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Semidefinite programs are optimization
methods with a wide array of applications,
such as approximating difficult combina-
torial problems. We introduce a varia-
tional quantum algorithm for semidefinite
programs that uses only n qubits, a con-
stant number of circuit preparations, and
O(n2) expectation values in order to solve
semidefinite programs with up to N = 2n
variables and M = 2n constraints. Effi-
cient optimization is achieved by encoding
the objective matrix as a properly parame-
terized unitary conditioned on an auxilary
qubit, a technique known as the Hadamard
Test. The Hadamard Test enables us to
optimize the objective function by estimat-
ing only a single expectation value of the
ancilla qubit, rather than separately es-
timating exponentially many expectation
values. Similarly, we illustrate that the
semidefinite programming constraints can
be effectively enforced by implementing
a second Hadamard Test, as well as im-
posing ∼ n2/2 Pauli string amplitude con-
straints. We demonstrate the effective-
ness of our protocol by devising an efficient
quantum implementation of the Goemans-
Williamson algorithm, which is a useful
approximation for various NP-hard prob-
lems, such as MaxCut. Our method ex-
ceeds the performance of analogous clas-
sical methods on a diverse subset of well-
studied MaxCut problems from the GSet
library.

Taylor L. Patti: taylorpatti@g.harvard.edu

1 Introduction

Semidefinite programming (SDP) is a variety of
convex programming wherein the objective func-
tion is extremized over the set of symmetric posi-
tive semidefinite matrices S+ [1]. Typically, an
N -variable extremization problem is upgraded
to an optimization over N vectors of length N ,
which form the semidefinite matrices of S+. A
versatile technique, SDP can be used to approx-
imately solve a variety of problems, including
combinatorial optimization problems (e.g., NP-
hard problems, whose computational complex-
ity grows exponentially in problem size) [2], and
is heavily used in fields such as operations re-
search, computer hardware design, and network-
ing [3, 4]. In many such cases, semidefinite pro-
grams (SDPs) are integer programming relax-
ations, meaning that the original objective func-
tion of integer variables is reformed as a function
of continuous vector variables [5]. This allows
the SDP to explore a convex approximation of
the problem. Although such solutions are only
approximate, SDPs are useful because they can
be efficiently solved with a variety of techniques.
These include interior-point methods, which typ-
ically run in polynomial-time in the number of
problem variables N and constraints M [6].

An additional advantage of optimization with
SDPs is that many have performance guarantees
in the form of approximation ratios. Approxi-
mation ratios are a provable worst-case ratio be-
tween the value obtained by an approximation al-
gorithm and the ground truth global optimum [7].
In short, SDPs represent an often favorable com-
promise between computational complexity and
solution quality.

Despite the favorable scaling of classical SDPs,
they still become intractable for high-dimensional
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Figure 1: Diagram of HTAAC-QSDP with n = 3 non-auxiliary qubits. (1a) A classical problem of N variables (here
an N -vertex MaxCut problem where N = 8). The weight matrix W is used to generate the unitary UW , which is
rotated about the angle α and implemented as a controlled-unitary conditioned on the n+1th-qubit (auxilary qubit).
(1b) The population-balancing unitary UP is generated by the diagonal matrix P , which offsets the asymmetric edge
weights on certain vertices in proportion to some constant β. (1c) The Hadamard Test is used to efficiently evaluate
the objective function and population balancing constraints. The n-qubit state |ψ〉 = UV |0〉 is prepared with a
variational quantum circuit UV , and the n+ 1th (auxilary) qubit is initialized as (|0〉 − i|1〉)/

√
2. Subsequently, the

Hadamard Test is carried out: UW or UP is implemented as a controlled-unitary conditioned on the auxilary qubit,
which is then measured to compute 〈σn+1〉W,t = Im[〈ψ|UW |ψ〉] or 〈σn+1〉P,t = Im[〈ψ|UP |ψ〉]. (1d) The M = 2n
SDP amplitude constraints constraints are approximately enforced with only m ∼ n2/2 Pauli string constraints
(Eq. 12). These are computed by collecting n-qubit Pauli-z measurements and using marginal statistics to estimate
the m expectation values.

problems. A variety of quantum SDP algorithms
(QSDPs) that sample n-qubit Gibbs states to
solve SDPs with up to N = 2n variables and
M = 2n constraints have been devised [15–19]
(Table 1), as have methods for approximately
preparing Gibbs states with near-term variational
quantum computers [21–23]. The former of these
algorithms are based on the Arora-Kale method
[24] and provide up to a quadratic speedup in
N and M . However, they scale significantly
poorer in terms of various algorithm parameters,
such as accuracy, and are not suitable for near-

term quantum computers. Quantum interior-
point methods have also been proposed [25, 26],
in close analogy to the leading family of classical
techniques.

Variational methods have long played a role in
quantum optimization protocols [27] (Table 1),
such as adiabatic computation [8–10], annealing
[11, 12], the Quantum Approximate Optimiza-
tion Algorithm (QAOA) [13], and Boson Sam-
pling [14]. However, only recently have varia-
tional QSDPs been proposed [20, 28]. Patel et
al [20] addresses the same optimization prob-
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Table 1: Comparison of common quantum methods for classical optimization. The number of potential variables N
and constraints M are given in terms of qubits n. Whether or not the method provides guarantees on its solutions is
discussed, as is its suitability for near-term quantum devices. Our Hadmard Test objective function and Approximate
Amplitude Constraint Quantum SDP (HTAAC-QSDP, Fig. 1) ensures SDP approximation ratios, is suitable for near-
term variational quantum devices, and provides efficient objective function evaluation (via the Hadamard Test) and
constraints (via a second Hadamard Test and O(n2) Pauli string constraints).

