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Abstract The primary goal of this paper is to study Spanier–Whitehead dual-
ity in the K (n)-local category. One of the key players in the K (n)-local
category is the Lubin–Tate spectrum En , whose homotopy groups classify
deformations of a formal group law of height n, in the implicit characteristic
p. It is known that En is self-dual up to a shift; however, that does not fully take
into account the action of the automorphism group Gn of the formal group in
question. In this paper we find that the Gn-equivariant dual of En is in fact En
twisted by a sphere with a non-trivial (when n > 1) action by Gn . This sphere
is a dualizing module for the group Gn , and we construct and study such an
object IG for any compact p-adic analytic group G. If we restrict the action
of G on IG to certain type of small subgroups, we identify IG with a specific
representation sphere coming from the Lie algebra of G. This is done by a
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classification of p-complete sphere spectra with an action by an elementary
abelian p-group in terms of characteristic classes, and then a specific com-
parison of the characteristic classes in question. The setup makes the theory
quite accessible for computations, as we demonstrate in the later sections of
this paper, determining the K (n)-local Spanier–Whitehead duals of EhH

n for
select choices of p and n and finite subgroups H of Gn .
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1 Introduction

This project began with a contemplation of duality in the K (n)-local stable
homotopy category, so let us start with explaining why this is an interesting
topic. One of the standard approaches to stable homotopy theory emphasizes
complex oriented cohomology theories, those with a natural theory of Chern
classes.Any such cohomology theory determines a smooth 1-parameter formal
group, and the algebraic geometry of formal groups can be used to organize
calculations and the search for large scale phenomena. Over an algebraically
closed field of characteristic p, formal groups are classified up to isomorphism
by a single invariant, the height. Fix a prime p and a height n, and choose a
representative Fn for this isomorphism class. It is convenient to assume Fn
is defined over some finite field Fq of characteristic p, and usually q = pn .
There is a complex oriented cohomology theory K∗ := K (n)∗ = K (Fq , Fn)∗
determined by the pair (Fq , Fn). Let K be the representing spectrum; this is a
Morava K -theory. One standard approach is to then study the homotopy theory
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of K-local spectra in the sense of Bousfield [15] and, perhaps later, assemble
that information into a more global picture.

In many ways, the K-local category is much better behaved than the full
stable homotopy category. To beginwith there is a very effective computational
tool based on Lubin–Tate (or Morava) E-theory. The universal deformation
of Fn determines a Landweber exact complex oriented cohomology theory
E∗ := E∗

n = E(Fq , Fn)∗. Let E be the representing spectrum. If we let G be
the automorphism group of the pair (Fq , Fn), then G is a profinite group and
acts on E. If X is any spectrum we define

E∗X = π∗LK(E ∧ X).

Then E∗X comes equipped with an E∗-module structure and a compatible
continuous action ofG; we sayE∗X is aMoravamodule. TheK-local Adams-
Novikov Spectral Sequence based on E reads

Hs(G, Et X) �⇒ πt−s LKX.

Here we are using continuous group cohomology. If p is large with respect
to n, this spectral sequence collapses for some important examples, such as
X = S0. Even when it does not collapse the Morava module E∗X is a very
sensitive and informative algebraic invariant of X .

The group G is not simply a profinite group; it is a compact p-adic analytic
group. It is a classical observation that the category of continuousmodules over
such groups behaves very much like the category of quasi-coherent sheaves
on a very nice projective scheme; for example, there is a very good notion
of Grothendieck-Serre duality. See [62] for a classical source and especially
[64] for a thorough modern treatment. The assignment X �→ E∗X is not an
equivalence of categories in general. (But see [59] for more on this point.)
Nonetheless, the structure of continuous G-modules is a very good indicator
of what might be true for the K-local category. In particular, there are rich
theories of duality in the K-local category that can be glimpsed by studying
Morava modules. The investigation of these dualities has been an important
aspect of research in chromatic homotopy theory.

Here, we will concentrate on Spanier–Whitehead Duality in the K-local
category. Any spectrum X has a K-local Spanier–Whitehead dual defined by
the function spectrum

DX = F(X, LKS0).

The spectrum LKS0 is the unit for the natural symmetric monoidal structure
on the K-local category, so this is a very basic duality. There is another duality,
more closely related to Grothendieck-Serre duality, known as Gross–Hopkins
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(or K-local Brown-Comenetz) duality. Without going into detail, if In(−)

denotes Gross–Hopkins duality, then D(X) ∧ In � In(X) for a certain invert-
ible object In in the K-local category, so the two dualities are closely related.
For more on this point, see [63] and [45].

Spanier–Whitehead duality in the global (i.e. unlocalized) stable homotopy
category is often extremely hard to compute and behaves in strange and sur-
prising ways when X is not finite. However, it is much better behaved in the
K-local category. For example, quite a few years ago, the third author noted
that DE is essentially E; in fact, since G is a compact p-adic analytic group
of rank (or dimension) n2 and since E∗E is isomorphic, as a graded G-module
to the profinite group ring E∗[[G]], there is an isomorphism of continuous
Morava modules

π∗DE ∼= π∗�−n2E. (1.1)

See [63] for details.Note thatwe could equallywriteπ∗DE ∼= π∗F(Sn
2
, E).

We could then hope that this isomorphism is induced by aG-equivariant equiv-
alence DE � �−n2E, but this is false. In fact, it is not true evenwhen restricted
to certain key finite subgroups of G. Indeed, Behrens [9] and Bobkova [14]
have computed D(E)hH for maximal finite subgroups H of G at n = 2, when
p = 3 and p = 2, respectively, and their results, in particular, show that DE
is not G-equivariantly equivalent to �−n2E. Our first goal was to understand
this subtlety.

Ultimately, it turns out that this is not a question about E, but a question
about G. In fact, it is fairly formal, if technically formidable, to arrive at the
following result.

Theorem 11.16 There is a p-complete spectrum IG with an action ofG, whose
underlying p-complete homotopy type is Sn

2
such that there is aG-equivariant

equivalence

DE � F(IG, E).

By combining Remark 4.23 and Proposition 5.9 we also have that the action
of G on Hn2 IG ∼= Zp is trivial. These results imply the formula (1.1).

The question then is to understand the equivariant homotopy type of IG.
To do so, it is helpful to generalize and replace G by an arbitrary compact
p-adic analytic group G. Any such G has an exhaustive nested sequence of
open subgroups, all normal in G,

· · · ⊆ �i+1 ⊆ �i ⊆ · · · ⊆ �1 ⊆ �0 = G,
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with the property that for large enough i , each �i is a particularly nice p-
profinite group known as a uniformly powerful group. We review this theory
in Sect. 2.Wehave that�i+1 ⊆ �i is of finite index andG acts on the classifying
space B(�i/� j ) by conjugation. We first define the G-space

B�i = holim j B(�i/� j ),

where the limit is over the projections �i/� j+1 → �i/� j and then we define
a p-complete G-spectrum

IG = (
hocolimi�

∞+ B�i
)∧
p ,

where �∞+ denotes the suspension spectrum after adding a disjoint basepoint.
The colimit is over the transfer maps

tr : �∞+ B�i → �∞+ B�i+1,

which are equivariant with respect to the G-action; see Remark 5.3. Then IG
has the underlying homotopy type of a p-complete d-sphere, where d is the
rank of G. See Proposition 5.6. Even in the cases where G = G or Gln(Zp)

the resulting action of G on IG is rich and potentially very non-linear, since
the action on the building blocks is rich and highly non-linear.

There is a linear analog of IG which is much simpler for computations.
Because G is a compact p-adic analytic group it has a p-adic Lie algebra g;
this is a free Zp-module of rank d, where d is the rank of G. The conjugation
actionmakes g into aG-module called the adjoint representation.We can define
a linear G-sphere

Sg =
(
hocolimi�

∞+ B(pig)
)∧
p

using this representation, where again the colimit is along transfers. Then Sg

has the underlying homotopy type of a p-complete d-sphere and there is an
isomorphism of G-modules

Hd(IG, Zp) ∼= �dg ∼= Hd(S
g, Zp),

as we recall in Proposition 5.9. Here�dg denotes the top exterior power of the
adjoint representation. This is the classical dualizing module for continuous
G-modules. Again, see [62] or [64] for details. In analogy with the classi-
cal algebraic duality statements discussed in these sources, one is led to the
following conjecture.
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Linearization Hypothesis 1 In an appropriate category of continuous G-
spheres there is a G-equivariant equivalence Sg � IG .

This conjecture appeared in theworkofClausen, [20, §6.4]. Subsequently, in
[21], Clausen announced a proof of this conjecture in full generality, including
a discussion of what category is a natural home for the spectrum IG with its
G-action. Looking further back, duality and dualizing modules in the K-local
category featured in work from the early ’90s by the third author and his
collaborators. See [26], especially the last section, and [39].

Remark 1.2 The analogue of the Linearization Hypothesis for compact Lie
groups was stated and proved by Klein in [47]. In a different (genuinely equiv-
ariant) setting, the Wirthmüller isomorphism can also be cast as a duality
statement for compact Lie groups as in Fausk-Hu-May [29].

In this paper, we do not prove the Linearization Hypothesis in its full
strength, but we show it holds when the action of G is restricted to certain
small subgroups. Here we write Z(G) for the center of G.
Theorem 8.11 Let G be compact p-adic analytic group and let H be a closed
subgroup ofG such that H/H∩Z(G) is finite. Suppose the p-Sylow subgroup of
H/H∩Z(G) is an elementary abelian p-group. Then there is an H-equivariant
equivalence

IG � Sg.

Although we do not prove the Linearization Hypothesis in its full strength,
our methods are very different from Clausen’s and are valuable in and of
themselves: They allow us to access the result for specific computations, as
we demonstrate in the latter sections of this paper. A major input in the proof
are techniques from Lannes theory [48], leading up to the following result,
which we deduce directly from the work of Castellana [19].

Theorem 6.24 Let F be an elementary abelian p-group and let X be a p-
complete F-sphere of virtual dimension k. Then there is stable vector bundle
ξ over BF of virtual dimension k and a p-equivalence of spectra

Mξ � EF+ ∧F X.

Furthermore there is an F-equivalence X � Y of p-complete F-spheres if and
only if there there is an isomorphism of modules over the Steenrod algebra

H∗(EF+ ∧F X) ∼= H∗(EF+ ∧F Y ).

Such an isomorphism uniquely determines the F-equivalence up to F-
homotopy.
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This result tells us that any stable H -sphere, and in particular either IG or
Sg, is linearizable and, as such, is determined by its characteristic classes. We
have included the proof here in its entirety, as many of the details are missing
in loc.cit. We then dive deeply into the constructions of IG and Sg to show that
their characteristic classes match.

The natural question that arises at this point is whether our methods for
proving Theorem 8.11 can be bootstrapped to the case when H/H ∩ Z(G) is a
larger finite group. This is tied to the problem of classifying stable spheres with
an action of a finite group. This problem, as well as its unstable version, are
well studied in homotopical representation theory, though the methods there
for using Lannes theory to obtain results about general groups do not apply
here. Nevertheless, work of Jesper Grodal and Jeff Smith [35] may point the
way toward generalizations.

The essence of linearizability is distilled in the following result, which
makes Theorem 8.11 accessible for computations. It gives a hold on the H -
equivariant homotopy type of Sg. We prove this by implementing ideas from
geometric topology. For simplicity, we limit our attention to finite subgroups
of G, but this is not restrictive in practice.
Proposition 9.8 and Proposition 9.14 Let G be a compact p-adic analytic
group and let F ⊆ G be a finite subgroup. Suppose there is a finitely generated
free abelian group L ⊆ g with the properties that

(1) L is stable under the adjoint action of F on g, and
(2) L/pL ∼= g/pg (or, more generally, Qp ⊗ L ∼= Qp ⊗Zp g).

Let V = R⊗ L and let SV be the one-point compactification of V . Then there
is an F-equivariant map SV → Sg which becomes a weak equivalence after
completion at p.

This result unlocks the applications of Theorem 8.11 in the case of the
Morava stabilizer group G in chromatic homotopy theory. Specifically, we
develop a unified strategy to address the problem of determining K-local
Spanier–Whitehead duals D(EhH ) of spectra of the form EhH , for H as in
Theorem8.11. For this application,we needmore than the above duality results
applied to the profinite group G. Namely, we need a good understanding of
invertible equivariant E-modules. We develop this is Sect. 12, where again
the theory of characteristic classes plays a leading role. Further, we revisit the
known examples mentioned above but also explore new cases. An important
part of this paper develops this new strategy for addressing familiar questions
in chromatic homotopy theory.

With that in hand, we apply the observation that if H is finite, then Tate
vanishing [36] implies that there is an equivalence

D(EhH ) � (DE)hH .
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This (now) standard but subtle fact allows us to combine our results on the
equivariant homotopy type of DE and the results on equivariant invertible
E-modules to calculate D(EhH ) for interesting H .

As a first example, if H ⊂ Z(G) is a finite subgroup of the center of G,
then

D(EhH ) � �−n2EhH . (1.3)

This follows from Theorem 11.16 and the fact that H acts trivially on IG. The
center of G is not large; indeed, Z(G) ∼= Z

×
p , the units in the p-adic integers.

Hence, this example has the most impact when p = 2 and

H = C2 = {±1} ⊆ Aut(Fn/Fpn ) ⊆ G.

The full force of Theorem 11.16, Theorem 8.11, and Proposition 9.8 can
also be used to recover the results of Behrens [9] andBobkova [14]. If n is small
with respect to p, thenG can contain p-torsion elements. For example if n = 2
and p = 2, the maximal 2-torsion subgroup is isomorphic to the quaternionic
group Q8 of order 8. If n = 2 and p = 3, the maximal 3-torsion subgroup is a
cyclic group C3 of order 3. In the result below, G = Aut(Fp2, FC) where FC
is the formal group law of certain supersingular elliptic curves.

Theorem 13.12 and Theorem 13.25 Let n = 2 and p = 2 or 3. Let F ⊆
G ⊆ G where G is a maximal finite subgroup of G containing the maximal
p-torsion subgroup. Then

D(EhF ) � �44EhF .

The spectrum EhG is the K-localization of the spectrum of topological
modular forms. At either prime, the Morava module E∗EhG is 24-periodic;
from this and (1.1) one can prove E∗D(EhG) � �24k−4EhG for some integer
k. The difficulty is to understand why k must be 2.

For F = G, Theorem 13.12 (p = 3) was originally proved by Behrens in
[9] and Theorem 13.25 (p = 2) by Bobkova in [14]. Both papers used delicate
calculations based on the theory of topological resolutions from [31] and [10].
We have replaced that style of argument with one that depends ultimately on
the representation theory of C3 and Q8, respectively.

The case p = 3 of Theorem 13.12 can be extended to an arbitrary odd prime
p and height n = p − 1. In that case, the maximal p-torsion subgroup of G

is Cp, a cyclic group of order p, and its representation theory helps us prove
the following result. Here, G = Aut(Fpn , Fn) where Fn is the Honda formal
group law.

123



Dualizing spheres for compact p-adic analytic groups

Theorem 14.14 Let p > 2 and n = p − 1. Let G ⊆ G be a maximal finite
subgroup containing the maximal p-torsion subgroup of G. Then

D(EhG) � �−(p−1)2(2p+1)EhG .

Note that at n = 2 and p = 3, the spectrum EhG is 72-periodic, so
�−28EhG � �44EhG . Compare Theorem 13.12 and Theorem 14.14.

Finally, a direct application of Theorem 14.14 gives us a new result about
the K-local Picard group Picn . Namely, we compare our result on Spanier–
Whitehead duality with results about Gross–Hopkins duals of the same spectra
from [6]. At the very end of this paper, we prove the following result.

Theorem 14.16 Let n = p − 1 and F = Cp. Then, there is an element
Pn ∈ Picn such that E∗Pn ∼= E∗ as Morava modules but

Pn ∧ EhF � � p2+pEhF .

In particular, Pn is a non-trival element of subgroup κn of exotic elements in
the Picard group Picn.

In an analogousway, ourmain result in the casen = 2 = p from (1.3) is used
by Heard–Li–Shi [40] in combination with their computation of In(EhC2) to
prove that there are exotic invertible elements in theK-local category at p = 2.

Organization of the paper

The next three sections are a review of results found throughout the literature
needed later in the paper. In Sect. 2, we begin by reviewing some theory on
compact p-adic analytic groups and introduce what will later be our main
example, the Morava stabilizer group G. In Sect. 3, we discuss properties of
the mod p cohomology of these groups. Section 4 is a review of Poincaré
duality and of Frobenius reciprocity for compact p-adic analytic groups.

Section 5 begins our investigation of new results. There, we introduce the
spheres IG and Sg and state the Linearization Hypothesis. In Sect. 6, we study
spheres with actions of finite subgroups, reviewing the classical theory of
Lannes and key facts about characteristic classes. This is where we deduce
Theorem 6.24 from the work of Castellana. We apply it to IG and Sg in
Theorem 6.25. This reduces the proof that IG �H Sg (Theorem 8.11) to a
cohomological calculation. For this computation, we need to do a tricky anal-
ysis of Lyndon–Serre–Hochschild spectral sequences.We have opted to isolate
these technical aspects to Sect. 7, which can easily be skipped on a first read.
Section 8 is dedicated to the proof of Theorem 8.11.
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In Sect. 9, we get ready for our computation in the examples to follow.
This is a study of Frobenius reciprocity for G-manifolds. We do not claim
originality for the results of this section, but include them here because we did
not find them conveniently gathered in literature. Based on these geometric
results, we prove Propositions 9.8 and 9.14 at the end of this section.

The last sections are applications of our results to chromatic homotopy the-
ory. Sections 10 and 11 study Lubin–Tate theory E. In Sect. 10 we introduce
technical background from chromatic homotopy theory and in Sect. 11 we
prove Theorem 11.16. In Sect. 12, we review equivariant techniques estab-
lished by Hill-Hopkins-Ravenel that can be used study the Picard groups of
categories of R-modules in G-spectra, as well as establish our general strat-
egy for computing the duals D(EhF ) for finite subgroups F ⊆ G in the final
parts of the paper. The last two sections are the computational applications of
our theory. Section 13 contains the proof of Theorems 13.12 and 13.25 and
Sect. 14 that of Theorems 14.14 and 14.16.

1.1 Acknowledgments

This paper is a result of a long journey, and a greatmanypeople helped along the
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[43].
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Derivation

To a stolid squalid attic
Full of strident squeaking squirrels
Dr. Squeenrod staggered squiffy up the stairs

When a tumble most dramatic
Put his letters in a whirl:
Squeenrod’s stumble gave the storied Steenrod squares!

Anna Marie Bohmann
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2 Basics on compact p-adic analytic groups

While our main applications of the results here are for the Morava stabilizer
group and the K (n)-local category, the initial analysis of the dualizing sphere
applies to a much wider class of groups G. The key feature is that G has a finite
index subgroup which is a pro-p group of a particularly nice type. Thus we
begin by fixing a prime p, and reviewing some basic definitions.

The following material is from Sections I.4 and II.8 of [25]. If G is a topo-
logical group, let Gn ⊆ G be the closed normal subgroup obtained by taking
the closure of the subgroup generated by the nth powers. Similarly, if H ⊆ G
is a closed subgroup, we let [H,G] ⊆ G be the closure of the commutator
subgroup of H with G, and if H and K are two subgroups, let HK be the
closure of the product subgroup.

In all the statements below, there are slight modifications for the prime 2.

Definition 2.1 A pro-p group G is uniformly powerful if

(a) G/Gp (or G/G4 if p = 2) is abelian;
(b) G is topologically finitely generated;
(c) The lower p-series

G = G1 ⊇ G2 ⊇ . . . ⊇ Gi ⊇ Gi+1 = Gp
i [Gi ,G] ⊇ . . .

has the properties that the pth power map induces an isomorphism

Gi/Gi+1
(−)p

∼= Gi+1/Gi+2

and it is exhaustive:
⋂

i Gi = {e}.
IfG is a uniformly powerful pro-p-group andG/Gp ∼= (Z/p)d , thenG has

rank d. Note that each of the subgroups G j is normal is G, and hence normal
in Gi with i ≤ j .

Remark 2.2 If G is uniformly powerful and topologically generated by
a1, . . . , ad

G/Gp ∼= Z/p{a1, . . . , ad}
Gi/Gi+ j

∼= Z/p j {a pi−1

1 , . . . , a pi−1

d } for j ≤ i.

In §II.8.2. of [25], the authors give an intrinsic definition of a compact
p-adic analytic group. For our purposes it is enough to have the following
characterization. See Corollary 8.34 of [25].
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Theorem 2.3 LetG be a topological group. Then the following are equivalent:

(1) G is a compact p-adic analytic group;
(2) G is a profinite group with an open subgroup which is a topologically

finitely generated pro-p group;
(3) G has an open normal subgroup of finite index which is a uniformly pow-

erful pro-p group of finite rank.

For such a group G, the rank of G is defined to be the rank of G where G
is any open normal subgroup of finite index which is a uniformly powerful
pro-p group. The rank is independent of this choice.

Definition 2.4 Let G be a compact p-adic analytic group and let G ⊆ G be
a an open uniformly powerful finite index normal subgroup of rank d. Then,
from Definition 2.1 we have that (−)p : Gi → Gi+1 is a continous bijection
of sets. This allows us to form the Lie algebra g of G. This is the set G with
addition given by

x + y = lim
n

(x pn y p
n
)p

−n

and Lie bracket by

[x, y] = lim
n

[x pn , y p
n ]p−2n

.

TheLie algebra g is independent of the choice ofG; see the beginning of §II.9.5
of [25]. A chosen set of topological generators for G defines a continuous
isomorphism Z

d
p

∼= g of compact abelian groups. See Theorem 4.17 of [25].

Remark 2.5 (The adjoint representation) Again, let G ⊆ G be a an open uni-
formly powerful finite index normal subgroup of rank d. Since G is normal in
G, there is a conjugation action of G onG. This gives aZp-linear action of G on
g called the adjoint action, and g with this action is the adjoint representation
of G. For later purposes we define

gi = pi−1g.

These form a nested sequence of sub-representations and the equality of sets
g = G induces an isomorphism of abelian groups

gi/gi+ j
∼= Gi/Gi+ j , j ≤ i, (2.6)

when i ≥ 1 if p > 2 and i ≥ 2 for p = 2. This becomes an isomorphism of
G-modules if we act on Gi/Gi+ j by conjugation.

Example 2.7 The simplest example is G = Z
d
p. Then G = G = g and �i =

(pi−1
Zp)

d .
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2.1 Groups of units in normed algebras

Wediscuss two instances of compact p-adic analytic groups; the general linear
group Gln(Zp), in Example 2.12, and the Morava stabilizer group, in Exam-
ple 2.15. In both cases the group G arises as the group of units in a sub-algebra
of a complete normed Qp-algebra (A, || · ||). The norm extends the standard
norm on Qp; hence, ||pi || = p−i . If A is of finite rank over Qp, we define

Ai = {x ∈ A | ||x || ≤ p−i }.
Then A0 ⊆ A is a sub-Zp-algebra, each Ai is an ideal in A0, and pAi ⊆ Ai+1.
In our examples, this inclusion is an equality, so for convenience we assume
this. The most basic example is A = Qp, A0 = Zp and Ai = piZp.

We let G = A× be the group of units in A0 and define closed normal
subgroups

�i = 1 + pi A0 ⊆ G.

In both our examples G is a compact p-adic analytic group with a uniformly
powerful subgroup

�1 = 1 + A1 = 1 + pA0 if p > 2 or

�2 = 1 + A2 = 1 + 4A0 if p = 2.

In fact, more is true. The following is an exercise in definitions.

Lemma 2.8 Let A be a complete normedQp-algebra.With the notation estab-
lished above and if pAi = Ai+1 we have the following conclusions.

(1) If p > 2, the subgroup �i+1 ⊆ �1 is the i th term in the lower p-series for
�1.

(2) If p = 2, the subgroup �i+2 ⊆ �2 is the i th term in the lower p-series of
�2.

It follows from Lemma 2.8. that the rank of G is the Qp-rank of A.
The standard exponential map

exp : Ai−→ 1 + Ai = �i (2.9)

converges for i ≥ 1 if p > 2 and i ≥ 2 if p = 2. If we give A0 the structure
of a Zp-Lie algebra with bracket [x, y] = xy − yx , then this induces an
isomorphism of Lie algebras

exp : Ai = pi A0
∼=

gi (2.10)
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for i ≥ 1 if p > 2 and i ≥ 2 if p = 2. This is the content of Corollary II.7.14
of [25].

The group G acts on A0 by conjugation and the exponential map also gives
an isomorphism of G representations

exp : Ai/Ai+ j
∼=

(1 + Ai )/(1 + Ai+ j ) = �i/�i+ j (2.11)

for i ≥ 1 if p > 2 (or i ≥ 2 if p = 2) and j ≤ i . Note that since Ai A j ⊆ Ai+ j ,
this exponential function has a very simple form: if x ∈ Ai , then

exp(x) = 1 + x modulo A2i .

In combination with (2.6) this establishes an isomorphism of representations

Ai/Ai+ j
∼= gi/gi+ j

for i ≥ 1 if p > 2 (or i ≥ 2 if p = 2) and j ≤ i .

2.2 The main examples

We now give our two main examples.

Example 2.12 (The general linear group) Let G = Gln(Zp) be the group of
invertible n × n matrices with entries in the p-adic integers. Then Gln(Zp)

exactly fits the rubric of Sect. 2.1: we can let A = Mn(Qp), the Qp-algebra
of n × n matrices. Then A0 = Mn(Zp) and Gln(Zp) = Mn(Zp)

×. Further,
Ai = pi Mn(Zp).
For the moment assume p > 2. Then Gln(Zp) is a compact p-adic analytic

group with uniformly powerful subgroup �1 = 1 + pMn(Zp). The group �i
is the kernel of the map Gln(Zp) → Gln(Z/pi ); thus,

�i = 1 + pi Mn(Zp).

The group �1 is of rank n2. Furthermore, by Remark 2.2 we see that if j ≤ i
then �i/�i+ j is a free Z/p j -module of rank n2.

If g = gln is the Lie algebra of Gln(Zp) then Sect. 2.1 gives an isomorphism
of Lie algebras

Mn(Zp)
∼=

gln . (2.13)

If we let Gln(Zp) act by conjugation on Mn(Zp), this gives an isomorphism of
representations from Mn(Zp) to the adjoint representation. As in Remark 2.5,
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we can filter g by powers of p and the isomorphism of (2.13) descends to an
isomorphism of Gln(Zp)-modules

pi Mn(Zp)/p
i+ j Mn(Zp) ∼= gi/gi+ j

∼= �i/�i+ j , j ≤ i. (2.14)

Here the action of Gln(Zp) on �i/�i+ j is again by conjugation.
If p = 2, Gln(Z2) is a compact p-adic analytic group with uniformly

powerful subgroup �2 = 1 + 4Mn(Z2). The rest of the remarks go through,
with the evident changes on bounds.

This example extends without much change to Gln(W) with W = W (k)
the p-typical Witt vectors of a finite algebraic extension k of Fp. The rank of
Gln(W) is now n2[k : Fp].
Example 2.15 (The Morava stabilizer group) This is our main example, and it
has a number of variants, all of which fit the setup of Sect. 2.1.

To be concrete let F = F(x, y) be the Honda formal group law of height
n ≥ 1 over Fp and let On be the endomorphism ring of F over Fpn ; thus,
an element of On is a power series ϕ(x) ∈ Fpn [[x]] so that ϕ(F(x, y)) =
F(ϕ(x), ϕ(y)). Since F is defined over Fp, the power series S = x p is an
endomorphism in On , and there is an isomorphism of Zp-algebras

W〈S〉/(Sn − p) → On

where W = W (Fpn ) is the Witt vectors. The source is a non-commuting
truncated polynomial ring: if a ∈ W then Sa = aσ S where we write σ in
exponent to indicate the action of the Frobenius on W.

Note that On is free of rank n2 over Zp. The Qp-algebra A = Qp ⊗Zp On

is a complete normed Qp-algebra with ||S|| = p−1/n . Then A0 = On and
Ai = piOn . Define

Sn = O×
n .

This is the small Morava stabilizer group. The Galois group Gal(Fpn/Fp)

acts on On through the action on W; the full Morava stabilizer group is the
semi-direct product

Gn = Sn � Gal(Fpn/Fp).

Let p > 2. The groups Sn and Gn are compact p-adic analytic groups with
uniformly powerful subgroup �1 = 1 + pOn . Then

�i = 1 + piOn.
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Section 2.1 again applies and we have an isomorphism of Lie algebras

On
∼=

g. (2.16)

Furthermore Sn acts by conjugation on On and we have an isomorphism
of representations from On to the adjoint representation. This isomorphism
extends to one of Gn-modules. As in Remark 2.5, we can filter g by powers of
p and the isomorphism of (2.13) descends to an isomorphism of Gn-modules

piOn/p
i+ jOn

∼= gi/gi+ j
∼= �i/�i+ j , j ≤ i. (2.17)

Here the action of Gn on �i/�i+ j is again by conjugation.
If p = 2, the group Gn is a compact p-adic analytic group with uniformly

powerful subgroup �2 = 1 + 4On . The rest of the remarks go through, with
the evident changes on bounds.

Again this could be generalized to the example where F is a formal group
of height n over an algebraic extension of Fp. We can go further. The algebra
A = Qp ⊗Zp On is a central division algebra of Hasse invariant 1/n over Qp.
The paradigm of Sect. 2.1 extends to the case when G is the group of units in
the maximal order of any finite dimensional central division algebra over Qp.

