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Abstract The primary goal of this paper is to study Spanier—Whitehead dual-
ity in the K (n)-local category. One of the key players in the K (n)-local
category is the Lubin-Tate spectrum E,, whose homotopy groups classify
deformations of a formal group law of height 7, in the implicit characteristic
p. Itis known that E,, is self-dual up to a shift; however, that does not fully take
into account the action of the automorphism group G,, of the formal group in
question. In this paper we find that the G, -equivariant dual of E,, is in fact E,,
twisted by a sphere with a non-trivial (when n > 1) action by G,,. This sphere
is a dualizing module for the group G,, and we construct and study such an
object Ig for any compact p-adic analytic group G. If we restrict the action
of G on Ig to certain type of small subgroups, we identify Ig with a specific
representation sphere coming from the Lie algebra of G. This is done by a
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classification of p-complete sphere spectra with an action by an elementary
abelian p-group in terms of characteristic classes, and then a specific com-
parison of the characteristic classes in question. The setup makes the theory
quite accessible for computations, as we demonstrate in the later sections of
this paper, determining the K (n)-local Spanier—Whitehead duals of EZH for
select choices of p and n and finite subgroups H of G,.
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1 Introduction

This project began with a contemplation of duality in the K (n)-local stable
homotopy category, so let us start with explaining why this is an interesting
topic. One of the standard approaches to stable homotopy theory emphasizes
complex oriented cohomology theories, those with a natural theory of Chern
classes. Any such cohomology theory determines a smooth 1-parameter formal
group, and the algebraic geometry of formal groups can be used to organize
calculations and the search for large scale phenomena. Over an algebraically
closed field of characteristic p, formal groups are classified up to isomorphism
by a single invariant, the height. Fix a prime p and a height n, and choose a
representative F, for this isomorphism class. It is convenient to assume F),
is defined over some finite field I, of characteristic p, and usually ¢ = p".
There is a complex oriented cohomology theory K* := K (n)* = K(IF,, F,)*
determined by the pair (I, F;). Let K be the representing spectrum; this is a
Morava K -theory. One standard approach is to then study the homotopy theory
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of K-local spectra in the sense of Bousfield [15] and, perhaps later, assemble
that information into a more global picture.

In many ways, the K-local category is much better behaved than the full
stable homotopy category. To begin with there is a very effective computational
tool based on Lubin-Tate (or Morava) E-theory. The universal deformation
of F,, determines a Landweber exact complex oriented cohomology theory
E* .= E; = E(F,, F,,)*. Let E be the representing spectrum. If we let G be
the automorphism group of the pair (IF,, F},), then G is a profinite group and
acts on E. If X is any spectrum we define

E.X = 7. Lk (E A X).

Then E, X comes equipped with an E,-module structure and a compatible
continuous action of G; we say E, X is a Morava module. The K-local Adams-
Novikov Spectral Sequence based on E reads

H*(G,E/X) = m;_sLk X.

Here we are using continuous group cohomology. If p is large with respect
to n, this spectral sequence collapses for some important examples, such as
X = S9. Even when it does not collapse the Morava module E, X is a very
sensitive and informative algebraic invariant of X.

The group G is not simply a profinite group; it is a compact p-adic analytic
group. Itis a classical observation that the category of continuous modules over
such groups behaves very much like the category of quasi-coherent sheaves
on a very nice projective scheme; for example, there is a very good notion
of Grothendieck-Serre duality. See [62] for a classical source and especially
[64] for a thorough modern treatment. The assignment X — E.X is not an
equivalence of categories in general. (But see [59] for more on this point.)
Nonetheless, the structure of continuous G-modules is a very good indicator
of what might be true for the K-local category. In particular, there are rich
theories of duality in the K-local category that can be glimpsed by studying
Morava modules. The investigation of these dualities has been an important
aspect of research in chromatic homotopy theory.

Here, we will concentrate on Spanier—Whitehead Duality in the K-local
category. Any spectrum X has a K-local Spanier—Whitehead dual defined by
the function spectrum

DX = F(X, LxS").
The spectrum Lk S is the unit for the natural symmetric monoidal structure

on the K-local category, so this is a very basic duality. There is another duality,
more closely related to Grothendieck-Serre duality, known as Gross—Hopkins
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(or K-local Brown-Comenetz) duality. Without going into detail, if 7,(—)
denotes Gross—Hopkins duality, then D(X) A I, >~ I,,(X) for a certain invert-
ible object I, in the K-local category, so the two dualities are closely related.
For more on this point, see [63] and [45].

Spanier—Whitehead duality in the global (i.e. unlocalized) stable homotopy
category is often extremely hard to compute and behaves in strange and sur-
prising ways when X is not finite. However, it is much better behaved in the
K-local category. For example, quite a few years ago, the third author noted
that DE is essentially E; in fact, since G is a compact p-adic analytic group
of rank (or dimension) n? and since E*E is isomorphic, as a graded G-module
to the profinite group ring E*[[G]], there is an isomorphism of continuous
Morava modules

7.DE = 7,5 "E. (1.1)

See [63] for details. Note that we could equally write 7, DE = 7, F (S”2 ,E).
We could then hope that this isomorphism is induced by a G-equivariant equiv-
alence DE >~ X _”ZE, but this is false. In fact, it is not true even when restricted
to certain key finite subgroups of G. Indeed, Behrens [9] and Bobkova [14]
have computed D(E)*H for maximal finite subgroups H of G atn = 2, when
p = 3 and p = 2, respectively, and their results, in particular, show that DE
is not G-equivariantly equivalent to 2 "’E. Our first goal was to understand
this subtlety.

Ultimately, it turns out that this is not a question about E, but a question
about G. In fact, it is fairly formal, if technically formidable, to arrive at the
following result.

Theorem 11.16 Thereis a p-complete spectrum Ig with an action of G, whose

underlying p-complete homotopy type is S " such that there is a G-equivariant
equivalence

DE ~ F(Ig, E).

By combining Remark 4.23 and Proposition 5.9 we also have that the action
of G on H,2Ig = 7, is trivial. These results imply the formula (1.1).

The question then is to understand the equivariant homotopy type of Ig.
To do so, it is helpful to generalize and replace G by an arbitrary compact
p-adic analytic group G. Any such G has an exhaustive nested sequence of
open subgroups, all normal in G,

S e c--.crclyp=g,
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with the property that for large enough i, each I'; is a particularly nice p-
profinite group known as a uniformly powerful group. We review this theory
inSect.2. Wehave that I"; 1| C T; is of finite index and G acts on the classifying
space B(I"; /") by conjugation. We first define the G-space

BI‘i = hOlim]‘B(Fi/Fj),

where the limit is over the projections I'; / I'j 1 — TI";/ I'j and then we define
a p-complete G-spectrum

_ s 500 . A

Ig = (hocohm, X7 BF,)p ,

where X$° denotes the suspension spectrum after adding a disjoint basepoint.
The colimit is over the transfer maps

tr: BT — E°BTiq,

which are equivariant with respect to the G-action; see Remark 5.3. Then /g
has the underlying homotopy type of a p-complete d-sphere, where d is the
rank of G. See Proposition 5.6. Even in the cases where G = G or Gl,(Z))
the resulting action of G on Ig is rich and potentially very non-linear, since
the action on the building blocks is rich and highly non-linear.

There is a linear analog of Ig which is much simpler for computations.
Because G is a compact p-adic analytic group it has a p-adic Lie algebra g;
this is a free Z,-module of rank d, where d is the rank of G. The conjugation
action makes g into a G-module called the adjoint representation. We can define
a linear G-sphere

. AN
S8 = <hocolimi25’r°B(plg))
P
using this representation, where again the colimit is along transfers. Then S9

has the underlying homotopy type of a p-complete d-sphere and there is an
isomorphism of G-modules

Ha(lg, 7,) = Ng = Hy(S% Z),

as we recall in Proposition 5.9. Here A“g denotes the top exterior power of the
adjoint representation. This is the classical dualizing module for continuous
G-modules. Again, see [62] or [64] for details. In analogy with the classi-
cal algebraic duality statements discussed in these sources, one is led to the
following conjecture.
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Linearization Hypothesis 1 In an appropriate category of continuous G-
spheres there is a G-equivariant equivalence S =~ Ig.

This conjecture appeared in the work of Clausen, [20, §6.4]. Subsequently, in
[21], Clausen announced a proof of this conjecture in full generality, including
a discussion of what category is a natural home for the spectrum /g with its
G-action. Looking further back, duality and dualizing modules in the K-local
category featured in work from the early *90s by the third author and his
collaborators. See [26], especially the last section, and [39].

