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A symmetry of a state [¢) is a unitary operator of which |¢) is an eigenvector. When [¢) is an
unknown state supplied by a black-box oracle, the state’s symmetries serve to characterize it, and
often relegate much of the desired information about |¢). In this paper, we develop a variational
hybrid quantum-classical learning scheme to systematically probe for symmetries of |¢) with no a
priori assumptions about the state. This procedure can be used to learn various symmetries at the
same time. In order to avoid re-learning already known symmetries, we introduce an interactive
protocol with a classical deep neural net. The classical net thereby regularizes against repetitive
findings and allows our algorithm to terminate empirically with all possible symmetries found. Our
scheme can be implemented efficiently on average with non-local SWAP gates; we also give a less
efficient algorithm with only local operations, which may be more appropriate for current noisy
quantum devices. We demonstrate our algorithm on representative families of states.

I. INTRODUCTION

Symmetries are of ubiquitous importance across
physics, relating intimately to conservation laws and
guiding the formulation of physical theories. The
search for symmetries in a given physical system is
a central problem in the field, and until recently, has
remained a purely analytical and model-driven task.
However, developments in machine learning have
now opened the door for data-driven approaches.
Classically, recent studies have used learning algo-
rithms to discover conserved quantities by using the
system’s equation of motion [I-5] or by clustering
methods [6]. In the quantum setting, classical neural
networks have been successfully trained to classify
states of matter [7-9], including symmetry-protected
topological ones [10-12]. Symmetry-abiding neural
networks can also be used as a variational ansatz for
states of lattice models [13, 14]. Quite recently, vari-
ational quantum algorithms that utilize the symme-
tries of a particular problem have appeared in the
literature [15, 16]. Along these lines, it has been
shown that knowledge of symmetries can bootstrap
algorithms such as the quantum approximate opti-
mization algorithm (QAOA) [17].

Beyond their intrinsic importance, quantum sym-
metries also encode key information about the un-
derlying quantum state. Specifically, when a state
|t) is unknown, efficient extraction of information
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about |¢) from limited data is of great interest across
both physics and theoretical computer science. Full
information extraction, however, is exponentially
costly with the system size, requiring complete state
tomography [18]. While novel approaches circum-
venting this issue have appeared—including basis-
enhanced Born machines, classical machine learn-
ing, and shadow tomography—comparatively little
attention has been paid to the direct and systematic
learning of quantum symmetries, which also serve to
characterize a state [19-27]. In this article, we take
a first step in that direction.

Define a quantum symmetry of |4} to be a unitary
U such that

Ulp) = e [9); (1)

that is, an operator U for which |¢) is an eigenvec-
tor. For maximal generality, we shall assume that a
black-box oracle machine prepares copies of an un-
known state |¢); our goal is to efficiently express the
set of symmetries of |¢)). To find the symmetries of
[1) [28], we propose a hybrid quantum-classical al-
gorithm consisting of a variational quantum circuit
interacting with a classical neural network. Under
the oracle model, we assume no prior information
about [1), so that our algorithm is agnostic to the
input state whose symmetries it learns. The quan-
tum circuit generates symmetries of |¢)) while simul-
taneously training the classical net to “remember”
the history of symmetries already found. In turn,
the classical net alerts the quantum circuit when
it parameterizes an operator close to a previously-
found symmetry, allowing the quantum circuit to
redirect its search and thereby avoid repeatedly gen-
erating similar symmetries. By both generating
symmetries and keeping track of known symmetries,
our algorithm continuously finds new symmetries.
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FIG. 1. Schematic overview of symmetry learning scheme. A variational quantum circuit minimizes a loss function to
generate symmetries, at the same time training a classical neural network to recognize the path of potential symmetry
operators it searches. The classical net then alerts the quantum circuit when it is searching for symmetries similar
to those already found, so that the quantum circuit can redirect its search accordingly.

Thus, we observe empirically that the learning pro-
cedure eventually terminates. The overall structure
of quantum-classical interaction is shown in Fig. 1.

In Section II, we discuss the full details of the
symmetry learning scheme and place it within the
context of noisy near-term quantum hardware. In
Section III, we demonstrate the algorithm on three
representative families of quantum states. We also
benchmark the scalability of the algorithm and its
robustness to noise. Finally, in Section IV we sum-
marize our findings and discuss some applications of
symmetry learning.

II. HYBRID LEARNING SCHEME

By analogy to an experimental setting, we assume
access to copies of an unknown state [¢)) and the
task is to discover the set of its symmetries. Since
the closeness of an operator to a symmetry can be
quantified in a manner similar to metrics of state
overlap, symmetry learning has a natural interpre-
tation as an optimization problem, given as

[WIVIR) =1} (2)

where U(2%) is the unitary matrix Lie group of di-
mension 2° (for L qubits). Symmetries can be fil-
tered into a collection of sets by fixing a universal pa-
rameterized quantum circuit (PQC) family Cr, p(0)
of depth D on L qubits and parameters 8. Define
Spl|¥)] as the collection of symmetries of |¢) repre-
sentable by Cr, p(6). By universality, every symme-

Sllv)] ={v e U@2") :

try is contained in So(exp(z))[|¥)] and

Soll¥)] € S1llh)] € -+ - So(expp )] (3)

We formally define the symmetry learning problem
as the discovery and classification of all symmetries
of |¢) for a fixed and constant depth D. In practice,
this may neglect symmetries that require exponen-
tially long circuit depths to be implemented in the
chosen PQC architecture.