Notation 2.18 Driven by these examples, we will adopt the following con-
ventions for the rest of the paper. We will equip our p-adic analytic groups G
with a nested sequence of open normal subgroups of finite index

G ⊇ �1 ⊇ �2 ⊇ · · · ⊇ �i ⊇ �i+1 ⊇ . . .

so that either �1 (if p > 2) or �2 (if p = 2) is a uniformly powerful pro-p
group. If p > 2 and i ≥ 1 then

�i+1 = �
p
i [�i , �1]. (2.19)

If p = 2, then �i+1 = �
p
i [�i , �2] for i ≥ 2. Thus the remaining terms for

the sequence are the lower p-series for �1 or �2, depending on the prime. See
Lemma 2.8.

Note that if p = 2, there is no theoretical stipulation on �1, although in
practice it will be very concrete.

The rank of G will be the rank �i for i large.

3 Some group cohomology, with applications

Notation 3.1 In this section as well as the remainder of the paper, we are
concerned with continuous group cohomology.We will not decorate the coho-
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mologynotation to specify continuity; it is to beunderstood that all cohomology
is continuous whenever that makes sense. IfG is any compact p-analytic group
(or simply a finite group), we write H1(G, Fp) for G/G1, where G1 is the
closure of Gp[G,G]. We have that H1(G, Fp) ∼= H1(G, Fp)

∗, where (−)∗
denotes the Fp-linear dual. If we write H∗(–) we mean H∗(–, Fp); we use a
similar convention for homology.

Following [64] we could define

H∗(G, M) = Tor
Zp[[G]]
∗ (Zp, M)

whereZp[[G]] is the completed group ring, M lies in some category of contin-
uous G-modules, and Tor∗ denotes the derived functors of a completed tensor
product. The equation H1(G, Fp) = G/G1 is then a lemma, rather a defi-
nition. We won’t use the greater generality, so we won’t need to make these
ideas precise.

Now letG be a fixed compact p-adic analytic groupwith uniformly powerful
subgroup �1 if p > 2 or perhaps �2 if p = 2. See Notation 2.18. We are
interested in the continuous cohomology H∗(�i , M) for various i and various
coefficients M .

For any i and all j > i , the quotient maps�i → �i/� j → �i/�i+1 induce
isomorphisms

H1(�i ) ∼= H1(�i/� j ) ∼= �i/�i+1.

Let Vi = H1(�i ) ∼= (�i/�i+1)
∗. Then

H1(�i/� j ) ∼= H1(�i ) = Vi , j > i. (3.2)

If V is a vector space over a field k, let �(V ) denote the graded exterior
algebra on V , and write �r (V ) ⊆ �(V ) for the homogeneous elements of
degree r . Below we will also have a symmetric (polynomial) algebra P(W )

on a vector space W . The following basic result is the key to much of what
follows.

Theorem 3.3 (1) The natural inclusion Vi = H1(�i ) ↪→ H∗(�i ) induces an
isomorphism of graded commutative algebras

�(Vi )−→ H∗(�i ).

(2) The inclusion �i+1 → �i induces the zero map on Hk(−) for k > 0.
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Proof The first statement is proved by combining Theorem 5.1.5 of [64] with
Theorem 3.6 of [25]. The second statement follows from the first and the fact
that

H1(�i+1, Fp) ∼= �i+1/�i+2 → �i/�i+1 ∼= H1(�i , Fp)

is the zero map.

We now turn to the cohomology of �i/� j , with j > i , working our way to
Theorem 3.6. To establish some notation we contemplate the exact sequence
of groups

1 � j−1/� j
f

�i/� j
q

�i/� j−1 1, (3.4)

where f is the inclusion and q is the projection. Let Wj−1 ⊆ H2(� j−1/� j )

be the image of the Bockstein operation on Vj−1 ∼= H1(� j−1/� j ). By
Remark 2.2, the group � j−1/� j is an elementary abelian p-group; therefore,
there are isomorphisms

�(Vj−1) ⊗ P(Wj−1) ∼= H∗(� j−1/� j ), p > 2;
P(Vj−1) ∼= H∗(� j−1/� j ), p = 2. (3.5)

In the case p = 2, Wj−1 ⊆ H2(� j−1/� j ) is the subvector space given by
squares of the elements in degree 1.

In Theorem 3.6, we extend (3.5) to H∗(�i/� j ). The bounds on i and j in
this result are not optimal, but certainly are good enough for later applications
and relieve us of the duty of making special statements at p = 2. Note that
part (1) gives a splitting result, but some care is needed in interpreting that
statement. We will add further comments below in Remark 3.9.

Theorem 3.6 (1) For all i ≥ 3 and j > i + 1, there is an exact sequence of
vector spaces

0 �2Vi
q∗

H2(�i/� j )
f ∗

Wj−1 0

and any splitting of this short exact sequence defines an isomorphism of
algebras

�(Vi ) ⊗ P(Wj−1) ∼= H∗(�i/� j ). (3.7)

(2) For all i ≥ 3 and j > i + 1, the image of H∗(�i/� j ) → H∗(�i/� j+1)

is �(Vi ).
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Proof Wewill do the casewhen p > 2. There are evidentmodifications needed
for p = 2 to account for the fact that H∗(� j/� j+1) is a polynomial algebra
if p = 2.

Part (1) is by induction on j , using that �i/�i+1 is elementary abelian
for the base case. Compare (3.8). The induction step is completed using the
Lyndon-Hochschild-Serre Spectral Sequence for the exact sequence of (3.4).
To compute the differentials we extend that exact sequence to a diagram

1 � j−1/� j

=
� j−2/� j � j−2/� j−1 1

1 � j−1/� j
f

�i/� j
q

�i/� j−1 1.

(3.8)

Since j > 4,Remark 2.2 implies that the top exact sequence is non-canonically
isomorphic to

0 (Z/p)d
×p

(Z/p2)d (Z/p)d 0.

The diagram of (3.8) gives a diagram of Lyndon-Hochschild-Serre Spectral
Sequences

E
p,q
2

∼= H p(�i/� j−1, Hq(� j−1/� j )) H p(�i/� j )

E p,q
2

∼= H p(� j−2/� j−1, Hq(� j−1/� j )) H p(� j−2/� j ).

Note that we have decorated the top spectral sequence with an overbar to later
help distinguish between the two.

Since�1 (or�2 if p = 2) is uniformly p-powerful,we have byDefinition 2.1
that [�i , � j ] ⊆ �i+ j for all j ≥ i ≥ 1 (or i ≥ 2 if p = 2). Thus in both
spectral sequences the action of the base group on H∗(� j−1/� j ) is trivial.

By Remark 2.2 the bottom of these spectral sequences is completely known:
indeed, there are isomorphisms

E∗,0
2

∼= H∗(� j−2/� j−1) ∼= �(Vj−2) ⊗ P(Wj−2),

E0,∗
2

∼= H∗(� j−1/� j ) ∼= �(Vj−1) ⊗ P(Wj−1),

and E∗,∗
2

∼= E∗,0
2 ⊗ E0,∗

2 . The only non-zero differential is d2. This is deter-
mined by the isomorphism d2 : Vj−1 ∼= Wj−2 ⊆ E2,0

2 and the multiplicative
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structure of the spectral sequence. We conclude

E∗,∗∞ ∼= E∗,∗
3

∼= �(Vj−2) ⊗ P(Wj−1)

with Vj−2 = E1,0∞ and Wj−1 = E0,2∞ .
We now turn to the top spectral spectral sequence. The base case of j = i+2

is covered by the above. By the induction hypothesis we have a short exact
sequence

0 �2Vi
q∗

H2(�i/� j−1)
f ∗

Wj−2 0.

We will make a useful choice of splitting of this exact sequence to obtain an
isomorphism �(Vi ) ⊗ P(Wj−2) ∼= H∗(�i/� j−1) to aid in completing the
induction step.

We have isomorphisms

E
∗,0
2

∼= H∗(�i/� j−1)

E
0,∗
2

∼= H∗(� j−1/� j ) ∼= �(Vj−1) ⊗ P(Wj−1)

and E
∗,∗
2

∼= E
∗,0
2 ⊗E

0,∗
2 . By the induction hypothesis we have an isomorphism

E
∗,0
2

∼= H∗(�i/� j−1) ∼= �(Vi ) ⊗ P(Wj−2) .

By the naturality of the spectral sequences and the calculation just completed
we have that the composition

Vj−1 = H1(� j−1/� j ) ∼= E
0,1
2

d2 E
2,0
2

∼= H2(�i/� j−1) E2,0
2

∼= H2(� j−2/� j−1)

has image exactly Wj−2 ⊆ E2,0
2 . So d2 maps Vj−1 = E

0,1
2 isomorphically

onto Wj−2 ⊆ E
2,0
2 . We then have

E
∗,∗
3

∼= �(Vi ) ⊗ P(Wj−1)

with Vi = E
1,0
3 and Wj−1 = E

0,2
3 .
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It remains to show the spectral sequence collapses at E3. For this it is

sufficient to show d3 vanishes on Wj−1 = E
0,2
2 . The target of this differential

is�3(Vi ) ∼= E
3,0
3 . However, we know from Theorem 3.3 that the composition

�(Vi ) → H∗(�i/� j ) → H∗(�i )

is an isomorphism, so the map induced by the edge homomorphism

�3(Vi ) → E
3,0
∞ → H3(�i/� j )

must be an injection. Thus d3(Wj−1) = 0 as needed.
For part (2) we examine the diagram from part (1)

0 �2Vi
q∗

=

H2(�i/� j )
f ∗

Wj−1 0

0 �2Vi
q∗

H2(�i/� j+1)
f ∗

Wj 0

Since themap H2(� j−1/� j ) → H2(� j/� j+1) is zero, themapWj−1 → Wj
is zero. It follows that the kernel of the map H2(�i/� j ) → H2(�i/� j+1) is
isomorphic toWj−1 and, in fact, this gives a splitting of the top f ∗. The result
follows.

Remark 3.9 Part (1) of Theorem 3.6 says that we can choose an isomorphism
of graded algebras (3.7)

�(Vi ) ⊗ P(Wj−1) ∼= H∗(�i/� j ).

If j ≤ 2i then �i/� j
∼= (Z/p j−i )d and we can choose this isomorphism to

be an isomorphism of unstable algebras over the Steenrod algebra, and we can
even add the further stipulation that the appropriate higher Bockstein defines
an isomorphism from Vi to Wj−1. If j > 2i , it is far less clear how the higher
Bocksteins behave, and it is no longer possible to be so explicit.

For example, if G = Sn is theMorava stabilizer group of Example 2.15 then
we know by work of Lazard and Morava (see Remark 2.2.5 of [56]) that there
is an isomorphism

�Qp(x1, x3, · · · , x2n−1) ∼= H∗(Sn, Zp) ⊗Zp Qp

where x2k−1 is in degree 2k − 1. This implies that the structure of the higher
order Bocksteins must be rich.
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As a further remark, note that if we choose a splitting as in (3.7), then the
map

�(Vi ) ⊗ P(Wj−1) ∼= H∗(�i/� j ) → H∗�i

gives an isomorphism �(Vi ) ∼= H∗�i . However, we have not proved that
Wj−1 maps to zero.

If G is a profinite group, it is not immediately obvious how to define its
classifying space. In particular, there is a long history, going back to Artin
and Mazur, of regarding the classifying space as a pro-object. We will need
nothing that sophisticated. For our purposes, the following will suffice.

Definition 3.10 Let G = lim j G j be a profinite group. Then the classifying
space BG is defined by

BG = holim j BG j .

In particular, if G is our compact p-adic analytic group with uniformly
powerful subgroup �1 we have B�i = holim j B(�i/�i+ j ). It is immediate
that

πn B�i
∼=

{
�i , n = 1;
0, n �= 1.

We remark, however, that this isomorphism does not recover the topology on
�i .

The next result now follows from Theorem 3.3, Theorem 3.6, Proposi-
tion 3.12 below, and the fact that if G is a finite p-group, then �∞BG is
already p-complete. It is slightly surprising, since suspension and limits to do
not formally commute.

Proposition 3.11 The natural map

�∞+ B�i → holim j�
∞+ B(�i/�i+ j )

is an equivalence after p-completion. Furthermore, we have isomorphisms

�(Vi ) ∼= colim j H
∗(�i/�i+ j ) ∼= H∗(�i ) ∼= H∗(B�i ).

The proof of Proposition 3.11 is completed with this general result.

Proposition 3.12 Let X be a bounded below spectrum and let

X · · · Xk Xk−1 · · · X1
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be a tower of bounded below spectra under X with the property that H∗X →
H∗Xk induces an isomorphism

H∗X ∼= Image{H∗Xk+1 → H∗Xk}.
Then X p → holimk(Xk)

∧
p is an equivalence and the induced maps

H∗X −→ lim
k

H∗Xk

colim
k

H∗Xk −→ H∗X

are isomorphisms.

Proof If Z is any spectrum, write HF
•+1
p ∧ Z for the standard cosimplicial

cobar complex defining the Adams Spectral Sequence. This spectral sequence
reads

ExtsA∗(�
t
Fp, H∗Z) ∼= π sπt HF

•+1
p ∧ Z �⇒ πt−sholim�HF

•+1
p ∧ Z .

Here A∗ is the dual Steenrod algebra. If Z is bounded below then the map

Z−→ holim�HF
•+1
p ∧ Z

is p-completion. By construction, there is an isomorphism, natural in Z ,

π∗HF
s+1
p ∧ Z ∼= A⊗s∗ ⊗ H∗Z .

Now turn to the tower under X . The hypothesis on the homology of the
tower implies that for all s the natural map

π∗HF
s+1
p ∧ X → π∗ holim

k
HF

s+1
p ∧ Xk

∼= lim
k

π∗HF
s+1
p ∧ Xk

is an isomorphism. Thus we have equivalences

X p � holim�HF
•+1
p ∧ X � holim�holimk HF

s+1
p ∧ Xk

� holimkholim�HF
s+1
p ∧ Xk

� holimk(Xk)
∧
p .

4 Duality and Frobenius reciprocity

This section collects a great deal of relatively standard material about group
cohomology, with the wrinkle that we need these results for compact p-adic
analytic groups. Much of this can be collected from [62] and [64].
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Define the completed group ring of G to be

Zp[[G]] = lim
n,i

Z/pn[[Gi ]] (4.1)

where G ∼= limGi is any presentation of G as an inverse limit of finite groups.

Notation 4.2 In this section G will be a compact p-adic analytic group unless
otherwise stated. All modules we consider will be continuousZp-modules and
most examples will be either p-profinite or discrete p-torsion. The following
conventions and definitions hold or continue to hold.

(1) Hom always means continuous homomorphisms and tensor products
between profinite modules are always completed, and taken over Zp if
unadorned.

(2) If M is a continuous right G-module and N is a continuous left G-
module we will also write M ⊗G N for M ⊗Zp[[G]] N . and we will write
HomG(M, N ) for HomZp[[G]](M, N ).Wewill similarly abbreviate the Tor
and Ext decorations.

(3) IfM and N are two continuous leftG-moduleswe giveM⊗N the structure
of a left G-module with the diagonal G-action: g(x ⊗ y) = gx ⊗ gy.

(4) Define Hom�(M, N ) to be the abelian group of continuous homomor-
phisms with the left G-action given (gϕ)(a) = gϕ(g−1a).

The actiononHom� has the twin features thatHomG(A, B) = Hom�(A, B)G
and the evaluation map

Hom�(A, B) ⊗ A−→ B

sending ϕ ⊗ a → ϕ(a) is a morphism of left G-modules.

4.1 Group cohomology basics

Let G be a compact p-adic analytic group and M a continuous G-module.
Following Serre [62], we let Cs(G, M) be the set of continuous maps

φ : Gs−→ M.

If s = 0, then Cs(G, M) = M . We will also call these continuous cochains.
The collectionC•(G, M) is a cosimplicial abelian group with coface operators
given by

diφ(x1, . . . , xs+1) =

⎧
⎪⎨

⎪⎩

x1φ(x1, . . . , xs+1), i = 0;
φ(x0, . . . , xi xi+1, . . . , xs+1), 1 ≤ i ≤ s;
φ(x1, . . . , xs), i = s + 1.
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Codegenerarcy operators are obtained by inserting identities; we won’t need
them. We then have

Hs(G, M) = Hs(C•(G, M), ∂)

where ∂ = ∑s
i=0(−1)i di . As explained in Sections 3.1 and 3.2 of [64], these

are the right derived functors of H0(G, M) = MG ; indeed, there is a natural
isomorphism

Hs(G, M) ∼= ExtsG(Zp, M)

and the cochain complex above is the standard cobar construction for calcu-
lating the Ext-groups. We also define

Hs(G, M) = TorGs (Zp, M). (4.3)

Let f : G1 → G2 be a continuous map of compact p-adic analytic groups
and M a G2-module. Then M becomes a G1-module by restriction: if x ∈ G1
and a ∈ M , then x · a = f (x)a. Write this module as f∗M . Then we get a
map

f ∗ : Cs(G2, M) → Cs(G1, f∗M)

given by sending φ : Gs
2 → M to a cochain f ∗φ : Gs

1 → f∗M with

( f ∗φ)(x1, · · · , xs) = φ( f (x0), . . . , f (xs)).

The new action on M is needed so that f ∗(d0φ) = d0 f ∗φ. We then get a map

f ∗ : H∗(G2, M) → H∗(G1, f∗M).

Example 4.4 For example, suppose f = cg : G → G is given by conjugation
and M is a left G-module; then we write gM for f∗M and we get a map

c∗
g : H∗(G, M) → H∗(G, gM).

The action on gM is given by x · a = (gxg−1)a.
More generally, let � ⊆ G be a closed subgroup. If g ∈ G let g� denote the

conjugate subgroup g−1�g and write cg(−) = g(−)g−1 : g� → � for the
conjugation homomorphism. The conventions are chosen so that cgh = cg◦ch .
If M is a G-module, we then get a homomorphism

c∗
g : H∗(�, M) → H∗(g�, gM).
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4.2 Induced modules and transfer

Let G be a compact p-adic analytic group and let � ⊆ G be a closed subgroup.
If M is a continuous �-module, define the coinduced G-module to be the
module

MG
� = map�(G, M)

of continuous �-equivariant functions ϕ : G → M with G action given by the
formula

(gϕ)(x) = ϕ(xg).

The functor M �→ MG
� is right adjoint to the forgetful functor to �-modules.

The following result is Schapiro’s Lemma.

Proposition 4.5 Let M be a �-module which is either discrete p-torsion or
profinite. Then we have a natural isomorphism

H∗(G, MG
� ) ∼= H∗(�, M).

Proof The discrete case is covered in §I.2.5 of [62]. The profinite case follows
from the discrete case and the fact that if M = lim Mi , then

map�(G, M) ∼= limmap�(G, Mi ).

If M is a continuous G-module, then there is a map

ηM : M → MG
� = map�(G, M)

adjoint to the identity M → M regarded as a �-module map. The induced
map

res = resG� : H∗(G, M)−→ H∗(G, MG
� ) ∼= H∗(�, M)

is the restriction map.
Now we specialize to the case where � ⊆ G is open and, hence, closed and

of finite index. There is a G-equivariant averaging map

MG
� =map�(G, M)−→ mapG(G, M) ∼= M

ϕ(−) �−→
∑

g�∈G/�

gϕ(g−1−).
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The induced map

tr = trG� : H∗(�, M) ∼= H∗(G, MG
� )−→ H∗(G, M) (4.6)

is the transfer map. The next result follows from the definitions.

Lemma 4.7 We have the following naturality statements for restriction and
transfer.

(1) Let f : G1 → G2 be a continuous homomorphism of compact p-adic
analytic groups. Suppose �i ⊆ Gi is a closed subgroups and suppose
f (�1) ⊆ �2. Let M be a G2-module. Then the following diagram com-
mutes.

H∗(G2, M)
res

f ∗

H∗(�2, M)

f ∗

H∗(G1, f∗M) res H∗(�1, f∗M).

(2) Suppose further that �2 is of finite index in G2 and f induces an isomor-
phism G1/�1 ∼= G2/�2. Then the following diagram commutes.

H∗(�2, M)
tr

f ∗

H∗(G2, M)

f ∗

H∗(�1, f∗M)
tr

H∗(G1, f∗M).

Still assuming � ⊆ G is open, we have that the functor M �→ MG
� is

also isomorphic to the left adjoint to the forgetful functor. The natural map of
�-modules

MG
� = mapc�(G, M)−→ M

sending ϕ to ϕ(e) has a natural �-module splitting that extends to an isomor-
phism of G-modules

Zp[[G]] ⊗Zp[[�]] M ∼= MG
� . (4.8)

Thus we equally call MG
� the induced G-module.
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We have a commutative diagram of G-modules

M
ψ

=

Zp[[G]] ⊗� M m

∼=

M

=

M
ηM

MG
� tr

M

(4.9)

where ψ(a) = ∑
g�∈G/� g⊗ g−1a andm is induced by the action of G on M .

The map ψ induces the transfer map in homology

tr∗ : Hs(G, M) −→ Hs(�, M).

More generally, if N is a right G-module we can use the isomorphism

N ⊗Zp[[G]] Zp[[G]] ⊗Zp[[�]] M ∼= N ⊗Zp[[�]] M

and the map ψ to obtain a transfer map

tr∗ : TorGs (N , M)−→ Tor�s (N , M).

Likewise,m induces themap res∗ : Tor�s (N , M)−→ TorGs (N , M) arising from
the ring homomorphism Zp[[�]] → Zp[[G]]. There is a naturality statement
analogous to Lemma 4.7.

4.3 Frobenius reciprocity and cohomology

Let M and N be two continuous G-modules and let M ⊗ N be their tensor
product with the diagonal action. Then we have a cup product pairing

Hm(G, M) ⊗ Hn(G, N )−→ Hm+n(G, M ⊗ N ).

If φ ∈ Cm(G, M) and ψ ∈ Cn(G, N ), then

(φ · ψ)(x1, . . . , xn+m) = φ(x1, . . . , xm) ⊗ (x1 · · · xm)ψ(xm+1, . . . , xn).

The following formulas (1) and (2) are in §I.2.6a of [62]. Following Serre we
leave them as an exercise.

(1) Restriction preserves products: for all x ∈ Hm(G, M) and all y ∈
Hn(G, N )

resG�(x · y) = resG�(x) · resG�(y);
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(2) Frobenius Reciprocity holds: for x ∈ Hm(�, M) and y ∈ Hn(G, N )

trG�(x) · y = trG�(x · resG�(y))

and for all x ∈ Hm(G, M) and y ∈ Hn(�, N )

x · trG�(y) = trG�(resG�(x) · y).

(3) Let � ⊆ G be a closed subgroup and g ∈ G. Then for all x ∈ Hm(�, M)

and y ∈ Hn(�, N )

c∗
g(x · y) = c∗

g(x) · c∗
g(y) ∈ Hm+n(g�, gM ⊗g N ).

Note gM ⊗g N ∼=g (M ⊗ N ).

4.4 Conjugation actions

As above, let cg(x) = g−1xg denote conjugation by g ∈ G. Let M be a
G-bimodule; that is, M is both a left and right G-module and the two actions
commute.Ourmain example isM = Zp[[G]]of (4.1).AsM is a leftG-module,
we have a map c∗

g : H∗(G, M) → H∗(G, gM). But the right multiplication
of G on M defines a map r∗

g : H∗(G, M) → H∗(G, M). We relate these two
maps.

If φ : Gs → M is a continuous cochain, define

χg(φ) : Gs → M

by

χg(φ)(x1, . . . , xs) = g−1φ(cg(x1), . . . , cg(xn))g. (4.10)

We check that this induces a map on cochain complexes and hence a map

χ∗
g : H∗(G, M) → H∗(G, M).

Note we have χ∗
gh = χ∗

h ◦χ∗
g , so the assignment g �→ χ∗

g defines a right action
on H∗(G, M). The following result says the action is very simple.

Proposition 4.11 Themapχ∗
g : H∗(G, M) → H∗(G, M) is given by the right

action of g ∈ G on M.
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Proof The right action of G on H∗(G, M) is given by multiplication of G on
the right on M ; on cochains we have

rg(φ)(x1, . . . , xs) = φ(x1, . . . , xs)g.

We construct a cochain homotopy Tg : Cs+1(G, M) → Cs(G, M) with

∂Tg + Tg∂ = χg − rg.

The result will follow.
Define T i

g : Cs+1(G, Zp[[G]]) → Cs(G, Zp[[G]]), 0 ≤ i ≤ s, by

T i
g (φ)(x1, . . . , xs) = φ(x1, . . . , xi , g

−1, cg(xi+1), . . . , cg(xs))g.

Thus g−1 is in the (i + 1)st-slot. Note

T 0
g (d0φ)(x1, . . . , xs) = χg(φ)(x1, . . . , xs)

and

T s
g (ds+1φ)(x1, . . . , xs) = rg(φ)(x1, . . . , xs).

and also

T j
g d

i =

⎧
⎪⎨

⎪⎩

di T j−1
g , i < j;

T i−1
g di , i = j �= 0;

di−1T j
g , i > j + 1.

Then we set

Tg =
s∑

i=0

(−1)i T i
g : Cs+1(G, M) → Cs(G, M).

Remark 4.12 In particular if M is a trivial module, we can make it a bimod-
ule by giving it the trivial right module structure. Then we get the standard
argument that conjugation of g induces the trivial action on H∗(G, M).

If M is bimodule then we get an isomorphism M ∼= gM of left G-modules
that sends a to gag−1. This gives a commutative diagram
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H∗(G, M)

∼=H∗(G, M)

χ∗
g=r∗

g

c∗
g H∗(G, gM).

(4.13)

Thus all possible ways of defining the conjugation action determine each other.

4.5 Dualizing modules and duality

We review the concepts of Poincaré duality, relying especially on Section 4.4.
of [64]. Our emphasis will be on p-adic analytic groups.

Definition 4.14 Let G be a profinite group. Then we have the following con-
cepts.

(1) The group G has finite cohomological p-dimension cdp(G) if there is some
integer m so that for all p-torsion G-modules M and all s > m

Hs(G, M) = 0.

Then cdp(G) = n if n is minimal among the integers m for which this
condition holds.

(2) The group G is of type p-FP if the trivial G-module Zp has a finite reso-
lutions

0−→ Pk−→ · · ·−→ P1−→ P0−→ Zp

where each Pi is a finite direct sum of copies of Zp[[G]]. Call k the length
of the resolution.

(3) The group G is a Poincaré duality group of dimension n if cdp(G) = n, G
is of type p-FP and

Hs(G, Zp[[G]]) ∼=
{

Zp, s = n;
0, s �= n.

The following is a consequence of Proposition 4.1.1 of [64].

Lemma 4.15 Let G be a Poincaré duality group of dimension n. Then

(1) Hs(G, M) = 0 for s > n for all p-profinite G-modules M; and
(2) the trivial G-module Zp has a resolution as in Definition 4.14.2 of exactly

length n.
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Let G be a compact p-adic analytic group of rank d with an exhaustive
system

· · · ⊆ �i+1 ⊆ �i ⊆ · · · ⊆ �1 ⊆ G

of uniformly powerful open normal subgroups. We then have.

Proposition 4.16 For any compact p-adic analytic groupG of rank d we have

Hs(G, Zp[[G]]) ∼=
{

Zp, s = d;
0, s �= d.

Furthermore, for all i ≥ 1 (or i ≥ 2 if p = 2), the uniformly powerful open
normal subgroup �i is a Poincaré duality group of dimension d.

Proof It is a theorem, going back to Serre (Proposition I.4.5 of [62]) and
Lazard (Théorème V. 2.5.8 of [49]) that �i is a Poincaré duality group of
dimension d. The statement about Hs(G, Zp[[G]]) follows from Schapiro’s
LemmaProposition4.5 and that fact if� ⊆ G is of finite index thenZp[[�]]G� ∼=
Zp[[G]]. See (4.8).

The group ring Zp[[G]] is a G-bimodule, using the left and right actions of
G on itself.

Remark 4.17 Our main examples of compact p-adic analytic groups, such as
Gln(Zp) or Gn , need not be of finite cohomological dimension.

In calculating Hs(G, Zp[[G]]) we use the left action of G on the group ring.
This continuous cohomology group retains a residual action on the right by G.
Definition 4.18 Let G be a compact p-adic analytic group of rank d. Then the
compact dualizing module Dp(G) of G is the right-G module

Dp(G) = Hd(G, Zp[[G]]).
The following version of Poincaré Duality can be found as Proposition 4.5.1

of [64].

Theorem 4.19 Let G be a compact p-adic analytic group of rank d with dual-
izing module Dp(G). Suppose further that G is a Poincaré duality group. Then
there is a natural homomorphism

TorGs (Dp(G), M)−→ Hd−s(G, M).

This homomorphism is an isomorphism if M is either a p-profinite module or
a discrete p-torsion module.
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Proof The paper [64] covers a great deal of ground and it takes a while to pull
together the proof of Theorem 4.19 from that source. Here is a summary.

For any continuous left G-module P let HomG(P, Zp[[G]]) be the module
of left G-module maps. This is a right G-module using the right G-module
structure on Zp[[G]]. Choose a projective resolution P• → Zp of the trivial
Zp[[G]]-module Zp. Let M be a continuous left G-module. We then we have
a pairing

HomG(Ps, Zp[[G]]) ⊗G M−→ HomG(Ps, M)

sending φ ⊗ a to the function x �→ φ(x)a. This passes to an induced pairing

Dp(G) ⊗G M = Hd(G, Zp[[G]]) ⊗G M−→ Hd(G, M).