Remark 1.2 The analogue of the Linearization Hypothesis for compact Lie
groups was stated and proved by Klein in [47]. In a different (genuinely equiv-
ariant) setting, the Wirthmiiller isomorphism can also be cast as a duality
statement for compact Lie groups as in Fausk-Hu-May [29].

In this paper, we do not prove the Linearization Hypothesis in its full
strength, but we show it holds when the action of G is restricted to certain
small subgroups. Here we write Z(G) for the center of G.

Theorem 8.11 Let G be compact p-adic analytic group and let H be a closed
subgroup of G such that H/ HNZ(G) is finite. Suppose the p-Sylow subgroup of
H/HNZ(G) is an elementary abelian p-group. Then there is an H -equivariant
equivalence

Ig >~ Sg.

Although we do not prove the Linearization Hypothesis in its full strength,
our methods are very different from Clausen’s and are valuable in and of
themselves: They allow us to access the result for specific computations, as
we demonstrate in the latter sections of this paper. A major input in the proof
are techniques from Lannes theory [48], leading up to the following result,
which we deduce directly from the work of Castellana [19].

Theorem 6.24 Let F be an elementary abelian p-group and let X be a p-
complete F-sphere of virtual dimension k. Then there is stable vector bundle
& over BF of virtual dimension k and a p-equivalence of spectra

Mg ~ EF, AF X.

Furthermore there is an F -equivalence X >~ Y of p-complete F-spheres if and
only if there there is an isomorphism of modules over the Steenrod algebra

H*(EF. Ap X) = HY(EFy Ap Y).

Such an isomorphism uniquely determines the F-equivalence up to F-
homotopy.
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This result tells us that any stable H-sphere, and in particular either Ig or
S9, is linearizable and, as such, is determined by its characteristic classes. We
have included the proof here in its entirety, as many of the details are missing
in loc.cit. We then dive deeply into the constructions of Ig and S? to show that
their characteristic classes match.

The natural question that arises at this point is whether our methods for
proving Theorem 8.11 can be bootstrapped to the case when H/H N Z(G) is a
larger finite group. This is tied to the problem of classifying stable spheres with
an action of a finite group. This problem, as well as its unstable version, are
well studied in homotopical representation theory, though the methods there
for using Lannes theory to obtain results about general groups do not apply
here. Nevertheless, work of Jesper Grodal and Jeff Smith [35] may point the
way toward generalizations.

The essence of linearizability is distilled in the following result, which
makes Theorem 8.11 accessible for computations. It gives a hold on the H-
equivariant homotopy type of S9. We prove this by implementing ideas from
geometric topology. For simplicity, we limit our attention to finite subgroups
of G, but this is not restrictive in practice.

Proposition 9.8 and Proposition 9.14 Letr G be a compact p-adic analytic
group and let F C G be a finite subgroup. Suppose there is a finitely generated
free abelian group L C g with the properties that

(1) L is stable under the adjoint action of F on g, and
(2) L/pL = g/pg (or, more generally, Q, ® L = Q, ®z, a).

LetV =R® L and let SV be the one-point compactification of V. Then there
is an F-equivariant map S¥ — S% which becomes a weak equivalence after
completion at p.

This result unlocks the applications of Theorem 8.11 in the case of the
Morava stabilizer group G in chromatic homotopy theory. Specifically, we
develop a unified strategy to address the problem of determining K-local
Spanier—Whitehead duals D(E") of spectra of the form E"¥, for H as in
Theorem 8.11. For this application, we need more than the above duality results
applied to the profinite group G. Namely, we need a good understanding of
invertible equivariant E-modules. We develop this is Sect. 12, where again
the theory of characteristic classes plays a leading role. Further, we revisit the
known examples mentioned above but also explore new cases. An important
part of this paper develops this new strategy for addressing familiar questions
in chromatic homotopy theory.

With that in hand, we apply the observation that if H is finite, then Tate
vanishing [36] implies that there is an equivalence

DE") ~ (DE)H.
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This (now) standard but subtle fact allows us to combine our results on the
equivariant homotopy type of DE and the results on equivariant invertible
E-modules to calculate D(E"?) for interesting H.

As a first example, if H C Z(G) is a finite subgroup of the center of G,
then

D(EM) ~ 5~ ghH (1.3)

This follows from Theorem 11.16 and the fact that H acts trivially on /. The
center of G is not large; indeed, Z(G) = Z;, the units in the p-adic integers.
Hence, this example has the most impact when p = 2 and

H = Cy = {£1} € Aut(F,,/F ) C G.

The full force of Theorem 11.16, Theorem 8.11, and Proposition 9.8 can
also be used to recover the results of Behrens [9] and Bobkova [14]. If n is small
with respect to p, then G can contain p-torsion elements. For example if n = 2
and p = 2, the maximal 2-torsion subgroup is isomorphic to the quaternionic
group Qg of order 8. If n = 2 and p = 3, the maximal 3-torsion subgroup is a
cyclic group C3 of order 3. In the result below, G = Aut(IE‘pz, F¢) where F¢
is the formal group law of certain supersingular elliptic curves.

Theorem 13.12 and Theorem 13.25 Letn = 2 and p = 2 or 3. Let F <
G C G where G is a maximal finite subgroup of G containing the maximal
p-torsion subgroup. Then

DE"") ~ S¥E",

The spectrum E"C is the K-localization of the spectrum of topological
modular forms. At either prime, the Morava module E.E"C is 24-periodic;
from this and (1.1) one can prove E.D(E"C) ~ $24%—4E"G for some integer
k. The difficulty is to understand why k& must be 2.

For F = G, Theorem 13.12 (p = 3) was originally proved by Behrens in
[9] and Theorem 13.25 (p = 2) by Bobkova in [14]. Both papers used delicate
calculations based on the theory of topological resolutions from [31] and [10].
We have replaced that style of argument with one that depends ultimately on
the representation theory of C3 and Qg, respectively.

The case p = 3 of Theorem 13.12 can be extended to an arbitrary odd prime
p and height n = p — 1. In that case, the maximal p-torsion subgroup of G
is Cp, a cyclic group of order p, and its representation theory helps us prove
the following result. Here, G = Aut(F ,, F,,) where F, is the Honda formal
group law.
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Theorem 14.14 Let p > 2 andn = p — 1. Let G € G be a maximal finite
subgroup containing the maximal p-torsion subgroup of G. Then

D(EhG) ~ E—(P—1)2(2P+1)EhG.

Note that at n = 2 and p = 3, the spectrum E"C is 72-periodic, so
¥ 28E"C ~ $#E"C . Compare Theorem 13.12 and Theorem 14.14.

Finally, a direct application of Theorem 14.14 gives us a new result about
the K-local Picard group Pic,. Namely, we compare our result on Spanier—
Whitehead duality with results about Gross—Hopkins duals of the same spectra
from [6]. At the very end of this paper, we prove the following result.

Theorem 14.16 Letn = p — 1 and F = C,. Then, there is an element
P, € Pic, such that E, P, = E. as Morava modules but

P, AEM ~ sPPHPERF

In particular, P, is a non-trival element of subgroup k, of exotic elements in
the Picard group Pic,,.

In an analogous way, our mainresultinthe casen = 2 = p from (1.3) is used
by Heard—Li—Shi [40] in combination with their computation of I, (Eh Cz) to
prove that there are exotic invertible elements in the K-local category at p = 2.

Organization of the paper

The next three sections are a review of results found throughout the literature
needed later in the paper. In Sect. 2, we begin by reviewing some theory on
compact p-adic analytic groups and introduce what will later be our main
example, the Morava stabilizer group G. In Sect. 3, we discuss properties of
the mod p cohomology of these groups. Section 4 is a review of Poincaré
duality and of Frobenius reciprocity for compact p-adic analytic groups.

Section 5 begins our investigation of new results. There, we introduce the
spheres Ig and S9 and state the Linearization Hypothesis. In Sect. 6, we study
spheres with actions of finite subgroups, reviewing the classical theory of
Lannes and key facts about characteristic classes. This is where we deduce
Theorem 6.24 from the work of Castellana. We apply it to Ig and S® in
Theorem 6.25. This reduces the proof that Ig ~y S9 (Theorem 8.11) to a
cohomological calculation. For this computation, we need to do a tricky anal-
ysis of Lyndon—Serre—Hochschild spectral sequences. We have opted to isolate
these technical aspects to Sect. 7, which can easily be skipped on a first read.
Section 8 is dedicated to the proof of Theorem 8.11.
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In Sect. 9, we get ready for our computation in the examples to follow.
This is a study of Frobenius reciprocity for G-manifolds. We do not claim
originality for the results of this section, but include them here because we did
not find them conveniently gathered in literature. Based on these geometric
results, we prove Propositions 9.8 and 9.14 at the end of this section.

