These were differences in the definitions of a prefix list and
a community set and were confirmed as unintentional
discrepancies. For the difference in the prefix lists, the operator
agreed it was a misconfiguration, but was not sure whether the
Cisco or Juniper router was correct. For the community
difference, the operator wrote: “The community group is an
obvious mistake on our part. The Juniper config is wrong. We
followed the wrong Juniper doc when
configuring the community group.”

In addition to the differences shown in Figure 1, the actual
route maps contained different definitions for their third clause,
with the Juniper router performing a match on communities that
was not done in the Cisco router. They also have different
redistribution behavior for certain addresses. Further, the two
routers have different fall-through behaviors (accept vs. deny)
when handling advertisements that fail to match any clause,
which causes two additional behavioral differences. Operators
confirmed all but the last of these issues, which is still pending.
When asked about the difference between the third clauses of
each route map, the operator replied: “The Juniper config is
correct and the intent is obvious because of the English-language
syntax. The Cisco config we’re not sure what change should be
made, if any.” This demonstrates the challenge for operators
when dealing with multi-vendor backups, and the need for a tool
like Campion to ensure consistency and localize errors.

Export 2, the other core router policy, also had the difference
in prefix lists mentioned previously for Export 1 but did not have
any other issues. The differences in the border router policies
similarly affected the matched prefixes and communities but
were of a different nature: there were differences in two regular
expressions used to match communities for Export 3 and Export
4. Campion reported that advertisements with a certain
community were accepted in the Cisco router but not the Juniper
router. For Export 5, there was one prefix that was absent in a
prefix list in the Juniper router but present in the Cisco router list.
These were also confirmed as errors by the operators.

When comparing other properties of the core routers using
Campion’s StructuralDiff, we found differences in the static route
configuration and the BGP configuration. In the static routes we
found two classes of differences. The first included many static
routes that applied to the same prefix but had different next hops
and different administrative distances. We deemed these as
intentional differences, since the next hops had similar addresses,
suggesting that their next hop routers were of the same role, and
the administrative distances did not affect the relative priority of
routes. The second class of static route differences included two

3 https://github.com/google/capirca

static routes that were present in one router but not the other, as
demonstrated in § 2. These were reported to the operators, and
they said that these were intentionally added as a workaround for a
specific BGP routing issue. The BGP configuration difference was
that certain iBGP neighbors of the Cisco router were missing a
neighbor send-community command to propagates communities,
while Juniper routers send communities by default. The operators
indicated that this configuration difference does not cause a
behavioral difference because the core routers do not set
communities on routes.

5.3 False Positives

We distinguish between two types of false positives that Campion
may produce, both of which were exhibited in the results for the
university network. First, there can be intentional differences
between routers. This was the situation for the static routes that
were added in one configuration as a workaround for a specific BGP
routing issue, as well as for the static routes that had differing next
hops. Second, there can be spurious differences due to Campion’s
modular approach. Specifically, any potential behavioral difference
between corresponding components is reported by Campion, but
these differences may not cause an actual behavioral difference in
the current network, for example because the differences are
shadowed or accounted for by other parts of the configuration. This
was the situation for the iBGP neighbors of one router which were
not configured to send communities.

However, we argue that it is still worthwhile to report both kinds
of false positives. Reporting intentional differences allows the
operator to ensure that all and only expected differences exist
between the two routers. In the case of static routes added as a
workaround, the operator commented, "I just need to find another
way to resolve this," indicating that this difference is intentional but
still not optimal. Reporting spurious differences is valuable because
they represent latent errors that can potentially be "activated" by a
change elsewhere in the network configuration. In the case of the
spurious difference for sending communities, if the core routers
later start to set communities on routes then this difference will
cause an important behavioral difference. Indeed, the operator
commented that these kinds of spurious differences would likely be
examined and addressed when the routers are next replaced.

5.4 Scalability

For each of the data center scenarios, Campion finished its
localization task within five seconds for each pair of routers. For the
university core and border pairs, the total runtime to compare the
core and border pairs was 3 seconds. When combined with the
parsing of the configurations, the total time was under 10 seconds,
with configuration parsing taking a majority of the time. We
additionally tested the scalability of SemanticDiff for ACLs. We used
Capirca3 to randomly generate nearly equivalent ACLs for Cisco and
Juniper configurations. We introduced 10 differences between the
two ACLs and compared them. When the ACLs were generated with

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

760

1000 rules, SemanticDiff took less than a second. When the ACLs
were generated with 10,000 rules, SemanticDiff took 15 seconds.
These tests were done with a 2.2 GHz CPU. Moreover, Batfish’s
parsing time for the 10,000 case is 13 seconds, which is comparable
to the runtime of SemanticDiff.