By Lemma 4.15, G has the property that Hs(G, M) = 0 for s > d for all
p-profinite modules M; thus, we find this is a natural transformation between
right exact functors in M . Thus we get a natural transformation of left derived
functors and, since the sth left derived functor of Hd(G, −) is Hd−s(G, −)we
have the homomorphism

TorGs (Dp(G), M) Hd−s(G, M). (4.20)

If M ∼= Zp[[G]] this map is an isomorphism when s = 0 and both source
and target of this homomorphism vanish if s �= 0. From this we deduce that
(4.20) is an isomorphism when M is p-profinite. In particular, it is true when
M is finite. Since any discrete p-torsion module is the colimit of its finite
submodules, we have the result in that case as well.

Remark 4.21 In [64] the authors define Dp(G) to be the leftG-module obtained
from Hd(G, Zp[[G]]) by g · x = xg−1. This allows them to write the Poincaré
Duality isomorphismof Theorem4.19 using homology. If wewrite Dp(G)� for
this left module structure, thenwe have, under the hypotheses of Theorem 4.19

Hs(G, Dp(G)� ⊗ M) ∼= TorGs (Dp(G), M) ∼= Hd−s(G, M).

There are times when this point of view is convenient. See the proof of Propo-
sition 4.38.

Remark 4.22 The Poincaré duality group G is called orientable if the action
on Dp(G) is trivial. Then Theorem 4.19 implies

Hs(G, M) ∼= Hd−s(G, M)

and Hd(G, Zp) ∼= Zp.
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Remark 4.23 Ourmain examples are orientable, using the following argument
adapted from the proof of Proposition 5 of [63].

By Corollary 5.2.5 of [64] (see Proposition 4.40 for more explanation) there
is an isomorphism of right G-modules

Dp(G) ∼= �dg∗

where �dg∗ is the top exterior power of the dual of the adjoint representation.
In the case where G = Gln(Zp) or Gn , the group G is the group of units
in a sub-algebra A0 of a complete normed Qp-algebra and g is A0 with the
conjugation action of G. See Example 2.12 and Example 2.15. If f : g∗ → g∗
is any linear transformation, then �d f is multiplication by the determinant of
f . Thus if g ∈ G acts by conjugation on g = A0, it must act trivially �dg∗.

There is a variant of Poincaré Duality which is closer to the Serre-
Grothendieck duality of algebraic geometry. Let Z/p∞ = colimZ/pn; this is
an injective abelian group. Define the discrete dualizing module for G as the
left G-module

Ip(G) = Hom(Dp(G), Z/p∞). (4.24)

The action of G is given by the formula gφ(x) = φ(xg). Evaluation gives an
isomorphism

Dp(G) ⊗G Ip(G) ∼= Z/p∞.

If Hs(G, −) = 0 for s > d, then Theorem 4.19 gives an isomorphism

ε : Hd(G, Ip(G))
∼=

Z/p∞.

If M is a continuous G module define

M∨ = Hom�(M, Ip(G))

to be the abelian group of continuous homomorphisms with the left G-action
given (gϕ)(a) = gϕ(g−1a). See (4) of Notation 4.2. The evaluation map
M∨ ⊗ M → Ip(G) and cup product give us a pairing

Hs(G, M∨) ⊗ Hd−s(G, M) Hd(G, Ip(G))
ε

Z/p∞. (4.25)

Then we have, as in §I.3.4 of [62]:
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Theorem 4.26 Let G be a Poincaré duality group of dimension d and suppose
M is either p-profinite or p-torsion. Then (4.25) is a perfect pairing which
identifies Hs(G, M∨) with the Pontryagin dual of Hd−s(G, M).

4.6 Frobenius reciprocity and duality

Poincaré Duality flips transfer and restriction. To make this precise we begin
with the following result.

Proposition 4.27 Let G be a compact analytic group of rank d and � ⊆ G an
open subgroup. Then the compact dualizingmodule Dp(�) for� is isomorphic
to the compact dualizing module Dp(G) for G with action restricted to �.

Proof Since we have an isomorphism of right �-modules

Zp[[�]]G� = Zp[[G]] ⊗� Zp[[�]] ∼= Zp[[G]]
Schapiro’s Lemma Proposition 4.5 gives

Dp(�) = Hd(�, Zp[[�]]) ∼= Hd(G, Zp[[G]]) = Dp(G)

and these isomorphisms respect the right action by �.

Note that it follows that the discrete dualizing module Ip(�) for � is iso-
morphic to the discrete dualizing module Ip(G) for G with action restricted to
�. This is Proposition 18 of §I.3.5 of [62].

We now have the following result. Note that Dp(G) has a canonical structure
as �-module by Proposition 4.27.

Proposition 4.28 Let G be a compact p-adic analytic group of rank d and
suppose Hs(G, −) = 0 for s > d. Then we have commutative diagrams

TorGs (Dp(G), M)

tr∗

Hd−s(G, M)

res

Tor�s (Dp(G), M) Hd−s(�, M).

(4.29)

and

Tor�s (Dp(G), M)

res∗

Hd−s(�, M)

tr

TorGs (Dp(G), M) Hd−s(G, M).

(4.30)
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Proof We give an argument only for (4.29), as that is what we will use later.
The argument for (4.30) is very similar.

The map TorGs (Dp(G), M) → Hd−s(G, M)was constructed in the proof of
Theorem 4.19 by first defining it for s = 0 and then using naturality to extend
to the higher left derived functors. Built into this construction is the assertion
that if

0−→ K−→ M−→ N → 0

is a short exact sequence of continuousG-modules thenwe have a commutative
diagram of long exact sequences

TorGs+1(Dp(G), N ) TorGs (Dp(G), K ) TorGs (Dp(G), M) TorGs (Dp(G), N )

Hd−s−1(G, N ) Hd−s(G, K ) Hd−s(G, M) Hd−s(G, N )

Thus if we can prove that (4.29) commutes at s = 0 then it will follow for all
s ≥ 1 as well.

Choose a projective resolution P• → Zp of the trivial Zp[[G]]-module Zp.
The map Dp(G) ⊗G M → Hd(G, M) is defined at the chain level by the
pairing

HomG(Ps, Zp[[G]]) ⊗G M−→ HomG(Ps, M)

sending φ ⊗ a to the function x �→ φ(x)a. Let

ψ : M−→ Zp[[G]] ⊗� M

ψ(a) =
∑

g�∈G/�

g ⊗ g−1a

be the map of (4.9) used to define tr∗. Since Zp[[G]] ∼= (
Zp[[�]])G

�
we have

a commutative diagram

HomG(P, Zp[[G]]) ⊗G M

1⊗ψ

HomG(P, M)

HomG(P, Zp[[G]]) ⊗G Zp[[G]] ⊗� M

∼=

Hom�(P, Zp[[�]]) ⊗� M Hom�(P, M)
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where the right vertical map is inclusion. Passing to cohomology gives the
needed commutative diagram

Hd(G, Zp[[G]]) ⊗G M

tr∗

Hd(G, M)

res

Hd(�, Zp[[�]]) ⊗� M Hd(�, M).

4.7 Restricting to subgroups

The compact dualizing module Dp(�) for � is isomorphic to the compact
dualizingmodule Dp(G) forGwith action restricted to�. See Proposition 4.27.
We now discuss how to recover the right-G module structure on Dp(G) from
Dp(�) using the subgroup structure of G.
If g ∈ G and � ⊆ G is a subgroup, let g� denote the conjugate subgroup

g−1�g and cg(−) = g(−)g−1 : g� → � the conjugation homomorphism.
If φ : �s+1 → Zp[[�]] is a continuous cochain, define χg(φ) : g�s+1 →
Zp[[g�]] by

χg(φ)(x0, x1, . . . , xs) = g−1φ(cg(x0), . . . , cg(xn))g.

This extends to subgroups the definition given for G itself in (4.10). We check
that this induces a map on cochain complexes and hence a map

χ∗
g : H∗(�, Zp[[�]]) → H∗(g�, Zp[[g�]]).

Proposition 4.31 Suppose G is a compact p-adic analytic group of rank d
and � is an open subgroup. Suppose Hs(�, −) = 0 for s > d. The map

Dp(�) = Hd(�, Zp[[�]]) χ∗
g

Dp(
g�) = Hd(g�, Zp[[g�]])

is isomorphic to the map

rg = (−)g : Dp(G) Dp(G).
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Proof A chain level calculation shows that the following diagram commutes

Hd(�, Zp[[�]]) χ∗
g

∼=

Hd(g�, Zp[[g�]])
∼=

Hd(G, Zp[[G]])
χ∗
g

Hd(G, Zp[[G]]).

By Proposition 4.11 the bottom map is given by the standard right G-action
on H∗(G, Zp[[G]]).
Remark 4.32 In particular, if � is normal in G, the conjugation action of G
on � and Zp[[�]] recovers the right action of G on Hd(G, Zp[[G]]) from the
conjugation action on Hd(�, Zp[[�]]).
Remark 4.33 Theconjugationmap cg defines an isomorphismof leftZp[[g�]]-
modulesZp[[g�]] ∼=g

Zp[[�]] andwe have a diagrammapping to the diagram
of (4.13)

H∗(g�, Zp[[g�]])
∼=H∗(�, Zp[[�]])

χ∗
g

c∗
g H∗(g�,g Zp[[�]]).

Thus we could have worked with c∗
g (Example 4.4) as well.

Proposition 4.28 described how duality interacted with transfer and restric-
tion. We’d also like to know how duality interacts with conjugation. We gain
conceptual clarity by proving a more general result; we then specialize. The
main result is Proposition 4.36

Let G be a compact p-adic analytic group, N a continuous left G-module
and M a continuous G-bimodule. We have a pairing

〈−, −〉 : Cs(G, M) ⊗G N−→ Cs(G, M ⊗G N )

sending φ ⊗ a to ψ where

ψ(x1, . . . , xs) = φ(x1, · · · , xs) ⊗ a.

Wenow explore the naturality of this pairing. Let f : G1 → G2 be a continuous
homomorphism of compact p-adic analytic groups, N a continuous left G1-
module and M a continuous G2-bimodule. For simplicity we assume that f is
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an injection onto a subgroup of finite index, so that we can form the induced
module

NG2
G1

∼= Zp[[G2]] ⊗Zp[[G1]] N =: G2 ×G1 N .

If M is a right G2 module, let M f denote the right G1-module obtained by
restriction. Recall, from Section 4.1, that f∗M denotes the left G1-module
obtained by restriction. The following can be checked on cochains.

Lemma 4.34 Let N be a continuous left G1-module, M a continuous G2-
bimodule and f : G1 → G2 a continuous homomorphism of compact p-adic
analytic groups which is an injection onto a subgroup of finite index. Then the
pairing 〈−, −〉 induces a commutative diagram

Hs(G2, M) ⊗G2 (G2 ×G1 N )

∼=

Hs(G2, M ⊗G2 (G2 ×G1 N ))

∼=

Hs(G2, M f ) ⊗G1 N

f∗

Hs(G2, M f ⊗G1 N )

f∗

Hs(G1, f∗M f ) ⊗G1 N Hs(G1, f∗M f ⊗G1 N ) .

We now specialize. Let � ⊆ G be an open subgroup and g ∈ G. We let f be
the conjugation map cg : g� → �. For M a �-bimodule, let gMg be f∗M f ,
the g�- bimodule obtained by restriction along f = cg for both the right and
left actions. Then cg defines an isomorphism of g�-modules

Zp[[g�]] ∼= g
Zp[[�]]g

and if N is a g�-module

� ×g� N ∼=g−1
N

where g−1
N is the module obtained by restriction along cg−1 : � → g�. Thus

if we replace N by gN in Lemma 4.34 we have a diagram

Hs(�, Zp[[�]]) ⊗� N

c∗
g

Hs(�, Zp[[�]] ⊗� N )

c∗
g

Hs(g�, Zp[[g�]]) ⊗g
g� N Hs(g�, Zp[[g�]] ⊗g

g� N )

123



Dualizing spheres for compact p-adic analytic groups

After using the module multiplications on the coefficients, we get a diagram

Hs(�, Zp[[�]]) ⊗� N

c∗
g⊗N

Hs(�, N )

c∗
g

Hs(g�, Zp[[g�]]) ⊗g
g� N Hs(g�,g N )

(4.35)

The right hand morphism c∗
g sends φ ⊗ a to the cocyle

(x1, . . . , xs) �−→ g−1φ(cg(x1), . . . , cg(xs))g ⊗ a.

In the next result we use that the compact dualizing module Dp(�) for
� ⊆ G open is isomorphic to the compact dualizing module Dp(G) for G with
action restricted to �. See Proposition 4.27.

Proposition 4.36 Suppose G is a compact p-adic analytic group of rank d
and � is an open subgroup and a Poincaré duality group. Let M be a left
�-module. Then the map

Dp(�) = Hd(�, Zp[[�]]) χ∗
g

Dp(
g�) = Hd(g�, Zp[[g�]])

is isomorphic to the map

rg = (−)g : Dp(G) Dp(G)

and we have a commutative diagram

Tor�s (Dp(G), M)
∼=

(rg)∗

Hd−s(�, M)

c∗
g

Tor
g�
s (Dp(G), gM)

∼= Hd−s(g�, gM).

Proof The first statement is a repeat of Proposition 4.31. For the second, we
can proceed as in the proof of Proposition 4.28 and note it is sufficient to
check the case s = 0. This is exactly (4.35). The horizontal isomorphisms are
Poincaré Duality. See Theorem 4.19.

Corollary 4.37 Suppose G is a compact p-adic analytic group of rank d and
� is an open subgroup and a Poincaré duality group. Suppose M is a trivial

123



A. Beaudry et al.

G-module and � ⊆ G is normal. Then Proposition 4.36 gives a diagram

Dp(G) ⊗� M
∼=

(rg)∗⊗M

Hd(�, M)

c∗
g

Dp(G) ⊗� M
∼= Hd(�, M)

where the left column is given by the right action of g on Dp(G) and the right
column is given by the conjugation action of g on �.

4.8 The dualizing module revisited

We can now give a formula for the discrete dualizing module Ip(G) due to
Serre. The module Ip(G) was defined in (4.24). Let G be a compact p-adic
analytic group of rank d with an exhaustive system

· · · ⊆ �i+1 ⊆ �i ⊆ · · · ⊆ �1 ⊆ G

of uniformly powerful open normal subgroups. The following gives exactly
Serre’s formula in §3.5 of [62].

Proposition 4.38 There is an isomorphism of left G-modules

Ip(G) ∼= colimtrHd(�i , Z/p∞) (4.39)

where G acts on H∗(�i , Z/p∞) through conjugation on �i .

Proof Let Dp(G)� be left-G-module obtained by transposing the right action;
that is g · a = ag−1. Then if M is any continuous G-module we have a natural
isomorphism

Dp(G) ⊗G M ∼= Zp ⊗G (Dp(G)� ⊗ M)

where Dp(G)�⊗M has the diagonal action.We thus get a natural isomorphism

Hs(G, Dp(G)� ⊗ M) ∼= TorGs (Dp(G), M).

There is an isomorphism of left G-modules

Dp(G)� ⊗ Ip(G) ∼= Z/p∞
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where the tensor product has the diagonal G-structure and the action on Z/p∞
is trivial. For i large Frobenius reciprocity (4.29) and Poincaré Duality Theo-
rem 4.19 give a commutative square

Hs(�i , Z/p∞)
∼=

tr∗

Hd−s(�i , Ip(G))

res

Hs(�i+1, Z/p∞)
∼= Hd−s(�i+1, Ip(G)) .

Thus, if we set s = d and M = Z/p∞ we get an isomorphism

[
Ip(G)

]�i ∼= Hd(�i , Z/p∞).

This is a G-equivariant isomorphism by Proposition 4.36. If M is a discrete
G-module then the natural map

colimi M
�i → M

is an isomorphism; now using the above commutative diagram, we get an
isomorphism of G-modules

Ip(G) ∼= colimtr∗Hd(�i , Z/p∞).

The following is a direct consequence of Corollary 5.2.5 of [64], although
it would take some translation to get from that statement to ours. The adjoint
representation was defined in Remark 2.5

Proposition 4.40 Let G be a compact p-adic analytic group of dimension d
and let g be the adjoint representation. Then there is a natural isomorphism
of right G-modules

�dg∗ ∼= Dp(G).

where

g∗ = Hom(g, Zp)

with right G-action given by (φg)(x) = φ(gx) and �dg∗ is the top exterior
power.

Proof Since�dg∗ and Dp(G) are freemodules of rank 1 overZp it is sufficient
to produce a surjective map of G-modules

�dg∗−→ Dp(G)/p j
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for all j ≥ 1. Recall fromRemark 2.5 that gi = pi−1g and, since g is p-torsion
free, that pi−1 : g → gi is an isomorphism.

Fix j . Then Dp(G)/p j is a finite G-module, so we may choose i ≥ j so
that �i acts trivially on Dp(G)/p j . Then, using (2.6), we have a map of left
G-modules

g
pi−1

gi/gi+ j
∼=

�i/�i+ j

where G acts on the target by conjugation. This gives an isomorphism of right
G-modules

H1(�i/�i+ j , Z/p j ) ∼= Hom(g, Z/p j ).

We then obtain a map of right G-modules

g∗ = Hom(g, Zp)−→ Hom(g, Z/p j )

∼= H1(�i/�i+ j , Z/p j ) ∼= H1(�i , Z/p j ).

Using the cup product we get a map of right G-modules

�dg∗−→ Hd(�i , Z/p j )

which is surjective by Theorem 3.3. By Poincaré Duality and the fact that
Dp(�i ) ∼= Dp(G) with action restricted to �i Corollary 4.37 gives an isomor-
phism of right G-modules

Hd(�i , Z/p j ) ∼= Hd(G, Zp[[G]]) ⊗�i Z/p j ∼= Hd(G, Zp[[G]])/p j .

The last isomorphism follows from the fact we have chosen i so that �i acts
trivially on

Dp(G)/p j = Hd(G, Zp[[G]])/p j .

The composition

�dg∗−→ Hd(�i , Z/p j ) ∼= Dp(G)/p j

is the surjection we need.

Remark 4.41 We can combine Proposition 4.38 and Proposition 4.40 to obtain
an isomorphism of left G-modules

Ip(G)/p j ∼= colimtr∗H
d(�i , Z/p j ) ∼= �dg/p j .
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This follows from the fact that Ip(G) = Hom(Dp(G), Z/p∞) and that the
dual of �dg is �dg∗.

5 Two G-spheres

In this section, we produce the two p-complete G-spheres which are the main
characters of this paper. They are produced by the same method, so we will
give complete details for only one. Here as usualG is a compact p-adic analytic
group with an exhaustive system · · · ⊆ �i+1 ⊆ �i ⊆ · · ·�1 ⊆ G of uniformly
powerful open normal subgroups.

Notation 5.1 Here and hereafter we will work in the category of p-complete
spectra unless we specify otherwise. In particular we will write

�∞+ B�i for
(
�∞+ B�i

)
p .

This is necessary as we will want to use Proposition 3.11.

The spectra �∞+ B�i/� j and �∞+ B�i have a G-action induced from the
conjugation action ofG on�i . Let j > 1; thenwe have an inclusion of a normal
subgroup of finite index �i+1/�i+ j → �i/�i+ j and hence a G-equivariant
transfer map

�∞+ B(�i/�i+ j )−→ �∞+ B(�i+1/�i+ j ).

By taking homotopy inverse limits, we then get an induced G-equivariant
transfer map

tr : �∞+ B�i−→ �∞+ B�i+1. (5.2)

Remark 5.3 To produce the transfer map of (5.2) we use the following natural-
ity property of the transfer. Let K ⊆ H ⊆ G be a nested sequence of subgroups
with all three inclusions normal. Then the following diagram commutes

�∞+ BG tr
�∞+ BH

�∞+ B(G/K )
tr

�∞+ B(H/K ).

The following construction is motivated by Serre’s formula from Proposi-
tion 4.38.
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Definition 5.4 Let IG be the G-spectrum

IG = hocolim�∞+ B�i (5.5)

where the colimit is over the transfer maps and in the category of p-complete
spectra; that is, we are taking the p-completion of the ordinary homotopy
colimit.

Proposition 5.6 We have the following calculations in homology.

(1) The map induced in homology by the transfer

tr∗ : Hk(B�i , Fp)−→ Hk(B�i+1, Fp)

is zero if k �= d and an isomorphism if k = d.
(2) Hk IG = 0 unless k = d and Hd IG ∼= Fp. In particular, IG has the

homotopy type of a p-complete d-sphere.

Proof Using Proposition 4.28 the map induced by the transfer is isomorphic,
via Poincaré Duality, to the map induced in cohomology by restriction

Hk−d(B�i , Fp)−→ Hk−d(B�i+1, Fp).

By Part (2) of Theorem 3.3 the map H∗(B�i , Fp) → H∗(B�i+1, Fp) is zero
in positive degrees, and the result follows from the Whitehead Theorem for
connective spectra.

We can use these same methods to build a p-complete G sphere from the
Lie algebra g of G. (The Lie algebra and its properties were discussed in
Definition 2.4 and material following that definition.) Specifically, we use the
abelian groups pig ⊆ g in place of �i , and form the p-complete spectrum

Sg = hocolim�∞+ B(pig). (5.7)

As in Definition 5.4, the colimit is taken over transfers in the category of p-
complete spectra. The action of G on Sg is through the adjoint representation.
See Remark 2.5.

The following is the analog of Proposition 5.6.

Lemma 5.8 We have the following calculations in homology.

(1) The map induced in homology by the transfer

tr∗ : Hk(Bp
ig, Fp)−→ Hk(Bp

i+1g, Fp)

is zero if k �= d and an isomorphism if k = d.
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(2) Hk Sg = 0 unless k = d and Hd Sg ∼= Fp. In particular, Sg has the
homotopy type of a p-complete d-sphere.

The next result identities the G action on H∗(IG, Zp) and H∗(Sg, Zp).
As these are both p-complete d-spheres, we have H∗(IG, Zp) ∼= Zp

∼=
H∗(Sg, Zp).

Proposition 5.9 There are canonical isomorphisms of G-modules

Hd(IG, Zp) ∼= �dg ∼= Hd(S
g, Zp),

where �dg is the top exterior power of the adjoint representation.

Proof For IG we have

Hd(IG, Zp) ∼= lim
j

Hd(IG, Z/p j ) ∼= lim
j
colimtrHd(�i , Z/p j ).

Now apply Remark 4.41.
For Sg we argue slightly differently. By Lemma 5.8 we have

Hd(S
g, Zp) ∼= Hd(Bg, Zp) ∼= �dg,

as H1(Bg, Zp) ∼= g.

Proposition 5.9 suggests the following conjecture.

Linearization hypothesis
There is a G-equivariant equivalence Sg � IG .
This conjecture appeared in the work of Clausen [20, §6.4]. Furthermore,

[21] contains an outline of an argument for showing this conjecture in full
generality, including a discussion of what category is a natural home for this
equivalence.

If we restrict to a finite subgroup F ⊆ G, we can regard IG and Sg as objects
in some standard category of spectra with an F-action, such as the functor
category from the classifying space BF to spectra, or the localization of (any
model of) genuine F-spectra at the underlying equivalences. Then we have the
following conjectural statement we can attack with neoclassical techniques,
as we do in the next few sections.

Finite linearization hypothesis
For every finite subgroup F ⊆ G there is an F-equivariant equivalence

Sg � IG .
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6 Restricting to finite subgroups

In this section we reduce the problem of producing an F-equivariant equiva-
lence IG → Sg for a finite subgroup of G to a calculation of modules over the
Steenrod algebra. The main result is Theorem 6.25.

Notation 6.1 Both p-complete and non-p-complete spectrawill appear in this
section, so we will be suitably decorating the p-complete objects. For spaces
X and Y , we will write map(X, Y ) for the unpointed mapping space, and
map∗(X, Y ) for the pointed mapping space (if X, Y are based). The mapping
space of spectra will be denoted by map(−, −). For spaces we will write

[X, Y ] = π0map∗(X, Y )

for based homotopy classes of maps.

Remark 6.2 Recall that if X and Y are pointed spaces then evaluation at the
basepoint of Y gives a fiber sequence

map∗(X, Y ) −→ map(X, Y ) −→ Y

with a section given by the constant maps. When Y is a loop space, this gives
a splitting map(X, Y ) � map∗(X, Y )×Y . Therefore, if Y is connected, then

[X, Y ] = π0map∗(X, Y ) ∼= π0map(X, Y ).

6.1 F-spheres

Let F be a finite group. An F-sphere is an F-spectrum X so that the underlying
spectrum is equivalent to a p-complete sphere Skp, k ∈ Z. We call k the virtual
dimension of X . An F-equivariant map X → Y of two F-spheres is an F-
equivalence if the underlying map of spectra is an equivalence. Let SphF be
the set of F-equivariant equivalence classes of F-spheres. This a group under
smash product in the p-complete stable category.

We have the following classical result.

Lemma 6.3 Let Gl1(S0p) be the space of self homotopy equivalence of the

p-complete sphere spectrum S0p. There is an isomorphism of abelian groups

SphF
∼= π0map(BF, Z × BGl1(S

0
p))

so that an F-sphere corresponds to an unbased map BF → Z × BGl1(S0p),
which in turn classifies a stable, fiberwise p-complete spherical fibration over
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BF. We also have

SphF
∼= [BF+, Z × BGl1(S

0
p)]

∼= Z × [BF, BGl1(S
0
p)].

Proof The first isomorphism goes back to Theorem 1.1 of [23] and has been
extensively explored and generalized in the follow-up literature. See, for exam-
ple, Theorem 1.2 of [24].1

For the isomorphisms of the second equation use Remark 6.2 and the fact
that Z × BGl1(S0p) is an infinite loop space.

Remark 6.4 The isomorphism of Lemma 6.3 allows for very explicit construc-
tions. For example, if X ∈ SphF , then the Thom spectrum of the associated
spherical fibration is equivalent to the homotopy orbits EF+ ∧F X .

As just noted, Z × BGl1(S0p) is an infinite loop space; indeed, it is weakly
equivalent to is the Picard space Pic(S0p) of invertible p-complete spectra.
Thus, there is a spectrum pic(S0p) and an equivalence Z × BGl1(S0p) �
�∞pic(S0p), yielding an isomorphism

SphF
∼= [�∞+ BF, pic(S0p)].

Compare Remark 12.1.
The spectrum pic(S0p) is not p-complete, but is nearly so, and it will be

useful to have some control over the difference. Note that

π0Gl1(S
0
p)

∼= Z
×
p

∼=

⎧
⎪⎨

⎪⎩

{1 + pZp} × Cp−1 if p > 2;

{1 + 4Z2} × {±1} if p = 2.

whereCp−1 is a cyclic group of order p−1. There are isomorphisms 1+pZp
∼=

Zp and 1 + 4Z2 ∼= Z2 using a logarithm.

Lemma 6.5 If p = 2, then BGl1(S02) is 2-complete. If p > 2 the canonical
map

BGl1(S
0
p)−→ BCp−1

has p-complete homotopy fiber.

1 In later developments, an action of F on X is defined to be a map from BF to the classifying
space of self-equivalences of X . The connection to our definition can be found in Proposition
4.2.4.4 of [51]; see also Remark 1.2.6.2 of the same source.
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Proof By definition Gl1(X) is a set of components in the mapping space
map(X, X) and, hence, for any basepoint and any k ≥ 1 we have

πkGl1(X) ∼= πkmap(X, X) ∼= [�k X, X ].

From this we can conclude that for k ≥ 1 the map

πkGl1(S
0) → πkGl1(S

0
p)

is p-completion. The result follows.

If X is an F-sphere of virtual dimension k, then F acts on Hk(X, Z) ∼= Zp.
We write

φX : F−→ Z
×
p

for the resulting character. The map

fX : BF−→ {k} × BGl1(S
0
p) ⊆ Z × BGl1(S

0
p)

induces φX on the fundamental group. There is also an action on Hk(X, Fp) ∼=
Fp. If p = 2, this action is necessarily trivial, and if p > 2 we write

ψX : F−→ F
×
p = Cp−1

for this character. Note that ψX is obtained from φX by composing with the
quotient map Z

×
p → F

×
p .

Lemma 6.6 Let F be a finite group and F0 ⊆ F a p-Sylow subgroup. Then
two F-spheres X and Y are F-equivalent if and only if

(1) X and Y are equivalent as F0-spheres and,
(2) if p > 2, ψX = ψY : F → Cp−1.

Proof One implication is clear: if X is equivalent to Y as an F-sphere, then
the two listed conditions must hold. We work on the other implication.

Since X and Y are equivalent as F0 spheres, they have the same virtual
dimension. Because Z × BGl1(S0p) is an infinite loop space, we can form the
difference map

g : = fX − fY : BF−→ BGl1(S
0
p) = {0} × BGl1(S

0
p) ⊆ Z × BGl1(S

0
p)

and we need only show this map is null-homotopic. As in Lemma 6.5, let
C = Cp−1 if p > 2; let C be trivial if p = 2. Let A0 be the homotopy fiber of
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the map BGl1(S0p) → BC . Then (2) implies that there is a (unique) factoring
of g as in the diagram

BF

gg1

A0 BGl1(S0p) BC.

Wewill will show g1 is null-homotopic. Since the order ofC is prime to p, we
have [BF0, A0] ∼= [BF0, BGl1(S0p)]. Hence (1) implies that the composition

BF0 BF
g1

A0

is null-homotopic.
Let �gl1 be the zero connected cover of pic(S0p); thus, �∞�gl1 �

BGl1(S0p). Let A be the fiber of the map�gl1 → �HC ; then�∞A � A0 and
g1 is adjoint to a map h1 : �∞+ BF → A. By Lemma 6.5, A0 is p-complete;
hence A is p-complete as well. Since F0 is a p-Sylow subgroup of F and A
is p-complete, the restriction map

[�∞+ BF, A]−→ [�∞+ BF0, A]

is an injection; the transfer for the inclusion F0 ⊆ F gives a splitting. Since
h1 maps to zero under this map, we must have h1 = 0, and hence g1 is null as
well.