Method N , M Scaling Solution Guarantee Near-Term Devices
Quantum Adiabatic [8–10] n If Infinitely Slow Sometimes
Quantum Annealing [11, 12] n No Yes

QAOA [13] n Sometimes Yes
Boson Sampling [14] n No Yes

QSDPs [15–19] 2n SDP Approx. Ratios No
Variational QSDPs [20] 2n SDP Approx. Ratios Yes, O(2n) exp. vals./epoch

HTAAC-QSDP (Ours) 2n SDP Approx. Ratios Yes, O(n2) exp. vals./epoch

lems as the quantum Arora-Kale and interior-
point based methods, but instead uses variational
quantum circuits, which are more feasible in the
near-term. Like other SDPs, this method offers
specific performance guarantees in the form of ap-
proximation ratios [7]. However, the proposed
circuit optimization in the method relies on full
computational-basis tomography of a variation-
ally prepared N -state wavefunction |ψ〉, which
implies the estimation of O(2n) observables for
each training epoch.

Our Approach: We propose a new variational
quantum algorithm for solving QSDPs that uses
Hadamard Test objective functions and Approx-
imate Amplitude Constraints (HTAAC-QSDP,
Fig. 1). HTAAC-QSDP uses n+1 qubits, a con-
staint number of quantum measurements, and
O(n2) classical calculations to solve SDPs with up
to N = 2n variables, a nearly exponential reduc-
tion in required computation compared to similar
quantum techniques [20]. As described in Sec. 2,
we achieve this, in part, through a unitary objec-
tive function encoding with the Hadamard Test
[29] (Fig. 1a), which allows for the extremiza-
tion of the entire N -dimensional objective by es-
timating only a single quantum expectation value
(Fig. 1c). As a concrete example of HTAAC-
QSDP, we implement the Goemans-Williamson
algorithm (Algorithm 1) [30]. This SDP requires
M = N = 2n amplitude constraints, which we
effectively enforce with only 1) a constant num-
ber of quantum measurements from a second
Hadamard Test (Fig. 1b) and 2) the estimation
of a polynomial number m ∼ n2/2 of properly
selected, commuting Pauli strings (Fig. 1d).

In Sec. 3, we demonstrate the success of the
HTAAC-QSDP Goemans-Williamson algorithm
(Algorithm 1) by solving MaxCut [31] for large-
scale graphs from the well-studied GSet graph li-
brary [32] (Fig. 5). In addition to satisfying the
0.878 MaxCut approximation ratio [30], HTAAC-
QSDP achieves cut values that are commensurate
with the leading gradient-based classical SDP
solvers [33], implying that we reach the global
optima of these SDP objective functions.

Finally, in Sec. 4 we establish a lower bound
(Theorem 1) on the phase α of our Hadamard
encoding, such that our technique is a high-
quality approximation of the original SDP. The
purpose of this lower bound is to demonstrate
that tractably large values of the unitary phase
α are permissible (i.e., α need not become arbi-
trarily small) for encoding a wide variety of use-
ful and large-scale graph optimization problems.
Specifically:

Theorem 1 Our approximate Hadamard Test ob-
jective function UW ∼ iαW (Sec. 2.1) holds for
graphs with randomly distributed edges if

α2 .
N4

e3 = N

ξ3 ,

where e is the number of non-zero edge weights
and ξ is the average number of edges per vertex.

We can view the criteria of Theorem 1 in two
ways: for SDPs with arbitrarily many variables
N , the size of α can be kept reasonably large
while the Hadamard Test objective function (see
Sec. 2.1) remains valid as long as 1) N does not
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grow slower than the total number of edges e, or
2) N does not grow slower than the the cube of
ξ. Both of these conditions hold for graphs that
are not too dense, meaning that they are widely
satisfiable because the majority of interesting and
demonstrably difficult graphs for MaxCut are rel-
atively sparse [7, 31, 32, 34, 35]. We note that
for graphs where edge-density is unevenly dis-
tributed, Theorem 1 should hold for the densest
region of the graph, i.e., ξ should be the average
number of edges per vertex for the most highly
connected vertices.

2 Efficient Quantum Semidefinite Pro-
grams
The standard form of an N -variable, M -
constraint SDP is [1, 2]

minimizeX∈S+ 〈W,X〉
subject to 〈Aµ, X〉 = bµ, ∀µ ≤M
X � 0,

(1)

where W is an N ×N symmetric matrix that en-
codes the optimization problem and Aµ (bµ) are
N ×N symmetric matrices (scalars) that encode
the problem constraints. 〈A,B〉 denotes the trace
inner product

〈A,B〉 = Tr
[
ATB

]
=

N∑
i,j

AijBij . (2)

In this section, we detail a method of efficient
optimization of the above SDP objective and con-
straints using quantum methods (Fig. 1), specif-

ically by implementing Hadamard Tests and im-
posing a polynomial number of Pauli constraints.
We provide a concrete example in the form of the
Goemans-Williamson [30] algorithm for MaxCut
[31], as summarized in Algorithm 1.

2.1 The Hadamard Test as a Unitary Objective
In quantum analogy to the objective function of
Eq. 1, we wish to minimize 〈W,X〉 over the n-
qubit density matrices ρ = |ψ〉〈ψ|, which are pos-
itive semidefinite by definition. We define quan-
tum states |ψ〉 = UV |0〉, where UV is a variational
quantum circuit and |0〉 = Πn

i=1|0〉 is a trivial in-
put state in the computational basis. This yields
the quantum objective function

minimize 〈W,ρ〉 = minimize 〈ψ|W |ψ〉. (3)

The Hadamard Test (Fig. 1c) is a quantum
computing subroutine for arbitrary n-qubit states
|ψ〉 and n-qubit unitaries U [29]. It allows the
real or imaginary component of the 2n-state in-
ner product 〈ψ|U |ψ〉 to be obtained by estimat-
ing only a single expectation value 〈σzn+1〉, which
is the z-axis Pauli spin on the n+1th (auxiliary)
qubit. For example, to obtain the imaginary com-
ponent of 〈ψ|U |ψ〉, we prepare the quantum state
|ψ〉⊗ 1√