6 Related Work

At a high level our work differs from prior work in network
verification in two ways. First, we target verifying behavioral
equivalence of two router configurations, while prior work
typically targets network-wide reachability properties. Second,
we localize identified errors to both relevant headers and
configuration lines; most prior work simply provides individual
concrete counterexamples.

Data Plane Verification Tools: Many tools verify reachability
properties of a network’s data plane, including its ACLs and
forwarding tables [2, 15, 17, 18, 20, 21, 32]. Several tools focus on
ACLs [22, 29] and localize errors to ACL lines [14, 15, 17, 29].
Closest to our work, netdiff [9] is a tool for checking data plane
equivalence in networks using a similar symbolic execution
approach, but it focuses on the data plane. Campion extends
these capabilities to perform configuration localization for the
control plane. HeaderLocalize and StructuralDiff have no
analogue in netdiff.

Control Plane Verification: Other tools verify properties of a
network’s control plane routing processes [1, 3, 4, 10, 12, 24, 31,
33]. These tools can be adapted to perform router equivalence
checking, as we showed for Minesweeper [3] in § 2. However,
when verification fails, these tools only provide individual,
concrete counterexamples, while Campion localizes to both
headers and configuration text. As we have seen by the
experiment in Section 2, even if we extend Minesweeper to
produce multiple counterexamples it is still not able to quickly
find all errors. Further, this still leaves the question as to which
parts of the text caused each error. Recent work extends
Minesweeper to localize errors by leveraging an SMT solver’s
ability to provide unsatisfiable cores when verification fails [28].
The approach localizes errors to specific SMT constraints, but not
to configuration lines or headers. Campion leverages the BDD
encoding of ACLs and route maps from Bonsai [4], which uses
BDDs to perform network abstraction, not router differencing or
debugging. Campion’s structural checks are reminiscent of rcc
[11], but our checks are designed to ensure behavioral
equivalence and to do so without incurring additional false
positives over a modular semantic check.

Outlier Detection: Benson et al. [5, 6] infer data-plane
reachability specifications from a network’s forwarding tables and
use these specifications in part to identify outliers. However, they
only consider the data plane and cannot localize back to the
original configurations. SelfStarter [16] infers parameterized
configuration templates for ACLs and route maps and uses them
for outlier detection. This approach uses sequence alignment and
so requires router configurations to be structurally similar.

Further, SelfStarter localizes configuration text but cannot
localize headers.

Equivalence Checking: Equivalence checking is an old idea
beyond networks, and our SemanticDiff algorithm is similar in spirit
to prior work. For example, Ramos et al. [26] perform equivalence
checking of two C functions via pairwise comparisons of execution
paths. Because network ACLs and route maps are loopfree, Campion
is exhaustive, finding all differences and localizing to all IP prefixes;
equivalence checking of software is undecidable in general.

7 Conclusion

Campion is a tool for debugging router configurations intended to
be behaviorally equivalent but which in fact are not. Unlike prior
work, Campion uses modular structural or semantic checks to
localize errors to the affected message headers and relevant
configuration lines. Our experience with a cloud provider and a
university indicates that Campion satisfies a real need by localizing
crucial errors.

Prior control-plane verification tools model a configuration
monolithically as a set of constraints. In contrast, Campion exploits
the modular structure of configurations to break up complex checks
of whole router behavior into smaller per-component checks. This
"bottom up" style eases localization, sidesteps reasoning about the
routing protocols, and allows simple structural checks to often be
used without additional loss of precision. None of these capabilities
would be possible without exploiting modularity. As in other forms
of verification, we believe exploiting modularity will be critical to
making real-world network verification and debugging effective.

Acknowledgments
Thanks to the SIGCOMM reviewers for their helpful comments.
Thanks to the network operators for using Campion and providing
feedback on its results. This work was supported in part by NSF
grants CNS-1704336 and CNS-1901510.

References
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). USENIX Association,

Santa Clara, CA, 201–219. https://www.usenix.org/conference/nsdi20/

presentation/abhashkumar
[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic

Foundations for Networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Diego, California,

USA) (POPL ’14).
 Association for Computing Machinery, New York, NY, USA, 113–126. https:

//doi.org/10.1145/2535838.2535862
[3] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (Los

Angeles, CA, USA) (SIGCOMM ’17). Association for Computing Machinery, New

York, NY,
 USA, 155–168. https://doi.org/10.1145/3098822.3098834
[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018. Control

Plane Compression. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18).

 Association for Computing Machinery, New York, NY, USA, 476–489. https:
//doi.org/10.1145/3230543.3230583

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tang et al.