Remark 6.7 Our main examples of F-spheres are the two spheres constructed
in Sect. 5. When trying to compare IG with Sg, the condition (2) of Lemma 6.6
holds automatically. See Proposition 5.9.

We now begin to specialize F . We let Sl1(X) be the component of the
identity in Gl1(X).

Lemma 6.8 Let F be a finite p-group. Then the map Gl1(S0) → Gl1(S0p)
induced from the completion S0 → S0p induces a weak equivalence

map∗(BF, BGl1(S
0)) � map∗(BF, BGl1(S

0
p)).

Proof For k ≥ 1 the map of homotopy groups based at the identity

πkGl1(S
0) → πkGl1(S

p
0 )
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is p-completion. If we set C2 = {±1}, there is a short exact sequence
0 → π0Gl1(S

0) ∼= C2 → π0Gl1(S
p
0 ) ∼= Z

×
p → Z

×
p /C2 → 0.

We have a diagram of fiber sequences

BSl1(S0)

i

BGl1(S0)

j (�)

BC2

BSl1(S0p) BGl1(S0p) BZ
×
p .

This is a diagram of infinite loop spaces so we still have an analogous dia-
gram of fiber sequences after p-completion. The space BSl1(S0p) is already p
complete so the map i defines an equivalence

BSl1(S
0)p � BSl1(S

0
p).

Hence, upon p completion the square (�) becomes the homotopy pullback
square

BGl1(S0)p

j (��)

(BC2)p

BGl1(S0p)p (BZ
×
p )p.

At odd primes, (BC2)p � ∗ and B(Z×
p )p � BZp, so (��) reduces to a fiber

sequence

BGl1(S
0)p −→ BGl1(S

0
p)p −→ BZp. (6.9)

When p = 2, the spaces BC2 and BZ
×
2 are already 2-complete. Since (��) is

a pullback square, we get a fiber sequence (6.9) at the prime 2 as well.
At all primes, we have map∗(BF, BZp) � holim map∗(BF, BZ/pk).

Hence, for i ≥ 0,

πimap∗(BF, BZp) ∼= lim
k

H̃1−i (BF, Z/pk) = 0,

so map∗(BF, BZp) is contractible.
We now take pointed maps from BF to (6.9) to get an equivalence

map∗(BF, BGl1(S
0)p) → map∗(BF, BGl1(S

0
p)p).
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Finally, to get the claim, notice that since BF has no F� homology for � �= p,
and no rational homology, we also have

map∗(BF, X) � map∗(BF, X p)

for any space X .

Remark 6.10 As an addendum to Lemma 6.8 we examine the role of the fun-
damental group of BGl1(S0). There is a split fiber sequence

BSl1(S
0) −→ BGl1(S

0) −→ BC2.

Since BGl1(S0) is an infinite loop space, we obtain a weak equivalence of
spaces

BSl1(S
0) × BC2 � BGl1(S

0).

Hence, for any pointed connected space X , we have an equivalence

map∗(X, BSl1(S
0)) × Hom(π1X,C2) � map∗(X, BGl1(S

0)). (6.11)

Here we use that map∗(X, BC2) has contractible components and

π0map∗(X, BC2) ∼= Hom(π1X,C2).

If F is an elementary abelian p-group and p > 2we then obtain an equivalence

map∗(BF, BSl1(S
0)) � map∗(BF, BGl1(S

0)).

If p = 2 then (6.11) becomes

map∗(BF, BSl1(S
0)) × Hom(F,C2) � map∗(BF, BGl1(S

0)).

There is a similar decomposition for maps into BO and, in fact, the map
BO → BGl1(S0) induces a commutative diagram

map∗(BF, BSO) × Hom(F,C2)
� map∗(BF, BO)

map∗(BF, BSl1(S0)) × Hom(F,C2)
� map∗(BF, BGl1(S0)).

In particular, we get that for a p-group F ,

SphF
∼= Z × Hom(F,C2) × [BF, BSl1(S

0)]. (6.12)
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Thus we need to concentrate on computing [BF, BSl1(S0)], which is isomor-
phic to the unpointed homotopy classes of maps π0map(BF, BSl1(S0)). See
Remark 6.2.

6.2 Interlude on characteristic classes and Steenrod operations

The comparison of F-spheres and vector bundles on BF will play a crucial
role below, when we specialize F even further to an elementary abelian p-
group and reduce the calculation of F-spheres to a cohomology calculation.
We will use the theory developed by Lannes [48], giving us that it is sufficient
to understand H∗(BSl1(S0))/J where J is the ideal of nilpotent elements. As
a prelude we pull together what we need from the literature on characteristic
classes.

Let ξ be a stable real vector bundle of virtual dimension n over a space X
and let Mξ be the Thom spectrum. If p > 2, we assume ξ is oriented. Let
U ∈ Hn(Mξ, Fp) be the Thom class; then the Thom isomorphism is given by
the cup product

U � (−) = U · (−) : Hk(X, Fp) → Hk+n(Mξ, Fp).

If p = 2 one can define the Steifel-Whitney classes wi (ξ) using Steenrod
operations

U · wi (ξ) = SqiU. (6.13)

This is the approach in [57, §4]. Thenwe have H∗(BO, F2) ∼= F2[w1, w2, . . .]
where wi = wi (γ ), with γ the universal stable bundle over BO .

If p > 2, the relationship between Pontrjagin classes and Steenrod opera-
tions is more complicated. Recall that if ξ is a real vector bundle over X , then
the Pontrjagin classes are defined in terms of Chern classes:

pi (ξ) = (−1)i c2i (ξ ⊗R C) ∈ H4i (X, Z(p)).

Then H∗(BSO, Z(p)) = Z(p)[p1, p2, . . .], where pi is the Pontrjagin class of
the universal bundle over BSO .

If γ1 over BU (1) = BSO(2) = CP∞ is the universal complex line bundle,
then H∗(BU (1), Z(p)) ∼= Z(p)[c], where c = c1(γ1). We have p1(γ1) = c2,
and we write

t = c2 ∈ H4(BSO(2), Z(p)).

123



Dualizing spheres for compact p-adic analytic groups

We then get a map BSO(2)n → BSO classifying γ ×n
1 , which on cohomology

factors as

H∗(BSO, Z(p)) Z(p)[t1, · · · , tn]�n
⊆

H∗(BSO(2)n, Z(p)).

The first of these maps is an isomorphism in degrees ∗ ≤ 4n; this initiates
the classical analysis of Pontrjagin classes using symmetric polynomials. By
the Cartan formula for Pontrjagin classes, each pi maps to the i th elementary
symmetric polynomial in the t j .

If ξ is an oriented real n-bundle over a space X , we define a cohomology
class

qn(ξ) ∈ H2n(p−1)(X, Fp)

by

U · qn(ξ) = PnU (6.14)

where Pn is the nth odd-primary Steenrod operation. By considering the uni-
versal case over X = BSO , we see that qn(ξ) must be a polynomial in the
Pontrjagin classes pi (ξ). More specifically, we have the following result.

Proposition 6.15 Let p = 2r + 1, so 4r = 2(p − 1). Then there is a congru-
ence

qn(ξ) ≡ (−1)n(r+1)rprn(ξ) modulo Irn (6.16)

where Irn is the ideal generated by the Pontrjagin classes pi (ξ), i < rn.

Proof This is originally due toWu [67]. However the result can be deduced by
putting together various ideas from Milnor-Stasheff [57]; we now go through
this exercise. As usual, it is sufficient to do the universal example.

First, we assert

1 + q1 + q2 + · · · + qn + · · · = (1 + tr1 ) · · · (1 + trrn) (6.17)

in Fp[t1, . . . , trn]�rn = Fp[p1, . . . , prn]. This is in the proof of [57, Theorem
19.7], explicitly credited there to Wu. It can also be seen by observing that
since the Steenrod operations have a Cartan formula, we have that

qi (ξ × ζ ) =
∑

j+k=i

q j (ξ) × qk(ζ ).
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Then to prove (6.17) we need only note that q1(γ1) = tr ∈ H4r (BSO(2), Fp)

and that qi (γ1) = 0 for i > 1.
Note that the right hand side of (6.17) is the reduction of an obvious integral

polynomial and we define integral lifts qi of the classes qi by the formula

1 + q1 + q2 + · · · + qn + · · · = (1 + tr1 ) · · · (1 + trrn) ∈ Z(p)[t1, . . . , trn]�rn .

We may equally regard these as elements in R := Q(p)[t1, . . . , trn]�rn .
To finish the argument, we use a variant of Girard’s formula, as in [57,

Problem 16A]. Apply the logarithm to the formula

1 + p1 + p2 + · · · + pn = (1 + t1) · · · (1 + tn)

to get that pk ≡ (−1)k+1 ∑
tki /k modulo decomposables in the pi in R. If we

then apply the logarithm to the formula

1 + q1 + q2 + · · · + qn + · · · = (1 + tr1 ) · · · (1 + trrn)

we get qk ≡ (−1)k+1 ∑rn
i=1 t

rk
i /k modulo decomposables in the qi , so also

modulo decomposables in the pi . This then gives

(−1)k(r+1)rprk ≡ (−1)k(r+1)(−1)rk+1r
rn∑

I=1

trki /rk ≡ qk .

This is an integral formula, so we can reduce modulo p to get (6.16)

We now give a construction to realize the classes qi as generators for the
cohomology of a space. This is a variation on the discussion of [1, Lecture 4].
After we complete at an odd prime p, we have stable Adams operations

ψk : BUp−→ BUp, k ∈ Z
×
p .

The Adams summand of BUp can be realized as the homotopy fixed points

BU
hCp−1
p of the cyclic group Cp−1 = F

×
p ⊆ Z

×
p . There is an equivalence

BU
hCp−1
p � BX (p − 1)

where BX (p − 1) is the colimit of classifying spaces of certain p-compact
groups. This space is discussed in detail by Castellana [19].

Proposition 6.18 We have the following calculations in cohomology.
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(1) The map BX (p − 1) � BU
hCp−1
p → BUp induces an isomorphism

H∗(BU, Fp)/I ∼= H∗BX (p − 1) ∼= Fp[c(p−1), c2(p−1), . . .]
where I ⊆ H∗(BU ) is the ideal generated by the Chern classes cn with
n �≡ 0 modulo (p − 1).

(2) Let f : BSO → BU classify the complexification of the universal bundle.
Then

f ∗ : H∗(BU, Z(p)) ∼= Z(p)[c1, c2, · · · ] → H∗BSO ∼= Z(p)[p1, p2, · · · ]
sends c2n+1 to zero and c2n to (−1)n pn. Furthermore f induces an equiv-
alence

BSOp � BUhC2
p .

(3) There is an equivalence BX (p−1) � BSO
hC(p−1)/2
p and an isomorphism

of unstable algebras over the Steenrod algebra

Fp[q1, q2, . . .] ∼= H∗BX (p − 1)

where qi ∈ H2i(p−1)BSO is the class of (6.14) defined using Steenrod
operations.

Proof If X is a connected infinite loop space and G is a finite group of order
prime to p acting on X , then the map XhG → X induces an isomorphism

H∗(X, Fp)/I (G) ∼= H∗(XhG, Fp) (6.19)

where I (G) is the ideal generated by elements of the form g∗x − x with x ∈
H∗(X, Fp). If found nowhere else, this can be deduced using the techniques
of [34].2

If L is a line bundle, then ψk(L) = L⊗k . Hence, ψk∗c1(L) = kc1(L). The
splitting principle then implies ψk∗cn = kncn . Thus if k is any integer which
generates F

×
p , the ideal generated by (ψk∗ − 1)H∗BU in H∗BU is generated

by cn with n �≡ 0 modulo (p − 1). The first statement follows.
For k = −1, the ideal (ψ−1∗ − 1)H∗BU in H∗BU is generated by the odd-

dimensional Chern classes c2n+1. Since pn = (−1)nc2n , the second statement
follows from (6.19).

The final statement is the iteration of homotopy fixed points and (6.16).

2 What can be proved easily from [34] is that D∗(H∗XhG) ∼= [D∗H∗X ]G where D∗(−) is the
graded Dieudonné module functor. The assertion here can be deduced from that.
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6.3 Characteristic classes and H∗BGl1(S0)

The following result is crucial for us. At p = 2 it can be found in [55]; for
p > 2 it can be found in [65]. Definitive references for both results are [22,
Theorems II.5.1 and II.5.2].

Theorem 6.20 Let J ⊆ H∗(BGl1(S0), Fp) be the ideal of nilpotent elements.

(1) If p = 2, the map BSO → BSl1(S0) induces an isomorphism

H∗(BSl1(S0), F2)/J ∼= H∗(BSO, F2).

(2) If p > 2, the composition

BX (p − 1)p = BSO
hC(p−1)/2
p → BSOp → BSl1(S

0)p

induces an isomorphism

H∗(BSl1(S0), Fp)/J−→ H∗(BX (p − 1), Fp).

Below, we will use Theorem 6.20 as input along with the following result.
Let U be the category of unstable modules over the Steenrod algebra, and K
the category of unstable algebras over the Steenrod algebra.

Lemma 6.21 Let g : A∗ → B∗ be a surjective homomorphism of connected
unstable algebras of finite type over the Steenrod algebra and let I ∗ be the
kernel of g. If I ∗ consists of nilpotent elements, then g induces an isomorphism

HomK(B∗, H∗BF) ∼= HomK(A∗, H∗BF)

for all elementary abelian p-groups F.

Proof It is sufficient to show that HomU (I ∗, H∗BF) = 0. At the prime p = 2
this is relatively easy to prove. Indeed, we have that the top Steenrod operation

Sq0 = Sqn = (−)2 : HnBF → H2n BF

is an injection. On the other hand, for all x ∈ I ∗ there is a k so that Sqk0(x) =
x2

k = 0.
If p > 2 the argument takesmore technology because H∗BF itself contains

nilpotent elements. First we have the Carlsson-Miller theorem that H∗BF is
an injective object in the category U . See [18], [54], and [52, Appendix A ].
Second, �̃H∗BF = 0; see the proof of [52, Corollaire 7.2]. Combining these
two facts with [52, Proposition 6.1.4] gives the result.
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We now have the following remarkable facts; see [19, Corollary 4.5]. In
sum, we conclude that if F is an elementary abelian p-group, then F-spheres
are in one-to-one correspondence with stable vector bundles over BF and
that any such vector bundle is completely determined by its Stiefel-Whitney
classes or Pontraygin classes depending on the prime. See Remark 6.2.

Theorem 6.22 Let p = 2 and let F be an elementary abelian 2-group. Then
there is a commutative diagram with all maps isomorphisms of sets

[BF, BO] HomK(H∗BO, H∗BF)

[BF, BGl1(S0)] HomK(H∗BGl1(S0), H∗BF).

Theorem 6.23 Let p > 2 and let F be an elementary abelian p-group. Then
there is a commutative diagram with all maps isomorphisms of sets

[BF, BX (p − 1)] HomK(H∗BX (p − 1), H∗BF)

[BF, BGl1(S0)] HomK(H∗BGl1(S0), H∗BF).

Proof The same argument, with variations, works for both Theorem 6.22 and
Theorem 6.23. We use [48, Théorème 0.4]. This result says that if Y is a
simply connected space with H∗Y = H∗(Y, Fp) finite in each degree then
the set of unbased homotopy classes of maps from BF to Y is in bijection
with HomK(H∗Y, H∗BF). So, using Remark 6.2, we have that for a simply
connected infinite loop space Y , the natural map

[BF, Y ] HomK(H∗Y, H∗BF)

is a bijection. The spaces in Theorem 6.22 and Theorem 6.23 are not simply
connected, so a little more care is required.

When p is odd, we use [48, Théorème 0.4] with BSl1(S0) in place of
BGl1(S0). Recall Remark 6.10 and note that the natural map BSl1(S0) →
BGl1(S0) induces an isomorphism in mod p cohomology, and as BX (p − 1)
is p-complete, any map BX (p− 1) → BGl1(S0) factors through BSL1(S0).
We get a commutative diagram

[BF, BX (p − 1)] HomK(H∗BX (p − 1), H∗BF)

[BF, BSl1(S0)] HomK(H∗BSl1(S0), H∗BF),
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with all maps isomorphisms, due to Theorem 6.20 and Lemma 6.21, giving
the claim.

When p = 2, we again appeal to [48, Théorème 0.4], with BSO in place
of BO as well as BSl1(S0) in place of BGl1(S0). Using Theorem 6.20 and
Lemma 6.21 we get a commutative diagram with all maps isomorphisms of
sets

[BF, BSO] HomK(H∗BSO, H∗BF)

[BF, BSl1(S0)] HomK(H∗BSl1(S0), H∗BF).

To complete the proof, again use Remark 6.10 and the observation that

Hom(F,C2) ∼= HomK(H∗BC2, H
∗BF).

Theorem 6.24 Let F be an elementary abelian p-group and let X be a p-
complete F-sphere of virtual dimension k. Then there is a stable vector bundle
ξ over BF of virtual dimension k and a p-equivalence of spectra

Mξ � EF+ ∧F X.

Furthermore there is an F-equivalence X � Y of p-complete F-spheres if
and only if there is an isomorphism of modules over the Steenrod algebra

H∗(EF+ ∧F X) ∼= H∗(EF+ ∧F Y ).

Such an isomorphism uniquely determines the F-equivalence up to F-
homotopy.

Proof We have phrased this as a result about modules over the Steenrod alge-
bra, but there is more structure here that can be of use. Let ξ be a spherical
fibration over a base space B; we assume ξ is oriented if p > 2. Then the
cohomology H∗Mξ is a free module of rank 1 over H∗B on the Thom class
U . Thus the Steenrod algebra structure on H∗Mξ is completely determined
by the Cartan formula and the action of the Steenrod operations on U . Note
that if p is odd, the Bockstein vanishes on U , because U is the reduction of
an integral class. This action is, in turn, completely determined by the Stiefel-
Whitney classes, as in (6.13), or the modified Pontrjagin classes of (6.14) and
(6.16).

Our result now follows by combining this observation with Lemma 6.8,
Proposition 6.18, and Theorem 6.22 or Theorem 6.23, as needed.
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The key result of this section is the following application of Theorem 6.24.
Let G be a compact p-adic analytic group. For any group H let Z(H) denote
its center. Note that Z(G) acts trivially on both Sg and IG , since both actions
are defined by conjugation.

Theorem 6.25 Let G be a compact p-adic analytic group and let H be a
closed subgroup of G such that H/H ∩ Z(G) is finite. Suppose the p-Sylow
subgroup F of H/H ∩ Z(G) is an elementary abelian p-group. Then there
is an H-equivalence Sg � IG if and only if there there is an isomorphism of
modules over the Steenrod algebra

H∗(EF+ ∧F Sg) ∼= H∗(EF+ ∧F IG). (6.26)

Proof Suppose we are given the isomorphism of (6.26). Then Theorem 6.24
gives an F-equivalence Sg � IG . We apply Lemma 6.6 and Remark 6.7
to get an equivalence of H/H ∩ Z(G)-spectra. This is automatically an H -
equivalence.

For the converse, if Sg → IG is an H -equivalence then, since the center
acts trivially, it is an H/H ∩ Z(G)-equivalence and, by restriction, an F-
equivalence. Theorem 6.24 again applies, giving the claim.

Remark 6.27 In our main examples, the center of G is small. For example,
if G = Sn is the Morava stabilizer group and H is a finite subgroup, then
Z(Sn) = Z

×
p , so H ∩ Z(Sn) is a cyclic group of order at most p − 1 if p > 2.

In the more interesting case of p = 2, H ∩ Z(Sn) is either trivial or {±1}. Note
that H can be a quaternionic group if p = 2. For more on the finite subgroups
of Sn , see [17,38].

Similarly, for G = Gln(Zp), the center is the scalar matrices: diagonal
matrices with all entries equal. Thus the center is again Z

×
p . Of course, any

finite group is isomorphic to a subgroup Gln(Zp) for some n.

7 Two algebraic preliminaries

In this section we collect two technical remarks about spectral sequences
needed for the proof of the main theorem of the next section. This should
perhaps not be read until after skimming the next section to see why on earth
we need such things.

We begin with a first quadrant cohomology spectral sequences

E p,q
2 �⇒ Ap+q

with differentials dr : E p,q
r → E p+r,q−r+1

r . The E2-term is bounded below in
p and q; that is, E p,q

2 = 0 for p < 0 and q < 0. This means, in particular, that
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E p,q
r

∼= E p,q∞ if r > max(p, q + 1). The motivating example is the homotopy
orbit spectral sequence

H p(F, Hq X) �⇒ H p+q(EF+ ∧F X)

for some F-spectrum X with the property that Hq X = 0 for q < 0.
Here is the set-up. By the very nature of our project, we will have a dia-

gram of such spectral sequences for positive integers j bigger than some fixed
integer N

E p,q
2 ( j)

g

Ap+q( j)

g

E p,q
2 ( j + 1)

f

Ap+q( j + 1)

f

E p,q
2 Ap+q

(7.1)

We make this diagram specific in (8.4).
Let K ∗,∗

r ( j) be the kernel of g : E∗,∗
r ( j) → E∗,∗

r ( j + 1).

Lemma 7.2 Suppose the map induced by f

E∗,∗
2 ( j)/K ∗,∗

2 ( j)−→ E∗,∗
2

is an isomorphism for j ≥ N. Then for j > N + m − 1 the map

A∗( j)/Ker{A∗( j) → A∗( j + m + 1)} → A∗

is an isomorphism in degrees n ≤ m.

Proof We break this proof into a number of steps. In the first two steps we
show, by induction, that the map f : E∗,∗

r ( j) → E∗,∗
r induces an isomorphism

for j ≥ N + r − 2

E∗,∗
r ( j)/K ∗,∗

r ( j)−→ E∗,∗
r . (7.3)

We have assumed the base case of r = 2. The third step will complete the
argument.

Step 1. Here we show that

f : E∗,∗
r+1( j)−→ E∗,∗

r+1
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is onto for j ≥ N + (r + 1) − 2 = N + r − 1. It is sufficient to do the case
where j = N + r − 1.

If we choose an r -cycle in E∗,∗
r , then the induction hypothesis implies

there is a class y ∈ E∗,∗
r (N + r − 2) with f (y) = x . We show that g(y) ∈

E∗,∗
r (N + r − 1) is an r -cycle; this will complete this step.
Since the induced map

f : E∗,∗
r (N + r − 2)/K ∗,∗

r (N + r − 2) → E∗,∗
r

is injective and dr ( f (y)) = dr (x) = 0, we have that

dr (y) ∈ K ∗,∗
r (N + r − 2)

and hence that dr (g(y)) = 0 as needed.
Step 2. We now show that

f : E∗,∗
r+1( j)/K

∗,∗
r+1( j) −→ E∗,∗

r+1

is injective for j ≥ N + r − 1.
It is equivalent to show that if a class in E∗,∗

r+1( j) maps to zero in E∗,∗
r+1, then

it maps to zero in E∗,∗
r+1( j + 1). Suppose we have y ∈ E∗,∗

r ( j) and

f (y) = dr (w) ∈ E∗,∗
r .

By the induction hypothesis wemay choose a class z ∈ E∗,∗
r ( j) so that f (z) =

w. Then

f (y − dr (z)) = f (y) − dr f (z) = f (y) − dr (w) = 0 ∈ E∗,∗
r

so, again by the induction hypotheses y − dr (z) ∈ K ∗,∗
r ( j). Hence y − dr (z)

maps to zero in E∗,∗
r ( j + 1), or

dr (g(z)) = g(y)

as needed.
Step 3. Here we complete the argument with another inductive procedure.

It is sufficient to show that for j > N + m − 1 the map

Am( j)/Ker{Am( j) → A∗( j + m + 1)} → Am

is an isomorphism, for in degrees n < m, we have j > N+m−1 > N+n−1.
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Note that in a particular bidegree (p, q), all our spectral sequences satisfy
E p,q
r = E p,q∞ for r > max{p, q + 1}. By the first two steps we have that (7.3)

is an isomorphism for j ≥ N + r − 2, hence

f : E p,q∞ ( j)/K p,q∞ ( j)−→ E p,q∞ (7.4)

is an isomorphism for

j > N + max{p, q + 1} − 2.

Since we have first quadrant cohomological spectral sequences, we have a
diagram of filtrations

0 = F−1Am( j)
⊆

F0Am( j)
⊆ · · · ⊆

Fm−1Am( j)
⊆

Fm Am( j) = Am( j)

0 = F−1Am ⊆
F0Am ⊆ · · · ⊆

Fm−1Am ⊆
Fm Am = Am ,

and diagrams of short exact sequences

0 Fq−1Am( j) Fq Am( j) Em−q,q∞ ( j) 0

0 Fq−1Am Fq Am Em−q,q∞ 0.

(7.5)

We will use induction on q to show

f q : Fq Am( j)/ ker{Fq Am( j) → Fq Am( j + q + 1)} → Fq Am (7.6)

is an isomorphism for j > N + m − 1. The case q = m is what we need to
prove; the case q = 0 is the assertion that we have an isomorphism

Em,0∞ ( j)/Km,0∞ ( j)
∼= Em,0

2 ,

which has already been proved and in fact requires only that j > N +m − 2.
Now assume inductively that f q−1 is an isomorphism for j > N +m − 1.

To complete the induction step we examine the exact sequence of (7.5). The
inductive hypothesis gives that Fq−1Am( j) → Fq−1Am is onto for j >

N + m − 1, hence by the snake lemma we have a short exact sequence

0 → κ1 → κ2 → κ3 → 0,
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where the κi are the kernels of the three vertical maps in (7.5). Note that since
also the outer two vertical map in (7.5) are onto, the snake lemma implies that
the middle map is onto as well.

It remains to identify κ2 = ker{Fq Am( j) → Fq Am} with

κ ′
2 = ker{Fq Am( j) → Fq Am( j + q + 1)}.

By construction, κ ′
2 is contained in κ2; thus, we just need to show the reverse

containment. Let x be an element of κ2 ⊆ Fq Am( j). Its image in Em−q,q∞
is zero, and since κ3 ∼= ker{Em−q,q∞ ( j) → Em−q,q∞ ( j + 1)}, its image in
Em−q,q∞ ( j + 1) is zero. Hence, from the exact sequence

0 → Fq−1Am( j + 1) → Fq Am( j + 1) → Em−q,q∞ ( j + 1) → 0,

it lifts to an element y ∈ Fq−1Am( j+1), with the property that y maps to zero
in Fq−1Am ; that is, it is in ker{Fq−1Am( j+1) → Fq−1Am}. By the inductive
hypothesis, this kernel is ker{Fq−1Am( j + 1) → Fq−1Am( j + 1 + q)}. In
particular, the image of y in Fq Am( j + q + 1) is zero; but this is the same as
the image of x in Fq Am( j + q + 1); hence, x is in the kernel κ ′

2.

Our second algebraic result is about building isomorphisms from arrays of
graded abelian groups.

Remark 7.7 Suppose we are given a commutative diagram of graded abelian
groups

Bi+1, j Bi, j Bi−1, j

Bi+1, j+1 Bi, j+1 Bi−1, j+1

A Ai+1 Ai Ai−1

This is an infinite array, with i ≥ 1 and j > i , but we haven’t put in the dots
because it makes for a very cluttered diagram. In our main examples, we will
have

A = H∗(EF+ ∧F IG),

Ai = H∗(EF+ ∧F �∞+ B�i ),

Bi, j = H∗(EF+ ∧F �∞+ B(�i/� j )).
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For integers i , j , d, and n, let

I (i, d) = Ker{Ai → Ai−d},
J (i, j,m) = Ker{Bi, j → Bi, j+m},

We make the following assumptions, which will have to be justified in our
main examples. See Lemma 8.5 and Lemma 8.6. The stipulation that i > d+1
arises there, and d will be the rank of G.
(1) For all i > d + 1, the composition A → Ai → Ai/I (i, d) is an isomor-

phism of graded abelian groups; and,
(2) there is an integer N , so that for all i > d + 1 and all j > N +m − 1 the

induced map Bi, j/J (i, j,m) → Ai is an isomorphism in degrees n ≤ m.

If we fix i and j , let Jm be the kernel of either of the two ways around the
diagram

Bi, j Bi−d, j

Bi, j+m Bi−d, j+m .

Note we could write J (i, j, d,m) for Jm butm will be the crucial index. Then
we can conclude

(3) For all i > d+1 and all j > N+m−1 themap Bi, j/Jm Ai/I (i, d)

is an isomorphism in degrees n ≤ m.

The proof is a diagram chase. We then can conclude we have maps

A
∼= Ai/I (i, d) Bi, j/Jm . (7.8)

If i > d + 1 and j > N + m − 1 the first map is an isomorphism and the
second map is an isomorphism in degrees n ≤ m.

8 Equivalences of G-spheres for finite subgroups

The goal of this section is to show that for suitable closed subgroups H of our
group G we have an equivalence of H -spectra IG � Sg. This is accomplished
in Theorem 8.11, as corollary of the main calculation of this section: we will
show in Theorem 8.10 that for any finite subgroup F ⊆ G/Z(G), we have an
isomorphism of modules over the Steenrod algebra

H∗(EF+ ∧F IG) � H∗(EF+ ∧F Sg).
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Then we appeal to Theorem 6.25 to prove Theorem 8.11.
The strategy is as follows. Fix a finite subgroup F ⊆ G/Z(G). Since G acts

by conjugation on �i and gi , F acts on all of the spaces B�i , B(�i/� j ), Bgi ,
and so on.

Recall we have compatible transfer maps tr : �∞+ B�i → �∞+ B�i+t , for
t > 0 by (5.2), and hence maps

r : �∞+ B�i−→ colimtr�
∞+ B�i+t = IG .