2(|0〉−i|1〉) and apply a controlled-U from
the n+1th qubit to |ψ〉, followed by a Hadamard
gate on the n+1th qubit. This produces the state

1
2 [(I − iU)|ψ〉 ⊗ |0〉+ (I + iU)|ψ〉 ⊗ |1〉] (4)

upon which projective measurement yields

4



〈σzn+1〉 = Im [〈ψ|U |ψ〉] . (5)

Rather than estimate the 2n expectation val-
ues required to characterize ρ and optimize the
loss function of Eq. 3, our method efficiently en-
codes the N -dimensional objective matrix W as
the imaginary part of an n-qubit unitary UW =
exp(iαW ) (Fig. 1a). Here, the phase α is a
constant scalar. UW is then conditioned on the
n+1th (or auxilary) qubit as a controlled-unitary.
We then use the Hadamard Test to calculate the
objective term in the loss function

〈σzn+1〉W = Im [〈ψ|UW |ψ〉] = Im [〈UW , ρ〉] . (6)

The intuition for this objective function is that,
for sufficiently small α, Im[UW ] ≈ αW . By re-
stricting ourselves to quantum circuits with real-
valued output states, we render the single expec-
tation value 〈σzn+1〉W proportional to the objec-
tive function of Eq. 3, which requires N expecta-
tion values to estimate. In Sec. 4, we analyt-
ically prove that, for many optimization prob-
lems, α has a practical lower bound such that
Im[UW ] ≈ αW with a reasonably large α, even
for arbitrarily large W .

2.2 Quantum Goemans-Williamson Algorithm

We now illustrate how Im[UW ] can be a close ap-
proximation of αW , including for optimization
problems with an arbitrarily large number of vari-
ables N . For concreteness, we select the NP-
complete problem MaxCut [31], and specifically
focus on the corresponding NP-hard optimization
problem [37]. This problem is of particular in-
terest due to its favorable 0.878-approximation
ratio with semidefinite programming techniques,
notably the Goemans-Williamson algorithm [30],
for which we now derive an efficient quantum
implementation. The Goemans-Williamson algo-
rithm is also applicable to to numerous other op-
timization problems, such as MaxSat and Max
Directed Cut [30].

For a MaxCut problem with N vertices vi,
vj , let W be the matrix that encodes the up
to N(N − 1)/2 non-zero edge weights in its en-
tries Wij . As the vertices lack self-interaction,
Wii = 0. The optimization problem is then de-
fined as

Figure 2: The cut values CQ obtained by HTAAC-
QSDP with order-k ≤ 2 Pauli constraints compared
to max(CSDP), the best results of classical gradient-
based SDPs (specifically, interior points methods) [33].
Our performance on the skewed binary and integer
graphs narrowly exceeds that of the classical method
(max(CSDP) < CQ), while the classical method narrowly
outperforms our quantum method for the toroid graphs
(max(CSDP) > CQ). Overall, the performance of our
HTAAC-QSDP implementation and its classical coun-
terpart are commensurate. HTAAC-QSDP exceeds the
CQ/CMAX > 0.878 MaxCut approximation ratio (red
dashed line) for all graphs, where CMAX is the true Max-
Cut of the graph. In this work, we assume CMAX as
the largest-known cuts of the GSet graphs, which were
obtained from intensive and repeated heuristic searches
[36].

maximize
∑
j 6=i

Wij
1− vivj

2

subject to vi = ±1,
(7)

which can be mapped to the classical SDP with
M = N constraints

minimizeX∈S+ 〈W,X〉
subject to Xii = 1, ∀i ≤ N.

(8)

As described by Eq. 3, we can transform the
optimization portion of Eq. 8 by substituting the
classical positive semidefinite matrix X for the
quantum density operator ρ. The solution to the
SDP is then stored in |ψ〉, i.e., vi = sign(ψi)
(for more details, see Sec. 2.3). As detailed in
Sec. 2.1, the evaluation of this objective function
can be optimized by estimating a single expec-
tation value with the Hadamard Test. Likewise,
we now introduce an efficient quantum alterna-
tive to the constraint Xii = 1 from Eq. 8. First,
note that due to the orthonormality of quantum
states, the exact quantum equivalent of Eq. 8 is

ρii = 1/2n = N−1. (9)
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Table 2: MaxCut statistics for all 800-vertex graphs studied by the leading gradient-based classical SDP (interior
points) method [33]. The highest known MaxCut values (CMAX, found by intensive heursitics [36]) are greater the
highest results obtained by the classical method (max(CSDP)), but the approximation ratio max(CSDP)/CMAX > 0.878
is satisfied. The largest cut values of our HTAAC-QSDP method (max(CQ)) are comparable with max(CSDP), as
are the average results (mean(CQ)).

Graph CMAX max(CSDP) max(CQ)/max(CSDP) mean(CQ)/max(CSDP)
G11 564 542 0.967 0.940
G12 556 540 0.982 0.953
G13 582 564 0.972 0.933
G14 3064 2922 1.011 1.000
G15 3050 2938 1.009 0.996
G20 941 838 1.007 0.983
G21 931 841 1.001 0.978

This rescaling changes neither the effectiveness
nor the guarantees of the semidefinite program,
because the salient feature of the constraint is
that all of the quantum states have the same am-
plitude magnitude |ψi|, such that all of the ver-
tices are of equal magnitude and none are dispro-
portionately favored. The solutions ρ and X dif-
fer only by a constant factor, such that ρ = X/N .
This yields the quantum MaxCut SDP

minimize 〈W,ρ〉
subject to ρii = N−1, ∀i ≤ N.