761

[5] Theophilus Benson, Aditya Akella, and David Maltz. 2009. Unraveling the

Complexity of Network Management. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation (Boston,

Massachusetts) (NSDI’09). USENIX Association, Berkeley, CA, USA, 335–348.

http://dl.acm.org/ citation.cfm?id=1558977.1559000
[6] Theophilus Benson, Aditya Akella, and David A. Maltz. 2009. Mining Policies

from Enterprise Network Configuration. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement (Chicago, Illinois, USA) (IMC
’09). ACM, New

 York, NY, USA, 136–142. https://doi.org/10.1145/1644893.1644909
[7] TODD Bishop. 2013. Xbox Live outage caused by network configuration problem.

https://www.geekwire.com/2013/xbox-live-outage-caused-

networkconfiguration-problem/
[8] Nikolaj Bjørner, Garvit Juniwal, Ratul Mahajan, Sanjit A. Seshia, and George

Varghese. 2016. ddNF: An Efficient Data Structure for Header Spaces. In

Hardware and Software: Verification and Testing, Roderick Bloem and Eli Arbel

(Eds.). Springer International Publishing, Cham, 49–64.
[9] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. 2019. Dataplane equivalence and its applications. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 683–698.

 https://www.usenix.org/conference/nsdi19/ presentation/dumitrescu
[10] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas

Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis Using

a Succinct Control Plane Representation. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Savannah, GA,

USA) (OSDI’16). USENIX Association, USA, 217–232.
[11] Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP Configuration Faults

with Static Analysis. In Proceedings of the 2Nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2 (NSDI’05). USENIX

 Association, Berkeley, CA, USA, 43–56. http://dl.acm.org/citation.cfm?id=
1251203.1251207

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network

Configuration Analysis. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). USENIX Association, Oakland, CA, 469–

483. https: //www.usenix.org/conference/nsdi15/technical-

sessions/presentation/fogel [13] Aaron Gember-Jacobson, Raajay Viswanathan,

Aditya Akella, and Ratul Mahajan. 2016. Fast Control Plane Analysis Using an

Abstract Representation. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). ACM, New York, NY, USA, 300–313.

https://doi.org/10.1145/2934872.2934876
[14] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish

Bhargava, Paul-Andre C Bissonnette, Shane Foster, Andrew Helwer, Mark Kasten,

Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,

Adrian Power, Neha Milind Raje, and Parag Sharma. 2019. Validating Datacenters at

Scale. In Proceedings of the ACM Special Interest Group on Data Communication
(Beijing, China) (SIGCOMM ’19). Association for Computing Machinery, New York,

NY, USA, 200–213. https://doi.org/10.1145/3341302.3342094 [15] Karthick

Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. 2014. Automated
Analysis and Debugging of Network Connectivity Policies. Technical Report MSR-TR-

2014-102. Microsoft.
[16] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett, Karthick Jayaraman, Todd

Millstein, Yuval Tamir, and George Varghese. 2020. Finding Network

Misconfigurations by Automatic Template Inference. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Association,

Santa Clara, CA, 999–1013.

https://www.usenix.org/conference/nsdi20/presentation/ kakarla
[17] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation (San Jose, CA)

(NSDI’12).
USENIX Association, Berkeley, CA, USA, 9–9. http://dl.acm.org/citation.cfm?id=
2228298.2228311

[18] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. 2012.

Veriflow: Verifying Network-wide Invariants in Real Time. SIGCOMM
 Comput. Commun. Rev. 42, 4 (Sept. 2012), 467–472. https://doi.org/10.1145/

2377677.2377766
[19] TOM Krazit. 2019. Networking issues take down Google Cloud in parts of the U.S.

and Europe, YouTube and Snapchat also affected.

https://www.geekwire.com/2019/networking-issues-take-google-cloudparts-u-s-

europe-youtube-snapchat-also-affected/
[20] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George

Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 499–512. https://www.usenix.org/conference/nsdi15/

technical-sessions/presentation/lopes
[21] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Brighten

Godfrey, and Samuel Talmadge King. 2011. Debugging the data plane with

anteater. ACM SIGCOMM Computer Communication Review 41, 4 (2011), 290–
301.

[22] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shriram

Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In Proceedings of
the 24th International Conference on Large Installation System Administration
(San Jose, CA) (LISA’10). USENIX Association, USA, 1–8.