We then have a diagram of F-spectra

�∞+ B(�i/� j ) �∞+ B�i
q r IG .

There is a corresponding diagram for Sg

�∞+ B(gi/g j ) �∞+ Bgi
q r Sg.

Finally, there is a group isomorphism �i/� j
∼= gi/g j for j ≤ 2i , as per (2.6).

Using the techniques of Sect. 7, we can put together the comparison we need.
The key intermediate results are Proposition 8.7 and Proposition 8.8.

In the final applications we will only need i large, so while more generality
is possible, all our preliminary lemmas will set i > d + 1, where d ≥ 1 is
the rank of G and, hence, of �i . This will avoid having to spell out special
cases, especially when p = 2. As usual, all homology and cohomology in this
section is with Fp-coefficients.

Notation 8.1 In this section we will be working heavily with homotopy orbits
and it is convenient to shorten the notation. If Y is a G-spectrum for some
finite group G we will often write

YhG = EG+ ∧G Y.

Hence, if X is a G-space

[�∞+ X ]hG = EG+ ∧G �∞+ X.

Notation 8.2 In what follows we will need to have names for the kernels of
various restriction and transfer maps. We will recall the definitions as needed,
but we collect them here to put the confusion in a place where it can be
organized. Compare Remark 7.7 as well.
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First, there are the kernels of maps before taking homotopy orbits; they are
decorated with subscript 0:

I0(i) = ker{tr∗ : H∗B�i−→ H∗B�i−1},
J0(i, j) = ker{res∗ : H∗B�i/� j−→ H∗B�i/� j+1}.

Next, there are the kernels of maps after taking homotopy orbits; they do not
have a subscript, but acquire a new index because we shift more than one step:

I (i,m) = ker{tr∗ : H∗[�∞+ B�i ]hF−→ H∗[�∞+ B�i−m]hF },
J (i, j,m) = ker{res∗ : H∗[�∞+ B�i/� j ]hF−→ H∗[�∞+ B�i/� j+m]hF }.

There is one more kernel, which combines restrictions and transfers. Fixing i
and j , let Jm be the kernel of either of the two ways of composing around the
commutative diagram

H∗[�∞+ B�i/� j ]hF
res∗

tr∗ H∗[�∞+ B�i−d/� j ]hF
res∗

H∗[�∞+ B�i/� j+m]hF
tr∗

H∗[�∞+ B�i−d/� j+m]hF .

We could write J (i, j, d,m) for Jm but m will be the crucial index. Finally,
there are the kernels K ∗,∗

r ( j) in Lemma 7.2. These are distinct, but related,
and will also be recalled as needed.

We begin with the following algebraic result.

Lemma 8.3 (1) Let I0(i)be the kernel of themap tr∗ : H∗B�i−→ H∗B�i−1.
For all i > d + 1 the composition

H∗ IG r∗
H∗B�i H∗B�i/I0(i)

is an isomorphism of modules over the Steenrod algebra.
(2) Let J0(i, j) be the kernel of res* : H∗(B�i/� j ) → H∗(B�i/� j+1).

Then for all i > d+1 and j ≥ i +1 the map of modules over the Steenrod
algebra

H∗(B�i/� j )/J0(i, j)−→ H∗B�i

is an isomorphism.

Proof Part (1) follows from part (1) of Proposition 5.6 and part (2) is a conse-
quence of part (2) of Theorem 3.6.
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Here is the input for an application of Lemma 7.2 and Remark 7.7. The fol-
lowing diagrammakes (7.1) concrete; all the spectral sequences are homotopy
orbit spectral sequences.

H p(F, Hq B�i/� j )

g

H p+q [�∞+ B�i/� j ]hF
g

H p(F, Hq B�i/� j+1)

f

H p+q [�∞+ B�i/� j+1]hF
f

H p(F, Hq B�i ) H p+q [�∞+ B�i ]hF

(8.4)

We continue to write d for the rank of G and, hence, of �i . See also Fig. 1
below.

Lemma 8.5 Let I (i, d) the be the kernel of the map induced by the transfer

H∗([�∞+ B�i ]hF )−→ H∗([�∞+ B�i−d ]hF ).

For all i > d + 1 the composition

H∗([IG]hF )−→ H∗([�∞+ B�i ]hF )−→ H∗([�∞+ B�i ]hF )/I (i, d)

is an isomorphism of modules over the Steenrod algebra.

Proof By part (1) of Lemma 8.3 we have that the maps

H∗(IG)−→ Im{tr∗ : H∗B�i+1 → H∗B�i }−→ H∗B�i/I0(i)

are isomorphisms. Furthermore H∗(IG) ∼= Fp is concentrated in degree d, the
map Hd(IG) → Hd B�i is an isomorphism, and HnB�i = 0 if n > d by
Theorem 3.3.

The spectral sequence

E p,q
2 (IG) = H p(F, Hq(IG)) �⇒ H p+q([IG]hF )

has the property that E p,q
2 = 0 unless q = d. Thus it collapses at E2.

The map of spectral sequences

E p,q
2 (IG) = H p(F, Hq(IG)) H p+q([IG]hF )

E p,q
2 (�∞+ B�i ) = H p(F, Hq�∞+ B�i ) H p+q([�∞+ B�i ]hF )
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H∗(F,Hd(IG))d

q

p

H∗(F,Hd(IG)) H∗(F,Hd(BΓi))d

q

p

H∗(F,Hd(BΓi)) H∗(F,Hd(BΓi/Γj))d

q

p

H∗(F,Hd(BΓi/Γj))

ker(tr∗)

ker(res∗)

ker(tr∗)

Fig. 1 Comparison of homotopy orbit spectral sequences

induces isomorphisms

E p,d∞ (IG) ∼= E p,d∞ (�∞+ B�i )

as E p,q
2 (�∞+ B�i ) = 0 for q > d. In addition if x ∈ H∗([�∞+ B�i ]hF ) is

detected by a ∈ E p,q∞ (�∞+ B�i ) with q < d, then

tr∗(a) = 0 ∈ E p,q∞ (�∞+ B�i−1);

hence,

tr∗(x) ∈ H∗([�∞+ B�i−1]hF )

is detected by a class in E p+s,q−s∞ (B�i−1) with s > 0. Thus if we apply the
transfer d times the class x will be sent to zero, as needed.

Lemma 8.6 Let J (i, j,m) be the kernel of the restriction map

H∗([�∞+ B�i/� j ]hF ) → H∗([�∞+ B�i/� j+m]hF ).

Let i > d + 1 and let j > i + m. Then the homomorphism of modules over
the Steenrod algebra

H∗([�∞+ B�i/�i+ j ]hF )/J (i, j,m)−→ H∗([�∞+ B�i ]hF )

is an isomorphism in degrees n ≤ m.

Proof This is a direct application of Lemma 7.2, with N = i + 1, and part (2)
of Lemma 8.3.

To use Lemma 7.2 we must justify the hypotheses of that result. We let

E∗,∗
2 ( j) = H∗(F, H∗(B�i/� j )) �⇒ H∗([�∞+ B�i/� j ]hF ) = A∗( j),
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E∗,∗
2 = H∗(F, H∗(B�i )) �⇒ H∗([�∞+ B�i ]hF ) = A∗, and

K ∗,∗
2 ( j) = Ker{E∗,∗

2 ( j)−→ E∗,∗
2 ( j + 1)}.

We need to check that we have an isomorphism

E∗,∗
2 ( j)/K ∗,∗

2 ( j)−→ E∗,∗
2 .

Suppose j ≥ i + 1 = N . From Lemma 8.3, we have exact sequences

0 J0(i, j)

=0

H∗(B�i/� j ) H∗B�i

∼=

0

0 J0(i, j + 1) H∗(B�i/� j+1) H∗B�i 0.

By Theorem 3.3 and Theorem 3.6 we have algebra splittings, as indicated, and
these splitting respect the F-action. Indeed, H∗(B�i ) ∼= �(Vi ), where

Vi ∼= H1(B�i ) ∼= H1(B�i/� j ).

The action of F preserves Vi for degree reasons and thus�(Vi ) since F acts by
algebra homomorphisms. These short exact sequences would normally give
long exact sequences in group cohomology, but the splittings reduce these to
the following short exact sequences:

0 → H∗(F, J0(i, j))

0

H∗(F, H∗(B�i/� j )) H∗(F, H∗B�i ) → 0

∼=

0 → H∗(F, J0(i, j + 1)) H∗(F, H∗(B�i/� j+1)) H∗(F, H∗B�i ) → 0

The left most vertical map is zero as the map

J0(i, j) = ker{res∗ : H∗B�i/� j−→ H∗B�i/� j+1}−→ H∗B�i/� j+1

is zero. An easy diagram chase implies that K ∗,∗
2 ( j) is the kernel of

H∗(F, H∗(B�i/� j )) → H∗(F, H∗B�i ).

The splitting above implies that this map is surjective.

Applying Lemma 8.5, Lemma 8.6, and the isomorphism of (7.8) we get the
following result. Fix i and j and let Jm be the kernel of either of the two ways
around the diagram
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H∗[�∞+ B�i/� j ]hF
res∗

tr∗ H∗[�∞+ B�i−d/� j ]hF
res∗

H∗[�∞+ B�i/� j+m]hF
tr∗

H∗[�∞+ B�i−d/� j+m]hF .

Proposition 8.7 Let i > d + 1 and j > i +m. Let I (i, d) be the kernel of the
map induced by the transfer

H∗([�∞+ B�i ]hF )−→ H∗([�∞+ B�i−d ]hF ).

Then the maps

�∞+ B(�i/�i+ j ) �∞+ B(�i )
q r IG

define homomorphisms of modules over the Steenrod algebra

H∗([IG]hF )
∼=

H∗([�∞+ B�i ]hF )/I (i, d) H∗([�∞+ B�i/� j ]hF )/Jm .

The first map is an isomorphism and the second map is an isomorphism in
cohomological degreee n with n ≤ m.

The same argument which proved Proposition 8.7 can be immediately
adapted to prove the following.

Proposition 8.8 Let i > d + 1 and j > i + m. Let I a(i, d) be the kernel of
the map induced by the transfer

H∗([�∞+ Bgi ]hF )−→ H∗([�∞+ Bgi−d ]hF ).

Let J am denote the kernel of the map

res∗tr∗ = tr∗res∗ : H∗([�∞+ Bgi/g j ]hF ) → H∗([�∞+ Bgi−d/g j+m]hF ).

Then the maps

�∞+ B(gi/gi+ j ) �∞+ B(gi )
q r Sg

define homomorphisms of modules over the Steenrod algebra

H∗([Sg]hF )
∼=

H∗([�∞+ Bgi ]hF )/Ia(i, d) H∗([�∞+ Bgi/g j ]hF )/Jam .
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The first map is an isomorphism and the second map is an isomorphism in
cohomological degreee n with n ≤ m.

We now come to our main calculation. Consider the following diagram of
modules over the Steenrod algebra with i < j ≤ 2i and j > i + m.

H∗([B�i/� j ]hF )/Jm
∼= H∗([Bgi/g j ]hF )/J am

H∗([B�i ]hF )/I (i, j) H∗([Bgi ]hF )/I a(i, j)

H∗([IG]hF )

∼=

H∗([Sg]hF )

∼=

(8.9)

The horizontal isomorphism comes from the isomorphism of groups

�i/� j
∼= gi/g j

discussed in (2.6). The upwards vertical maps are isomorphisms by Proposi-
tion 8.7 and Proposition 8.8. The same results show that the downward vertical
maps are isomorphisms in degrees n with n ≤ m.

Theorem 8.10 Let F ⊆ G/Z(G) be a finite subgroup. Then the maps of (8.9)
define an isomorphism of modules over the Steenrod algebra

H∗(EF+ ∧F IG) ∼= H∗(EF+ ∧F Sg).

Proof We look at (8.9). In any given range of degrees up to an integer m, we
may choose i and j so that i < j ≤ 2i and j > i + m.

Combining Theorem 6.25 and Theorem 8.10 immediately implies our key
result.

Theorem 8.11 Let G be a compact p-adic analytic group and let H be a
closed subgroup of G such that H/H ∩ Z(G) is finite. Suppose the p-Sylow
subgroup of H/H ∩ Z(G) is an elementary abelian p-group. Then there is an
H-equivariant equivalence

IG � Sg.

9 Analyzing the linear action

In this sectionwewrite down a general result that allows us to use linear algebra
to analyze the equivariant homotopy type of Sg for finite subgroups. The main
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result is Proposition 9.8, but before getting there we need an intermediate
result about the transfer for finite covering spaces of equivariant manifolds,
namely Proposition 9.6. This can be proved by putting together ideas from
standard sources such as [16] and [50], but it is easy enough and clearer to be
completely explicit.

9.1 Equivariant geometric transfer

Fix a finite group F and let

q : M−→ N

be a F-equivariant differentiable finite-sheeted cover of a closed F-manifold
N . To be clear:

(1) M and N are closed C∞-manifolds of dimension d with a differentiable
F-action;

(2) q is an F-equivariant differentiable map and a finite covering map.

If M is a differentiable manifold, let T M denote the tangent bundle and TmM
the fiber of T M at m ∈M.

Remark 9.1 (Equivariant geometric transfers) Let U = {Ui |i ∈ A} be a finite
open cover of M by open subsets Ui ⊆ M with the following properties:

(1) for all i the restriction of the covering map to q : Ui → N is an open
embedding defining a diffeomorphism onto its image; and,

(2) for all g ∈ F and all i ∈ A, there is a k ∈ A so the action by g on M
restricts to a diffeomorphism g : Ui → Uk .

Note that part (2) defines an action of F on A, and hence a permutation rep-
resentation W = R

A.
Next, let φi be a partition of unity subordinate to the cover U with the

following equivariance property: if g ∈ H and g : Ui → Uk is as in Part (2),
then

φk(gx) = φi (x).

The existence of such partitions of unity can be found in §III.6 of [16]. The
map

j : M−→ W × N

x �→ ((φi (x)), q(x))
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is an F-equivariant differentiable embedding and we have a commutative dia-
gram of F-maps

M
j

q

W × N

p2

N .

We have an isomorphism of the F-equivariant tangent bundles q∗TN ∼= TM ;
this a property of covering spaces. For any base F-space Y let θW be the trivial
F-bundle of Y with total space Y × W and diagonal F-action. Then we have
an isomorphism of F-bundles TW×N

∼= θW ⊕ p∗
2TN . Thus we can conclude

that

j∗TW×N
∼= θW ⊕ TM .

It follows that the normal bundle of M in W × N is isomorphic to the trivial
bundle θW over M . Choose an equviariant tubular neighborhood ν of M in
W × N ⊆ SW × N . (See Theorem IV.2.2 of [16].) Then one model for the
transfer is the Thom collapse map

SW ∧ N+ ∼=(SW × N )/({∞} × N )

−→ (SW × N )/((SW × N ) − ν) ∼= ν/∂ν = SW ∧ M+. (9.2)

This last isomorphism uses that the normal bundle is trivial, so there is an
equivariant diffeomorphism

W × M ∼= ν. (9.3)

The collapse map of (9.2) is an unstable model for the transfer, so we write
trW : SW ∧ N+ → SW ∧ M+ for this map. After further suspension we can
cancel the representation sphere SW and get the stable equivariant transfer
map

tr : �∞+ N−→ �∞+ M.

This is independent of the choices.

The next result is a special case of the equivariant tubular neighborhood
theorem. See Theorem VI.2.2 of [16].

Lemma 9.4 Let M be a smooth manifold with a differentiable action by a
finite group F. Let m ∈ M be a fixed point for the action. Then there exists an
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F-invariant open neighborhoodU of m and an F-equivariant diffeomorphism
f : U ∼= TmM taking m to 0.
Furthermore, the closure U of U is homeomorphic to a closed ball and the

map f extends to an F-equivariant collapse map

fU : M → M/(M −U ) ∼= U/∂U ∼= STmM . (9.5)

If q : M → N is our covering map, then q(m) ∈ N is also an F-fixed
point. We may suppose further that q maps U and U diffeomorphically onto
the images V and V in N . Note that q : M → N defines an isomorphism of
representations TmM ∼= Tq(m)N .

Proposition 9.6 There is an F-equivariant commutative diagram of spectra

�∞+ N tr

�∞+ ∧ fV

�∞+ M

�∞+ ∧ fU

STq(m)N � STmM

where fU and fV are the equivariant collapse maps of (9.5).

Proof We claim there is a commutative diagram of F-spaces

SW ∧ N+
trW

SW∧ fV

SW ∧ M+
SW∧ fU

SW+Tq(m)N � SW+TmM .

(9.7)

To see this, let νU ⊆ ν be the image of W × U under the equivariant
diffeomorphism W × M ∼= ν of (9.3). Then a model for the square (9.7) is

SW×N
{∞}×N

SW×N
(SW×N )−ν

SW×N
{∞}×N∪SW×(N−V )

SW×N
(SW×N )−νU

.

Wecannow take the diagramof (9.7), stabilize, and cancel the representation
sphere SW to obtain the result.

123



Dualizing spheres for compact p-adic analytic groups

9.2 Linear spheres

Let G be a compact p-adic analytic group of rank d and let g be the adjoint
representation.

Proposition 9.8 Let F ⊆ G be a finite subgroup. Suppose there is a finitely
generated free abelian group L ⊆ g with the properties that

(1) L is stable under the adjoint action of F on g, and
(2) L/pL ∼= g/pg.

Let V = R⊗ L and let SV be the one-point compactification of V . Then there
is an F-equivariant map SV → Sg which becomes a weak equivalence after
completion at p.

The proof is below, after Proposition 9.11. The argument we have in mind
proceeds geometrically, using that V/L = (R ⊗ L)/L is an F-parallelizable
manifold, as shown in Lemma 9.9.

As before, if Y is any F-space and W is a real representation of F , then
θW denotes the trivial bundle with total space Y × W . If M has an action by a
finite group F and m ∈ M is a fixed point, then TmM is real representation of
F . Note also that 0 = 0 + L ∈ V/L is fixed under the action of F .

Lemma 9.9 Let F be a finite group acting on a finitely generated free abelian
group L. Let V = R⊗L. Then there is an equivariant isomorphism of bundles
over V/L

T (V/L) ∼= θV .

In particular there is an isomorphism of F-representations T0(V/L) ∼= V .

Proof The standard linear trivialization θV ∼= T V over V descends to the
needed trivialization over V/L . Specifically, the trivialization over V is the
map

V × V−→ T V

sending (v, w) to (v, γ ′(0)) where γ (t) = v + tw.

Lemma 9.9 and Lemma 9.4 immediately imply the following.

Proposition 9.10 Let F be a finite group acting on a finitely generated free
abelian group L. Let V = R ⊗ L. Then there is a choice of F-equivariant
neighborhood U of 0 + L ∈ V/L that gives an equivariant collapse map

fU : V/L → SV .

This map sends 0 + L to 0 ∈ V ⊆ SV .
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The following result is an immediate consequence of Proposition 9.6 and
Proposition 9.10.

Proposition 9.11 Let F be a finite group acting on a finitely generated free
abelian group L. Let V = R ⊗ L. Then there is a stable F-equivariant equiv-
alence

hocolim�∞+ (V/pi L) � SV

where the colimit is over the transfers for the covering maps V/pi+1L →
V/pi L.

We can now prove the main result of this section.

Proof of Proposition 9.8 Let �i ⊆ G be our preferred set of open uniformly
powerful subgroups of the compact p-adic analytic group G. Recall from
Definition 3.10 that we have defined

B(pig) = holimB(pig/pi+ jg)

and we proved in Proposition 3.11 that there is an equivalence after p-
completion

�∞+ B(pig) � holim�∞+ B(pig/pi+ jg). (9.12)

Finally, Sg � hocolim�∞+ B(pig), again after p-completion.
Our assumption that L/pL ∼= g/pg allows us to conclude that for all i the

map

B(pi L)−→ B(pig)

induces p-completion on the fundamental group. The map V/pi L → B(pi L)

classifying the principal pi L bundle V → V/pi L is a weak equivalence and
we also have that the composition

V/pi L−→ B(pi L)−→ B(pig)

induces p-completion on the fundamental group. Since both spaces have no
non-zero higher homotopy groups it is then an isomorphism on H∗(−, Fp).
Then

�∞+ V/pi L−→ �∞+ B(pig)
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is also an isomorphism on H∗(−, Fp). Using (5.7) and Proposition 9.11 we
can now conclude that

SV � hocolim�∞+ V/pi L−→ hocolim�∞+ B(pig) = Sg

is an isomorphism on H∗(−, Fp). This implies the result.

In our examples the natural choice of a finitely generated free abelian group
L ⊆ g may not have the property that L/pL ∼= g/pg. The following result
will let us relax this hypothesis.

Lemma 9.13 Let M be a free Zp-module of finite rank and let L0 ⊆ M be a
finitely generated free abelian group so that Qp ⊗ L0 ∼= Qp ⊗Zp M. Define

L = {x ∈ M | pkx ∈ L0 for some k ≥ 0} ⊆ M.

Then L is a finitely generated free abelian group, Qp ⊗ L ∼= Qp ⊗Zp M,
L0 ⊆ L has finite index, and

L/pL ∼= M/pM.

Furthermore, if f : M → M is any continuous Zp-linear isomorphism such
that f (L0) = L0, then f (L) = L.

Proof Filter M by powers of p; that is, set FsM = psM . Let E∗M be the
associated graded module. Then E∗M = Fp[x] ⊗ M/pM where M/pM has
filtration 0 and x has filtration 1 and is the residue class of p in E∗Zp. Since
M/pM is finite, E∗M is a finitely generated Fp[x]-module.
We have induced filtrations on L0 and L; for example, FsL = FsM ∩ L .

The hypothesis that Qp ⊗ L0 ∼= Qp ⊗Zp M implies there is an integer n so
that we have inclusions of graded Fp[x]-modules

xnE∗M ⊆ E∗L0 ⊆ E∗L ⊆ E∗M.

We first show the last inclusion is an equality.
Suppose a ∈ EsM is represented by α ∈ FsM . Then xna ∈ E∗L0 so there

is a β ∈ Fs+nL0 and z ∈ ps+n+1M = Fs+n+1M so that

pnα = β + z.

Since p : FsM → Fs+1M is an isomorphism, we may choose y ∈ Fs+1M so
that pn y = z. Set γ = α − y. Then γ ≡ α modulo Fs+1M and hence γ also
represents a. Furthermore

pnγ = β ∈ L0.
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Thus γ ∈ L as needed.
We can now prove the result. Since pnL ⊆ L0 and pn : L → pnL is an

isomorphism, we have that L is finitely generated and free. The inclusions
pnL ⊆ L0 ⊆ L imply L0 is of finite index in L , that L0 and L have the same
rank, and that

Qp ⊗ L0 ∼= Qp ⊗ L ∼= Qp ⊗Zp M.

The equality E∗L = E∗M shows L/pL = M/pM .
Let f : M → M be any isomorphism, and let x ∈ L so that pkx ∈ L0 for

some k. Since L0 is invariant under f , we have pk f (x) ∈ L0, so f (x) ∈ L .
That every x ∈ L is in f (L) is an easy exercise.

Using this we have the following useful variant of Proposition 9.8.

Proposition 9.14 Let F ⊆ G be a finite subgroup. Suppose there is a finitely
generated free abelian group L0 ⊆ g with the properties that

(1) L0 is stable under the adjoint action of F on g, and
(2) Qp ⊗ L0 ∼= Qp ⊗Zp g.

Let V = R ⊗ L0 and let SV be the one-point compactification of V . Then
there is an F-equivariant map SV → Sg which becomes a weak equivalence
after completion at p.

Proof Use Lemma 9.13 to produce a finitely generated free abelian group L so
that L0 ⊆ L ⊆ g, L is F-invariant, and L/pL ∼= g/pg. Since V = R ⊗ L0 ∼=
R ⊗ L , Proposition 9.8 now applies.

10 Lubin–Tate theory and its fixed points

We fix p and n ≥ 1. If F is a formal group law of height n over a finite
algebraic extension k of Fp, let E = E(k, F) be the Lubin–Tate spectrum
– aka the Morava E-theory – associated to the pair (k, F). The spectrum E
is an E∞-ring spectrum with an action, through E∞-ring maps, of the group
G = Aut(k, F) of the automorphisms of pair (k, �) [30,60]. Namely, the

elements of G are pairs ( f, ϕ) where ϕ ∈ Gal(k/Fp) and f : ϕ∗F
∼=−→ F

is an isomorphism; an explicit description of G for the Honda formal group
law is given in Example 2.15. A general theory is possible here, but we will
focus on two examples. For both, the pair (k, F) will have the property that
for any algebraic extension k ⊆ k′ the inclusion Aut(k, F) ⊆ Aut(k′, F) is an
isomorphism. We will say that the pair (k, F) has all automorphisms at k.

Example 10.1 The classical example is the Honda formal group law F of
height n over Fpn . In this case F is the unique p-typical formal group law
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defined over Fp with p-series x pn . Not all automorphisms of F are defined
over Fp; for this we need to pass to Fpn .

Example 10.2 The other case of interest is specific to n = 2, and we only
concentrate on p = 2 or 3. Then F is the formal group law of a supersingular
elliptic curve defined over Fp. We can and will choose the curves so that once
we pass to Fp2 we get all automorphisms.

From now on we assume we are working with one of these two examples.
In both cases k = Fpn , where n is the height of the formal group.

Remark 10.3 (Structure of the Morava stabilizer group) Because the formal
group law F is defined over Fp, there is a split surjective homomorphism

G = Aut(Fpn , F)−→ Gal(Fpn/Fp)

with kernel the group S := Aut(F/Fpn ), the group of automorphisms of F
over Fpn . BothG and its subgroup S ⊆ G are compact p-adic analytic groups.
We write

· · · ⊆ �i+1 ⊆ �i ⊆ · · · ⊆ �1 ⊆ S (10.4)

for the filtration of Example 2.15.

There is a non-canonical isomorphism

W (Fpn )[[u1, . . . , un−1]][u±1] ∼= E∗

where the power series ring is in degree 0 and u is in degree −2. The power
series ring E0 is a complete local Noetherian ring with maximal ideal m =
(p, u1, . . . , un−1) and residue field Fpn . Define K = K (n) to be the version
of Morava K -theory with K∗ = Fpn [u±1] and formal group law F . There
is map of complex oriented ring spectra E → K which, on coefficients, is
the quotient by m. The category of K-local spectra is the standard K (n)-local
category.

The K-local category is a closed symmetric monoidal category with smash
product LK(X ∧ Y ). As is commonly done, we define

E∗X ∼= π∗LK(E ∧ X).

This is not quite a homology theory, so the notation is slightly abusive. It has
very nice algebraic properties; see for example Remark 10.10. The action of
G on E gives a continuous action of G on E∗X making E∗X aMorava module
(see [10, Section 1.3] for a definition).
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Remark 10.5 Recall that Ln-localization is localization with respect to the
homology theory K (0) ∨ . . . ∨ K (n) or, equivalently, with respect to E. Here
K (0) is rational homology.
Using the periodicity results of Hopkins and Smith [44], Hovey and Strick-

land produce a sequence of ideals J (i) ⊆ m ⊆ E0 and finite type n spectra
MJ (i) with the following properties:

(1) J (i + 1) ⊆ J (i) and
⋂

i J (i) = 0;
(2) E0/J (i) is finite;
(3) E∗(MJ (i)) ∼= E∗/J (i) and there are spectrum maps q : MJ (i+1) → MJ (i)

realizing the quotient E∗/J (i + 1) → E∗/J (i);
(4) There are maps η = ηi : S0 → MJ (i) inducing the quotient map E0 →

E0/J (i) and qηi+1 = ηi : S0 → MJ (i);
(5) If X is a finite type n spectrum, then the map X → holimi (X ∧ MJ (i))

induced by the maps η is an equivalence.
(6) If X is any Ln-local spectrum, then LKX � holimi X∧MJ (i). In particular

we have E � holimiE ∧ MJ (i).

Most of this is proved in [45, Section 4], while (6) is proved in [45, Proposition
7.10]. In the same source, Hovey and Strickland also prove that items (1)–(5)
characterize the tower {MJ (i)} up to equivalence in the pro-category of towers
under S0; see [45, Proposition 4.22]. Note that the topology on E0 defined by
the sequence {J (i)} is same as them-adic topology and thatG acts on E∗/J (i)
through a finite quotient of G.

We can now prove the following useful recognition lemma.

Lemma 10.6 Let f : X → Y be a map of Ln-local spectra. Then LK f :
LKX → LKY is an equivalence if and only if there is a finite type n complex
T so that

f ∧ T : X ∧ T−→ Y ∧ T

is an equivalence.

Proof The collection of type n complexes forms a thick subcategory Cn of
finite spectra, so if f ∧T is an equivalence for any T ∈ Cn , it is an equivalence
for all T ∈ Cn . Thus one implication follows from item (6) of Remark 10.5.
The other implication follows from the fact that if X is Ln-local and T is of
type n, the map X ∧ T → LK(X ∧ T ) is an equivalence.

Remark 10.7 (Fixed point spectra and transfers) According to the theory of
Devinatz and Hopkins [27], for any closed subgroup K ⊆ G there is a contin-
uous homotopy fixed point spectrum EhK . These are again E∞-ring spectra,
and there is a fixed point spectral sequence

Hs(K , Et ) �⇒ πt−sEhK . (10.8)
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The E2-term is continuous group cohomology. We have EhG � LKS0 and
the spectral sequence of (10.8) with K = G is the E-based Adams-Novikov
spectral sequence in the K-local category.