(10)

As graph weights are real-valued and symmet-
ric (i.e., Wij = Wji), W is Hermitian. We can
thus use it as the generator of UW such that
(Fig. 1a)

UW = exp(iαW ) =
∑
l

(iα)l

l! W l

= I + iα

1!W −
α2

2! W
2 − iα3

3! W
3 +O(W 4).

(11)

As W is real, the odd powers of l in Eq. 11 are
the imaginary components. The condition that
Im[UW ] ∝ W is upheld iff, for the vast majority
of variables i, j, αWij � α3

6 (W 3)ij . In Sec. 4, we
prove Theorem 1, demonstrating that this condi-
tion is achievable with a tractable α (i.e., α larger
than some fixed finite value that is constant in
problem size N) for a wide variety of graphs.

Next, we note that enforcing the M = N = 2n
amplitude constraints ρii = N−1, i ≤ N would
require the estimation of all z-axis Pauli strings

of order k ≤ n (all Pauli strings with k ≤ n
Pauli-z operators) of the state |ψ〉. This would
be a total of N − 1 expectation values. As an al-
ternative to this large overhead, HTAAC-QSDP
proposes the use of Approximate Amplitude Con-
straints (Fig. 1d). For example, consider the set
of m = n(n − 1)/2 + n ∼ n2/2 Pauli strings of
length k ≤ 2

〈σza, ρ〉 = 0, ∀a ≤ n
〈σzaσzb , ρ〉 = 0, ∀b 6= a, a, b ≤ n,

(12)

as constraints for the n-qubit output state |ψ〉.
This set of m ∼ n2/2 constraints approximates
the same restrictions as the set of M = N con-
straints of Eq. 10 by limiting quantum correla-
tions, as these generally correspond to unequal
state populations. The k = 1 (i.e., 〈σza, ρ〉 = 0)
constraints ensure that, up to some phase, each
qubit is in an equal superposition of |0〉 and |1〉,
without which all 2n state components cannot
have amplitudes of equal magnitudes. Likewise,
the k = 2 (i.e., 〈σzaσzb , ρ〉 = 0) constraints pre-
vent 2-qubit amplitude correlations that would
satisfy the k = 1 terms yet underpopulate some
state components. For example, the k = 2 con-
straint 〈σz1σz2 , ρ〉 = 0 is needed to disallow the
Bell State (|00〉 + |11〉)/

√
2, which satisfies the

k = 1 constraints 〈σz1 , ρ〉 = 0 and 〈σz2 , ρ〉 = 0, but
has zero amplitude for two of four total states.
The Pauli string constraints of Eq. 12 are com-
muting, such that they can be estimated as m
different marginal distributions from a single set
of n-qubit z-axis measurements.

We again emphasize that these k ≤ 2 con-
straints only approximately enforce the SDP con-
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Figure 3: The cut value CQ obtained by HTAAC-QSDP
vs its SDP objective 〈σzn+1〉W for the G11 (toroid), G14
(binary), and G20 (integer) graphs. As with classical
SDP methods, low loss function values are correlated
with high cut values. The strong correlation between
optimized loss and resultant cut illustrates the conver-
gence of HTAAC-QSDP despite its approximate nature.

straint ρii = N−1. Fully satisfying this constraint
would require restricting Pauli-z correlations be-
tween any subset of the n qubits, such that no
states of unequal amplitude magnitudes are per-
mitted. Eq. 9 can be fully satisfied if we con-
strain |ψ〉 with all of the Pauli strings of length
k ≤ n. However, as there exist n choose k z-
axis Pauli strings of order k, this requires esti-
mating

∑n
k=1 ( nk ) = 2n − 1 different expectation

values and greatly decreases the efficiency of the
algorithm. Sec. 3 details that, in practice, com-
petitive results are obtained using only k ≤ 2
constraint terms (Fig. 2 and Table 2), and op-
timization performance is largely saturated with
terms k ≤ 4 (Fig. 4 and Table 3).

In order to explicitly see how the m ∼ n2/2
constraints of Eq. 12 largely enforce the con-
straint ρii = 1/2n, let us take the example of
a three-qubit state (n = 3), which can encode up
to eight vertices (N = 2n = 8) using HTAAC-
QSDP. Any real-valued n = 3 state can be writ-
ten generically as

|ψ〉 =
1∑

r,s,p=0
ψrsp|ψrsp〉

and its constraints from Eq. 12 are

〈σz1 , ρ〉 =
∑
r,s

|ψ0rs|2 −
∑
r,s

|ψ1rs|2 = 0

〈σz2 , ρ〉 =
∑
r,s

|ψr0s|2 −
∑
r,s

|ψr1s|2 = 0

〈σz3 , ρ〉 =
∑
r,s

|ψrs0|2 −
∑
r,s

|ψrs1|2 = 0

〈σz1σz2 , ρ〉 =
∑
p

(
∑
s=r
|ψrsp|2 −

∑
s6=r
|ψrsp|2) = 0

〈σz1σz3 , ρ〉 =
∑
p

(
∑
s=r
|ψrps|2 −

∑
s6=r
|ψrps|2) = 0

〈σz1σz2 , ρ〉 =
∑
p

(
∑
s=r
|ψprs|2 −

∑
s6=r
|ψprs|2) = 0.

(13)

Combined with the normalization constraint
〈ψ|ψ〉 = 1, the above system of equations nearly
guarantees that Eq. 9 is fulfilled. However, it still
permits a small subset of states that do not sat-
isfy Eq. 9 due to three-qubit correlations, e.g.,

|ψ∗〉 = 1
2

[
±1, 0, 0,±1, 0,±1,±1, 0

]T
.

States with higher-order correlations such as |ψ∗〉,
which neither satisfy Eq. 9 nor are disallowed by
Eq. 12, can be avoided by adding higher-order
Pauli string constraints. For the above n = 3
example, we would add the k = n = 3 constraint
〈σz1σz2σz3 , ρ〉 = 0, which would disallow |ψ∗〉 as
〈σz1σz2σz3 , ρ∗〉 = 1.