The last sections are applications of our results to chromatic homotopy the-
ory. Sections 10 and 11 study Lubin—Tate theory E. In Sect. 10 we introduce
technical background from chromatic homotopy theory and in Sect. 11 we
prove Theorem 11.16. In Sect. 12, we review equivariant techniques estab-
lished by Hill-Hopkins-Ravenel that can be used study the Picard groups of
categories of R-modules in G-spectra, as well as establish our general strat-
egy for computing the duals D (E"F) for finite subgroups F C G in the final
parts of the paper. The last two sections are the computational applications of
our theory. Section 13 contains the proof of Theorems 13.12 and 13.25 and
Sect. 14 that of Theorems 14.14 and 14.16.

1.1 Acknowledgments

This paperis aresult of along journey, and a great many people helped along the
way. The project began in the spring of 2016 during an extended visit by Mike
Hopkins to Northwestern University, as part of his residency after winning
the Nemmers Prize in Mathematics. The initial question we set ourselves was
to find some equivariant explanation for the results of Behrens and Bobkova
mentioned above; that is, why 44? We quickly understood how to prove Theo-
rem 11.16 and then, after blithely assuming the Linearization Hypothesis and
some geometric topology, we began making the calculations found in the final
sections of this paper. Thus, we first have to acknowledge and thank North-
western University and the Nemmers Committee for this opportunity for an
extended period of collaborative research.

Coming to terms with the Linearization Hypothesis took some time, and
some of that intellectual pilgrimage was documented in a lecture by Hopkins
at the conference in July 2017 “Homotopy Theory: Tools and Applications” at
the University of Illinois Champaign-Urbana. This lecture, now known as the
“Mean Streets of Evanston” talk (“After 10PM, after the Whole Foods closes,
when only sinners are on the streets...””) has been widely viewed on YouTube
[43].

Lannes theory and the cohomology of the classifying space for sphere bun-
dles first arose in conversation between Mike Hopkins and Vesna Stojanoska
at Harvard University. We picked up these ideas at another NSF supported
conference “Chromatic Homotopy Theory: Journey to the Frontier” in 2018
at the University of Colorado. Thus we also heartily thank the Massachusetts
Institute of Technology, which sponsored Stojanoska’s visit to Cambridge MA,
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the Universities of Illinois and Colorado, the other organizers of the various
conferences, and the National Science Foundation.

However, the use of Lannes Theory went from speculation to concrete reality
only after a sequence of pivotal conversations with Jesper Grodal at the Isaac
Newton Institute in 2018 during the semester “Homotopy Harnessing Higher
Structures”. Jesper has unique and deep knowledge of group actions, Lannes
Theory, and classifying spaces — all crucial to this part of the project — and we
are extremely grateful that he was there to share his expertise.

The Newton Institute program brought together a remarkable range of math-
ematicians in homotopy theory, and we had very fruitful conversations also
with Tobias Barthel, Clark Barwick, Anna Marie Bohmann, John Greenlees,
Hans-Werner Henn, and Michael A. Hill. Thanks are due to all of them, for the
inspiring conversations as well as email correspondence well after the program
ended. We added thanks as well to the organizers of the semester program,
and to the Newton Institute and the staff there.

As a profession, we would be nowhere without the anonymous and careful
work of diligent referees; we are especially grateful to the main referee of this
paper, who gave the paper a very close and careful reading, and who had a
number of insightful comments and questions.

The Linearization Hypothesis is not new with this paper, as we explained
above, and we are grateful to Dustin Clausen for sharing and explaining his
ideas.

Finally, when it became apparent that we would make heavy use of Steenrod
squares in some of our arguments, someone repeated a hoary old joke about
“Squeenrod stares” and Vesna Stojanoska suggested to Anna Marie Bohmann,
who has a long track-record of writing quality light verse, that she could use
“Steenrod stairs” as the basis of a poem with a good many words beginning
st- and sq-. The result is below. We are touched and grateful that Anna Marie
has granted us permission to reproduce it here.

Derivation

To a stolid squalid attic
Full of strident squeaking squirrels
Dr. Squeenrod staggered squiffy up the stairs

When a tumble most dramatic
Put his letters in a whirl:
Squeenrod’s stumble gave the storied Steenrod squares!
Anna Marie Bohmann

@ Springer



A. Beaudry et al.

2 Basics on compact p-adic analytic groups

While our main applications of the results here are for the Morava stabilizer
group and the K (n)-local category, the initial analysis of the dualizing sphere
applies to a much wider class of groups G. The key feature is that G has a finite
index subgroup which is a pro-p group of a particularly nice type. Thus we
begin by fixing a prime p, and reviewing some basic definitions.

The following material is from Sections 1.4 and I1.8 of [25]. If G is a topo-
logical group, let G € G be the closed normal subgroup obtained by taking
the closure of the subgroup generated by the nth powers. Similarly, if H € G
is a closed subgroup, we let [H, G] € G be the closure of the commutator
subgroup of H with G, and if H and K are two subgroups, let H K be the
closure of the product subgroup.

In all the statements below, there are slight modifications for the prime 2.

Definition 2.1 A pro-p group G is uniformly powerful if

(a) G/GP (or G/G*if p = 2) is abelian;
(b) G is topologically finitely generated;
(c) The lower p-series

G=G12G22...2G; 2Giq :G,P[Gi,G] 2.
has the properties that the pth power map induces an isomorphism

(=P
Gi/Git ~ Git1/Git2

and it is exhaustive: (); G; = {e}.

If G is a uniformly powerful pro- p-group and G/ GP? = (Z/ p)¢, then G has
rank d. Note that each of the subgroups G ; is normal is G, and hence normal
in G; withi < j.

Remark 2.2 If G is uniformly powerful and topologically generated by

ap,...,dq

G/G" =Z/plar, ..., ad}
i1

. i—1
Gi/Giyj =Z/p'{ay ,....a] '} forj<i.
In §I1.8.2. of [25], the authors give an intrinsic definition of a compact
p-adic analytic group. For our purposes it is enough to have the following

characterization. See Corollary 8.34 of [25].
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Theorem 2.3 Let G be atopological group. Then the following are equivalent:

(1) G is a compact p-adic analytic group;

(2) G is a profinite group with an open subgroup which is a topologically
finitely generated pro-p group;

(3) G has an open normal subgroup of finite index which is a uniformly pow-
erful pro-p group of finite rank.

For such a group G, the rank of G is defined to be the rank of G where G
is any open normal subgroup of finite index which is a uniformly powerful
pro-p group. The rank is independent of this choice.

Definition 2.4 Let G be a compact p-adic analytic group and let G C G be
a an open uniformly powerful finite index normal subgroup of rank d. Then,
from Definition 2.1 we have that (—)” : G; — G;4 is a continous bijection
of sets. This allows us to form the Lie algebra g of G. This is the set G with
addition given by

x4y =Lm@x? y?" )"
n

and Lie bracket by

[x’ y] _ 1im[xpn ’ ypn]p—Zn

n
The Lie algebra g is independent of the choice of G; see the beginning of §11.9.5
of [25]. A chosen set of topological generators for G defines a continuous
isomorphism Z‘; = g of compact abelian groups. See Theorem 4.17 of [25].

Remark 2.5 (The adjoint representation) Again, let G € G be a an open uni-
formly powerful finite index normal subgroup of rank d. Since G is normal in
G, there is a conjugation action of G on G. This gives a Z ,-linear action of G on
g called the adjoint action, and g with this action is the adjoint representation
of G. For later purposes we define

These form a nested sequence of sub-representations and the equality of sets
g = G induces an isomorphism of abelian groups

9i/8i+j =Gi/Givj, =1, (2.6)

wheni > 1if p > 2 and i > 2 for p = 2. This becomes an isomorphism of
G-modules if we act on G; /G, by conjugation.

Example 2.7 The simplest example is G = Zi. ThenG =G =gand I'; =
(pi—lzp)d.
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2.1 Groups of units in normed algebras

We discuss two instances of compact p-adic analytic groups; the general linear
group Gl,,(Z), in Example 2.12, and the Morava stabilizer group, in Exam-
ple 2.15. In both cases the group G arises as the group of units in a sub-algebra
of a complete normed Q,-algebra (A, | - ). The norm extends the standard
norm on Q,; hence, |[p'| = p~'. If A is of finite rank over QQ,, we define

Ai={xeAllx|<p})

Then Ag C Ais asub-Z,-algebra, each A; isanidealin Ag,and pA; C A; 4.
In our examples, this inclusion is an equality, so for convenience we assume
this. The most basic example is A = Q,, Ag = Zp, and A; = p'Z,.

We let G = AX be the group of units in Ag and define closed normal
subgroups

=14 p'AgCG.

In both our examples G is a compact p-adic analytic group with a uniformly
powerful subgroup
M=14+A1 =14 pAgifp>2or
=14+A=1+4Apif p=2.