We develop the symmetry learning scheme in
three stages. First, we devise a method to verify
whether a given operator U is a symmetry. We
then show that the verification procedure can be up-
graded into a learning procedure, by introducing a
variational quantum algorithm (VQA) built upon a
PQC family Cr, p of depth D acting on L qubits. Fi-
nally, we boost the learning scheme by introducing
a regularization technique based on classical deep
learning that prevents the VQA from repetitively
proposing similar symmetries. The full scheme is il-
lustrated in Fig. 2, which we refer to throughout this
section.

A. Symmetry Verification

To begin, suppose that we are given an opera-
tor U represented by a PQC family Cr p. We re-
strict ourselves only to symmetries expressible in
such a decomposition, noting that a universal quan-
tum gate family can generally express any operator
up to small error. Our first step will be to verify
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FIG. 2. Depiction of the symmetry learning algorithm. The quantum net (red) involves a variational quantum circuit
Cr,q4(0) on L qubits and with block-depth d measured by a loss function L) (0). 8 is varied until Cp 4(@) represents
a symmetry. At the end of each epoch, a classical 3-dimensional convolutional deep net (CNet; blue) learns the loss
function along the path just explored by the QNet. During future epochs, the CNet informs the QNet as to whether
it has already explored its current path, and hence whether it needs to leave its current path to an as-yet explored
region. The CNet structure matches the parameter structure of the QNet. The first layer convolves over each set
of 3 parameters per qubit, and the second layer convolves over every parameter; the result is inputted into a 3-layer

fully connected network.

that U is indeed a symmetry of |¢). Such a prob-
lem can be decided in polynomial time by a method
adapted from quantum fingerprinting, known as the
SWAP, test [29]. The heart of the procedure is the
controlled-SWAP gate, which takes |0) <> |1) uni-
tarily if a control qubit is |1). By utilization of the
circuit in Fig. 3, measurement of the ancillary qubit
yields |0) with probability

Pr{o] = 2 + sl . (1)

Thus the overlap |()|U|t)|? is a function of the bias
(probability distance from 1/2) of a coin flip, which
can be determined to error € in O(1/€?) trials [29].
Since the number of swaps scales linearly with qubit
size, the time complexity of the SWAP, test is poly-
nomial: O(L/€?).

Although the SWAP. is efficient, it uses long-
range SWAP gates spanning O(L) qubits, which are
not practical for general near-term quantum devices.
In Section ITE, we give an alternative verification
procedure free of long-range couplings at the expense
of computational efficiency.

FIG. 3. Verification circuit V implementing a SWAP.
test. The central operation is a swap of the two L-qubit
registers (bottom registers), controlled by the ancillary
qubit (top register). By running V O(1/€®) times, we
can determine the overlap |{(1|Ul)|* up to error e. We
estimate U to be a symmetry of |¢) if the overlap is at
least 1 — O(e).

B. Variational Quantum Generative Algorithm

In the process of symmetry verification we utilized
the matrix element |(¢)|U[)|? as a measure of the
closeness U is to a symmetry. The overlap may be
interpreted as a loss metric, i.e.

Liyy(U) = (1= [(®lU)[*)>2. (5)

This overlap can be estimated statistically by the
SWAP, test. The formulation of verification as a loss
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FIG. 4. Example of a universal parameterized quantum circuit on L = 3 qubits. The cross-hairs are controlled-NOT
gates and the R gates are single-qubit rotations, parameterized by 6. There are d layers of (12‘) controlled-NOT gates
between each pair of qubits, sandwiched by the rotation gates.

allows for a transformation from verification—a dis-
criminative procedure—to proposition (search)—a
generative model. Consider again a universal PQC;
one such family includes layers of (é) CNOT gates
that are sandwiched in between single-qubit rota-
tion gates, as depicted in Fig. 4 for L = 3 qubits.
This PQC ansatz is well-established and is known
to be universal as the depth reaches exponential val-
ues [30]. In place of circuit depth, we use the block-
depth d > 0, the number of layers of (5) CNOT
gates. Hence, d = 0 corresponds to a single layer
of rotations, d = 1 gives 2 layers of rotations sand-
wiching 1 layer of CNOT gates, etc. The circuit
on L qubits is specified uniquely by either the cir-
cuit depth D or the block-depth d; we shall use the
latter, writing the circuit as Cp 4 and filtering the
symmetries by block-depth as

So[l)] € -+ C SallP)] C -+ So(expry[1¥)]-

Under a paramterization 8, let

Ly (8) = L1y)(Cr,a(0)).