[23] Networkworld. 2015. What was wrong with
 United’s router?
https://www.networkworld.com/article/2946070/what-was-wrong-withuniteds-

router.html
[24] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and

Matthew Caesar. 2020. Plankton: Scalable network configuration verification

through model checking. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 953–

967. https://www.usenix.org/conference/nsdi20/presentation/prabhu
[25] Steve Ragan. 2016. BGP errors are to blame for Monday’s Twitter outage, not

DDoS attacks. https://www.csoonline.com/article/3138934/bgp-errors-are-

toblame-for-monday-s-twitter-outage-not-ddos-attacks.html
[26] David A. Ramos and Dawson R. Engler. 2011. Practical, Low-Effort Equivalence

Verification of Real Code. In Computer Aided Verification, Ganesh Gopalakrishnan

and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 669–685.
[27] STAN Schroeder. 2013. Facebook Suffers Sitewide Errors for Many Users.

 https: //mashable.com/2013/10/21/facebook-currently-doesnt-allow-

status-updates/
[28] Ruchit Shrestha, Xiaolin Sun, and Aaron Gember-Jacobson. 2020. Localizing Router

Configuration Errors Using Unsatisfiable Cores. (2020).
[29] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,

Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen
Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and Automatically Updating In-

Network ACL Configurations with Intent Language. In Proceedings of the ACM
Special Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19).
Association for Computing Machinery, New York, NY, USA, 214–226. https:

//doi.org/10.1145/3341302.3342088
[30] DYLAN TWENEY. 2013. 5-minute outage costs Google $545,000 in revenue.

https://venturebeat.com/2013/08/16/3-minute-outage-costs-google-
545000-in-revenue/

[31] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind

Krishnamurthy, and Zachary Tatlock. 2016. Scalable Verification of Border

Gateway Protocol Configurations with an SMT Solver. SIGPLAN Not. 51, 10 (Oct.

2016),
 765–780. https://doi.org/10.1145/3022671.2984012
[32] Hongkun Yang and Simon S Lam. 2015. Real-time verification of network

properties using atomic predicates. IEEE/ACM Transactions on Networking 24, 2

(2015), 887–900.
[33] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo Ye,

Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, Duncheng She, Qing Ma, Biao

Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca.
2020. Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a

Global WAN. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)

(SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 599–614. https:

//doi.org/10.1145/3387514.3406217
[34] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian, Bo

Song, and Haoliang Zhang. 2020. Check before You Change: Preventing Correlated

Failures in Service Updates. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). USENIX Association, Santa Clara,

 CA, 575–589. https://www.usenix.org/conference/nsdi20/presentation/zhai

Campion: Debugging Router Configuration Differences SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

762

Appendices are supporting material that has not been
peerreviewed.

Appendix

Theorem 3.3 (Soundness). If networks N and N∗ are locally
equivalent for isomorphism I, then they have the same set of routing
solutions.

Proof. The proof is by a reduction to the stable routing problem
[4]. First, we show that each protocol " ∈ P forms a stable routing
problem (SRP). In particular for any given destination router

% ∈ V advertising initial route %& , # (%) ∈ V∗ must also advertise %&
since the protocol-specific advertisement configurations must be
the same. Given this, we can construct the SRP (T, R,%&, ⪯%, trans)

for N and (T∗, R,%&, ⪯%, trans∗) for N∗, where:
trans(=,>) = F% (C% (=),=,>)
trans∗(=,>) = F%∗(C%∗(=),=,>)

We further relate the two SRPs with the abstraction (? ,ℎ) where ?
(=) = I(=) and ℎ(>) = >.

The main theorem for abstract SRPs is that of equivalent routing
solutions when the abstractions are sound [4]. Thus, we must simply
prove that this is a sound abstraction. To do so, we prove each of
the sufficient conditions in [4]:
Dest-equivalence. We have ? (%) = I(%) which is the destination
router for N∗ and ? (A) ≠ # (%) for any A ≠ % by virtue of I being an
isomorphism.

Orig-equivalence. We have ℎ(%-) = %- since ℎ is the identify
function, which by construction is the route used at N∗.

Drop-equivalence. We have ℎ(>) = > since ℎ is the identity
function, which trivially satisfies the drop-equivalence
requirement that ℎ(>) = ⊥ ⇐⇒ > = ⊥.

Rank-equivalence. By definition, we have >1 ⪯. >2 ⇐⇒ ℎ(>1) ⪯%
ℎ(>2) since ℎ is the identity function.

Trans-equivalence. From the fact that N and N∗ are equivalent for
I, it follows that F% (C% (=),=,>) . This means
that we have trans(=,>) = trans∗(# (=),>) by definition. Substituting
the definition of ? and ℎ, this gives us the equivalence:
ℎ(trans(=,>)) = trans∗(? (=),ℎ(>)), which is the desired result.

Topology-abstraction. Finally, the topology requirements from [4]
are trivially satisfied since I is a homomorphism.

This result demonstrates that each protocol will compute the
same set of routing solutions. Thus the composition of the
protocols will also compute and select the same set of routes.

□