Eq. 9 can also be systematically undermined
by the unequal distribution of graph edges among
the quantum states. For instance, the asymmet-
rically distributed edge-weights in skewed graphs
(Fig. 5 left and Sec. 3). With such graphs, the
minimization of the loss function can lead to out-
sized state populations for quantum states that
encode high-degree (high edge-weight) vertices.
Moreover, as the number of classical variables will
not generally be a power of two, there will often
be quantum states that are not encoded with a
classical variable. For example and as detailed in
Sec. 3, we use n = 10 qubits (N = 2n = 1024
states) to solve the 800-vertex GSet graphs, such
that the states 801 to 1024 are absent from the
objective function. In such cases, the minimiza-
tion of the loss function can lead to outsized state
populations of quantum states that are present in
the optimization function. In principle, these im-
balances can be addressed by increasing the mag-
nitude of the Pauli string amplitude constraints,

7



Figure 4: The effect of including higher-order HTAAC-
QSDP Pauli string amplitude constraints in MaxCut
optimization on the G11 (toroid), G14 (binary), and
G20 (integer) graphs [32]. (Left) the performance of
HTAAC-QSDP increases as higher-order Pauli strings
are used to constrain state amplitudes. The algo-
rithm’s performance saturates with k ≈ 4, indicating
that the benefits saturate with less than a polynomial
number of Pauli string constraints (k ≤ n). As illus-
trated by this work (e.g., Fig. 2 and Table 2), k = 2
(m ≈ n2/2) is often sufficient for competitive SDP op-
timization. (Right, solid lines) the variance of state mag-
nitude σρ = var(ρii) = var(|ψi|2) vs the order k of Pauli
strings constraints. As k increases, σρ decreases consid-
erably, although this effect is largely saturated by k ≈ 4.
(Right, dashed line) in the absence of competing dy-
namics (i.e., 〈σn+1〉W and 〈σn+1〉P ), the Pauli string
constraints are fully enforced such that |ψi| → N−1/2

(σρ → 0) as k → n.

but this is known to cause poor objective function
convergence [38].

To redress this systematic skew, we add a
population-balancing unitary UP (Fig. 1b), which
is implemented on |ψ〉 via a second Hadamard
Test (Sec. 2.1, Fig. 1c) and adds the loss func-
tion term 〈σn+1〉P . Specifically, UP = exp(iβP )
where P is some diagonal operator of edge
weights Pii = −(Pmax −

∑
j |ωij |), where β

is an adjustable hyperparameter and Pmax =
maxi(

∑
j |ωij |) is the maximum magnitude of

edge weights for any given vertex. UP works to
balance the state populations by premiating the
occupation of states that are lesser represented by
or absent from the objective function 〈σn+1〉W .

Combining both the efficient Hadamard Test
objective function and the Approximate Ampli-
tude Constraints, we can use simple gradient
descent-based penalty methods [38] to find the
solution. Specifically, we minimize the HTAAC-
QSDP loss function

L(t) = 〈σn+1〉W,t + 〈σn+1〉P,t

+ λ

∑
j

〈σzj , ρt〉2 +
∑
k 6=j
〈σzjσzk, ρt〉2

 (14)

at each time step t by preparing a quantum state
ρt on a variational quantum computer. The scalar
λ is the penalty hyperparameter. While for sim-
plicity we have chosen a single, time-constant λ
for all constraints, in principle each constraint j
could be parameterized with a distinct λj , each of
which could also vary as a function of t. The num-
ber of quantum circuit preparations required to
optimize our HTAAC-QSDP protocol is constant
with respect to the number of qubits n (and thus
to the maximum number of vertices N = 2n), as
〈UW , ρt〉 and 〈UP , ρt〉 each require only the Pauli-
z measurement 〈σzn+1〉 on the auxilary qubit, and
the m ∼ n2/2 amplitude constraint terms can be
calculated from a single set of n-qubit measure-
ments on the state |ψ〉. The classical complexity
of each training step scales as just m ∼ n2/2,
as one marginal expectation value is calculated
from the |ψ〉 measurements for each of the m con-
straints.

2.3 Retrieving SDP Solutions
At the end of our protocol, the SDP solution is
encoded into |ψ〉. Like in other QSDP protocols,
|ψ〉 may either be used to extract the full N -
variable solution or for less computationally in-
tensive analysis (i.e., to characterize the features
of the solution or as an input state for further
quantum protocols). If the full solution |ψ〉 is de-
sired, then full real-space tomography of |ψ〉 must
be conducted by calculating the N marginal dis-
tributions of all k ≤ n Pauli strings along the z
and x-axes. We now show that once |ψ〉 is deter-
mined, it suffices to assign the partition of each
vertex as vi = sign(ψi), or the sign of the state
component ψi.

In classical semidefinite programming algo-
rithms, such as the Goemans-Williamson algo-
rithm [30], the optimal solution X∗ is factor-
ized by Cholesky decomposition into the product
X∗ = T †T , where T is an upper diagonal matrix.
The sign of each vertex vi is then designated as

vi =
{

1, if ti · g ≥ 0
−1, otherwise,

(15)
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where ti are the column vectors of T and g is a
length-N vector of normally distributed random
variables gj ∼ N (0, 1).

We define the quantum parallel by noting that
as ρ = |ψ〉〈ψ|, its Cholesky decomposition is sim-
ply the N ×N matrix that has the first row 〈ψ|
and and all other entries equal to zero. In this
decomposition, Eq. 15 reduces to

vi =
{

1, if ψ0 × g0 ≥ 0
−1, otherwise.

(16)

As MaxCut has Z2 symmetry, the cut values
are symmetric under inversion, or flipping the
sign of all vertices. This makes the sign of the
normally distributed g0 irrelevant to the graph
partitioning. Without loss of generality, we can
therefore set g0 = 1 and classify each vertex as
vi = sign(ψi).