Our VQA generates symmetries as follows.
tialize the PQC randomly by drawing 6
Unif (0, 27)3(d+1)  Next, run Cp 4 on [¢) and
compute Ly (0g). The loss will likely be large,
but @ may be improved by an updating algorithm
of classical machine learning. Our algorithm em-
ploys Nelder-Mead simplex search, which optimizes
0 locally by updating the parameter to its sim-
plex neighbor with the minimum loss value [31].
The use of a classical updating scheme on a PQC
has been adopted to considerable success in many
hybrid quantum-classical algorithms such as vari-
ational quantum eigensolver (VQE) and QAOA.
Here, 0 is iteratively updated until £y (@) falls be-
low an error threshold §, at which point the symme-
try is proposed. See Appendix B for details on our
choices of hyperparameters.

Since the PQC consists of layers of parameterized
gates updated by a training algorithm, it has a nat-
ural interpretation as a quantum analog of a neural

(6)

(7)
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network, which we refer to as the QNet. The QNet
VQA comprises the top (red) half of Fig. 2.

C. Symmetries as Manifolds

The VQA proposed in the previous section above
successfully generates symmetries; however, with no
further assistance the PQC may propose the same
symmetry repetitively. In the extreme case, the
PQC could simply choose to always output the iden-
tity matrix. The prevention of repeat findings moti-
vates the introduction of a regularization procedure.
A naive method might enumerate the set of symme-
tries found up to the kth epoch of search, 64, ..., 0,
and then adding a regularization term to the loss
function of the form

k
LEPO) =Ly (0)+ A0 -] (8)
k'=0

Yet such regularizers are doomed to fail due to
the algebraic structure of S[|i)]. Not only are the
products of symmetries also symmetries, generating
O(exp (k)) symmetries from a given set of size O(k),
but the symmetries are generally continuous families
forming a Lie subgroup S4[v)] < U(2%). Consider,
for example, the L-qubit GHZ state

_ o) +[15)

5
For simplicity, consider d = 0 (single-qubit rotation)
symmetries So[|GHZy)]. Under a manifold picture

of the Lie subgroup, the rotation symmetries can be
partitioned into two submanifolds
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The first submanifold is composed of diagonal ma-
trices with phases as their entries, and includes the
identity matrix. The second submanifold is com-
posed of off-diagonal matrices with phases as their
entries, and includes the bit flip symmetry X where
X is the Pauli spin operator o,. Each submanifold
has four degrees of freedom, forming a four-torus
T*. These may be equivalently expressed in circuit
decomposition as

L
M, = {®Xp(ak)XP(5k)}a

k=1

M, = {@ P(Bk)XP(ak)} :
k=1

(11)

where P(¢) is the phase gate

Pie)= (g o) (12

Each submanifold M; is a smoothly parameterized
set of symmetries. Thus, in principle we need only
inspect a few points in the submanifold to deduce a
closed-form expression for M;.

D. Interactive Classical Learning

To learn efficiently, we cannot explore the same
submanifold repeatedly while other manifolds re-
main unexplored. Rather, we must develop a pro-
cedure to push the PQC away from symmetry sub-
manifolds already explored sufficiently. While such
a task is not obvious, it is not impossible from a
measure-theoretic standpoint. That is, there will
never be a case in which [¢)) has two symmetry sub-
manifolds M;, My such that dim(M;) < dim(Ma),
so that M; would never be found. For as the man-
ifolds are also groups, there exists automorphisms
mapping M; to M, and vice versa, and hence the
topological dimension of every symmetry subman-
ifold must be identical. Nonetheless, no pointwise
regularization procedure, such as that of Eq. (8), can
recognize two symmetries being of the same subman-
ifold and thereby push the PQC away from propos-
ing both of them.

We therefore introduce a regularization method
based on classical deep learning: rather than keep-
ing track of specific symmetries, we train the classi-
cal net (CNet) to approximate Ly (@) by its out-

put /3|¢,>(9). The direct statistical estimation of
L)y (0) requires quantum operations and measure-
ment handled by the QNet, so we supervise the CNet
using the QNet itself. Specifically, for every batch
of loss-functional evaluations the QNet performs as

it searches for symmetries, we train the CNet in
parallel using those evaluations as the supervisory
dataset. Each batch is a transcript of the path in
U(2%) (henceforth abbreviated to U) walked by the
QNet that terminates at a symmetry. Ultimately,
the aim of the CNet is to estimate with low error
the loss for @ in a neighborhood of each 6 explored
by the QNet. That is, we train the CNet by mini-
mizing the squared error

Ac(0) = (L14)(0) — Ly)(0))? (13)

where ﬁ|w> is the CNet estimate of the true loss.

Since the landscape of the loss function can be
highly complex, we cannot hope to obtain a good
classical estimate of the loss globally with only a few
local training points. Instead, we design the CNet
to estimate local patches around points (neighbor-
hoods of the point in U) explored by the QNet with
very low error, but estimate patches far from points
explored by the QNet with high error. Equivalently,
the CNet should overfit purposefully. Thus, by an-
alyzing the CNet estimation error on a point 8, the
QNet can determine whether Cf, 4(6) resembles a
symmetry previously explored (i.e. the absolute dif-
ference of their overlaps are small). If so, the QNet
can adjust accordingly by leaving the local region of
parameter space to hopefully find another region of
U that has not yet been explored. We found numer-
ically (see Appendix C) that the average difference
in A¢ evaluated on a training point versus a random
point is about two orders of magnitude, making for
easy distinction.