In fact, more is true. The following is an exercise in definitions.

Lemma 2.8 Let A be a complete normed Q ,-algebra. With the notation estab-
lished above and if pA; = Aij4+1 we have the following conclusions.

(1) If p > 2, the subgroup I";j 11 C I'y is the ith term in the lower p-series for
I'y.

(2) If p = 2, the subgroup I'i12 C T'y is the ith term in the lower p-series of
Is.

It follows from Lemma 2.8. that the rank of G is the Q,-rank of A.
The standard exponential map

exp: Ai— 1+ A; =T (2.9)
converges fori > 1if p > 2 andi > 2 if p = 2. If we give Ag the structure

of a Z,-Lie algebra with bracket [x, y] = xy — yx, then this induces an
isomorphism of Lie algebras

exp: A = plAg — g; (2.10)
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fori > 1if p > 2andi > 2 if p = 2. This is the content of Corollary 11.7.14
of [25].

The group G acts on Ag by conjugation and the exponential map also gives
an isomorphism of G representations

exp: Ai/Aitj —= 1+ A)/(1+ Aixj) =Ti/Tigj (2.11)

fori > 1if p > 2(ori > 2if p =2)and j < i.Notethatsince A;A; C A;4;,
this exponential function has a very simple form: if x € A;, then

exp(x) =1+4+x  modulo Ay;.

In combination with (2.6) this establishes an isomorphism of representations
Ai/Aivj = 0i/8i+j

fori >1ifp>2(ori >2ifp=2)andj <i.

2.2 The main examples

We now give our two main examples.

Example 2.12 (The general linear group) Let G = Gl,,(Z)) be the group of
invertible n x n matrices with entries in the p-adic integers. Then Gl,(Z))
exactly fits the rubric of Sect. 2.1: we can let A = M, (Q),), the Q,-algebra
of n x n matrices. Then Ag = M, (Z),) and Gl,,(Z,) = M,(Z,)*. Further,
Ai = len(Zp)~

For the moment assume p > 2. Then Gl,(Z),) is a compact p-adic analytic
group with uniformly powerful subgroup I'y = 1 + pM,,(Z)). The group I';
is the kernel of the map Gl,(Z,) — Gl,(Z/p’); thus,

Ty =1+ p'My(Zy).
The group Iy is of rank n?. Furthermore, by Remark 2.2 we see thatif j <
then I'; / T'; 4 j is a free Z/ p/ -module of rank n?.

If g = gl,, is the Lie algebra of Gl,,(Z ) then Sect. 2.1 gives an isomorphism
of Lie algebras

My(Zp) — gl - (2.13)

If we let Gl,,(Z),) act by conjugation on M, (Z), this gives an isomorphism of
representations from M, (Z,) to the adjoint representation. As in Remark 2.5,
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we can filter g by powers of p and the isomorphism of (2.13) descends to an
isomorphism of Gl,, (Z,)-modules

P My(Zy) ) P I My (Zy) = gi /g ETi/Tigjy J<i. (2.14)

Here the action of Gl,,(Zp) on I'; / T'; 1 j is again by conjugation.

If p = 2, Gl,(Zy) is a compact p-adic analytic group with uniformly
powerful subgroup I', = 1 + 4M,,(Z>). The rest of the remarks go through,
with the evident changes on bounds.

This example extends without much change to Gl,,(W) with W = W (k)
the p-typical Witt vectors of a finite algebraic extension k of IF,. The rank of
Gl,, (W) is now n?[k : F,].

Example 2.15 (The Morava stabilizer group) This is our main example, and it
has a number of variants, all of which fit the setup of Sect. 2.1.

To be concrete let F = F(x, y) be the Honda formal group law of height
n > 1 over F, and let O, be the endomorphism ring of F over Fn; thus,
an element of O, is a power series ¢(x) € Fpn[[x]] so that (F(x,y)) =
F(p(x), ¢(y)). Since F is defined over [, the power series S = x” is an
endomorphism in O, and there is an isomorphism of Z,-algebras

W(S)/($" — p) = Oy
where W = W(IF,») is the Witt vectors. The source is a non-commuting
truncated polynomial ring: if @ € W then Sa = a° S where we write o in

exponent to indicate the action of the Frobenius on W.
Note that O, is free of rank n2 over Zp. The Q)-algebra A = Q, ®z, O,

is a complete normed Q)-algebra with [[S] = p~ /" Then Ag = O, and
A; = p'O,. Define
Sy = O,;.
This is the small Morava stabilizer group. The Galois group Gal(F » /IF),)
acts on O, through the action on W; the full Morava stabilizer group is the
semi-direct product

Gy =Sy X Gal(F /T ).

Let p > 2. The groups S, and G,, are compact p-adic analytic groups with
uniformly powerful subgroup I'1 = 1 + pO,,. Then

ri=1+ piOn.
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Section 2.1 again applies and we have an isomorphism of Lie algebras

O, — 3. (2.16)

Furthermore S,, acts by conjugation on O, and we have an isomorphism
of representations from O, to the adjoint representation. This isomorphism
extends to one of G,-modules. As in Remark 2.5, we can filter g by powers of
p and the isomorphism of (2.13) descends to an isomorphism of G, -modules

PO Oy = gi/gir =T/ Tigjy  J <. (2.17)

Here the action of G, on I'; / I'; 1 ; is again by conjugation.

If p = 2, the group G, is a compact p-adic analytic group with uniformly
powerful subgroup I'; = 1 + 40,,. The rest of the remarks go through, with
the evident changes on bounds.

Again this could be generalized to the example where F is a formal group
of height n over an algebraic extension of IF,. We can go further. The algebra
A=Q, ®z, O, is a central division algebra of Hasse invariant 1/n over Q,.
The paradigm of Sect. 2.1 extends to the case when G is the group of units in
the maximal order of any finite dimensional central division algebra over Q.

Notation 2.18 Driven by these examples, we will adopt the following con-
ventions for the rest of the paper. We will equip our p-adic analytic groups G
with a nested sequence of open normal subgroups of finite index

Gormorms---oI ol 2.

so that either I'{ (if p > 2) or I'; (if p = 2) is a uniformly powerful pro-p
group. If p > 2 and i > 1 then

Tip1 =T, Tl (2.19)

If p=2then 'y = Fip[Fi, ['>] for i > 2. Thus the remaining terms for
the sequence are the lower p-series for I'; or [';, depending on the prime. See
Lemma 2.8.

Note that if p = 2, there is no theoretical stipulation on I'y, although in
practice it will be very concrete.

The rank of G will be the rank I'; for i large.

3 Some group cohomology, with applications

Notation 3.1 In this section as well as the remainder of the paper, we are
concerned with continuous group cohomology. We will not decorate the coho-
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mology notation to specify continuity; it is to be understood that all cohomology
is continuous whenever that makes sense. If G is any compact p-analytic group
(or simply a finite group), we write H{(G, ) for G/G1, where G is the
closure of G”[G, G]. We have that H!(G, F,) = H(G,F),)*, where (—)*
denotes the I ,-linear dual. If we write H*(-) we mean H*(—,[F,); we use a
similar convention for homology.

Following [64] we could define

H,(G, M) = Torzr!1¢l!

(Zp, M)

where Z ,[[G]] is the completed group ring, M lies in some category of contin-
uous G-modules, and Tor, denotes the derived functors of a completed tensor
product. The equation H;(G,F,) = G/G; is then a lemma, rather a defi-
nition. We won’t use the greater generality, so we won’t need to make these
ideas precise.

Now let G be a fixed compact p-adic analytic group with uniformly powerful
subgroup I'; if p > 2 or perhaps I'; if p = 2. See Notation 2.18. We are
interested in the continuous cohomology H*(T";, M) for various i and various
coefficients M.

Foranyi andall j > i, the quotientmaps I'; — I';/T"; — I';/T'; 1 induce
isomorphisms

H{(T;)) = H(I';/Tj) =T/ Tiyq.
Let Vi = H'(I';) = (I';/ Ti+1)*. Then
H\(Ty/TH=H'T) =V, j>i. (32)
If V is a vector space over a field k, let A(V) denote the graded exterior
algebra on V, and write A" (V) € A(V) for the homogeneous elements of
degree r. Below we will also have a symmetric (polynomial) algebra P(W)

on a vector space W. The following basic result is the key to much of what
follows.

Theorem 3.3 (1) The natural inclusion Vi = H\(I';) < H*(T}) induces an
isomorphism of graded commutative algebras

A(Vi)— H*(T).