2.4 Extensions to Other SDPs

As explained above, the Goemans-Williamson al-
gorithm [30] can be applied to numerous other op-
timization algorithms, such as MaxSat and Max
Directed Cut [30]. Moreover, HTAAC-QSDP can
be adapted to accommodate the constraints of
various other SDPs. As one example, consider
the Min/Max Bisection problems [39]. Min/Max
Bisection are particularly relevant to very-large-
scale integration (VLSI) for integrated circuit de-
sign [40], a vital application area for large-scale
SDPs.

The SDPs for estimating the Max Bisection
problem has the standard form:

minimizeX∈S+ 〈W,X〉

subject to
∑
i,j

Xij ≤ −N/2,

and Xii = 1, ∀i ≤ N.

(17)

The first constraint is equivalent to requiring
that half of the variables of X be partitioned
equally, hence the term “bisection”. In analogy
with Eq. 10, Eq. 17 can be written as

minimize 〈W,ρ〉

subject to
∑
i,j

ρij ≤ −N/2

and ρii = N−1, ∀i ≤ N.

(18)

The second of these two constraints can be en-
forced by the Pauli strings constraints of Eq. 12.
For large N and assuming no systematic corre-
lations between the ordering of the vertices, the
first constraint can be ensured by adding any sin-
gle Pauli string constraint

〈Ox〉 = 0, (19)
where Ox is any Pauli string of σx operators. To
see how Eq. 19 enforces the first constraint of
Eq. 10, consider that any operator Ox induces
a bit-flip on a subset of qubits, such that each
state ψi is mapped to another state ψi′ . This
means that 〈Ox〉 = 〈ψ|Ox|ψ〉 is the sum of N/2
products 2ψ∗i ψi′ , where for each i, |ψi| ≈ N−1/2,
as enforced by the Pauli-Z constraints of Eq. 12.
If the probability that a random state ψi of |ψ〉
is positive is p, then in the limit of large N and
uncorrelated vertex assignment

〈Ox〉 = p2 + (1− p)2 − 2p(1− p). (20)

The above yields 〈Ox〉 = 0 iff p = 1/2, which
would correspond to the equal partitioning of the
vertices required by the Bisection problems. In
the case of correlated vertex encodings, the aver-
age of several Pauli-X strings 〈Ox〉 can be con-
sidered. We note that Eq. 19 can be modified
to enforce any partition ratio by solving for 〈Ox〉
(Eq. 20) with the desired p.

3 Simulations and Results
The viability of our HTAAC-QSDP method is
displayed in Fig. 2 and Table 2. We com-
pare CQ, the cut values obtained by HTAAC-
QSDP, to max(CSDP ), the best results obtained
by the leading gradient-based classical method
[33]. We study all of the 800-vertex MaxCut
problems explored in [33] (Table 2) in order to
make an extensive comparison with the leading
classical gradient-based interior point method.
These graphs represent a broad sampling from
the well-studied GSet graph library [32]. Graphs
G11, G12, and G13 have vertices that are con-
nected to nearest-neighbors on a toroid structure
and ±1 weights (Fig 5, right), while G14 and G15
(G20 and G21) have binary weights 0 and 1 (in-
teger weights ±1) and randomly distributed edge
density that is highly skewed towards the lower
numbered vertices (Fig 5, left).
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Table 3: MaxCut statistics for the 800-vertex graphs G11 (toroid), G14 (skew binary), and G20 (skew integer)
for different orders of Pauli string constraints k. We compare the best cut value max(CSDP ) produced by the
leading classical method [33] compared to those produced by HTAAC-QSDP, with each entry providing the ratio
max(CQ)/max(CSDP) (mean(CQ)/max(CSDP)). With relatively few Pauli string constraints (k = 4), our method
exceeds the performance of classical methods on all graphs studied.

Graph k = 2 k = 4 k = 6 k = 8 k = 10
G11 0.967 (0.940) 1.019 (0.984) 1.007 (0.999) 1.011 (0.995) 1.022 (0.998)
G14 1.011 (1.000) 1.021 (1.009) 1.023 (1.010) 1.022 (1.014) 1.023 (1.012)
G20 1.007 (0.983) 1.025 (0.993) 1.032 (0.992) 1.049 (1.000) 1.043 (0.993)

HTAAC-QSDP with k ≤ 2-Pauli term con-
straints exceeds the performance of its classical
counterpart on skewed binary and skewed inte-
ger graphs, and falls narrowly short of classi-
cal performance on toroid graphs (Fig. 2 and
Table 2). All trajectories converge above the
0.878-approximation ratio CQ/Cmax (dashed red
line) guaranteed by classical semidefinite pro-
gramming, where Cmax is the highest known cut
of each graph found by intensive, multi-shot, clas-
sical heuristics [36]. As SDPs are approximations
of the optimization problem, the extremization of
the loss function and the figure of merit (here,
cut value) are correlated, but may not have a
fully one-to-one correspondence. Fig. 3 demon-
strates the strong correlation between the cut val-
ues CQ and the efficiently encoded objective func-
tion 〈σzn+1〉W = Im [〈ψ|UW |ψ〉], indicating that
our method is a close SDP approximation with
good convergence.

The addition of Pauli string amplitude con-
straints with k > 2 can better enforce Eq. 9,
leading to more accurate SDP results. Fig. 4
and Table 3 demonstrate that increasing k pro-
duces moderately higher CQ values, until the per-
formance increases saturate k ≈ 4. Moreover,
we note that at k values ≈ 4, HTAAC-QSDP
outperforms the analogous classical algorithm for
all graph types. Likewise, the population vari-
ance (solid lines) σρ = var(|ψi|2) decreases sub-
stantially until saturating near k ≈ 4 at around
σρ ≈ N−1. In the absence of the competing ob-
jective function (〈σzn+1〉W ) and population bal-
ancing (〈σzn+1〉P ) dynamics, all Pauli-z correla-
tions become restricted as k → n. This results in
the complete constraint |ψi| = N−1/2, ∀i, such
that σρ → 0 (black dashed line in Fig. 4, left).