Classical deep neural nets are well-suited to the
task because a CNet can extrapolate relatively well
locally. Consequently, as we will also show empiri-
cally, the CNet accomplishes what no pointwise reg-
ularization scheme can: it regularizes against entire
continuous families of symmetries. Since we train
the CNet on the entire search path, including points
in U not corresponding to symmetries, the CNet
regularizes against any subsets of U that the QNet
has already explored, even if they are not symme-
try submanifolds. Thus, the CNet minimizes the
time the QNet wastes exploring parts of U already
well-understood. Eventually, as the QNet explores
more and more symmetries, all of the symmetry sub-
manifolds of fixed d will be learned. The CNet will
then find low estimation error everywhere, at which
point the learning algorithm will terminate. Thus
when classical learning is added to the QNet VQA,
we find empirically that the symmetry learning pro-
cess converges.

As shown in the bottom half of Figure 2, we de-
velop a CNet with two three-dimensional convolu-
tional layers. We design the convolutions to respect
the structure of the parameterization of the PQC.



In particular, the first layer scans over each set of 3
rotation parameters per qubit per block-depth, and
the second layer scans over each individual param-
eter. The convolutional net layer is connected to
a simple three-layer fully-connected neural net with
leaky rectified linear unit (ReLU) activation func-
tions [32].

We train the CNet in path-batches; during each
symmetry-learning epoch, the CNet reports Ag
while the QNet walks Nelder-Mead paths in parame-
ter space, corresponding to a path in U. At the end
of each epoch, when a symmetry is proposed, we
use batch stochastic gradient descent (SGD) on the
transcript of points walked in the path. Note that
the CNet cannot undergo training during an epoch
of QNet symmetry search. Otherwise, the CNet will
extrapolate the local path well and mislead the QNet
into thinking that it has already traversed its current
path. We elect to use SGD instead of an algorithm
similar to Nelder-Mead for its superior empirical per-
formance (see Appendix C).

At Every N steps on the QNet search path, the
QNet pauses the search and queries the CNet. If the
CNet estimation error is low, then the QNet must

J
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adjust its search path accordingly. We propose two
methods by which the QNet can redirect its search.
In the first, which we call the global method, the
QNet simply randomly restarts. Since the parameter
dimension is

dim@ = O(Ld), (14)

the dimensionality of search space is sufficiently
large for even moderate L,d that random restarts
give a substantial likelihood of landing in an as-
yet traversed region of U. N is chosen to be much
smaller than the number of steps to find a symmetry,
but still reasonably large (~ 100), in consideration
of a tradeoff between wasting too much time query-
ing the CNet and wasting too much time searching
a familiar region.

The second method, which we call the local
method, alternates between finding symmetries (op-
timization) and maximizing the classical estimation
error A¢ (exploration). That is, instead of randomly
jumping to a new region, we directly walk in the
direction that appears most unfamiliar. In the ex-
ploratory phase, we use finite difference gradient de-
scent implemented by the shift rule [33],

where 7 is the learning rate and ¢ is the finite differ-
ence parameter. We favor the shift rule over Nelder-
Mead because the latter fails to update 6 if all points
in the neighboring simplex have similar A¢; hence,
no exploration occurs. By contrast, gradient descent
will still update 0, allowing progressive movements
away from known regions. The local method is more
efficient for states that are highly symmetric (i.e.
many symmetry submanifolds close to each other,
for a reasonable metric of submanifolds on U). The
global regularizer has an advantage on states with
high-dimensional parameter spaces, wherein random
restarts are generally faster than explicitly carving
paths to unexplored regions.

The full learning scheme is given in Figure 2. As
Nelder-Mead has been shown to be average-case effi-
cient, under the assumption that the regularizer pre-
vents the same manifold from being explored more
than polynomially many times, our algorithm solves
the symmetry learning problem efficiently. In the
absence of regularization, symmetry learning may
take superexponential time or even fail to terminate
at all.

<£w>(9101 +0,0102, - - -, 0343)
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E. Adjustments for Near-term Practical
Implementation

Due to the limitations of near-term quantum cir-
cuits, the symmetry learning algorithm as formu-
lated above will be difficult to implement with cur-
rent hardware. Specifically, both the SWAP, test
and the PQC given in Fig. 4 are spatially nonlocal
computations—they contain gates that span O(L)
qubits. In this section, we adjust the algorithm to
use only local operations, thereby becoming realiz-
able with near-term hardware, at the cost of some
efficiency and universality.

A SWAP operation between two L-qubit regis-
ters is implemented via L single-qubit SWAP gates
spanning O(L) qubits. While recent advancement in
Rydberg atom quantum computers have made long-
range SWAPs a reality [34], in more general quan-
tum hardware the SWAP gate must be decomposed
into controlled-NOT gates as

Hence a controlled-SWAP can be carried out in O(L)
Toffoli gates. However, such gates span O(L) qubits.