(2) The inclusion I'j11 — ©'; induces the zero map on Hk(—)for k> 0.
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Proof The first statement is proved by combining Theorem 5.1.5 of [64] with
Theorem 3.6 of [25]. The second statement follows from the first and the fact
that

Hl(Fi—i-l, Fp) = Fi+l/Fi+2 — Fi/Fi+1 = Hl(F,', Fp)
is the zero map. O

We now turn to the cohomology of I'; /", with j > i, working our way to
Theorem 3.6. To establish some notation we contemplate the exact sequence
of groups

f
| —=T, /T;L—=1yr;—>ry/rj —=1, (34

where f is the inclusion and g is the projection. Let W;_; C HZ(Fj_l/ ')
be the image of the Bockstein operation on V;_| = Hl(Fj_l/Fj). By
Remark 2.2, the group I'; 1/ I'j is an elementary abelian p-group; therefore,
there are isomorphisms

AWVi_DQP(W;_) ZEH*(Tj_1/Tj), p>2;
P(Vj_) = H*(Tj_1/T)), p=2. 3.5)

In the case p = 2, W, C Hz(Fj_1/Fj) is the subvector space given by
squares of the elements in degree 1.

In Theorem 3.6, we extend (3.5) to H*(I";/ I'j). The bounds on i and j in
this result are not optimal, but certainly are good enough for later applications
and relieve us of the duty of making special statements at p = 2. Note that
part (1) gives a splitting result, but some care is needed in interpreting that
statement. We will add further comments below in Remark 3.9.

Theorem 3.6 (/) Foralli > 3 and j > i + 1, there is an exact sequence of
vector spaces

0— A2V, L~ H2Ty/T)) L= W;_ ——0

and any splitting of this short exact sequence defines an isomorphism of
algebras

A(V) ®@ P(Wj—1) = H*(T';/T)). (3.7

(2) Foralli >3 and j > i + 1, the image of H*(I';/T"j) — H*(I'; /T j41)
is A(V)).
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Proof We will do the case when p > 2. There are evident modifications needed
for p = 2 to account for the fact that H*(I'j /T"j ;1) is a polynomial algebra
if p=2.

Part (1) is by induction on j, using that I';/I'; | is elementary abelian
for the base case. Compare (3.8). The induction step is completed using the
Lyndon-Hochschild-Serre Spectral Sequence for the exact sequence of (3.4).
To compute the differentials we extend that exact sequence to a diagram

l—T;4/Tj——=T; /T ——T; /T 1 ——1 (3.8)

S

l——=T; /T ——=T;/T; —=T;/Tj. — L.

Since j > 4,Remark 2.2 implies that the top exact sequence is non-canonically
isomorphic to

0——= z/p) =L~ 2/ p*! — 2/ p) —0.

The diagram of (3.8) gives a diagram of Lyndon-Hochschild-Serre Spectral
Sequences

EY? = HP(I;/T_, HI(j_1/T})) =—— HP(I;/T)

| |

EyY = HP(Tj—2/Tjo1, HI(Tj-1/T ;) == HP(Tj—2/T).

Note that we have decorated the top spectral sequence with an overbar to later
help distinguish between the two.

Since I'| (or 'y if p = 2) is uniformly p-powerful, we have by Definition 2.1
that [I[';, ;] € I'jyj forall j > i > 1 (ori > 2if p = 2). Thus in both
spectral sequences the action of the base group on H*(I';_;/T';) is trivial.

By Remark 2.2 the bottom of these spectral sequences is completely known:
indeed, there are isomorphisms

EXY = H*(Tj2/Tj1) = A(Vj—2) @ P(W;_2),
Ey* = H*(Tj_1/T)) = A(Vj) ® P(W_y),

and E}" = E;’O ® E(z)’*. The only non-zero differential is d. This is deter-
mined by the isomorphism dy: V;_| = W;_» C E%’O and the multiplicative
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structure of the spectral sequence. We conclude

E:o* = E;k* =AWV 2)®@P(W;_y)
with V;_p = EL and W;_; = EX.

We now turn to the top spectral spectral sequence. The base caseof j = i+2
is covered by the above. By the induction hypothesis we have a short exact
sequence

0 A2V~ B2 T ) LWy 0.

We will make a useful choice of splitting of this exact sequence to obtain an
isomorphism A(V;) ® P(W;_2) = H*(I';/T"j_1) to aid in completing the
induction step.

We have isomorphisms

7 70 ~

E; = H*(;/Tj_1)

—=0,% * ~

E2 =H (ijl/rj) = A(ijl) ® P(ijl)

and E;’ fx Ez’o ®Eg’ . By the induction hypothesis we have an isomorphism

7l 70 ~ * ~
Ey" = H*(Iy/Tj 1) = A(V) ® P(Wj2) .

By the naturality of the spectral sequences and the calculation just completed
we have that the composition

dy —2,0

~ 70,1
Vioi=HYIj_1/T)) = E, E,

= H>(I;/Tj1) EY° = HXTj /T 1)

has image exactly W;_, C ES’O. So dy maps V;_| = Eg’l isomorphically
onto W;_» C Fﬁ’o. We then have

EyT= AV ® P(Wi_)
with V; = E;’O and W;_; = Eg’z.
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It remains to show the spectral sequence collapses at E3. For this it is
. . —0,2 . .
sufficient to show d3 vanishes on W;_; = E,"". The target of this differential

isA3(Vy) = Eg’o. However, we know from Theorem 3.3 that the composition
A(V)) — H*(T;/Tj) — H*(Iy)
is an isomorphism, so the map induced by the edge homomorphism
AV — EL = BT/ T))

must be an injection. Thus d3(W;_1) = 0 as needed.
For part (2) we examine the diagram from part (1)

0— A2, L~ BTy T) LW ——>0
00— A2V, —L s HA(Ty/ T jy) — W 0

Since the map HZ(Fj_l/ ') — HZ(FJ-/ ['jy1)iszero,themap W;_| — W;
is zero. It follows that the kernel of the map HZ(F,-/ ) — HZ(F,'/ Cjyp)is
isomorphic to W;_; and, in fact, this gives a splitting of the top f*. The result
follows. O

Remark 3.9 Part (1) of Theorem 3.6 says that we can choose an isomorphism
of graded algebras (3.7)

AV)® P(W;_1) = H*(I';/T)).

If j <2ithenl;/T'; = (Z/p?~"? and we can choose this isomorphism to
be an isomorphism of unstable algebras over the Steenrod algebra, and we can
even add the further stipulation that the appropriate higher Bockstein defines
an isomorphism from V; to W; 1. If j > 2i, it is far less clear how the higher
Bocksteins behave, and it is no longer possible to be so explicit.

For example, if G = S,; is the Morava stabilizer group of Example 2.15 then
we know by work of Lazard and Morava (see Remark 2.2.5 of [56]) that there
is an isomorphism

Aq, (X1, X3, -+, Xon—1) = H*(Sp, Zp) ®z, Q)

where xp;_1 is in degree 2k — 1. This implies that the structure of the higher
order Bocksteins must be rich.
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As a further remark, note that if we choose a splitting as in (3.7), then the
map

A(V))® P(W;_) = H*(T;/T;) — H*T;
gives an isomorphism A(V;) = H*I';. However, we have not proved that
W;_1 maps to zero.

If G is a profinite group, it is not immediately obvious how to define its
classifying space. In particular, there is a long history, going back to Artin
and Mazur, of regarding the classifying space as a pro-object. We will need
nothing that sophisticated. For our purposes, the following will suffice.

Definition 3.10 Let G = lim; G; be a profinite group. Then the classifying
space BG is defined by

BG = hOliijGj.

In particular, if G is our compact p-adic analytic group with uniformly
powerful subgroup I'y we have BI'; = holim; B(I';/ I';4 ). It is immediate
that

Iy, n=1;

T, BT = 0. nzl

We remark, however, that this isomorphism does not recover the topology on
.

The next result now follows from Theorem 3.3, Theorem 3.6, Proposi-
tion 3.12 below, and the fact that if G is a finite p-group, then X*°BG is
already p-complete. It is slightly surprising, since suspension and limits to do
not formally commute.

Proposition 3.11 The natural map
YBI'; — holim; X’ B(I'i/ Tiy )
is an equivalence after p-completion. Furthermore, we have isomorphisms
A(V;) ZcolimjH*(;/Tiyj) = H*(I';) = H*(BT)).

The proof of Proposition 3.11 is completed with this general result.

Proposition 3.12 Let X be a bounded below spectrum and let
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be a tower of bounded below spectra under X with the property that H, X —
H, X} induces an isomorphism

H.X = Image{H, Xy+1 = H.Xi}.
Then X, — holimy (X k)?, is an equivalence and the induced maps
H.X — lilzn H, X}
co}{im H*X, — H*X

are isomorphisms.