Figure 5: The structure of the G11 and G14/G20 GSet
graphs, where non-zero edges between two vertices are
marked as blue dots. Left) the edges of the toroid graphs
(G11, G12, G13) follow a fixed connectivity, with edges
extending between neighboring vertices on a torus struc-
ture. Right) the skewed graphs have connectivity that is
drawn from a random distribution, with edges extending
between arbitrary vertices (G14 and G15 binary weights
1 and 0, G20 and G21 integer weights ±1). The degrees
of each vertex are disproportionately biased towards the
vertices of lower index, with edge density decaying as ver-
tex number increases. We compare with all 800-vertex
graphs considered in the leading classical analog [33].

3.1 Simulation Details

All simulations are done using a one-dimensional
ring qubit connectivity, such that each qubit has
two neighbors and the nth qubit neighbors the 1st
qubit. The circuit ansatz simulations is 120 rep-
etitions of two variationally parameterized y-axis
rotations interleaved with CNOT gates, alternat-
ing between odd-even and even-odd qubit con-
trol. The TensorLy-Quantum simulator [41, 42] is
used. Gradient descent was conducted an ADAM
[43] optimizer, with learning rate η = 0.01, as well
as hyperparameters β1 = 0.9, and β2 = 0.999.

The evolution angle α was set as α = 0.01 for
all graphs. The values of β used in this work were
β = 1/1.2 for the toroid graphs and β = 1/3
for the skew binary and skew integer graphs. β
values should be chosen such that β < 1, as di-
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agonal entries are always satisfiable (i.e., some
population can always be placed on the state,
lowering the loss function), in contrast to edge
cuts, which are not (i.e., not every edge can be
cut with any given partition for general graphs).
β values can be tuned on the device in the real
time by monitoring the Pauli string constraints
and choosing a β that leads to largely satisfied
Pauli constraints with relatively small coefficients
λ, such that the convergence of the algorithm is
not hindered by large constraints that outweigh
the objective function or lead to unstable conver-
gence. In this work, we set λ ∝ α/m, to keep
the total influence of m constraint terms in pro-
portion to the objective term 〈σzn+1〉W ≈ αW .
Specifically, we choose λ = 100α/m for the toroid
and skew binary graphs and λ = 50α/m for the
skew integer graphs.

4 Theoretical Analysis of Hadamard
Test Objective Function

In this section, we derive Theorem 1, which we
here restate for completeness:

Theorem 1 Our approximate Hadamard Test ob-
jective function UW ∼ iαW (Sec. 2.1) holds for
graphs with randomly distributed edges if

α2 .
N4

e3 = N

ξ3 ,

where e is the number of non-zero edge weights
and ξ is the average number of edges per vertex.

As discussed above, Theorem 1 can be under-
stood in two ways: that α satisfies the approxi-
mation of Eq. 21 while remaining tractably large
for SDPs of arbitrary N , as long as N does not
1) grow slower than the total number of edges e,
or 2) grow slower than the the cube of ξ. We
again note that Theorem 1 should hold for the
densest graph region if the edge density is assy-
metrically distributed, i.e., ξ should be the av-
erage number of edges for the densest vertices.
As the conditions of Theorem 1 hold for graphs
that are not too dense, they are widely satisfi-
able as the majority of interesting and demon-
strably difficult graphs for MaxCut are relatively
sparse [7, 31, 32, 34, 35]. Many classes of graphs
for which MaxCut is NP-hard satisfy Theorem 1

with tractably large α, even for arbitrarily large
N .

As an example, we consider non-planar graphs,
for which optimization problems like MaxCut are
typically NP-complete. While planar graphs can
be solved in polynomial time [44], a graph is guar-
anteeably non-planar when e > 3N − 6, which
reduces to ξ ≥ 3 in the limit of large N [45]1. In
accordance with Theorem 1, constant values of ξ
actually permit α to grow as N1/2, while for con-
stant α ξ can grow as N1/3, such that our approx-
imation is valid for a wide variety of large-scale
non-planar graphs. Indeed, most standard bench-
marking graph sets have a small average num-
ber of edges per vertex, e.g., ξ = 3 [32, 34, 35],
as sparse edge-density is common among graphs
with real-world applications. In fact, solving
MaxCut with many classes of dense graphs (i.e.,
graphs with nearly all non-zero edges) is prov-
ably less challenging, and therefore less interest-
ing, than with their relatively sparse counterparts
[47].

We here sketch a brief proof of Theorem 1
for Erdös–Rényi random graphs [48] with edge
weights Wij ∼ U[0,b], where U[0,b] is the uniform
distribution on the interval [0, b]. The edge
density of a graph is described as d = e/E,
where e is the number of non-zero edges e and
E = N(N − 1)/2 is the number of total possible
edges. We provide a detailed proof of this and
other graph types in the Appendix A.

Proof sketch of Theorem 1:

• The Hadamard Test encoding is a good ap-
proximation when UW ∝ iαW .

• This is satisfied when α3

3! |W
3|ij � α

1! |W |ij
for typical edges between vertices i,j.

• The mean of the non-zero elements in W is
Wij = b/2 2.

• Elements (W 3)ij are the sum of ∼ N2

terms WijWjkWkl, with expectation value

1Other families of easy graphs are even more restric-
tive, such as graphs that lack a giant component. In the
limit of large N , these graphs only occur in more than a
negligible fraction of all possible graphs when d ≥ 1/N
and thus ξ ≥ 1/2 [46].

2The mean value of all elements of W is Wij
′ = db/2,

however the relevant comparison is between the elements
of W 3 and the non-zero elements of W .
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WijWjkWkl = b3d3/8.