An alternative verification procedure to the SWAP,
test is via statistical comparison of the projective
measurements (i.e. their distribution in a particu-
lar measurement basis) of |¢) with that of U |¢).
For any fixed basis b, we may estimate the classical
Kullback-Leibler (KL) divergence KLy(|3),U |¢))
between the measurement distributions of |¢) and
U |¢) by constructing a sampling-based empirical
cumulative distribution function (ECDF) for each
state in the basis expansion of b. Choosing multiple
bases to capture the structure of the phases, we de-
fine the quantum KL divergence as a sum over the
KL divergence of each projective measurement:

QKL (U) =Y KLy(|v),Ul)).  (17)
b

In practice, we find that only two bases, which need
not be random, are required to capture the con-
tributions of the phases (see Appendix A). Gener-
ally, estimation of QKL (U) requires O(exp (L))
evaluations of U just to sample every basis element
at least once on average. However, if only a small
(polynomial) subset of the basis elements have non-
negligible amplitude, the QKL loss may be evaluated
efficiently. Thus, although the exponential search is
generally unavoidable, we can first search for a poly-
nomially sparse basis by checking the z and x bases
and choosing the sparser one. Further optimizations
can be done via a method of binary search to find a
sparse basis. A second basis can then be found by
rotating the sparsest basis by a small angle (we chose
m/10). Such basis optimizations should be done be-
fore beginning the learning algorithm, since check-
ing a basis requires one sampling round, whereas
the learning algorithm will use hundreds of thou-
sands or more sampling rounds, one for each step in
the search path. With preliminary basis finding, the
QKL verification remains relatively efficient, and we
define the near-term loss as

L14)(0) "5 QKL (Cra(0)).  (18)

The second modification is of the PQC ansatz. The
form given in Fig. 4 is universal, but has (g) CNOT
gates in each layer, most of which span O(L) qubits.
Ideally, a hardware-efficient circuit family has only
gates spanning O(1) qubits and scales in depth at
most linearly with L. Thus, we restrict the CNOT
gates to only nearest neighbors, giving a hardware
efficient circuit shown in Fig. 5. Although the fam-
ily may no longer be universal, or at least require
much longer depths to represent a general unitary,
it can still represent most symmetries of practical
interest, including any expressible in terms of local
couplings. For present applicability, we adopt both
adjustments in this paper. Note that our algorithm
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FIG. 5. Restricted quantum circuit family, of d layers,
appropriate for current noisy devices capable of local op-
erations. Cross-hairs represent controlled-NOT gates,
while R gates are single-qubit rotations, parameterized
by 6.

is agnostic to the choice of PQC family and loss func-
tion, so these hardware efficient modifications can be
readily removed when the appropriate experimental
hardware is realized.

III. RESULTS AND DISCUSSION

We demonstrate our results on four quantum
states: a Bell state, the GHZ state from Eq. (9) and
the planar cluster state [35], which both arise from
a broader family known as stabilizer states, and the
transverse Field Ising Model (TFIM) which is known
as one the simplest quantum spin chains. Much of
our focus is on the GHZ state, for due to their sen-
sitivity to decoherence, they are often utilized for
characterization of noisy quantum hardware [36-38]
and other quantum technologies, such as error cor-
rection, quantum metrology, and quantum commu-
nication [39, 40]. We will first visualize some sym-
metries of the states. We then benchmark the scal-
ing of the algorithm with respect to L and d as well
as its robustness against noise. We collect data by
backend classical simulation in Qiskit [41], although
our results on simulated noise indicate comparable
results on quantum hardware.

A. Symmetry Visualization

The exponential size of the matrix representation
of @ implies that there is no simple method to visual-
ize a general symmetry aside from its circuit decom-
position. However, for simple cases, we can explic-
itly examine the geometric or analytical structure of
the symmetry, which we discuss for the L-qubit GHZ
state, measured in the z basis for maximal sparse-
ness. When d = 0, each symmetry factors as a tensor
product of 2 x 2 matrices, which belong to one of the
submanifolds in Eq. (11). Since they are either di-



agonal or off-diagonal, we use principal component
analysis (PCA) in 2 dimensions to visualize their ge-
ometric structure, illustrated in Fig 6 for L = 3. The
diagonal and off-diagonal symmetries form distinct
clusters, which is consistent with the orthogonality
of their analytical representations.
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FIG. 6. PCA projection of 100 symmetries of the 3-GHZ
state, found by the QNet, into 2 dimensions. The separa-
tion between them implies that the parameterizations of
the manifolds are easily distinguishable, which we know
analytically to be true.