Proof If Z is any spectrum, write H }F;,“ A Z for the standard cosimplicial
cobar complex defining the Adams Spectral Sequence. This spectral sequence
reads

Exty (2'Fp, H.Z) = n'm HFY™ A Z =5 7, sholimy HFS™ A Z.
Here A, is the dual Steenrod algebra. If Z is bounded below then the map
Z—> holimpy HF}P' A Z
is p-completion. By construction, there is an isomorphism, natural in Z,
mHET A Z = AP @ H,Z.

Now turn to the tower under X. The hypothesis on the homology of the
tower implies that for all s the natural map

mHEST A X - hollcim HFSH A Xy = lilzn m HEST A X

is an isomorphism. Thus we have equivalences

X, =~ holimy HF%™ A X =~ holimaholim; HF3F! A X
~ holimgholima HF A X;
~ holimk(Xk);.

4 Duality and Frobenius reciprocity
This section collects a great deal of relatively standard material about group

cohomology, with the wrinkle that we need these results for compact p-adic
analytic groups. Much of this can be collected from [62] and [64].
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Define the completed group ring of G to be

ZpllG]] = lim Z/p"lIGi (4.1)

where G = lim G; is any presentation of G as an inverse limit of finite groups.

Notation 4.2 In this section G will be a compact p-adic analytic group unless
otherwise stated. All modules we consider will be continuous Z,-modules and
most examples will be either p-profinite or discrete p-torsion. The following
conventions and definitions hold or continue to hold.

(1) Hom always means continuous homomorphisms and tensor products
between profinite modules are always completed, and taken over Z,, if
unadorned.

(2) If M is a continuous right G-module and N is a continuous left G-
module we will also write M ®¢g N for M ®z,,[1g7) N. and we will write
Homg (M, N) for Homg, 1ig1j(M, N). We will similarly abbreviate the Tor
and Ext decorations.

(3) If M and N are two continuous left G-modules we give M @ N the structure
of a left G-module with the diagonal G-action: g(x ® y) = gx ® gy.

(4) Define Hom? (M, N) to be the abelian group of continuous homomor-
phisms with the left G-action given (g¢)(a) = g(p(g_la).

The action on Hom® has the twin features that Homg (A, B) = Hom? (A, B)Y
and the evaluation map

Hom”(A, B) @ A—> B

sending ¢ ® a — ¢(a) is a morphism of left G-modules.

4.1 Group cohomology basics

Let G be a compact p-adic analytic group and M a continuous G-module.
Following Serre [62], we let C*(G, M) be the set of continuous maps

¢ .G — M.

If s = 0, then C*(G, M) = M. We will also call these continuous cochains.
The collection C*(G, M) is a cosimplicial abelian group with coface operators
given by

X1¢(X1, e 9xs—|—1)5 i = Oa
dl¢(x1’~"7xs+l): ¢(-x0a-"axixi+1""’xs+1)v lflisa
d(x1, ..., Xs), i=s+1.
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Codegenerarcy operators are obtained by inserting identities; we won’t need
them. We then have

H*(G,M) = H*(C*(G, M), d)

where 0 = Zfzo(—l)idi . As explained in Sections 3.1 and 3.2 of [64], these
are the right derived functors of H O(Q M) =M 9. indeed, there is a natural
isomorphism

H*(G, M) = Ext$(Z,, M)

and the cochain complex above is the standard cobar construction for calcu-
lating the Ext-groups. We also define

Hy (G, M) = TotY(Z,, M). (4.3)

Let f : G — G be a continuous map of compact p-adic analytic groups
and M a G-module. Then M becomes a G;-module by restriction: if x € G;
and a € M, then x - a = f(x)a. Write this module as f,M. Then we get a
map

[7:CNGa, M) — C'(Gy, fxM)
given by sending ¢ : G — M to a cochain f*¢ : G — f.M with
(fP)(x1, -+ x5) = d(f(x0), - - oy f(x5)).
The new action on M is needed so that f*(d°¢) = d° f*¢. We then get a map
[ H(Ga, M) — H* (G, fuM).

Example 4.4 For example, suppose f = ¢ : G — G is given by conjugation
and M is a left G-module; then we write $ M for f,, M and we get a map

CZ :H*(G, M) — H*(G,*M).

The action on 8 M is given by x - a = (gxg~a.

More generally, let I' C G be a closed subgroup. If g € G let 8T" denote the
conjugate subgroup g~ 'I'g and write cg(—) = g(—)g ! : 8T — T for the
conjugation homomorphism. The conventions are chosen so that ¢y, = cgocy,.
If M is a G-module, we then get a homomorphism

c;'ﬁ cH (T, M) — H*(ST,8M).
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4.2 Induced modules and transfer
Let G be a compact p-adic analytic group and let ' € G be a closed subgroup.

If M is a continuous I'-module, define the coinduced G-module to be the
module

ME = map(G, M)

of continuous T"-equivariant functions ¢ : G — M with G action given by the
formula

(8p)(x) = p(xg).

The functor M — M ? is right adjoint to the forgetful functor to I'-modules.
The following result is Schapiro’s Lemma.

Proposition 4.5 Let M be a I'-module which is either discrete p-torsion or
profinite. Then we have a natural isomorphism

H*(G, M) = H*(T, M).

Proof The discrete case is covered in §1.2.5 of [62]. The profinite case follows
from the discrete case and the fact that if M = lim M;, then

mapp (G, M) = limmapp (G, M;). O
If M is a continuous G-module, then there is a map
nm M — qu = mapp(g, M)

adjoint to the identity M — M regarded as a ['-module map. The induced
map

res = resg :H*(G, M)— H*(G, Mlg) = H*T, M)

is the restriction map.
Now we specialize to the case where I’ C G is open and, hence, closed and
of finite index. There is a G-equivariant averaging map

Mlg =mapr (G, M)—> mapg(g, M) =M
p(-)— > gpg ).

gleg/T
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The induced map
tr=tl : H*(T, M) = H*(G, M{)— H*(G, M) (4.6)
is the transfer map. The next result follows from the definitions.

Lemma 4.7 We have the following naturality statements for restriction and
transfer.

(1) Let f : Gi — Gy be a continuous homomorphism of compact p-adic
analytic groups. Suppose I'; C G; is a closed subgroups and suppose
f(1) C I'y. Let M be a Gy-module. Then the following diagram com-
mutes.

H*(Ga, M) ———= H*(T2, M)

f*l l 1

H*(G1, fiM) — > H*(T1, fuM),

(2) Suppose further that Ty is of finite index in Gy and f induces an isomor-
phism G/ Ty = G,/ T's. Then the following diagram commutes.

tr

H*(T"2, M) H*(G2, M)

| |-

H*(FI, f*M) T‘ H*(gh f*M)

Still assuming I' € G is open, we have that the functor M +— Mlg is
also isomorphic to the left adjoint to the forgetful functor. The natural map of
I'-modules

Mg = map$(G, M)— M

sending ¢ to ¢(e) has a natural I"-module splitting that extends to an isomor-
phism of G-modules

Zyl[G1] ®z, 1y M = M. (4.8)
Thus we equally call M 19 the induced G-module.
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We have a commutative diagram of G-modules

114 oz, lGN er M " 114 (4.9)
g
M nm MF tr M

where ¥ (a) = ZgFEQ/F g ® g~'a and m is induced by the action of G on M.
The map ¥ induces the transfer map in homology

tre: Hy(G, M) — Hy(I', M).
More generally, if N is a right G-module we can use the isomorphism
N ®z,1161 ZpllG1] ®z,irn M = N ®z,1r)) M
and the map i to obtain a transfer map
try: Torsg(N, M)—> TorsF(N, M).
Likewise, m induces the map res; : Torg (N, M)—> Torsg (N, M) arising from

the ring homomorphism Z,[[T"]] — Z,[[G]]. There is a naturality statement
analogous to Lemma 4.7.

4.3 Frobenius reciprocity and cohomology

Let M and N be two continuous G-modules and let M ® N be their tensor
product with the diagonal action. Then we have a cup product pairing

H™(G, M) ® H"(G, N)— H"*""(G,M ® N).
If$p € C"™(G, M) and ¢y € C"(G, N), then
(¢ : W)(xlv . e v-xl’l+m) - ¢(X1, e ’xm) ® (xl o 'xm)W(xm+1’ LR v-xn)'

The following formulas (1) and (2) are in §1.2.6a of [62]. Following Serre we
leave them as an exercise.

(1) Restriction preserves products: for all x € H™(G, M) and all y €
H"(G,N)

reslg (x-y)= res?(x) . reslq(y);
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(2) Frobenius Reciprocity holds: forx € H™(I', M) and y € H"(G, N)
tric-;(x) Sy = tr?(x . reslg(y))
and forallx € H"™(G, M) and y € H"(I', N)
x - tf(y) = tf(resg(x) - y).