The spectral sequence of (10.8) has a very rigid convergence properties.
There is an integer N , independent of K , so that Es,∗∞ = 0 for s ≥ N . If
K ⊆ �1 (or K ⊆ �2 if p > 2), then

Hs(K , Et ) = 0

for s > n2, as K is then a Poincaré duality group of dimension ≤ n2.
These fixed point spectra of E also have the property that if K1 ⊆ K2 is

normal and of finite index, then EhK1 has an action by K2/K1 and there is a
weak equivalence

EhK2 � (EhK1)hK2/K1 . (10.9)

This is proved as Theorem 4 of [27]. In particular, we have a transfer map
tr : EhK1 → EhK2 . If K ⊆ G is open (and hence closed), then K is of finite
index in G and we have a transfer map

tr : EhK → LKS0 � EhG.

Remark 10.10 Let H ⊆ G be a closed subgroup. A crucial property of the
fixed point spectrumEhH , from [27, Theorem2], is that there are isomorphisms

K∗EhH ∼= π∗LK(K ∧ EhH ) ∼= map(G/H, K∗)
E∗EhH ∼= π∗LK(E ∧ EhH ) ∼= map(G/H, E∗) (10.11)

where map denotes continuous set maps. The action of G on the left factor
of E defines the Morava module structure on E∗EhH . The isomorphism of
(10.11) becomes an isomorphism of Morava modules if we give the module
of continuous maps the conjugation action

(gϕ)(x) = gϕ(g−1x).

If H is normal, then G acts on EhH . The isomorphism of (10.11) becomes
equivariant if we define an action on the module of continuous maps by

(g � ϕ)(x) = ϕ(xg).

Remark 10.12 (Continuous actions and fixed points) For one of our main
results we will need some details about how the continuous fixed points of
[27] are constructed. See Lemma 11.12.
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Let G = limi Gi be a profinite group. We are thinking of G = G, S, or
�i ⊆ S. Let X be a spectrum presented as a homotopy inverse limit

X � holimX j

with πt X j finite for all j and t . We are thinking of the E � holim jE ∧MJ ( j),
as in point (6) of Remark 10.5. Define the spectrum of continuous map by

Fc(�
∞+ G, X) = holim

j
hocolim

i
F(�∞+ Gi , X j ). (10.13)

This definition is built so that

π∗Fc(�∞+ G, X) ∼= map(G, π∗X), (10.14)

where the target is the group of continuous maps.We can extend this definition
of the continuous function spectrum to

Fc(�
∞+ G1+s, X) = holim

j
hocolim

i
F(�∞+ G1+s

i , X j ),

whereGm is them-fold Cartesian product ofG with the product topology. Then
the data of a continuous action of G on X is a map X → Fc(�∞+ G, X) which
extends (in the obvious way) to a map of cosimplicial spectra

X−→ Fc(�
∞+ G1+•, X).

One of the main theorems of [27] is that the action of G in E can be refined to
a continuous action.

If � ⊆ G is open, then we define

Xh� = holim�Fc(�
∞+ G1+•, X)� = holim�Fc(�

∞+ (G/� × G•), X).

The Bousfield-Kan Spectral Sequence of this cosimplicial space then gives the
homotopy fixed point spectral sequence

Hs(�, πt X) �⇒ πt−s X
h�,

where the E2-term is continuous cohomology.

This notion of homotopy fixed points commutes with various types of
inverse limits; the following will be sufficient for our purposes. If X is a
spectrum, let PnX be its nth Postnikov section.
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Lemma 10.15 Let G be a profinite group and let � ⊆ G be an open subgroup.
Suppose X is presented as a homotopy inverse limit

X � holimX j

with πt X j finite for all j and t and that, with this presentation, X has a
continuous G-action. Then PnX � holimPnX j and the natural map

Xh�−→ holimn(PnX)h�

is an equivalence.

Proof Note that by the definition (10.13) and (10.14)

πt Fc(�
∞+ G•, X)−→ πt Fc(�

∞+ G•, PnX)

is an isomorphism for t ≤ n. Thus the natural map

Fc(�
∞+ G1+•, X)−→ holimn Fc(�

∞+ G1+•, PnX)

is an equivalence of cosimplicial spectra. The result follows.

11 Dualizing the Lubin–Tate spectrum

In this section we prove one of our main theorems, identifying the equivariant
homotopy type of the Spanier–Whitehead dual of E. See Theorem 11.16 and
Corollary 11.18.

Let D(-) = F(-, LKS0) denote Spanier–Whitehead duality in the K-local
category. By definition, a K-local spectrum X is dualizable if the natural map

LK(DX ∧ Y ) → F(X, Y )

is an equivalence for all K-local spectra Y .

Lemma 11.1 (1) Let � ⊆ G be an open subgroup. Then Eh� is dualizable in
the K-local category. Furthermore, E∗DEh� is zero in odd degrees and
there is a G-equivariant isomorphism

E0DEh� ∼= E0Eh� ∼= E0[G/�]

where G acts on E0[G/�] by g(∑ ai xi�) = ∑
g(ai )gxi�.
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(2) Let �i ⊆ S ⊆ G be the open subgroups of (10.4). The natural maps
Eh�i → E induce a G-equivariant equivalence in the K-local category

hocolim Eh�i � E .

Proof Since � is open, it is of finite index in G; therefore, (10.11) implies
that E∗Eh� is finitely generated as an E∗-module. Then Theorem 8.6 of [45]
implies thatEh� is dualizable. To finish the proof of part (1)we use the standard
Spanier–Whitehead duality isomorphism, the Universal Coefficient Spectral
Sequence

E0DEh� ∼= E0Eh� ∼= HomE0(E0Eh�, E0)

and (10.11). Note that to make this isomorphism G-equivariant we must act
by conjugation on the target; that is, (gψ)(a) = gψ(g−1a).

For (2) we need to check that

hocolim K∗Eh�i ∼= K∗Eh� j .

By (10.11), this is equivalent to showing the map

hocolimmap(G/�i , K∗) → map(G, K∗)

is an isomorphism, where map continues to denote the continuous set maps.
Since the topology on K∗ is discrete, this is clear.

In order to assemble the Spanier–Whitehead duals of Eh�i for various i we
need a version of Frobenius reciprocity. Let R be an E∞-ring spectrum and
suppose G is a finite group that acts on R through E∞-ring maps. Then the
spectrum Rh := F(EG+, R) is an E∞-ring in genuine G-equivariant spectra
[41].3 The notation is chosen so that for any subgroup H ⊆ G, the categorical
fixed points (Rh)H agree with the homotopy fixed points of the original H -
action on R. Suppose that K ⊆ H ⊆ G are subgroups. Then we have the
following maps

(a) the inclusion (restriction) map r : RhH → RhK ;
(b) the transfer (induction) map tr : RhK → RhH ; and,
(c) conjugation maps cg : RhH → Rh(g−1Hg).

These maps are in fact defined for any genuine G-spectrum, and are at the
core of the identification of genuine G-spectra with spectral Mackey func-
tors [3,33]. Because it will be important for the next Lemma, let us recall

3 In fact, the same source explains that Rh has more equivariant multiplicative structure, but
we don’t need that here.

123



Dualizing spheres for compact p-adic analytic groups

the provenance of these maps. The restriction is induced by the map of G-
sets p : G/K → G/H ; then r = F(p+, Rh)G . The conjugation maps are
similarly induced by maps of G-sets, namely the conjugation by g ∈ G maps
G/g−1Hg → G/H . The transfer is not induced by amap ofG-sets, but rather
by the Spanier–Whitehead dual of p+ in G-spectra [53].

Lemma 11.2 The inclusion, transfer, and conjugation maps have following
properties.

(1) The inclusion r : RhH → RhK and conjugation cg : RhH → Rh(g−1Hg)

are maps of E∞-ring spectra.
(2) We have Frobenius Reciprocity commutative diagrams such as

RhK ∧ RhK m RhK

trRhH ∧ RhK

r∧1

1∧tr
RhH ∧ RhH

m RhH .

Proof We use ideas from [28]. More generally, this result holds for any E∞-
ring A in genuine G-spectra, not just those of form A = Rh .

For such an A, we have that the restriction and conjugations are maps of
E∞-rings, since they are obtained by taking G-fixed points (a lax monoidal
functor) of the E∞-ring maps

F(G/H+, R) → F(G/K+, R) and F(G/H+, R) → F(G/g−1Hg+, R).

For the transfer, it suffices to restrict to H , so that tr will be the H -fixed points
of the A-module map F(H/K+, A) → A, obtained by mapping into A the
Spanier–Whitehead dual in H -spectra of themap of H -sets H/K+ → H/H+.
Upon taking H -fixed points, we get that AK → AH is an AH -module map,
where AK has the AH -algebra structure given by the restrictionmap. Frobenius
Reciprocity is simply the diagramatic form of the statement that tr is an AH -
module map.

Muchmore sophisticated results are possible, using the language of spectral
Mackey functors and spectral Green functors. See [3] and [11].

From Lemma 11.2 we have pairings

RhH ∧ RhH m RhH tr RhG

and get maps

RhH → F(RhH , RhG)
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that switch restriction and transfer; for example, the following diagram com-
mutes

RhK

tr

F(RhK , RhG)

F(r,1)

RhH F(RhH , RhG).

(11.3)

Lemma 11.4 Let r j : Eh� j → Eh� j+1 be the restriction maps. The maps f j
fit into a G-equivariant commutative diagram

Eh� j+1

tr

f j+1
F(Eh� j+1, LKS0)

F(r j ,1)

Eh� j
f j

F(Eh� j , LKS0).

Furthermore, we have a K-local G-equivariant equivalence

holim
tr

Eh� j � DE.

Proof The commutative square can be obtained from (11.3) by taking R =
Eh�i+1 , G = G/�i+1, H = �i/�I+1 and K = {e} = �i+1/�i+1. Note that
RhG = LKS0.
The last statement follows from Part (2) of Lemma 11.1.

Remark 11.5 It is an observation due to the third author (see [63]), that there is
an underlying (that is, non-equivariant) equivalence of spectra DE � �−n2E.
This included a calculation theG-action on π∗DE. This older result is a corol-
lary of our theorem Theorem 11.16, but we will end up giving a proof of this
fact as we go; the argument is essentially the same as in [63]. In summary, we
will show certain spectral sequences that appear in the proof of Lemma 11.9
have only one non-zero line and the shift of n2 is due to the degree of that line.

We now add an algebraic result which will be used in several arguments to
follow. There is nothing special about the groupG; the argumentworks equally
well for any compact p-adic analytic group G. We fix a nested sequence of
open subgroups �i ⊆ G, as in Notation 2.18. An abelian group A is finite
p-torsion if A is finite and there is an integer n so that pn A = 0.

Lemma 11.6 Let G be a compact p-adic analytic group of rank d and A be a
finite p-torsion discrete G-module.
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(1) There is an integer N so that for all i ≥ N the subgroup �i acts trivially
on A.

(2) Taking the limit over transfers gives an isomorphism

lim
j

Hs(� j , A) ∼=
{
A, s = d;
0, s �= d.

If i ≥ N, then the natural map lim j Hd(� j , A) → Hd(�i , A) ∼= A is an
isomorphism.

(3) Taking the colimits over restriction gives an isomorphism

colim
i

Hs(�i , A) ∼=
{
A s = 0;
0 s > 0.

If j ≥ N, then natural map A ∼= Hd(� j , A) → colimi Hd(�i , A) is an
isomorphism.

Proof To prove (1) we use that if A is discrete the orbit of any element a ∈ A
is finite. Let Ha ⊆ G be the isotropy subgroups of a, then Ha is open, so∩aHa
is also open, since this is a finite intersection. Choose N so that �N ⊆ ∩aHa .

We next prove part (2). Since the limit depends only on large j , we make
take j ≥ N and assume the action is trivial. Furthermore, since Hk(�i , Fp) is
finite for all k, by Theorem 3.3, the functor

A �−→ lim
j

Hs(� j , A)

sends short exact sequences in A to long exact sequences. If A = Z/p the result
can be found in Proposition 5.6; more precisely, that result is for homology, but
in this case cohomology is dual to homology. The result is then immediate if
pA = 0. Now use induction on k and the long exact sequence in cohomology
obtained from the short exact sequence

0 A/pA
pk−1

A A/pk−1A 0 .

Part (3) is proved the same way, now using part (2) of Theorem 3.3

The next step is to decompose the homotopy inverse limit of Lemma 11.4
even further, using part (2) of Lemma 11.1.

Lemma 11.7 The G-equivariant K-local equivalence hocolimiEh�i � E
induces a G-equivariant K-local equivalence

hocolimi [(Eh�i )h� j ] � [hocolimiEh�i ]h� j � Eh� j
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and hence a G-equivariant K-local equivalence

holim j hocolimi [(Eh�i )h� j ] � holim jEh� j

Proof We apply Lemma 10.6: to prove it is a K-local equivalence, it is suffi-
cient to check we have an equivalence after smashing with some finite type n
complex T . Since T is finite, (−) ∧ T commutes with homotopy fixed points
and the map becomes

hocolimi [((E ∧ T )h�i )h� j ]−→ (E ∧ T )h� j (11.8)

We may assume that we have chosen T so that for all t the G-module Et T
is discrete, finite, and annihilated by mk for some k. Such T appeared in
Remark 10.5. Write Xi = (E ∧ T )h�i .

In the next diagram we use the following basic fact: If G = limGs is
profinite and M is finite and discrete, then colimH∗(Gs, M) = H∗(G, M).

We now have a diagram of spectral sequences

colimi Hs(� j , πt Xi ) Hs(� j , Et T )

colimiπt−s(X
h� j
i ) πt−s(E ∧ T )h� j .

Since colimπ∗Xi = E∗T and πt Xi is finite and discrete for each t , the map
across the top is an isomorphism. Since each of the spectral sequences

Hs(� j , πt Xi ) �⇒ πt−s(X
h� j
i )

strongly converge and colim is an exact functor, the spectral sequence on
the left strongly converges. Since the spectral sequence on the right strongly
converges as well, we are done.

The next step is to switch the limit and colimit.

Lemma 11.9 The natural map

colimi holim j (Eh�i )h� j−→ holim j colimi (Eh�i )h� j � DE (11.10)

is a G-equivariant K-local equivalence.

Proof As a key to the upcoming argument, wemake the following convention.
If we use the index i we will be taking a colimit along maps induced by
restrictions; thus for example
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· · · Eh�i−1 r Eh�i r Eh�i+1 · · ·
Ifwe use the index j wewill be taking the limit alongmaps induced by transfer;
thus for example,

· · · Eh� j+1 tr Eh� j tr Eh� j−1 · · ·
The spectra Eh�i are K-local, hence Ln-local. Since Ln-localization is

smashing, the category of Ln-local spectra is closed under homotopy col-
imits and homotopy limits; hence the map of (11.10) is a map of Ln-local
spectra. We now apply Lemma 10.6: to prove it is a K-local equivalence, it is
sufficient to check it is an equivalence after smashing with some finite type n
complex T . Since T is finite the map may be rewritten

colimiholim j ((E ∧ T )h�i )h� j −→ holim j colimi ((E ∧ T )h�i )h� j . (11.11)

As before we assume that for all t , the G-module Et T is discrete, finite and
annihilated bymk for some k; see Remark 10.5. In particular, Et T satisfies the
hypotheses of Lemma 11.6.

By Lemma 10.6, the fixed point spectral sequences

Hs(�i , Et T ) �⇒ πt−s(E ∧ T )h�i

have a horizontal vanishing line at s = n2 at E2 for all i ≥ 2. For all t , the
cohomology groups are finite and p-torsion; hence,πt(E∧T )h�i is finite and of
bounded p-power order for all t . A similar argument shows πt ((E∧T )h�i )h� j

is also finite and of bounded p-power order for all t . Thus, to prove the result,
it’s enough to prove that

colim
i

lim
j

π∗((E ∧ T )h�i )h� j−→ lim
j
colim

i
π∗((E ∧ T )h�i )h� j

is an isomorphism as all lim 1-terms vanish.
By assembling the � j fixed point spectral sequences we get a diagram of

spectral sequences

colimi lim j Hs(� j , πt (E ∧ T )h�i ) colimi lim j πt−s((E ∧ T )h�i )h� j

lim j colimi Hs(� j , πt (E ∧ T )h�i ) lim j colimi πt−s((E ∧ T )h�i )h� j .

There is an issue here: while colim is exact on directed systems of abelian
groups, lim is not, so applying lim to a system of spectral sequences does
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not necessarily yield a spectral sequence. Here again we use that the terms
Hs(� j , πt (E∧T )h�i ) are all finite, so that there will be no lim1-terms and we
do get a diagram of strongly convergent spectral sequences.

It is now sufficient to show that the right vertical map on E2-terms is an
isomorphism. We will show much more: it will turn out that both the source
and target of the map on E2-terms are zero unless s = n2; this directs our
attention to s = n2.

We now use Lemma 11.6. Choose j large enough that the action of � j on
πt (E ∧ T ) is trivial. Then we have a diagram

colimi lim j Hn2(� j , πt (E ∧ T )h�i ) colimi Hn2(� j , πt (E ∧ T )h�i )

lim j colimi Hn2(� j , πt (E ∧ T )h�i )

lim j Hn2(� j , πt (E ∧ T )) Hn2(� j , πt (E ∧ T )).

ByLemma11.6,weknow Hn2(� j , πt (E∧T )) ∼= πt (E∧T ) and that the natural

map lim j Hn2(� j , πt (E ∧ T )) → Hn2(� j , πt (E ∧ T )) is an isomorphism.
Thus we have a commutative triangle

colimi lim j Hn2 (� j , πt (E ∧ T )h�i )

f

lim j colimi Hn2 (� j , πt (E ∧ T )h�i )

g

πt (E ∧ T )

We show both the maps f and g are isomorphisms.
We begin with the map f . Using part (2) of Lemma 11.6 we have

lim
j

Hs(� j , πt (E ∧ T )h�i ) ∼=
{

πt (E ∧ T )h�i , s = n2;
0, s �= n2.

Then, using part (2) of Lemma 11.1, we have (as needed) that

colim
i

lim
j

Hs(� j , πt (E ∧ T )h�i ) ∼=
{

πt (E ∧ T ), s = n2;
0, s �= n2.

We complete the argument by analyzing the map g. We claim the maps

(E ∧ T )h�i � Eh�i ∧ T → E ∧ T
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induce an isomorphism

colimi H
s(� j , πt (E ∧ T )h�i )) ∼= Hs(� j , πt (E ∧ T ))

and hence, by Lemma 11.6, isomorphisms

lim
j
colim

i
Hs(� j , πt (E ∧ T )h�i )) ∼=

{
πt (E ∧ T ), s = n2;
0, s �= n2.

If M is any finite and discrete G-module, then �k acts trivially on M for
large k. It follows that for all j we have

colimk H
∗(� j/� j+k, M) ∼= H∗(� j , M).

This applies to M = πt (E ∧T )h�i and M = πt (E ∧T ). Note also that by part
(2) of Lemma 11.1 we have hocolimiEh�i ∧ T � E ∧ T . We now have

colimi H
s(� j , πt (E ∧ T )h�i ) ∼= colimicolimk H

s(� j/� j+k, πt (E ∧ T )h�i )

∼= colimkcolimi H
s(� j/� j+k, πt (E ∧ T )h�i )

∼= colimk H
s(� j/� j+k, colimiπt (E ∧ T )h�i )

∼= colimk H
s(� j/� j+k, πt (E ∧ T ))

∼= Hs(� j , πt (E ∧ T )).

The second to last isomorphism uses part (2) of Lemma 11.1.

In light of Lemma 11.9, the project now is to compute
hocolimiholim j (Eh�i )h� j ; see Lemma 11.15. The next result is the first step.

Lemma 11.12 Let j > i so that the action � j on Eh�i is trivial. Then there
is a G-equivariant K-local equivalence

(Eh�i )h� j �−→ F(�∞+ B� j , Eh�i ).

where G acts on �∞+ B�i through conjugation and diagonally on the function
spectrum.

Proof We use the following basic fact about fixed point spectra. Let G be a
finite group, K a normal subgroup of G, and X a G spectrum on which K acts
trivially. Then there is a natural equivalence of G-spectra

XhK � F(�∞+ BK , X)
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where G acts on �∞+ BK through conjugation and diagonally on the function
spectrum. The difficulty here is that G is not finite.

Since we seek a K-local equivalence we need only prove this after smash-
ing with a type n-complex T . See Lemma 10.6. Thus we assume we have a
spectrum X with a trivial � = � j action and with the property that π∗X finite,
discrete, and annihilated by some power of p. We will show there is a natural
G-equivariant equivalence

Xh� j � F(�∞+ B� j , X).

In practice, we will take X = Eh�i ∧ T � (E ∧ T )h�i .
Let � = � j . Since � acts trivially of X , we have a trivial action of the finite

group �/�k of X for all k ≥ j and the maps Xh�/�k → Xh� induced by the
quotient map on groups give us a natural equivariant diagram

hocolimXh�/�k �

f

hocolimF(�∞+ B(�/�k), X)

g

Xh� F(�∞+ B�, X).

Our strategy is now as follows. We will show that the maps f and g are
equivalences when X is bounded above in homotopy; that is, there is an integer
n so that πt X = 0 for t > n. For general X , this will then provide us a natural
equivalence

(PnX)h� � F(�∞+ B�, PnX).

for all n. We now then can use Lemma 10.15 to get an equivalence

Xh� � holimn(PnX)h� � holimn F(�∞+ B�, PnX) � F(�∞+ B�, X).

Thus, for the rest of the argument, assume πt X = 0 if t > n.
We first show g is an equivalence. The basic fact we will use is that if A is

a finite discrete abelian group with the property that pk A = 0 for some k with
trivial �-action, then

H∗(�, A) = colimH∗(�/�k, A)

∼= colimH∗(�∞+ B(�/�k), A) ∼= H∗(�∞+ B�, A). (11.13)

See Proposition 3.11.
We are asserting that the natural map

hocolimF(�∞+ B(�/�k), X)−→ F(holim�∞+ B(�/�k), X) (11.14)
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is an equivalence. This follows from (11.13) and an Atiyah-Hirzebruch Spec-
tral Sequence argument. We use that if Y is a space, then

E p,q
2 (Y ) = H p(Y, π−q X) �⇒ π−p−q F(�∞+ Y, X) = X p+q(Y )

is zero if p < 0 or q < −n. This implies that for any pair (p, q), there is an
r so that E p,q∞ (Y ) = E p,q

r (Y ) independent of Y and, hence, that the spectral
sequences converge. Combined with part (2) of Theorem 3.6 this is sufficient
to show (11.14) is an isomorphism.

We now show that f is an equivalence. We have a diagram of spectral
sequences

colim Hs(�/�k, πt X)

∼=

colim πt−s Xh�/�k

f∗

Hs(�, πt X) πt−s Xh�.

The question then remains whether the upper spectral sequence converges.
However, for all k the homotopy fixed point spectral sequence

Es,t
2 = Hs(�/�k, πt X) �⇒ πt−s X

h�/�k

has the property that Es,t
2 = 0 if t > n so for a fixed pair (s, t) there is an r ,

independent of k, such that Es,t∞ = Es,t
r . This is enough to give convergence.

Lemma 11.15 There is a G-equivariant K-local equivalence

colimiholim j (Eh�i )h� j � F(IG, E).

Proof Lemma 11.12 and Frobenius Reciprocity imply that

holim j (Eh�i )h� j � holim j F(�∞+ B� j , Eh�i )

� F(colim j�
∞+ B� j , Eh�i )

� F(IG, Eh�i )

since the (co-)limit is taken over transfer maps. Since IG is a p-complete
sphere, it is dualizable; hence, by part (2) of Lemma 11.1

hocolimi F(IG, Eh�i ) � F(IG, E).

123



A. Beaudry et al.

We now come to the main theorem of the section. If X , Y and Z are left
G-spectra the diagonal G-action on F(Y, Z) is the action for which the stan-
dard adjunction between smash product and function spectra restricts to an
adjunction isomorphism

FG(X ∧ Y, Z) ∼= FG(X, F(Y, Z))

where FG denotes the spectrum of G-maps and G acts diagonally on X ∧ Y .
If we were allowed to use functional notation and φ ∈ F(Y, Z), then

(gφ)(y) = gφ(g−1y).

Recall that IG = hocolim j�
∞+ B� j where the colimit is in the category of

p-complete spectra and taken over the transfer maps. The G action is given
by conjugation on the subgroups � j . See Definition 5.4.

Theorem 11.16 There is a G-equivariant K-local equivalence

DE � F(IG, E) � I−1
G

∧ E

where G acts diagonally on both F(IG, E) and the smash product.

Proof This followsbycombiningLemma11.7,Lemma11.9, andLemma11.15.

Remark 11.17 In Theorem 7.3.1 of [7], Behrens and Davis give an entirely
different expression of the Spanier–Whitehead dual of E as a homotopy fixed
point spectrum. It would be interesting to make a detailed comparison of that
result with Theorem 11.16.

The following is now a consequence of Theorem 8.11 and Theorem 11.16.

Corollary 11.18 Let F ⊆ G be a finite subgroup with p-Sylow subgroup F0.
Suppose that F0/(F0 ∩ Z(G)) is an elementary abelian p-group. Then there
is an F-equivariant K-local equivalence

DE � S−g ∧ E.

12 The Spanier–Whitehead duals of EhF: some theory

As an application of the theory developed so far, wewill give some calculations
of D(EhF ) where F ⊆ G is a finite subgroup whose p-Sylow subgroup F0
has the property that F0/F0 ∩ Z(G) is an elementary abelian p-group. Recall
that Z(G) is the center of G. This recovers in a coherent way all the known
calculations of this kind in the literature. We also produce a new example.
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This section provides background and set-up. The precise calculations, which
involve the representation theory of specific groups, are in Sect. 13 andSect. 14.

12.1 Generalities on Picard groups

Because Tate spectra vanish in the K (n)-local category (see [36]), the norm
map EhF−→ EhF is a weak equivalence; it follows immediately that

D(EhF ) = F(EhF , LKS0) � F(EhF , LKS0) � (DE)hF .

By Corollary 11.18 we have, for F satisfying our hypothesis, that there is an
F-equivariant equivalence

DE � S−g ∧ E

where Sg is the G-sphere obtained from the adjoint representation. We will
assume that the F action on Sg satisfies the hypotheses of Proposition 9.8,
so that we have a finite dimensional real representation V of F and an F-
equivariant equivalence of p-complete F-spheres SV � Sg. The project then
is to calculate the homotopy type of (S−V ∧ E)hF .

We begin with some nomenclature. If F is a finite group, let RO(F) be
the real representation ring of F . If V ∈ RO(F), we write SV for the stable
one-point compactification of V as an F-sphere, |V | for the dimension of V ,
and S|V | for the stable sphere of dimension |V |. Then S|V | is the underlying
non-equivariant spectrum of SV .

Remark 12.1 (Picard spectra) We begin with such basic theory as we need.
A good summary and references to the classical literature can be found in
Section 2 of [58]. We work in the category of local spectra for some ambient
homology theory, but leave this assumption implicit.

Let R be an E∞-ring spectrum. The space Gl1(R) ⊆ �∞R is defined by
the pull-back diagram

Gl1(R) �∞R

(π0R)× π0�
∞R = π0R.

The E∞-multiplication on R gives Gl1(R) the structure of an infinite loop
space.

Let Pic(R) be the category of invertible R-modules and R-module equiv-
alences; in a slight abuse of notation we will also write Pic(R) for the nerve
of the category. Then
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π0Pic(R) ∼= Pic(R)

where Pic(R) is now the group of invertible R-module spectra up to equiva-
lence. The spacePic(R) is an infinite loop space; indeed, there is a connective
spectrum pic(R) with

�∞pic(R) � Pic(R) � Pic(R) × BGl1(R).

Remark 12.2 (Group actions on Picard spectra) Let R be an algebra in G-
spectra over the terminal N∞-operad (as in [12]). In particular, R has all
multiplicative norms. We assume that R is cofree, so that R → F(EG+, R) is
an equivalence in G-spectra. We also assume that the natural map RhG → R
is a faithful Galois extension in the sense of Rognes [61]. With appropriate
care and using [12,13,41], in particular, [12, Theorem 6.23], we may assume
these assumptions hold for E with its action of a finite subgroup of G; see
Remark 2.1 of [5].

Let H ⊆ G be a subgroup. Define PicH (R) to be the category of invertible
R-modules P with a compatible H -action; that is, the module multiplica-
tion map R ∧ P → P is an H -map, where H acts diagonally on the
smash product. Let picH (R) be the associated spectrum. There is a functor
Pic(RhH ) → PicH (R) sending Q to R ∧RhH Q. Under our assumptions,
this is an equivalence of categories. Hence Pic(RhH ) = PicH (R) or, more
generally, there is an equivalence of spectra

pic(RhH ) � picH (R). (12.3)

See Proposition 3.1 of [5].
If K ⊆ H is a subgroup, there is a restriction map PicH (R) → PicK (R).

There is also a transfer tr : PicK (R) → PicH (R) defined using the Hill-
Hopkins-Ravenel norm functor NH

K . The assignment

G/H �−→ PicH (R) = π0picH (R)

is then a Mackey functor, which we write Pic(R), with G understood. See
Corollary 3.12 of [5]. All of this uses technology developed in [13].

Remark 12.4 (Homotopy fixed point spectral sequences) Let R and G be as in
Remark 12.2. Then G acts on the category of invertible R-modules: if g ∈ G,
and P is an invertible R-module spectrum, then

gP = R ∧g
R P
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where we have extended scalars along the map g : R → R. If P ∈ PicG(R),
then multiplication by g defines an R-module equivalence

R ∧g
R P

1∧g
R ∧R P � P.

This yields a map of spectra

picG(R)−→ pic(R)hG (12.5)

which is an equivalence on (−1)-connected covers. See Theorem 3.3.1 of [58]
and the further references there. In particular we have isomorphisms

Pic(RhG) ∼= PicG(R) ∼= π0picG(R) ∼= π0pic(R)hG .