Beyond d = 0, no such tensor product decomposi-
tion exists, so the symmetries become more difficult
to visualize. (One can do so, though, by using PCA
on @ itself and then clustering the resultant dataset.)
However, for L = 2, the unitary implemented by
Cy,q may be explicitly written. A key symmetry in
many entangled states is the swap symmetry, which
require at least d = 3 to be represented, by Eq. (16).
We test the algorithm on a Bell basis state

~]01) +[10)
V2

to determine how quickly it finds a swap symmetry.
On average, after ~ 10 trials, we find many symme-
tries in the family

|®) (19)

C1 —C1
U= e lfﬂlga , (20)
C2 —C2

where o, 3,c; € C and the dots representing arbi-
trary numbers to make U unitary. In the limit of
¢j,a, 8 — 0, U reduces to the familiar SWAP oper-
ation, but the algorithm finds a more general family
that may be interpreted as a partial swap operation
on each of the |01) and |10) basis states. More gen-
erally, we find a similar family for the L-GHZ state,
with a copy of the 2 x 2 submatrix at the center of
Eq. (20) present in each two-qubit subspace.

As shown in Eq. (6), more symmetries are repre-
sentable by Cp 4 with increasing d. Inversely, the
minimum d required for the learning algorithm to
find symmetries easily is itself a measure of state
complexity. For example, although every Sy[[¢))] is
nonempty for any [¢) (due to the identity matrix),
the rotation symmetries among all possible single-
qubit rotation operations may be sparse and thus
difficult to find. Thus, relatively few epochs will
successfully find a symmetry. For a given d, the av-
erage loss over many (say, 100) epochs on a given
state measures the difficulty of learning symmetries
at that block-depth. We can examine the average
loss on various states to compare the complexity of
their symmetries—that is, how large d must be be-
fore most epochs can find symmetries. Importantly,
this simple measure can be done with no knowledge
of the actual symmetries themselves; that is, we do
not even need to look at the symmetries themselves
to understand the relation between the loss and the
block-depth.

We demonstrate the above procedure on the GHZ
state, the planar cluster state, and the ground state
of the TFIM Hamiltonian. The planar cluster state
is represented as a graph state for which nodes are
qubits and edges are controlled-Z gates, where Z is
the Pauli o, operator. They are defined only for
L = /2 qubits, and are shown in Fig. 7. The ground

FIG. 7. Graph representation of planar cluster states for
L = ¢? qubits. The nodes are qubits and the edges are
controlled-Z gates. The cluster state is thus defined as
H(a,b)eEdgesCaZbH)@L where C,Z; is a control-Z gate
between qubits a.b and |+) = %(|0> +11)).

state of the transverse field Ising model (TFIM)
Hamiltonian. The TFIM Hamiltonian is given by

H=05 S;—J> SISh,, (21)

where J = 1 is the interaction strength and the o;
are the Pauli spin operators on the ¢th qubit. While
such variational methods as VQE and QAOA can be
used to prepare the TFIM ground state, we did so
numerically via exact diagonalization.

Our preliminary analysis shows that the TFIM
state is maximally sparse in the z basis and clus-
ter/GHZ states in the z basis. Finding 100 sym-
metries for each depth with L = 4 yields an aver-



age loss given in Fig. 8. As we might expect, the
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FIG. 8. Average loss for 4-qubit GHZ, TFIM, and clus-
ter states as a function of d. The GHZ losses are all
negligibly small and thus invisible. The transparent bar
indicates one standard deviation.

cluster state has the most complex symmetries, re-
quiring d =~ 2 to easily find symmetries with every
epoch. The GHZ state is the simplest due to its well-
studied d = 0 symmetries from Fig. 6. In practice,
we can resolve the issue of hard-to-find symmetries
for small d by postselecting on epochs that do find
symmetries, using regularization to prevent travers-
ing known paths. However, Fig. 8 shows that for rel-
atively small d even complicated states like the clus-
ter state permit most epochs to learn symmetries,
evidencing that our hardware-efficient PQC ansatz
remains sufficiently rich to efficiently parameterize
non-trivial symmetries.

B. Query complexity

We benchmark the numerical scalability of the
learning algorithm both with respect to d and L,
using the L-GHZ state as a concrete example. We
measure scalability in terms of the search query com-
plexity; that is, the average number of Nelder-Mead
iterations per epoch of symmetry learning. The ad-
vantage of query complexity is that it is agnostic to
the verification procedure, so our results hold even
without the near-term related modifications. With
current devices, short-depth implementations are of
the most significance. Demonstrated on the GHZ
state, Fig. 9 shows that the learning algorithm scales
reasonably with small d. The query complexity also
scales well with respect to L on average. Such find-
ings give numerical credence to our previous claims
about the general efficiency of the learning algo-
rithm, at least for moderately sized systems.

C. Regularization Performance

The heart of the CNet is a classical estimation of
L)) (8). The more rapidly the local landscape of a
symmetry submanifold can be fully learned (i.e. esti-
mated to low error) by the CNet, the more efficiently
our scheme finds new symmetries. Measurement of
classical learning efficiency manifests differently in
the global and local methods. For each, we define a
characteristic learning time; for the global scheme,

N
1 . "
M=% nzzlargmmelwwé V)£ M6 (22)

where 0§n) is the symmetry proposed on the tth
epoch of the nth fully-reset search (i.e. the CNet
is re-initialized to random weights) starting from a
random 6, and M(0) is is the symmetry subman-
ifold containing 6. For large N, 7o represents the
expected number of epochs of training from Nelder-
Mead paths the CNet requires to learn a randomly
chosen symmetry manifold. For an ideal regularizer,
Te = 1; for a useless regularizer, 7¢ — oco.