(3) Let I" € G be a closed subgroup and g € G. Then for all x € H™(I", M)
andy € H*(I', N)

i+ y) =ci(x) - ci(y) € H™ (8T, $M ®% N).

Note M ®5 N =8 (M ® N).

4.4 Conjugation actions

As above, let cy(x) = g 'xg denote conjugation by g € G. Let M be a

G-bimodule; that is, M is both a left and right G-module and the two actions
commute. Our mainexampleis M = Z,[[G]] of (4.1). As M is aleft G-module,
we have a map ¢, : H*(G, M) — H*(G,#M). But the right multiplication
of G on M defines a map r;,“ : H*(G, M) — H*(G, M). We relate these two
maps.

If ¢ : G¥ — M is a continuous cochain, define

Xg (@) : G —-M

Ko@) (X1s o x5) = g7 D (ce(x), - con))g- (4.10)
We check that this induces a map on cochain complexes and hence a map
Xzt H(G, M) — H*(G, M).

Note we have X;h = x50 X;‘, so the assignment g +— X;f defines a right action
on H*(G, M). The following result says the action is very simple.

Proposition 4.11 Themap x; : H*(G, M) — H*(G, M) is given by the right
actionof g € Gon M.
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Proof The right action of G on H*(G, M) is given by multiplication of G on
the right on M; on cochains we have

rg(d))(xl’ e vxS) == d)(xl’ ceey xS)g'
We construct a cochain homotopy 7T : CStHG, M) — C*(G, M) with
0T + 1,0 = xg — rg.

The result will follow.
Define 7}, : s, ZpllG1) — C*(G, ZpllG]1D,0 <i < s, by

THG) (1, xs) = (X1, xin g cg(xig)s - e (x0))g.
Thus g~ ! is in the (i 4+ 1)st-slot. Note
Td¢)(x1, ..., x0) = Xg(B)(x1, ..., X5)
and
T3 ) (x1. .. X)) = rg(@) (X1, ... Xg).
and also
| diTi™, i<
Tjd' = Tyl =) #0;
AT, i>j+1.

Then we set

)
Ty =) (=D)'T;: TG, M) - C* (G, M). 0
i=0
Remark 4.12 In particular if M is a trivial module, we can make it a bimod-
ule by giving it the trivial right module structure. Then we get the standard

argument that conjugation of g induces the trivial action on H*(G, M).

If M is bimodule then we get an isomorphism M = & M of left G-modules
that sends a to gag™'. This gives a commutative diagram
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K= H*(G, M) (4.13)
Gl
H*(G, M) x~
Cx
& H*G,8M).

Thus all possible ways of defining the conjugation action determine each other.

4.5 Dualizing modules and duality

We review the concepts of Poincaré duality, relying especially on Section 4.4.
of [64]. Our emphasis will be on p-adic analytic groups.

Definition 4.14 Let G be a profinite group. Then we have the following con-
cepts.

(1) The group G has finite cohomological p-dimension cd, (G) if there is some
integer m so that for all p-torsion G-modules M and all s > m

H*(G, M) =0.

Then c¢d,(G) = n if n is minimal among the integers m for which this
condition holds.

(2) The group G is of type p-FP if the trivial G-module Z, has a finite reso-
lutions

O0— Pp—> -+ —> Pl—> Pp— 7,

where each P; is a finite direct sum of copies of Z,[[G]]. Call k the length
of the resolution.

(3) The group G is a Poincaré duality group of dimension n if cd,(G) =n, G
is of type p-FP and

Z,, =n;
(G, 2,101 = {7 j #’;

The following is a consequence of Proposition 4.1.1 of [64].
Lemma 4.15 Let G be a Poincaré duality group of dimension n. Then

(1) H*(G, M) = 0 for s > n for all p-profinite G-modules M; and
(2) the trivial G-module 7, has a resolution as in Definition 4.14.2 of exactly
length n.
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Let G be a compact p-adic analytic group of rank ¢ with an exhaustive
system

- Cljp CI; €---CTIN1 C @G

of uniformly powerful open normal subgroups. We then have.

Proposition 4.16 For any compact p-adic analytic group G of rank d we have

Z,, s=d;
H*(G. Z,1G1) = {7 j L

Furthermore, for alli > 1 (ori > 2 if p = 2), the uniformly powerful open
normal subgroup U; is a Poincaré duality group of dimension d.

Proof 1t is a theorem, going back to Serre (Proposition 1.4.5 of [62]) and
Lazard (Théoreme V. 2.5.8 of [49]) that I'; is a Poincaré duality group of
dimension d. The statement about H*(G, Z,[[G]]) follows from Schapiro’s

Lemma Proposition4.5 and that factif ' € G is of finite index then Z,, [[F]]? =
Zp[[G]]. See (4.8). O

The group ring Z,[[G]] is a G-bimodule, using the left and right actions of
G on itself.

Remark 4.17 Our main examples of compact p-adic analytic groups, such as
Gl (Z)) or Gy, need not be of finite cohomological dimension.

In calculating H*(G, Z,[[G]]) we use the left action of G on the group ring.
This continuous cohomology group retains a residual action on the right by G.

Definition 4.18 Let G be a compact p-adic analytic group of rank d. Then the
compact dualizing module D ,(G) of G is the right-G module

D,(G) = HX(G, Z,[[G1]).

The following version of Poincaré Duality can be found as Proposition 4.5.1
of [64].

Theorem 4.19 Let G be a compact p-adic analytic group of rank d with dual-
izing module D ,(G). Suppose further that G is a Poincaré duality group. Then
there is a natural homomorphism

Tor9 (D, (G), M)—> HI™5(G, M).

This homomorphism is an isomorphism if M is either a p-profinite module or
a discrete p-torsion module.
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Proof The paper [64] covers a great deal of ground and it takes a while to pull
together the proof of Theorem 4.19 from that source. Here is a summary.

For any continuous left G-module P let Homg (P, Z,[[G]]) be the module
of left G-module maps. This is a right G-module using the right G-module
structure on Z,[[G]]. Choose a projective resolution P, — Z, of the trivial
Zp[[G]]-module Z,. Let M be a continuous left G-module. We then we have
a pairing

Homg(PS’ Z[)[[g]]) ®g M—) Homg(])Sv M)
sending ¢ ® a to the function x — ¢ (x)a. This passes to an induced pairing
D, () ®g M = H'(G, Z,[IG]]) ® M—> H'(G, M).

By Lemma 4.15, G has the property that H*(G, M) = 0 for s > d for all
p-profinite modules M; thus, we find this is a natural transformation between
right exact functors in M. Thus we get a natural transformation of left derived
functors and, since the sth left derived functor of H4(G, —) is HY=5(G, —) we
have the homomorphism

Tord (D ,(G), M) —= HY=5(G, M). (4.20)

If M = Z,[[G]] this map is an isomorphism when s = 0 and both source
and target of this homomorphism vanish if s # 0. From this we deduce that
(4.20) is an isomorphism when M is p-profinite. In particular, it is true when
M is finite. Since any discrete p-torsion module is the colimit of its finite
submodules, we have the result in that case as well. O

Remark 4.21 In[64] the authors define D, (G) to be the left G-module obtained
from H4(G, ZpllG]D by g-x = ngl . This allows them to write the Poincaré
Duality isomorphism of Theorem 4.19 using homology. If we write D, (G)* for
this left module structure, then we have, under the hypotheses of Theorem 4.19

Hy(G, Dy(9)" ® M) = Tor{ (D,(G), M) = H'™(G, M).

There are times when this point of view is convenient. See the proof of Propo-
sition 4.38.

Remark 4.22 The Poincaré duality group G is called orientable if the action
on D, (G) is trivial. Then Theorem 4.19 implies

Hy(G, M) = HI™5(G, M)

and Hy(G, Zp) = Zy.
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Remark 4.23 Our main examples are orientable, using the following argument
adapted from the proof of Proposition 5 of [63].

By Corollary 5.2.5 of [64] (see Proposition 4.40 for more explanation) there
is an isomorphism of right G-modules

D,(G) = Alg*

where A?g* is the top exterior power of the dual of the adjoint representation.
In the case where G = Gl,(Z,) or G,, the group G is the group of units
in a sub-algebra Ag of a complete normed QQ,-algebra and g is Ap with the
conjugation action of G. See Example 2.12 and Example 2.15.If f : g* — g*
is any linear transformation, then A< f is multiplication by the determinant of
f. Thus if g € G acts by conjugation on g = A, it must act trivially A%g*.