• α3

3! (W 3)ij � α
1!Wij → α2 � 24/(N2b2d3).

• Substituting d = 2e/N(N − 1) ≈ 2e/N2 and
ξ = e/N , we obtain Theorem 1.

5 Conclusion
The efficient optimization of very large-scale
SDPs on variational quantum devices has to the
potential to revolutionize their use in operations,
computer architecture, and networking applica-
tions. In this manuscript, we have introduced
HTAAC-QSDP, which uses n+ 1 qubits to solve
SDPs of up to N = 2n variables and M ∼ 2n
constraints by taking only a constant number of
quantum measurements and a polynomial num-
ber m ∼ n2/2 of classical calculations per epoch.
As we approximately encode the SDP objective
function into a unitary operator, the Hadamard
Test can be used to optimize arbitrarily large
SDPs by estimating a constant number of ex-
pectation values. Likewise, we demonstrate that
the constraints of many SDPs can also be effi-
ciently enforced with approximate amplitude con-
straints. Devising a quantum implementation
the Goemans-Williamson algorithm, we approx-
imately enforce the M = 2n constraints with a
population-balancing Hadamard Test and the es-
timation of as few as m ∼ n2/2 Pauli string ex-
pectation values. We demonstrate our method
on a wide array of graphs from the GSet library
[32], approaching and often exceeding the per-
formance of the leading gradient-based classical
SDP solver on all graphs [33]. Finally, we note
that by increasing the order k of our Pauli string
constraints, we improve the accuracy of our re-
sults, exceeding the classical performance on all
graphs while still estimating only polynomially-
many expectation values.

Due to the immense importance of SDPs in
scientific and industrial optimization, as well as
the ongoing efforts to generate effective quantum
SDP methods that are often limited by poor scal-
ing in key parameters such as accuracy and prob-
lem size, our work provides a variational alter-
native with tractable overhead. In particular,
the largest SDPs solved via classical methods,
which required over 500 teraFLOPs on nearly
ten-thousand CPUs and GPUs [49], could be ad-
dressed by our method with just ∼ 20 qubits.

In future work, the techniques of this
manuscript can be extended to additional fam-
ilies of SDPs. For instance, SDPs that extrem-
ize operator eigenvalues are a natural application
for quantum circuits [50]. Similarly, variational
quantum linear algebra techniques [51] can po-
tentially be adapted to enforce the more general
constraints

〈Aµ, X〉 = bµ, ∀µ ≤M

of Eq. 1. In many cases, more general constraints
are likewise satisfiable with the Pauli string con-
straints, as suggested in this work. For instance,
when the number of requisite constraints M is
much smaller than the number of variables N , or,
as is the case with our quantum implementation
of the Goemans-Williamson algorithm, by enforc-
ing a relatively small subset of the constraints.
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A Appendix: Theoretical Analysis of
Hadamard Test Objective Function
We now derive Theorem 1 in detail. In order for
the efficient encoding UW = exp(iαW ) ∝ iαW
to hold, it is sufficient to enforce that the third-
order term in Eq. 11 is substantially smaller than
the first-order term. That is

α3

3! |W
3|ij �

α

1! |W |ij →
α2

6 |W
3|ij � |W |ij (21)

for typical edges between vertices i,j. By in-
duction, the criterion in Eq. 21 also guarantees
that odd (imaginary) powers >3 will likewise be
smaller than the first order term, and are thus
also negligible. While this condition can always
be satisfied with an arbitrarily small α, we in
practice require that α maintain some finite size
to avoid unitary rotations with vanishingly small
gate times τ ∝ α and imaginary components
〈σn+1〉W ∝ α. We now demonstrate that this
criteria can be met for a wide array of graphs
with NP-complete MaxCut optimization com-
plexity.

First, we consider Erdös–Rényi random graphs
[48] with elements Wij ∼ U[0,b], which are uni-
formly distributed on the interval [0, b]. The
graphs are said to have edge density d, which is
the fraction of non-zero edges e over total possible
edges E = N(N −1)/2. Typical elements (W 3)ij
are the sum of ∼ N2 terms WijWjkWkl, with ex-
pectation value WijWjkWkl = b3d3/8, such that
the matrix elements of W 3 have the expectation
value (W 3)ij = N2b3d3/8. As the mean of the
non-zero elements in W is Wij = b/2, the crite-
rion of Eq. 21 becomes

α2N2b3d3

48 � b

2 → α2 � 24
N2b2d3 . (22)

We can rewrite this criterion in terms the number
of non-zero edges e by noting that graph density
d scales as d = e/E, where E = N(N − 1)/2 ≈
N2/2 is the number of non-zero edges possible for
an N vertex graph. Likewise, the average number
of edges per vertex is then ξ = e/N , and Eq. 22
can be rewritten as

α2 � 3N4

b2e3 = 3N
b2ξ3 . (23)

For graphs where edge density d is not uni-
formly distributed, the above conditions should
hold for the most densely connected vertices of
the graph.

We briefly illustrate how our approximation
holds for a few other classes of graphs. For in-
stance, graphs with elements Wij ∼ U[−b,b] drawn
from uniform distributions with both positive and
negative components generally require α ranges
that are even more permissible (i.e., can be even
larger) than those of the positive case, with the
criterion of Eq. 22 serving as a small lower-bound.

Similar proofs of implementability can also
be done for graphs with normally distributed
weights Wij ∼ N (µ, σ2) of mean µ and variance
σ2. For the case µ 6� σ, (W 3)ij = N2µ3d3 and α
need only satisfy

α2N2µ3d3

6 � µ→ α2 � 6
N2µ2d3 , (24)

which requires the same permissive scaling be-
tween N and d (e or ξ) as the condition Eq.
21 (Eq. 22) for positive uniform distributions.
Likewise, for normal distributions where σ � µ,
Eq. 24 with µ→ σ would be a large upper bound.
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