On the other hand, for the local scheme. As
the QNet alternates between optimization and ex-
ploration with no random restarts, the key metric
of its performance is thus the frequency with which
the QNet crosses to a different manifold and back.
Hence the learning time may be defined implicitly
by

(7)™ = 2 UM(6i1) # M(8,)],  (23)

t=1

NI~

where 6; is the symmetry on the ¢th optimization
epoch. For large T', 77, has the same interpretation
as 7Gg-

Explicit measurement of the learning time re-
quires analytical knowledge of the set of all symme-
try submanifolds. Since we have written that set for
So[|GHZ) ; |, we will measure the learning times for
both methods on the 3-GHZ state. In the global
scheme, over 100 runs we found 7 =~ 1.2 regard-
less of the steps N per CNet query, in a range of
N = 100 to N = 5000. The learning time of the
local method depends on the distance walked in the
exploration phase, which can be measured either by
the step size in the gradient descent procedure or in
the number of iterations; we fix the latter and use
the former, and plot the learning time (which can
be interpreted as a scoring function since bigger is
better) in Fig. 10 for T = 400, fitted by standard
methods in the dashed line to guide the eye. The
shift rule also requires a finite difference parame-
ter h, but we found that the learning time does not
depend significantly on it. Figure 10 illustrates the
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FIG. 9. Average query complexity (number of search iterations to find a symmetry) of the GHZ state as a function
of state size L (left) and block-depth d (right), estimated with 10 trials per L per d. Shading represents standard

deviation.
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FIG. 10. Local learning time 71 (400) (blue dots) fitted
with a trend line (red, dashed) for ease of visualization.
71, represents the average number of points on a symme-
try submanifold needed to be learned before the CNet
recognizes the entire submanifold—the smaller 77, is, the
more efficiently the algorithm regularizes. For larger gra-
dient descent step sizes, the learning time saturates.

intuition that, for small step sizes/time spent explor-
ing, the algorithm requires much more time to learn
each manifold because it cannot walk sufficiently far
away from a symmetry submanifold before the ex-
ploratory phase ends. For sufficiently large step size,
however, (= 5 for 3-GHZ), the exploration has taken
the QNet sufficiently far away from the known sym-
metry submanifold that more exploration is unnec-
essary. Although Fig. 10 benchmarks a simple state,
the lessons taught by the results hold more generally
in that a sufficiently large choice of step size is cru-
cial to build an effective local regularizer.

D. Learning in the Presence of Noise

A final consideration for implementation in near-
term devices is the robustness of the learning al-
gorithm in the presence of noise. For simplicity,
we consider a noise model, simulated classically, for
which each gate (both in the state preparation and
C'p,q4) can incur a bit flip (erroneous X error) or reset
(qubit resets to |0)), each independently with prob-
ability perror- The measurement of each qubit may
also be erroneous with the same probability. The
presence of such noise may be physically interpreted
as thermal fluctuations that jiggle the path traversed
by the QNet in U. Because our QNet requires many
iterations to propose a symmetry—10° or more for
some systems, as shown in Fig. 9—we expect that
such small thermal fluctuations average out in the
process, at least up to a certain threshold of perror-

We examine the loss metric £, (0) as a function
of Perror on the 3-GHZ state for d = 1 to demon-
strate this effect numerically. The black curve in
Fig. 11 represents the true average loss of the sym-
metry; that is, the QKL value between the shadows
of U|GHZ3) and |GHZ3), where U is the symme-
try proposed by the noisy PQC. Until perror ~ 1072,
the loss remains relatively low and constant. How-
ever, in practice we cannot calculate the true loss
due to noisiness of state preparation. When |GHZ3)
is itself is prepared with noise, the resultant aver-
age QKL value is given in red. As expected, they
are much higher, but the difference between the two,
plotted with standard smoothening methods in grey,
also remains relatively constant until perror ~ 102
Thus, when the error is below a reasonably high
threshold, the learning algorithm continues to pro-
pose true symmetries, and the amount by which the
loss increases due to the noisiness of state prepara-
tion varies little. By subtracting out this constant
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FIG. 11. Average loss over 20 symmetries proposed by a
noisy circuit with respect to a noisily prepared GHZ state
(red) and a noiseless GHZ state (black), which represents
the true loss of the noisy symmetry. Error bars show log-
standard deviation. The grey line is a fitted curve of the
difference in losses evaluated with respect to a noisy state
and a noiseless state.

gap, we can account for the effect of the noise and
thereby continue to learn symmetries in the pres-
ence of noise. Above the threshold, the loss increases
roughly linearly and slowly, ant symmetries may still
be classified, albeit slightly noisily.