There is then a homotopy fixed point spectral spectral sequence

Es,t
2 (R,G) = Hs(G, πtpic(R)) �⇒ πt−spic(R)hG . (12.6)

Remark 12.7 (The J -homomorphism) Let R and G be as in Remark 12.2 and
H ⊆ G a subgroup. If V is a real H -representation, then R ∧ SV ∈ PicH (R),
where we give R ∧ SV the diagonal H action. As in Proposition 3.13 of [5]
this extends to a morphism of Mackey functors

JR : RO → Pic(R)

where RO is the Mackey functor G/H �→ RO(H).
In fact, more is true. If we let Rep(H) be the category of real representations

and isomorphisms; this is a symmetric monoidal category under direct sum.
Then we have a symmetric monoidal functor J H

R : Rep(H) → PicH (R) and
hence a map of spectra koH → picH (R). Here koH is the spectrum of H -
equivariant real K -theory. This is surely part of a morphism between spectral
Mackey functors in sense of [3], but we won’t need that much structure. We
will use that we have a commutative diagram for all H ⊆ G

koH picH (R)

kohH pic(R)hH .

The action of H on ko is trivial, so there is a weak equivalence

F(�∞+ BH, ko) � kohH
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and the homotopy fixed point spectral sequence for kohH is the Atiyah-
Hirzebruch Spectral Sequence for ko∗BH .

Proposition 12.8 Let R be as in Remark 12.2.

(1) Let f : SV → R be a G-equivariant map so that the underlying map of
spectra S|V | → R is a unit in π∗R. Then JGR (V ) = RhG ∈ Pic(RhG).

(2) Let K ⊂ H be a subgroup. If V ∈ RO(K ) is in the kernel of J K
R then

W = indGK V is in the kernel of JGR .

Proof For part (1) we extend f to a map g : R ∧ SV → R of G-equivariant
R-modules. This an underlying equivalence by our assumption on f , and so a
G-equivalence since R is cofree. (Note that if R is cofree, so is the R-module
R ∧ SV ). The claim follows.
Part (2) follows from the fact that JR : RO → Pic(R) is a morphism of

Mackey functors and induction of representations is the transfer in RO .

When R = E, the Lubin–Tate spectrum and G is a finite subgroup of the
Morava stabilizer group, the fixed point spectral sequence of (12.6) vanishes
in high degree at E∞. This inspires the following result. If X is a spectrum,
let f : X〈n〉 → X denote the (n − 1)-connected cover of X ; thus πk f is an
isomorphism for k ≥ n and πk X〈n〉 = 0 if k < n.

Proposition 12.9 Let R be as in Remark 12.2. Let � be an integer such that
Es,s∞ (R) = 0 for s ≥ � in the homotopy fixed point spectral sequence

Es,t
2 (R) = Hs(G, πtpic(R)) �⇒ πt−spic(R)hG

Then the composite mapping

[�∞+ BG, ko〈�〉] → [�∞+ BG, ko] → π0pic(R)hG

is zero.

Proof The G-equivariant maps ko〈�〉 → ko → pic(R) induces a diagram of
homotopy fixed point spectral sequences

Es,t
2 (ko〈�〉) = Hs(G, πtko〈�〉) πt−s F(�∞+ BG, ko〈�〉)

Es,t
2 (ko) = Hs(G, πtko) πt−s F(�∞+ BG, ko)

Es,t
2 (R) = Hs(G, πtpicR) πt−s(picR)hG .
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By construction Es,s
2 (ko〈�〉) = 0 if s < � and by hypothesis Es,s∞ (R) = 0 is

s ≥ �. The result follows.

Remark 12.10 The question now is how to check the hypotheses of Proposi-
tion 12.9. One technique, which we will employ below, is to access the ideas
and techniques of [58] to relate the differentials in the homotopy fixed point
spectral sequence for pic(R) to the differentials in the homotopy fixed point
spectral sequence for R itself.

12.2 Applications to the Lubin–Tate spectrum

We now consider the case where R = E for some prime p and some height
n formal group. We established conventions and notation at the beginning of
Sect. 10. Let F ⊆ G be a finite subgroup. We are interested in calculating the
image of specific representations under the map J F

E : RO(F) → Pic(EhF ).
We have the following useful preliminary result.

Proposition 12.11 Let F ⊂ S be a finite subgroup that contains the central
subgroup C2 = {±1}. The regular representation ρF ∈ RO(F) maps to the
trivial element of Pic(EhF ) under J F

E .

Proof As describe in Remark 12.2, we can replace E by a cofree genuine
N∞ ring G-spectrum. In particular, it admits all norm maps. The key for this
argument is to refine a unit x ∈ π2i∗e E to an equivariant map x̄ : Sρ2 → i∗C2

E
where i∗HE is the restriction of E to an H -spectrum. With this established, one
applies Proposition 12.8.

At the prime 2 the question is very subtle, but has been accomplished in
[46].

If p is odd this is much easier. Since E is p-local and p is odd, we have that

πC2
ρ2

i∗C2
E ∼= π0(S

−ρ2 ∧ E)hC2 ∼= (
π0i

∗
e (S−ρ2 ∧ E)

)C2 ∼= (
π2i

∗
C2

(S1−σ ∧ E)
)C2

.

As a C2-module,

π∗i∗e (S1−σ ∧ E) ∼= π∗i∗e E ⊗ Z(−1)

where Z(−1) is the sign representation of C2 on Z. Choose a complex orien-
tation x ∈ π2i∗e E, and note that γ x = −x for γ a generator of C2. Therefore,
x ⊗ 1 gives an element of (π2i∗e E ⊗ Z(−1))C2 which corresponds to a C2-
equivariant map x̄ : Sρ2 → i∗C2

E that refines x .

Remark 12.12 We can now outline the general strategy we use below. Fix a
finite subgroup F ⊆ G with p-Sylow subgroup F0. Suppose F contains the
central C2 and that F0/F0 ∩ Z(G) is an elementary abelian p-group, so that
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Theorem 6.25 applies. Finally suppose we have identified a finite dimensional
real representation V of F so we can apply Proposition 9.8 and write Sg ∼= SV

as an F-equivariant sphere.
It follows from [27] that the homotopy fixed point spectral sequence

Hs(F, Et ) �⇒ πt−sEhF

has a horizontal vanishing line at E∞. Applying the ideas from [58] one can
then conclude that the spectral sequence (12.6)

Es,t
2 (E) = Hs(F, πtpic(E)) �⇒ πt−spic(E)hF

has the property that Es,s∞ = 0 for large s. So we can apply Proposition 12.9;
that is, there will be an integer � so that the composition

[�∞+ BF, ko〈�〉] → [�∞+ BF, ko] → π0pic(E)hF = π0pic(EhF )

is zero. In specific examples, we can be very explicit about the integer �. For
example, if n = 2 and p = 2 and F is the automorphism groups of our
supersingular curve, then we take � = 8. See [58], especially Figure 9 and the
surrounding narrative.

Now let

I 〈�〉 = RO(F) ∩ Im{[�∞+ BF, ko〈�〉] → [�∞+ BF, ko]}.

Since C2 ⊆ F Proposition 12.11 implies that we have a map

RO(F)/(I 〈�〉 + ρF ) → Pic(EhF ).

The source here is the quotient group of RO(F) by the subgroups generated
by I 〈�〉 and the regular representation ρF . Since F is a finite group,

Im{[�∞+ BF, ko〈�〉] → [�∞+ BF, ko]} ⊆ [�∞+ BF, ko]

is of finite index, so RO(F)/(I 〈�〉+ρF ) is a finite abelian group. Our project
is then to calculate the image of a given representationW in this group as well
as its image in Pic(EhF ).

Remark 12.13 Wewill use classical characteristic class arguments to calculate
RO(F)/I 〈�〉. Let PnX denote the nth Postnikov section of X . Then there is
an injection (which is often an isomorphism)

RO(F)/I 〈�〉−→ [�∞+ BF, P�−1ko ] ∼= [BF, Z × P�−1BO].
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For example, suppose � = 8. We have a tower of fibrations

BO〈8〉 BSpin

λ

BSO

w2

BO

w1

K (Z, 4) K (Z/2, 2) K (Z/2, 1)

with w1 and w2 the first and second Stiefel-Whitney classes of the universal
bundles and λ ∈ H4(BSpin, Z) a class so that that 2λ is the first Pontrjagin
class. In particular, P7BO � P7BSpin is a three stage Postnikov tower. Thus,
we have a filtration of RO(F)/I 〈8〉

0 A4

λ

⊆
A2

⊆

w2

A1

w1

⊆
RO(F)/I 〈8〉

dim

H4(BF, Z) H2(BF, Z/2) H1(BF, Z/2) Z

where dim assigns to any virtual representation its rank. If the Atiyah-
Hirzebruch Spectral Sequence for ko∗(�∞+ BF) collapses, the vertical maps
in this filtration will be surjective.

The class λ lies outside the standard list of characteristic classes, but we do
have the following result. Let ci denote the Chern classes.

Lemma 12.14 Let ξ be a stable complex bundle over X with the property that
c1(ξ) ≡ 0 ∈ H2(X, F2). Then we can choose a Spin structure on ξ and a
fixed choice of Spin structure determines a class d(ξ) ∈ H2(X, Z) with the
property that 2d(ξ) = c1(ξ). For this Spin structure on ξ we have

λ(ξ) = d(ξ)c1(ξ) − c2(ξ).

Furthermore, for such bundles, the characteristic class λ is additive; that is,

λ(ξ1 ⊕ ξ2) = λ(ξ1) + λ(ξ2).

Proof The first statement follows from examining what happens in integral
cohomology in the fiber sequence

B BU
c1 K (Z/2, 2).

We can obtain the equation for λ by studying the universal example ξ0 over
B. Note that H4(B, Z) ∼= Z

2 generated by d(ξ0)
2 and c2(ξ0). Now use that if

ξ is any complex bundle, then

p1(ξ) = −c2(ξ ⊗ C) = −c2(ξ ⊕ ξ) = c1(ξ)2 − 2c2(ξ)
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where ξ is ξ with its conjugate complex structure. Additivity follows from this
same formula by considering the universal example over B × B.

Remark 12.15 There is a p-complete variant on the constructions of Rem-
ark 12.12. The unit map S0 → E extends to a unit map S0p → E, so the map
F(�∞+ BF, ko) → pic(EhF ) factors as a map

F(�∞+ BF, ko) → F(�∞+ BF, pic(S0p)) → pic(EhF ).

Note that by combining (12.3) and (12.5) we have that the natural map

pic(EhF ) → pic(E)hF

induces an equivalence on (−1)-connected covers. If X is any spectrum, define
L≥2
p X by the homotopy push-out diagram

X〈2〉 X〈2〉p

X L≥2
p X

where Yp is the p-completion of Y . Note that L≥2
p X has homotopy groups

πt L
≥2
p X ∼=

{
πt X t = 0, 1

(πt X)p t ≥ 2.

Since the homotopy groups of pic(S0p) are p-complete above dimension 1,
then L≥2

p pic(S0p) � pic(S0p) and the map ko → pic(S0p) factors through a map
L≥2
p ko → pic(S0p). The direct analog of Proposition 12.9 is still true, with

the same proof, and with ko and ko〈�〉 replaced by L≥2
p ko and L≥2

p ko〈�〉 as
needed. Thus there will be an integer integer � so that the composition

[�∞+ BF, L≥2
p ko〈�〉] → [�∞+ BF, L≥2

p ko] → π0pic(E)hF = π0pic(EhF )

is zero. Indeed, we can choose the same integer � as in the uncompleted case.
In our examples, we will have � ≥ 2 and, in that case, L≥2

p ko〈�〉 = ko〈�〉p.
If we let

Ip〈�〉 = RO(F) ∩ Im{[�∞+ BF, L≥2
p ko〈�〉] → [�∞+ BF, L≥2

p ko]},
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then our variant of Proposition 12.9 gives a map

RO(F)/(Ip〈�〉 + ρF ) → π0pic(E
hF )

and we have an injection

RO(F)/Ip〈�〉−→ [�∞+ BF, P�−1L
≥2
p ko].

We again get a filtration of RO(F)/Ip〈�〉. For example, if � = 8 and p = 2
we have only a slight change:

0 A4

λ

⊆
A2

⊆

w2

A1

w1

⊆
RO(F)/I2〈8〉

dim

H4(BF, Z2) H2(BF, Z/2) H1(BF, Z/2) Z

where now H4(BF, Z2) = lim H4(BF, Z/2n). If p > 2 and � = 8 we have

0 A4

λ

⊆
A1

w1

⊆
RO(F)/Ip〈8〉 .

dim

H4(BF, Zp) H1(BF, Z/2) Z

In all of these examples, the vertical maps will be surjective if the Atiyah-
Hirzebruch Spectral Sequence for (L≥2

p ko)∗(BF) collapses.

13 The Spanier–Whitehead duals of EhF: examples from elliptic curves

We now focus our attention at height n = 2 and the primes p = 2 and p = 3.
In both cases we take a formal group of height 2 obtained from a supersingular
elliptic curve.Wewish to give a concrete calculation of the Spanier–Whitehead
dual D(EhF ) where F is a finite subgroup of G2. Our main interest is when
F is actually the automorphisms of the chosen elliptic curve. The results are
in Theorem 13.12 and Theorem 13.25.

At either prime, the basic case will be when F ⊆ S2 = O×
2 is a subgroup

containing amaximal finite p-torsion subgroup F0. At p = 2, F0 is isomorphic
to the quaternion group of order 8 and at p = 3 we have F0 is cyclic of order
3. In both cases Corollary 11.18 applies and we have an F-equivariant K-
equivalence DE = S−g ∧ E where Sg is the linear dualizing sphere. By Tate
vanishing [36] we know that

D(EhF ) � D(E)hF � (S−g ∧ E)hF .
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We will be able to use Proposition 9.8 to write Sg as the p-completion of a
representation sphere SV and hence we have

D(EhF ) � D(E)hF � (S−V ∧ E)hF . (13.1)

The strategy then developed in Remark 12.15 applies to complete the cal-
culation. In our examples, the subgroups F are such that Pic(EhF ) is cyclic
generated by �EhF ; therefore, there is an integer k so that

(S−V ∧ E)hF � �kEhF .

In both cases we will prove k = 44.
We can extend these results to subgroups of the larger Morava stabilizer

group G2 = S2 � Gal(Fp2/Fp). At both the prime 2 and 3 there is a finite
subgroup G ⊆ G2 so that

EhG � LKtmf

where tmf is the Hopkins-Miller spectrum of topological modular forms. We
will then have

D(LKtmf) � �44LKtmf .

This recovers results of Behrens [9] and Bobkova [14] at p = 3 and p = 2
respectively.

13.1 The case n = 2 and p = 3

We first consider the case p = 3. There is a supersingular elliptic curveC with
Weierstrass equation

y2 = x3 − x . (13.2)

While defined overF3, we work overF9, and the formal group FC of this curve
is a formal group of height 2 over that field. Because C is supersingular, the
endomorphism ring E of C over F9 is a maximal order in a quaternion algebra
ramified only at 3 and ∞. The completion of E at p = 3 is the endomorphism
ring O2 of FC . Thus E ⊆ O2 is a lattice and E/3E ∼= O2/3O2.

Let i ∈ F9 be a fourth root of unity, so i2 = −1. This induces an automor-
phism

(x, y) �→ (i2x, i3y) = (−x, −iy)
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of C which we will also call i . There are two automorphisms of exact order 3
given by

(x, y) �→ (x ± 1, y).

We will fix one in a moment, after giving a bit more of the structure of E .
The Frobenius φ given by

(x, y) �→ (x3, y3)

defines an endomorphismofC aswell. SinceC has four points overF3 (includ-
ing the point at ∞) we have that

φ2 = −3

as an endomorphism of C . See Theorem 4.10 of [66], for example. Note that
φi = −iφ. The element of order 3 in the automorphism group of C can be
chosen to be

σ = −1

2
(1 + φ).

In fact, if σ is any element of exact order 3 then σ 2+σ +1 = 0, so (1+2σ)2 =
−3. Thus 1 + 2σ = ±φ. The automorphisms of C are generated by i and σ

and the subgroup C3 of the automorphism group generated by σ is normal.
The group

G12 = Aut(C) ∼= C3 � C4 ⊆ E× ⊆ O×
2

defines a maximal finite subgroup of O2 which contains 3 torsion.
For our calculations wewill follow the outline of Remark 12.15, andwewill

use the notation established there. Letw1 be the first Stiefel-Whitney class and
λ the characteristic class for spin bundles discussed in Lemma 12.14; recall
that 2λ is the first Pontrjagin class.

The inclusion C4 → G12 induces an isomorphism

E(x) ⊗ F2[y] ∼= H∗(C4, F2) ∼= H∗(G12, F2)

where x is in degree 1 and y is the second-order Bockstein on x . In addition,
the inclusion C3 → G12 defines an isomorphism

Z3[z]/(3z) ∼= H∗(G12, Z3) ∼= H∗(C3, Z3)
C4

wherewe chose z in degree 4 to be the square of either generator of H2(C3, Z3).
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Thus to calculate the characteristic classes w1 and λ of representations of
G12 we can restrict those representations to the subgroups C3 and C4. Note
that every non-trivial irreducible real representation of C3 is the restriction of
a complex representation and, hence, Lemma 12.14 can be used to calculate
λ.

Remark 13.3 We now calculate characteristic classes of the needed real rep-
resentations of C3, C4, and G12.

We begin with the regular representation ρG12 . Restricted to C4 we have an
isomorphism

ρG12
∼= 3ρC4 = 3(1R + σR + γ4)

where σR is the real sign representation and γ4 is the 2-dimensional real rep-
resentation given by rotation by 90 degrees. The latter is the restriction of a
complex representation so w1(γ4) = 0 and we have

w1(ρG12) = x ∈ H1(G12, F2). (13.4)

Restricted to C3 we have an isomorphism

ρG12
∼= 4ρC3

∼= 4(1R + γ3)

where γ3 is the unique non-trivial 2-dimensional real representation ofC3. This
is the restriction of a one-dimensional complex representation with non-zero
first Chern class in H2(C3, Z) ∼= Z/3. Hence by Lemma 12.14 we have

λ(ρG12) = −z2 ∈ H4(C3, Z3) ∼= Z/3. (13.5)

Next we examine the conjugation action of G12 on E , the endomorphism
ring of C . Let

E0 = Z ⊕ Zi ⊕ Zφ ⊕ Ziφ ⊆ E .

This inclusion is not equality, as σ /∈ E0, but since E is of rank 4 over Z we
have that R ⊗ E0 = R ⊗ E and we can use the conjugation action of G12 on
E0 to determine the real representation R ⊗ E .

Restricted to C4 ⊆ G12, the subgroup generated by i , there is an isomor-
phism of C4-representations

R ⊗ E ∼= 1C ⊕ σC

where σC is the complex sign representation. Thus

w1(R ⊗ E) = 0. (13.6)
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If we restrict to the subgroup C3 ⊆ G12 generated σ then there is an
isomorphism of C3-representations

R ⊗ E ∼= 1C ⊕ γ3

where 1C is the trivial 2-dimensional real representation and γ3 is the unique
non-trivial 2-dimensional real representation. Both are restrictions of complex
representations. Thus, again using that γ3 has non-trivial first Chern class and
using Lemma 12.14, we have

λ(R ⊗ E) = −z2 ∈ H3(C3, Z3) ∼= Z/3. (13.7)

Proposition 13.8 (1) Let G12 ⊆ S2 be the automorphism group of the super-
singular elliptic curve y2 = x3 − x over F9. The composite mapping

[�∞+ BG12, L
≥2
3 ko〈8〉] → [�∞+ BG12, L

≥2
3 ko] → π0pic(E)hG12

is zero.
(2) There is an isomorphism

ψ : RO(G12)/I3〈8〉 ∼=
Z ⊕ Z/2 ⊕ Z/3

sending a representation V to (dim(V ), a, b) with

w1(V ) = ax ∈ H1(C4, F2)

λ(V ) = bz ∈ H4(C3, Z3).

Proof For Part (1) we use (the evident variant of) Proposition 12.9. See
Remark 12.15. By Theorem 8.1.3 (see also Figure 6) of [58] we have that
in the spectral sequence

Hs(G12, πtpic(E)) �⇒ πt−spic(E)hG12

Es,s∞ = 0 for s ≥ 6. Note also that ko〈8〉 = ko〈6〉.
Part (2) follows from thefiltrationof RO(G12)/I3〈8〉given inRemark12.15.

Note that the composite mappings

RO(G12) RO(C4)
w1 H1(C4, Z/2) ∼= Z/2

RO(G12) RO(C3)
λ

H1(C3, Z3) ∼= Z/3

are both onto by (13.6) and (13.7).
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We now give a more specific calculation. Let ψ be the map of part (2) of
Proposition 13.8.

Proposition 13.9 (1) If ρG12 ∈ RO(G12) is the regular representation, then

ψ(ρG12) = (12, 1, −1).

(2) The group RO(G12)/(I3〈8〉 + ρG12) is generated by the trivial 1-
dimensional real representation; this choice of generator determines an
isomorphism

Z/72 ∼= RO(G12)/(I3〈8〉 + ρG12). (13.10)

Furthermore, the J -homomorphism

JG12
E : RO(G12)/(I3〈8〉 + ρG12)−→ Pic(EhG12)

is an isomorphism.

Proof Part (1) follows from (13.4) and (13.5). The isomorphism (13.10) is
then immediate. The fact the J -homomorphism is an isomorphism then fol-
lows from the fact that EhG12 has periodicity 72; that is Pic(EhG12) ∼= Z/72
generated by �EhG12 . See [58].

Proposition 13.11 Let E be the endomorphism ring of C and give R ⊗ E the
conjugation action by G12. Then

R ⊗ E = −44 · 1R

in RO(G12)/(I3〈8〉 + ρG12).

Proof By (13.6) and (13.7) we have

ψ(R ⊗ E) = (4, 0, −1) ∈ Z ⊕ Z/2 ⊕ Z/3.

By Proposition 13.9, part (1) we have ψ(ρG12) = (12, 1, −1). Since

(4, 0, −1) − 4(12, 1, −1) = (−44, 0, 0) ∈ Z ⊕ Z/2 ⊕ Z/3

the result follows.

We now have a calculation of the Spanier–Whitehead duals to EhF . Let

G24 = G12 � Gal(F9/F3) ⊂ O2 � Gal(F9/F3) = G2.
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We have, here at p = 3,

EhG24 � LKtmf

where tmf is the spectrum of topological modular forms.

Theorem 13.12 Let p = 3 and F ⊆ G24 ⊆ G2 for G2 = Aut(F9, FC) the
stabilizer group associated to the formal group law FC of a supersingular
elliptic curve C with Weierstrass equation (13.2). Then

D(EhF ) � �44EhF .

Proof First suppose F ⊆ G12. Then, as in (13.1), we have

D(EhF ) � (S−(R⊗E) ∧ E)hF

and the result follows from Proposition 13.9 and Proposition 13.11.
The other possibility is that the composition F → G24 → Gal(F9/F3) is

onto. Let F0 be the kernel of this map and write Gal for Gal(F9/F3). We know
from [10, Lemma 1.37] that there is a Gal(F9/F3) equivariant equivalence

�∞+ Gal ∧ EhF � EhF0 .

We now have

D(EhF ) � D(E)hF

� [D(E)hF0]hGal � (�44EhF0)hGal

� [�∞+ Gal ∧ �44EhF ]hGal
� �44EhF .

13.2 The case n = 2 and p = 2

We proceed exactly as in the case of n = 2 and p = 3, working with the
endomorphism ring of a supersingular elliptic curve over F4. This is a reca-
pitulation of ideas already laid out by the first author in [8]; see in particular
Lemma 2.4.3 of that paper.

Over F4, there is a supersingular elliptic curveC withWeierstrass equation

y2 + y = x3. (13.13)

The endomorphism ring E of C over F4 is a maximal order in a quaternion
algebra ramified only at 2 and ∞. It is possible to be quite explicit.

123



A. Beaudry et al.

Choose ω ∈ F4 with ω2 + ω + 1 = 0; that is, ω is a primitive third root of
unity. Then C has an automorphisms ω and i with

ω(x, y) = (ωx, y)

i(x, y) = (x + 1, y + x + ω).

There is a slight abuse of notation here with the symbol ω. Set j = ωiω2 and
k = ω2iω. These elements generate a normal subgroup of Aut(C) isomorphic
to the quaternion group Q8 of order 8. The automorphism ω defines a cyclic
subgroup C3 ⊆ Aut(C) of order 3 and there is an isomorphism

G24 = Q8 � C3 ∼= Aut(C).

The group C3 acts on Q8 by cyclicly permuting i , j , k. The element ω ∈ E
can be written

ω = −1 + i + j + k

2

and we have

E = Z ⊕ Zi ⊕ Z j ⊕ Z
1 + i + j + k

2
.

The completion of E at 2 is the endomorphism ring O2 of the formal group
associated to C , which is necessarily of height 2. Then G24 ⊂ O2 is a choice
a maximal finite subgroup containing a subgroup isomorphic to Q8.

Remark 13.14 Let

H = R{1, i, j, k}/(i2 = j2 = k2 = −1, i j = k = − j i}

be the quaternion algebra. Up to isomorphism, this is the unique 4-dimensional
associative division algebra over the real numbers. The group Q8 is a group
of units in H and left multiplication by Q8 on H gives, up to isomorphism, the
unique irreducible 4-dimensional representation of Q8.

We have an evident inclusion

E ⊆ H

which is closed under both the left action and the conjugation action by G24.
Furthermore

R ⊗ E = H.
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Since E/2E ∼= O2/2O2, we find that we are exactly in the situation of Propo-
sition 9.8 with V = Had where Had is H with its conjugation action by G24.
Thus the main goal is to analyze the homotopy type of

(S−Had ∧ E)hG24 ∈ Pic(EhG24).

Remark 13.15 Wewill need to know the cohomology of Q8 andG24.We have
that Q8/[Q8, Q8] ∼= Z/2× Z/2 where we choose the residue classes of i and
j as the generators. Then

H∗(Q8, F2) ∼= A ⊗ F2[P]
where P ∈ H4(Q8, F2) and A is the 3-dimensional Poincaré duality algebra

A = F2[a, b]/(a2 + ab + b2, a2b + ab2).

generated by classesa andb of degree 1dual to i and j respectively.Agenerator
of the group C3 acts on H1(Q8, F2) by sending a to b and y to a + b, so there
is an ismorphism

H∗(G24, F2) ∼= H∗(Q8, F2)
C3 ∼= E(Q) ⊗ F2[P]

where Q ∈ H3(Q8, F2) is the top class in A. We also have

H∗(G24, Z(2)) ∼= Z[P]/(8P)

where, by abuse of notation, P ∈ H4(G24, , Z(2)) is an integral class which
reduces to P ∈ H4(G24, F2). We will give a more specific generator for
H4(G24, , Z(2)) below in Lemma 13.21.

Remark 13.16 We review the representation theory of Q8 and G24.
We have defined two real representations H and Had . There are also three

isomorphism classes of non-trivial 1-dimensional real representations of Q8.
Each of the elements i , j , k generates a subgroup of order 4 in Q8; taking the
quotient by these subgroups in turn defines homomorphisms Q8 → {±1} =
C2 and representations χi , χ j , and χk by restricting the sign representation of
C2. If we write 1R for the trivial representation, then the regular representation
of Q8 decomposes as

ρQ8
∼= 1R ⊕ χi ⊕ χ j ⊕ χk ⊕ H.

As a real representation of Q8 we have

Had
∼= 1R ⊕ χi ⊕ χ j ⊕ χk .
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and hence

ρQ8
∼= Had ⊕ H. (13.17)

Because of the symmetries in Q8, the representation χi ⊕χ j ⊕χk and Had
can be given the structure of Spin representations. To see this, let w(ξ) =
1 + w1(ξ) + w2(ξ) + · · · be the total Stiefel-Whitney class. Then, using the
notation of Remark 13.15, we have that

w(Had) = w(χi ⊕ χ j ⊕ χk)

= (1 + a)(1 + b)(1 + (a + b)) = 1 ∈ H∗(Q8, F2).

The representation H of Q8 is the restriction of an irreducible complex
representation. If we use the right action of C on H to give H the structure of
a complex vector space, then the action Q8 on H is through complex linear
transformations given by the matrices

i =
(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 −i
−i 0

)
. (13.18)

This defines an inclusion h : Q8 → SU (2).
The representation Had is a stabilization of the restriction of the adjoint

representation of SU (2) along the inclusion h. Concretely, the Lie algebra
su(2) of SU (2) is the real vector space of 2 × 2 skew Hermitian complex
matrices A of trace 0; thus a 2×2 complex matrix A is in su(2) if A+ At = 0
and trace(A) = 0. Thus

su(2) ∼=
{(

bi −z
z −bi

)
| b ∈ R, z ∈ C

}
.

The group SU (2) acts on the Lie algebra by conjugation; this is the adjoint
representation of SU (2). There is an isomorphism of real representations of
Q8

1R ⊕ su(2) ∼= Had .

Remark 13.19 Let V be a G-representation for some compact Lie group G
and let ξV be the bundle

EG ×G V−→ BG.

Thus if V is a complex representation, we get Chern classes ci (V ) = ci (ξV ) ∈
H∗(BG, Z). For example, if V = C

n with its standard left action by U (n)

then this bundle is the dual of the tautological bundle over BU (n). Hence
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ci (ξCn ) = (−1)i ci

where ci denotes the universal Chern class. Note that if a homomorphism
ϕ : G → U (n) defines the representation V , then there is an isomorphism of
bundles over BG

ξV ∼= Bϕ∗ξCn .