IV. CONCLUSION & OUTLOOK

We developed an interactive hybrid quantum-
classical learning algorithm that efficiently solves the
symmetry learning problem—to discover and clas-
sify every symmetry of an unknown state |¢)) that
can be represented by a certain quantum circuit fam-
ily with a fixed block-depth d. We first showed that
known symmetries could be verified efficiently via
a quantum algorithm, and then devised a method
to upgrade the verification procedure into a varia-
tional quantum learning algorithm that generated
symmetries. To regularize against repetitive propo-
sitions of similar symmetries, we introduced an in-
teractive protocol with a classical deep neural net-
work that guided the variational quantum algorithm
away from areas of unitary space U(2F) explored
in previous iterations of learning. Thus, for each
state we demonstrated it upon, the algorithm con-
verged. For purposes of near-term implementation,
we showed that aspects of the algorithm difficult to
implement in current hardware could be replaced by
presently realizable methods at the cost of some ef-
ficiency. We benchmarked our algorithm in simple
cases and showed that it scales well with respect to d
and L. We further showed that the learning scheme
is robust against noise.
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Although the parameterized quantum circuit fam-
ilies we discussed are universal or near-universal, a
general symmetry may require a very deep circuit in
the family to be represented. In practice, under a
restriction of depth, we can detect more symmetries
by choosing various families of circuits and running
the learning algorithm on each. Since some symme-
tries are more easily represented by certain circuit
architectures than others, such an approach maxi-
mizes the number of symmetries found empirically
on near-term devices.

An important next step in the utilization of our
algorithm is more robust benchmarking on various
quantum hardware, such as IBM digital quantum
devices or Rydberg machines. More analysis on
a broader set of states is also of interest. As for
regularization, a more complex protocol may allow
for even more efficiency. For example, a proce-
dure based on the Metropolis-Hastings algorithm,
which stochastically combines the global and local
approaches proposed in this paper, is a natural next
step of study. Indeed, recent work has shown that
application of similar approaches based on Markov
chain Monte Carlo methods significantly improve
the efficiency of many variational quantum algo-
rithms [412].

In broader context, symmetry learning can serve
as a data-driven guide to learn about the physi-
cal phenomena of quantum systems and their rela-
tion to symmetries. For example, symmetry break-
ing is closely related to phase transitions and other
emergent properties. Symmetry learning also aligns
with the goals of partial tomography in providing a
characterization of a state without completely re-
constructing it classically. While recent methods
such as shadow tomography [43] offer an efficient and
convenient way to understand properties of a state
from a computational perspective, symmetry learn-
ing may be of more relevance from a physics per-
spective, guiding researchers in quantum machine
learning and shedding light on the physics of com-
plex, empirically created quantum systems such as
spin liquids [44].
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Appendix A: QKL Basis Requirement

The definition of the QKL divergence requires a
choice of a number of bases. For every family of
states we considered, only 2 constant bases were nec-
essary. We show this by defining a QKL cross val-
idation loss and showing that for 2 constant bases,
the cross validation is sufficiently small.

The methodology is as follows. Choose 2 bases
to train on. These may be chosen randomly. How-
ever, if one knows that |¢)) has most of its amplitude
concentrated in the small proportion of the basis el-
ements in some basis, that basis will be optimal to
train on. The second basis may be obtained by per-
turbing the optimal basis by a small rotation angle.
We find that a rotation about an arbitrary axis of
/10 suffices to capture all of the phase information
of the state.

To verify that 2 bases suffices, choose n random
bases after training and evaluate the QKL value over
the random set. If it is under the desired error
threshold, the two bases suffice. In our case, we
found that the QKL over 3 random bases was of or-
der ~ 108 consistently.

Appendix B: Hyperparameters

We use a error tolerance of 10712 for Nelder-Mead
search, with a maximum allowed iterations of 10* for
L = 3 qubits and up to 10° for L = 15 qubits. The
prediction error threshold for the global regulariza-
tion scheme is 6 = 1072. The CNet uses 100 nodes
per layer in the fully connected neural network com-
ponent. We chose these parameters for their good
numerical results and rapid convergence in the sys-
tems studied in this paper, but different states or
those with sizes larger than the sizes considered in
our study may require different choices.
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Appendix C: CNet Demonstration

It is instructive to examine the classical deep net
independently to verify its ability to learn the loss
metric landscape. As an example, we consider the
CNet on the 3-qubit GHZ state with a block-depth of
d = 2. We generate a simple dataset of 3000 random
parameters on two bases, one the computational (z)
basis and the other a perturbation by a rotation of
/10 radians about a fixed axis. For each basis,
the respective CNet learns the projected classical KL
value on the training set, then attempt to estimate it
on a testing set of 500 values. The resulting learning
curve is given in Fig. 12.
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FIG. 12. Top: log A¢ of CNets under each basis (0 [blue]
corresponds to the z-basis). Bottom: visualization of the
shadows of the 3-GHZ state.

The computational basis learns to a training er-
ror of 0.024 and incurs a cross-validation (test) er-
ror of 1.372, while the perturbed basis has a train-
ing/validation error of 0.038/1.224. The gap be-
tween the training and cross-validation error spans
two orders of magnitude. Such effects, already vis-
ible in this toy example, are dramatically enhanced
in practice wherein the training set is a local path
rather than a random global sample, for the corre-
lation between points is much higher, leading to a
lower training loss and a higher cross-validation er-
ror. This is precisely the desired property of the
CNet.
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