As preparation for our calculations in Proposition 13.22 and Proposi-
tion 13.24 we next calculate some characteristic classes. Since BSU (2) is
3-connected every vector bundle over BSU (2) has a unique Spin structure
and the characteristic class λ of Lemma 12.14 is unambiguously defined.

Lemma 13.20 (1) We have an isomorphism

Z[y] ∼= H∗(BSU (2), Z)

where

y = λ(ξC2) = −c2(ξC2) ∈ H4(BSU (2), Z)

is the characteristic class determined by the unique Spin structure on the
bundle ξC2 associated to the standard left action of SU (2) on C

2.
(2) Let su(2) be the adjoint representation of SU (2). Then

λ(su(2)) = λ(1R ⊕ su(2)) = 2y

Proof Since H∗(BSU (2), Z) ∼= Z[c2] part (1) follows from Remark 13.19
and an application of the formula

λ(ξ) = d(ξ)c1(ξ) − c2(ξ)

of Lemma 12.14.
For Part (2), let g : BU (1)−→ BSU (2) be the map defined by the inclusion

of Lie groups U (1) → SU (2)

z �−→
(
z 0
0 z

)
.

The map g classifies the bundle ξ = γ 1 ⊕ γ1, where γ1 is the tautological line
bundle. Since c2(ξ) = −c1(γ1)2, we have

g∗y = λ(γ 1 ⊕ γ1) = c21.
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In addition, g∗ : H4(BSU (2), Z) → H4(BU (1), Z) is an isomorphism.4

Thus to calculate λ(1R ⊕ su(2)) we can restrict to U (1).
If we identify 1R with the 2 × 2 diagonal matrices

{(
a 0
0 a

)
: a ∈ R

}

we can then identify the U (1)-representation 1R ⊕ su(2) as the direct sum
X ⊕ Y of two 1-dimensional complex representations with

X =
{(

α 0
0 α

)
: α ∈ C

}
and Y =

{(
0 −α

α 0

)
: α ∈ C

}
.

The conjugation action of U (1) on X is trivial and the conjugation action of
z ∈ U (1) on Y is by multiplication by z2. Thus if ζ is the bundle over BU (2)
defined by 1R ⊕ su(2) we have g∗ζ = 1R ⊕ γ −⊗2

1 . Thus

g∗λ(1R ⊕ su(2)) = (1/2)(−c2(γ1))
2 = 2g∗y.

Since λ(ξ ⊕ ζ ) = λ(ξ) + λ(ζ ) we also get the formula for λ(su(2)).

Lemma 13.21 LetH be the real representation of G24 extending the left action
of Q8 on the quaternions. Then

H∗(G24, Z2) ∼= Z2[λ(H)]/8λ(H).

Furthermore λ(Had) = 2λ(H).

Proof By Remark 13.15 we have that H∗(G24, Z2) ∼= Z2[P]/(8P), where
P has degree 4. Thus we need only show λ(H) generates H4(G24, Z2). Let
Ci ⊆ G24 be the subgroup generated by i . Since the restriction map

r∗ : H4(G24, Z2)−→ H4(Ci , Z2) ∼= Z/4

is onto, we need only check that λ(H) generates H4(Ci , Z2).
We can use the constructions of Remark 13.16 to produce a commutative

diagram

BCi

r

f
BU (1)

g

BQ8 h
BSU (2).

4 The mapU (1) → SU (2) is the inclusion of the maximal torus. TheWeyl group is C2 and we
have explicitly written down the canonical isomorphism H∗(BSU (2), Z) ∼= H∗(BU (1), Z)C2 .
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We have h∗ξC2 = ξH, g∗ξC2 = γ 1⊕γ1, and f is induced by the representation
γi of a cyclic groupof order 4 onCgivenbymultiplicationby i . If y = λ(ξC2) ∈
H4(BSU (2), Z2), then we have

λ(H) = h∗y ∈ H4(Q8, Z2)

g∗y = c1(γ1)
2 ∈ H4(BU (1), Z2).

Since H2(BCi , Z2) ∼= Z/4 generated by c1(γi ) we have that

r∗λ(H) = f ∗g∗y = c1(γi )
2 ∈ H4(Ci , Z2)

is a generator, as needed.
The calculation of λ(Had) follows from Part (2) of Lemma 13.20.

We are now ready to give our calculations. We will follow the outline of
Remark 12.15, and we will use the notation established there.

Proposition 13.22 (1) Let G24 ⊆ S2 be the automorphism group of the super-
singular elliptic curve y2 + y = x3 over F4. The composite mapping

[�∞+ BG24, L
≥2
2 ko〈8〉] → [�∞+ BG24, L

≥2
2 ko] → π0pic(E)hG24

is zero.
(2) There is an isomorphism

ψ : RO(G24)/I2〈8〉 ∼= Z ⊕ Z/8

sending a representation W to (dim(W ), k) where λ(W ) = kλ(H) ∈
H4(G24, Z2).

Proof For Part (1) we again use the evident variant of Proposition 12.9. See
Remark 12.15. By Theorem 8.2.2 (see also Figure 7) of [58] we have that in
the spectral sequence

Hs(G24, πtpic(E)) �⇒ πt−spic(E)hG24

Es,s∞ = 0 for s ≥ 8.
Part (2) follows from thefiltrationof RO(G24)/I2〈8〉given inRemark12.15.

Note that by Lemma 13.21

H1(G24, Z/2) = 0 = H2(G24, Z/2)

and λ : RO(G24) → H4(G24, Z2) ∼= Z/8 is onto.
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Proposition 13.23 (1) If ρG24 ∈ RO(G24) is the regular representation, then

ψ(ρG24) = (24, 1).

(2) The group RO(G24)/(I2〈8〉+ρG24) is generated by the 1-dimensional real
representation 1R; this choice of generator determines an isomorphism

Z/192 ∼= RO(G24)/(I2〈8〉 + ρG24).

Furthermore, the J -homomorphism

JG24
E : RO(G24)/(I2〈8〉 + ρG24)−→ Pic(EhG24)

is an isomorphism.

Proof We must calculate λ(ρG24). The inclusion Q8 ⊆ G24 defines an iso-
morphism

H4(G24, Z2) ∼= H4(Q8, Z2) ∼= Z/8.

Restricted to Q8, we have ρG24 = ρ⊕3
Q8

.We have, by (13.17) and Lemma 13.21

λ(ρQ8) = λ(Had) + λ(H) = 3λ(H),

whence

ψ(ρG24) = (24, 9) = (24, 1).

Thus Z/192 ∼= RO(G24)/(I2〈8〉 + ρG24) generated by 1R.
The fact the J -homomorphism is an isomorphism then follows from the

fact that EhG24 has periodicity 192; that is Pic(EhG24) ∼= Z/192 generated by
�EhG24 . See [58].

Proposition 13.24 We have an equation

Had ≡ −44 · 1R

in RO(G24)/(I2〈8〉 + ρG24).

Proof By Lemma 13.21 we have

ψ(Had) = (4, 2) ∈ Z ⊕ Z/8.

Since
(4, 2) − 2(24, 1) = (−44, 0)

the result follows from Proposition 13.23.
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We nowhave a calculation of the Spanier–Whitehead duals toEhF . IfG48 =
G24 � Gal(F4/F2), we have

EhG48 � LKtmf .

Theorem 13.25 Let F ⊆ G48 ⊆ G2 for G2 = Aut(F4, FC) the stabilizer
group associated to the formal group law FC of a supersingular elliptic curve
C with Weierstrass equation (13.13). Then

D(EhF ) � �44EhF .

Proof First suppose F ⊆ G24. Then by Remark 13.14 we have

D(EhF ) � (S−Had ∧ E)hF

and the result follows from Proposition 13.24.
The other possibility is that the composition F → G48 → Gal(F4/F2) is

onto. Let F0 be the kernel of this map an write Gal for Gal(F4/F2). We know
from Lemma 1.37 of [10] that there is a Gal(F4/F2) equivariant equivalence

�∞+ Gal ∧ EhF � EhF0 .

We now have

D(EhF ) � D(E)hF

� [D(E)hF0]hGal � (�44EhF0)hGal

� [�∞+ Gal ∧ �44EhF ]hGal
� �44EhF .

Remark 13.26 (Using the String orientation) In Proposition 13.8 and Proposi-
tion 13.22 we showed that (roughly) the restriction of the J -homomorphism

J : [�∞+ BF, ko〈8〉] → π0pic(E
hF ) = π0picF (E)

is the zero map for various finite subgroups F of the Morava Stabilizer Group
G2. We used fixed point spectral sequence technology, but this can also be
deduced from the existence of the String orientation of tmf given in [2].

Suppose V : BF → BGl1(S0) defines an action of a finite group on
the 0-sphere S0. Write SV for this F-sphere. For any ring spectrum R, the
composition

BF V BGl1(S0) BGl1(R)
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defines an action of F on R; this F-spectrum is equivalent to R ∧ SV with the
trivial action on R.

Now let F be a finite subgroup of G2 and let R = EhF . Then we can write
J (V ) ∈ PicF (E) as

J (V ) = E ∧ SV � E ∧EhF EhF ∧ SV .

We have the diagonal action on both sides of this equation, although F acts
trivially on EhF .

Next suppose the map BF → BGl1(EhF ) is null-homotopic. Then we have
an equivalence of F-spectra EhF ∧ SV � EhF , and hence of elements

J (V ) = E ∧ SV � E

in Pic(R). Put another way, J (V ) = 0 ∈ Pic(R) = π0picF (E).
The existence of a String orientation MO〈8〉 → tmf is proved by showing

that the composition

ko〈8〉 → ko → bgl1(S
0) → bgl1(tmf)

is null-homotopic. Now let n = p = 2 and F ⊆ G48. Then we have a map of
ring spectra

LKtmf � EhG48−→ EhF ,

so we may conclude the composition

ko〈8〉 → ko → bgl1(S
0) → bgl1(E

hF )

is null-homotopic and that the map

[�∞+ BF, ko〈8〉]−→ π0picF (E)

is zero. A similar statement holds at the prime 3.
This approach, using the String orientation, works only at height 2 because,

ultimately, it depends on the geometry of elliptic curves. In Sect. 14 we will
present a higher height example and, by necessity, return to homotopy fixed
point techniques.

14 The Spanier–Whitehead duals of EhF: examples from higher heights

In this section, we fix a prime p ≥ 3. We will work with the Honda formal
group law Fn of height n = p − 1 over Fpn . Our intention is to use the
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theory we have developed to calculate D(EhF ) for certain finite subgroups of
Gn = Aut(Fpn , Fn). We will then use that calculation to make some remarks
about exotic elements in the Picard group of the K (n)-local category. The
main results are Theorem 14.14 and Theorem 14.16.

The group Sn = Aut(Fn/Fpn ) contains a maximal finite subgroup

G ∼= Cp � Cn2 .

There is also an extension of subgroups of Gn

1 → G → H → Gal → 1 (14.1)

where Gal = Gal(Fpn/Fp). This is discussed, for example, in [37, 3.6.3.1].
We review some of these facts here.

Let W = W (Fpn ) be the Witt vectors on Fpn and let On be the endomor-
phism ring of Fn; see Example 2.15. We have an isomorphism

W〈S〉/(Sn = p, Sa = aσ S) ∼= On

where a ∈ W and σ ∈ Gal is the Frobenius. Let

ω ∈ F
×
pn ⊂ W

× ⊂ Sn = O×
n

be a primitive pn − 1 root of unity. We then define elements of On by

τ = ω
pn−1
n2 and X = ωn/2S.

Then Xn = −p and the element τ has order n2. In particular, τ n ∈ F
×
p is a

primitive (p − 1)st root of unity. By Lemma 19 of [37] the subfield

Qp(X) ⊆ Dn = Qp ⊗Zp On

contains a primitive pth root of unity; we choose one such and call it ζp. Since
any root of unity must have norm 1, ζp ∈ Sn .

Since Xn = −p, Qp(X) has degree n = p − 1 over Qp and it then follows
that as subfields of Dn

Qp(ζp) = Qp(X).

Let Cp = 〈ζp〉 be the subgroup of Sn generated by ζp. Conjugation by τ

induces an automorphism of Cp of order p − 1, so there is a primitive root of
unity in e ∈ (Z/p)× such that

τζpτ
−1 = ζ e

p.

123



A. Beaudry et al.

If we let G ⊆ Sn be the subgroup generated by ζp and τ , then we have an
isomorphism

G ∼= Cp � Cn2 = 〈ζp, τ | τζpτ
−1 = ζ e

p〉.
The extension H is more subtle to describe and we won’t need any of the
details here.

Let Z(ζp) ⊆ On be the subring generated ζp; there is an isomorphism
Z[x]/�p(x) ∼= Z(ζp)where�p(x) = (x p −1)/(x −1) is the pth cyclotomic
polynomial.

Lemma 14.2 Let

E = Z(ζp){1, τ, τ 2, . . . , τ n−1} ⊆ On

be the sub-Z(ζp)-module generated by τ i , 0 ≤ i ≤ n − 1.

(1) E is stable under the conjugation action of G, and
(2) Qp ⊗ E ∼= Qp ⊗Zp On.

Proof Part (1) follows from the facts that τζpτ
−1 = ζ e

p and ζpτ
jζ−1

p =
ζ 1−e j
p τ j .
For (2) let K = Qp ⊗ E . Since τ n ∈ Z

×
p , K is the sub-algebra of Dn

generated by ζp and τ . By construction, τ is an n2 root of unity over Zp. We
examine τ in the extension Zp ⊆ W (Fpd ).

If the field Fpd contains an n2 root of unity, then n | (pd − 1)/n, which
implies that n|d. Consider the field extensions

Qp ⊂ Qp(τ ) ⊆ Q(ω)

where ω ∈ W (Fpn ) is our chosen (pn − 1)st root of unity. Both Qp(τ ) and
Q(ω) are unramified extensions ofQp of degree n and, hence,Qp(τ ) = Qp(ω)

and it follows that ω ∈ K . However, since X ∈ K , ω ∈ K and S ∈ K , we
have that K = Dn = Qp ⊗Zp On .

Remark 14.3 We find that we are exactly in the situation of Proposition 9.14.
We let

V = R ⊗ E

with action induced by the conjugation action of G on E . Thus our goal is to
analyze the homotopy type of

(S−V ∧ E)hG ∈ Pic(EhG).

123



Dualizing spheres for compact p-adic analytic groups

Remark 14.4 Here we describe the additive structure of the real orthogonal
representation ring RO(G).

Let k be an integer, Ck the cyclic of order k, and γ = e2π i/k ∈ C. Multi-
plication by γm on C defines a 1-dimensional complex representation C(m)

of Ck . As γm and γ k−m are complex conjugate, the representations C(m) and
C(k − m) become isomorphic as 2-dimensional real representations.

Suppose k is odd. Letm �= 0 and let αm beC(m) regarded as a real represen-
tation. Then αm is irreducible as a real representation and RO(Ck) is generated
by the trivial one-dimensional representation 1R andαm , 1 ≤ m ≤ (k−1)/2. If
k is even and1 ≤ m < k/2,writeλm forC(m) regarded as a real representation.
These are again irreducible. We also have the 1-dimensional sign representa-
tion σ obtained by restriction along the unique quotient map Ck → C2. Then
RO(Ck) is generated by 1R, σ , and λm , 1 ≤ m ≤ (k − 2)/2.
Let G = Cp � Cn2 , with n = p − 1. We induce αm along the inclusion

Cp ⊆ G to obtain n/2 irreducible 2n2-dimensional real representations

�m := IndGCp
(αm), 1 ≤ m ≤ n/2.

The representations �m are also restrictions of complex representations.
There is an embedding RO(Cn2) → RO(G) given by restriction along the

quotient map G → Cn2 . From this, we conclude that

RO(G) ∼= RO(Cn2) ⊕ Z{�1, . . . , �n/2}.

This gives

RO(G) ∼= Z{1R, σ, λ1, . . . , λ(n2−2)/2, �1, . . . , �n/2}.

Except for 1R and σ , the listed generators of RO(G) are all restrictions of com-
plex representations. A dimension count shows that we have a decomposition
of the regular representation

ρG
∼= 1R ⊕ σ ⊕ λ1 ⊕ · · · ⊕ λ(n2−2)/2 ⊕ �1 ⊕ · · · ⊕ �n/2. (14.5)

Note there are no repeated summands.

Remark 14.6 Wenowfix somegenerators for the relevant cohomology groups.
Let z0 ∈ H2(Cp, Z(p)) be such that z0 = i∗c1 where c1 ∈ H1(BU, Z(p)) is
the first Chern class and i : BCp → BU is the canonical map induced by the
inclusion of Cp ⊆ U (1) which maps the generator ζp to e2π i/p.

Let z = z p−1
0 ∈ H∗(Cp, Z(p)) = Z(p)[z0]/pz0. Since τζpτ

−1 = ζ e
p where

e generates Z/p×, the action of τ on z0 is by multiplication by a generator of
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Z/p× and so

H∗(G, Z(p)) ∼= H∗(Cp, Z(p))
Cn2 ∼= Z(p)[z]/pz.

We also let y be a generator of (recall n = p − 1)

H1(G, Z
×
p ) ∼= Z/n{y}.

Next, we gather information about some characteristic classes which will
be used below.

Remark 14.7 If X is a space, let K 0(X) denote the complex K -theory of X in
degree 0. Recall that the Chern character

ch : K 0(X) → H∗(X, Q)

is the unique ring homomorphism defined using the splitting principle and
the formula ch(L) = exp(c1(L)) when L is a line bundle. If we write chk ∈
Hk(X, Q) for the kth homogeneous component of ch, then if L is a line bundle

chk(L) = c1(L)k

k!
and in general

chk = sk(c1, . . . , ck)

k!
where sk(c1, . . . , ck) is kth Newton polynomial in the Chern classes. In par-
ticular, modulo decomposables,

chk ≡ αck, α ∈ Q, α �= 0.

We can evaluate chk on the universal bundle over BU and obtain a cohomol-
ogy class chk ∈ H2k(BU, Q). The classes chk are algebraic generators and
primitives for the Hopf algebra structure on H∗(BU, Q). If we choose the Bott
class v ∈ π2BU = H2(BU, Z) so that 〈c1, v〉 = 1, then the multiplicative
properties of the Chern character imply

〈chk, vk〉 = 1 (14.8)

and chk is the unique primitive with this property.

123



Dualizing spheres for compact p-adic analytic groups

Themap BU → BO classifying the underlying real bundle of the universal
complex line bundle defines an isomorphism

H∗(BO, Q)
∼= H∗(BU, Q)C2

where C2 acts via complex conjugation. If L is a line bundle with conjugate
L , then c1(L) = −c1(L), and it then follows that for any bundle chk(ξ) =
(−1)kchk(ξ). Hence ch2k ∈ H∗(BO, Q) and ch2k(ξ) is defined for any real
bundle ξ . Note that if ξR is the real bundle underlying some complex vector
bundle ξ , then ch2k(ξR) = ch2k(ξ).

If 1 ≤ k < p, the defining expression for chk makes sense over Z(p) and in
fact there is a unique lift of chk to a class chk ∈ H2k(BU, Z(p)). This gives a
characteristic class chk(ξ) ∈ H2k(X; Z(p)) for any complex vector bundle ξ

over X . Furthermore, the additivity of chk over Q and the fact that

H2k(BU × BU ; Z(p)) → H2k(BU × BU ; Q)

is injective implies that chk is additive, that is,

chk(ξ1 ⊕ ξ2) = chk(ξ1) + chk(ξ2) ∈ H2k(X, Z(p))

for any bundles ξ1, ξ2 over X .
If p is odd, k is even, and k < p, then we have

chk ∈ H∗(BO, Z(p)) = H∗(BU, Z(p))
C2

and we can define characteristic classes chk(ξ) for any virtual real bundle as
well.

Remark 14.9 Suppose 1 ≤ k < p. Let ξ be a stable complex bundle of virtual
dimension 0 and suppose the classifying map ξ : X → BU lifts to a map

ξ : X → BU 〈2k〉.
If ku is the connective complex K -theory spectrum, then ξ is detected in the
Atiyah-Hirzebruch spectral sequence for ku∗

(p)(X) by the cohomology class

chk(ξ) ∈ H2k(X, π2kku(p)); that is, the class given by the composition

X → BU 〈2k〉 chk−−→ K (Z(p), 2k).

This follows from (14.8).
If p is odd, k is even and 1 < k < p we can make a similar observation

about a stable real bundle ξ of virtual dimension 0. Suppose the classifying
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map ξ : X → BO lifts to BO〈2k〉. If ko is the connective real K -theory
spectrum, then ξ is detected in the Atiyah-Hirzebruch spectral sequence for
ko∗

(p)(X) by the cohomology class chk(ξ) ∈ H2k(X, π2kko(p)).

Note that since p is odd ko(p) = kuhC2
(p) and

π∗ko(p) = Z(p)[v2] = (
π∗ku(p)

)C2 .

Remark 14.10 We can now relate the characteristic classes of Remark 14.7
to the representations of Remark 14.4. Suppose p is odd, n = p − 1 and
G = Cp �Cn2 . Since n is even, chn is defined for real vector bundles and we
get a homomorphism

chn : RO(G) → H2n(G, Z(p)).

We will be most interested in representations W which are the restriction of
a complex representation and chn(W ) can then be computed using complex
characteristic classes. Note that

2chn(1R) = chn(2 · 1R) = chn(1C) = 0,

so chn(1R) = 0. If σ ∈ RO(G) is the sign representation, then σ is obtained
by restriction along the unique quotient map q : G → Z/2, so chn(σ ) = 0 as
H2n(Z/2, Z(p)) = 0.

We are ready to work with the J -homomorphism.

Proposition 14.11 (1) The composite mapping

[�∞+ BG, L≥2
p ko〈2p〉] → [�∞+ BG, L≥2

p ko] → π0pic(E)hG

is zero.
(2) There is a homomorphism

ψ : RO(G) → Z ⊕ Z/2 ⊕ Z/p

which maps W to (dimW, a, b) where

w1(W ) = ay

chn(W ) = bz

where y, z are as in Remark 14.6.
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Proof It is shown in [42] that in the spectral sequence

Hs(G, πtpic(E)) �⇒ πt−spic(E)hG

Es,s∞ = 0 for s ≥ 2p. This gives (1).
For (2),we use the techniques ofRemark 12.15. FromRemark 14.6we know

Hs(G, Z(p)) = 0 for 0 < s < 2n. Then Remark 14.9 give us a filtration

0 A2n

ch2n

⊆
A1

w1

⊆
RO(G)/Ip〈2p〉

dim

Hn(BG, Z(p)) H1(BG, Z/2) Z

which we use to define the desired homomorphism.

Proposition 14.12 (1) If ρG is the regular representation of G, then

ψ(ρG) = (
pn2, 1, −n/2

)
.

(2) The group RO(G)/(Ip〈2p〉 + ρG) is generated by the 1-dimensional real
representation 1R; this choice of generator determines an isomorphism

Z/2p2n2 ∼= RO(G)/(Ip〈2p〉 + ρG).

Furthermore, the J -homomorphism

JGE : RO(G)/(Ip〈2p〉 + ρG)−→ Pic(EhG)

is an isomorphism.

Proof To prove (1), we use (14.5) to see that ρG contains a single copy of the
sign representation σ and no other non-orientable direct summands. Therefore,
w1(ρG) = 1.

To compute chn(ρG), note that

chn(res
∗ρG) = n2chn(ρCp)

= n2(chn(α1) ⊕ . . . ⊕ chn(αn/2))

However,

chn(αm) = c1(αm)n

n! = −z.
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The first equality follows since αm is one dimensional. The second equality
follows since c1(αm) is non-zero, and any unit in Z/p raised to the power n
is equal to 1. We have also used the fact that n! = −1 mod p. Finally, since
n2 = 1 mod p, we have

chn(ρG) = n2
(
ch2n(α1) + . . . + ch2n(αn/2)

)

= −n

2
z .

For (2), the fact that RO(G)/(Ip〈2p〉 + ρG) ∼= Z/2p2n2 generated by
ψ(1R) = (1, 0, 0) is a computation using part (1) and part (2) of Propo-
sition 14.11. Furthermore, by [42], Pic(EhG) ∼= Z/2p2n2 generated by
�EhG = ψ(1R).

Finally, let V = R⊗E be as in Remark 14.3. We need to identify the image
of V under the J -homomorphism.

Proposition 14.13 In RO(G)/(Ip〈2p〉 + ρG)

V ≡ n2(1 + 2p) · 1R.

Proof We show that

ψ(V ) = (n2, 0, −(n − 1)n/2)

which implies that

ψ(V ) = (n3 p(n − 1) + n2) · 1R ≡ n2(1 + 2p)1R mod 2n2 p2 · 1R.

First, dim V = n2 gives the first coordinate. To determine if V is orientable,
it suffices to restrict to the action of τ . The vector space underlying V has basis
{ζ ipτ j : 0 ≤ i, j ≤ n − 1} and

τζ ipτ
jτ−1 = ζ iep τ j .

So, as a representation of Cn2 , V is n copies of the same representation. Since
n is even, V is orientable and so w1(V ) = 0.

To compute ch2n(V ), we note that after restricting to Cp, there is an iso-
morphism

res∗V ∼= 1R ⊕ (n − 1)ρCp .

The action is given by

ζpτ
jζ−1

p = ζ 1−e j
p τ j .
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Note that 1 − e j �= 0 for 1 ≤ j ≤ n − 1 as e generates Z/p× and

1 + ζp + . . . + ζ n
p = 0.

So,

R{ζ ipτ j : 0 ≤ i ≤ n − 1} ∼=
{
n · 1R j = 0

ρ̄Cp 1 ≤ j ≤ n − 1

where ρ̄Cp is the reduced regular representation. Noting that ρCp
∼= 1R ⊕ ρ̄Cp

proves the claim. From this, we conclude that

ch2n(V ) = (n − 1)ch2n(ρCp) = −(n − 1)n/2.

We can now have a calculation of the Spanier–Whitehead duals to EhF for
various finite subgroups F .

Theorem 14.14 Let n = p−1 and F ⊆ H ⊆ Gn forGn = Aut(Fpn , Fn) the
stabilizer group of the Honda formal group law Fn and for H is as in (14.1).
Then

D(EhF ) � �−n2(2p+1)EhF .

Proof First suppose F ⊆ G. By Remark 14.3, we have that

D(EhF ) � (S−V ∧ E)hF

and the result follows from Proposition 14.13.
The other possibility is that the composition F → H → Gal(Fpn/Fp) is

non-trivial. Let F0 be the kernel of this map an write G̃al for the image of the
composite in Gal = Gal(Fpn/Fp) so that

1 → F0 → F → G̃al → 1

is exact. FromLemma1.37of [10],we candeduce that there is a G̃al equivariant
equivalence

�∞+ G̃al ∧ EhF � EhF0 .

Letting r = −n2(2p + 1), we now have

D(EhF ) � D(E)hF

� [D(E)hF0]hG̃al � (�r EhF0)hG̃al
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� [�∞+ G̃al ∧ �rEhF ]hG̃al
� �rEhF .

Remark 14.15 We note that EhF is always periodic of period 2p2n2, though
depending on F ⊆ H , the period could be shorter. For example, the period of
G and H is exactly 2p2n2. That of Cp is 2p2.

Also note that if p = 3, EhF is 72-periodic, and

�−n2(2p+1)EhF = �−28EhF � �44EhF

Hence Theorem 13.12 and Theorem 14.14 produce the same shift. Note,
however, that the formal group of the supersingular elliptic curve used in
Theorem 13.12 is not isomorphic over F9 to the Honda formal group.

We end with a simple but interesting application of Theorem 14.14 to the
study of the Picard group of the K-local category. We refer the reader to
[39,45], and Section 2.4 of [32] for more background, but recall some of the
key ideas here. We let Picn be the Picard group of the homotopy category of
K-local spectra. For X an invertible K-local spectrum, E∗X is an invertible
Morava module. If E∗X ∼= E∗S0 as Morava modules, we say that X is exotic
and denote the subgroup of exotic elements in Picn by κn .

For aK-local spectrum X , let In(X)be theGross–Hopkins dual of X . Gross–
Hopkins duality and Spanier–Whitehead duality are related by the equation

In(X) � In ∧ D(X).

Furthermore, if In = In(S0), then the work of Gross and Hopkins implies that
there is a p-adic G-sphere S〈det〉 and an element Pn ∈ κn such that

In � Sn
2−n ∧ S〈det〉 ∧ Pn.

The invertible K-local spectrum S〈det〉 is described in great detail in [4] and
the spectrum Pn is in fact defined by this equation.

As a consequence of [6, Theorem 1.1] which analyzes In(EhF ) and Theo-
rem 14.14 above, we have the following result.

Theorem 14.16 Let n = p − 1 and F = Cp. Then,

Pn ∧ EhF � � p2+pEhF

In particular, Pn is a non-trival element of κn.
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Proof By the discussion above, we have a K-local equivalence

In(EhF ) � In ∧ D(EhF ) � Sn
2−n ∧ S〈det〉 ∧ Pn ∧ D(EhF ). (14.17)

The spectrum EhF is periodic with minimal periodicity 2p2. Using this, The-
orem 14.14 simplifies to

D(EhF ) � �−n2(1+2p)EhF � �−(p2+1)EhF .

Note that F ⊆ ker(det). In [4], it is shown that this implies that

EhF ∧ S〈det〉 � EhF .

Furthermore, [6, Theorem 1.1] states that In(EhF ) � �n2EhF .
These facts together with (14.17) imply that

�n2EhF � Sn
2−n ∧ Pn ∧ �−(p2+1)EhF ,

from which the first claim follows. Furthermore, since p2 + p < 2p2, Pn
cannot be equivalent to LKS0 otherwise EhF would have a shorter periodicity.
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