There is a variant of Poincaré Duality which is closer to the Serre-
Grothendieck duality of algebraic geometry. Let Z/p> = colim Z/ p™; this is

an injective abelian group. Define the discrete dualizing module for G as the
left G-module

1,(G) = Hom(D,(G), Z/p™). (4.24)

The action of G is given by the formula g¢ (x) = ¢ (xg). Evaluation gives an
isomorphism

Dp(9) ®g Ip(G) = Z/p™.
If H°(G, —) = 0 for s > d, then Theorem 4.19 gives an isomorphism
e: HUG, 1,(9) —Z/p™.
If M is a continuous G module define
MY =Hom”(M, I,(G))

to be the abelian group of continuous homomorphisms with the left G-action
given (gp)(a) = ggo(g_la). See (4) of Notation 4.2. The evaluation map
MY ® M — 1,(G) and cup product give us a pairing

HY(G, MY) ® HI™(G, M) — HY(G, I,(9)) ——=Z/p™. (4.25)
Then we have, as in §1.3.4 of [62]:
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Theorem 4.26 Let G be a Poincaré duality group of dimension d and suppose
M is either p-profinite or p-torsion. Then (4.25) is a perfect pairing which
identifies H* (G, M) with the Pontryagin dual of H*=5(G, M).

4.6 Frobenius reciprocity and duality

Poincaré Duality flips transfer and restriction. To make this precise we begin
with the following result.

Proposition 4.27 Let G be a compact analytic group of rank d and " C G an
open subgroup. Then the compact dualizing module D , (") for I is isomorphic
to the compact dualizing module D ,(G) for G with action restricted to T'.

Proof Since we have an isomorphism of right I-modules
Zyl[TNIE = Z,l[G1] ®r ZylIT] = Z[[G]]
Schapiro’s Lemma Proposition 4.5 gives
D,(T) = HY (T, Z,[[T1]) = H(G. Z,[[G]]) = D,(G)

and these isomorphisms respect the right action by I'. O

Note that it follows that the discrete dualizing module 7, (I") for I" is iso-
morphic to the discrete dualizing module /,(G) for G with action restricted to
I". This is Proposition 18 of §1.3.5 of [62].

We now have the following result. Note that D, (G) has a canonical structure
as I'-module by Proposition 4.27.

Proposition 4.28 Let G be a compact p-adic analytic group of rank d and
suppose H*(G, —) = 0 for s > d. Then we have commutative diagrams

Tor9(D,(G), M) — HY=(G, M) (4.29)

try l lres

Tor' (D,(G), M) — H=S(T', M).
and

Torl (D, (G), M) — HY=S (', M) (4.30)

IeSx l ltr

Tor9(D,(G), M) — HY™5(G, M).
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Proof We give an argument only for (4.29), as that is what we will use later.
The argument for (4.30) is very similar.

The map Torsg (Dp(G),M) — H d=s(G, M) was constructed in the proof of
Theorem 4.19 by first defining it for s = 0 and then using naturality to extend
to the higher left derived functors. Built into this construction is the assertion
that if

O— K— M— N — 0

is a short exact sequence of continuous G-modules then we have a commutative
diagram of long exact sequences

Tord | (Dy(G). N) —= Tortd (D, (G), K) — Tor% (D, (G), M) — Tor¥ (D,(G). N)

| | | |

HT G, N) ——= HT™*(G, K) ——= H'™(G, M) ——= H'™ (G, N)

Thus if we can prove that (4.29) commutes at s = 0 then it will follow for all
s > 1 as well.

Choose a projective resolution P, — Z,, of the trivial Z,[[G]]-module Z .
The map D,(G) ®¢ M — H(G, M) is defined at the chain level by the
pairing

Homg (Py, Z,[[G]]) ® M—> Homg(Ps, M)
sending ¢ ® a to the function x — ¢ (x)a. Let

¥ M—> Z,[I9]] ®r M
Y@= ) g®g'a

gl'eGg/T’

be the map of (4.9) used to define tr.. Since Z,[[G]] = (Zp[[F]])g we have
a commutative diagram

Homg (P, Z,[[G]) ®g M Homg (P, M)
ov |
Homg (P, Zp[191]) ®g Zp[[G]] @r M
Homr (P, Z,[[T'1) ®r M Homr (P, M)
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where the right vertical map is inclusion. Passing to cohomology gives the
needed commutative diagram

HY(G, Z,[[G]) ® M —= H*(G, M)

try l lres

HA(T, Z,[[T]) & M — HY (T, M). m

4.7 Restricting to subgroups

The compact dualizing module D,(I") for I' is isomorphic to the compact
dualizing module D, (G) for G with actionrestricted to I". See Proposition 4.27.
We now discuss how to recover the right-G module structure on D, (G) from
D, (I") using the subgroup structure of G.

If g e Gand ' C G is a subgroup, let 8T" denote the conjugate subgroup
¢ 'I'g and cg(—) = g(—)g~! : 8T — T the conjugation homomorphism.
If ¢ : rstl - Zp[[T']] is a continuous cochain, define x¢(¢) : spstl
Z,l[#T] by

Xe (@) (X0, X1, ..., xXg) = g ' p(cg(x0), ..., co(xn))g.

This extends to subgroups the definition given for G itself in (4.10). We check
that this induces a map on cochain complexes and hence a map

Xg  HY (U, ZplIT1) — H*(T, Zp[[*T1D).

Proposition 4.31 Suppose G is a compact p-adic analytic group of rank d
and T is an open subgroup. Suppose H*(I', —) = 0 for s > d. The map

*

D,(T) = HU(T, Z,[[T1]) N D,(8T) = HY (3T, Z,[[T'1])
is isomorphic to the map

rg = (—)g: Dp(g) — Dp(g)
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Proof A chain level calculation shows that the following diagram commutes

*

HA(T, Z,[[T]]) — %~ HY(T, Z,[[TT)

=| |2

HY(G, Z,[1G1]) T HY(G, Z,[IG1)).

8

By Proposition 4.11 the bottom map is given by the standard right G-action
on H*(G, Zp[[G1D). m

Remark 4.32 In particular, if I" is normal in G, the conjugation action of G
on I' and Z,[[I"]] recovers the right action of G on H4(G, Zp[1G1]) from the
conjugation action on Hd(F, Zp[IT°1D).

Remark 4.33 The conjugation map c, defines anisomorphism of left Z , [[T"]]-
modules Z,[[¢T']] =87 p[[I"']] and we have a diagram mapping to the diagram
of (4.13)

o HFETLZ,[ETT)
/
H*(, Z,[[T'])) =

Cx
¢ H*(T .8 Zp[ITD.

Thus we could have worked with cg (Example 4.4) as well.

Proposition 4.28 described how duality interacted with transfer and restric-
tion. We’d also like to know how duality interacts with conjugation. We gain
conceptual clarity by proving a more general result; we then specialize. The
main result is Proposition 4.36

Let G be a compact p-adic analytic group, N a continuous left G-module
and M a continuous G-bimodule. We have a pairing

(—,—):C*(G,M)®g N—> C°(G,M ®g N)
sending ¢ ® a to ¥ where
VXl ooy Xg) =P (x1, -+, X5) Qa.
We now explore the naturality of this pairing. Let f : G| — G» be a continuous

homomorphism of compact p-adic analytic groups, N a continuous left G;-
module and M a continuous G,-bimodule. For simplicity we assume that f is
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an injection onto a subgroup of finite index, so that we can form the induced
module

Nggf = ZpllGall ®z, 1161 N =: G2 xg, N.

If M is a right G, module, let M T denote the right Gi-module obtained by
restriction. Recall, from Section 4.1, that f,M denotes the left Gi-module
obtained by restriction. The following can be checked on cochains.

Lemma 4.34 Let N be a continuous left Gi-module, M a continuous G-
bimodule and f: G — Gy a continuous homomorphism of compact p-adic
analytic groups which is an injection onto a subgroup of finite index. Then the
pairing (—, —) induces a commutative diagram

H* (G2, M) ®g, (G2 xg, N) —— H*(G2, M ®g, (G2 xg, N))

=| |=

H*(Gy, MT) ®g, N H*(Ga, M7 ®¢, N)

‘| P

H*(G, fxM') ®¢, N H*(Gy, M/ ®g, N) .

We now specialize. Let I' € G be an open subgroup and g € G. We let f be
the conjugation map ¢, : I" — I'. For M a I'-bimodule, let ¢ M$ be f.M 1,
the éT"- bimodule obtained by restriction along f = c, for both the right and
left actions. Then ¢, defines an isomorphism of ¢ I"-modules

Zpl[8T]] - §Z,lIT]®
and if N is a éI"-module
[ xep N2 N

where ¢ N is the module obtained by restriction along c¢,-1: I' — ¢T". Thus
if we replace N by & N in Lemma 4.34 we have a diagram

H¥ (T, Zp[IT']) ®r N H* (T, Zp[[T']] ®r N)

C?El l%’?

HS(T, Zp[[$T1) ®5 N — H*(¢T, Z,[[*T1] ®¢ 1. N)
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After using the module multiplications on the coefficients, we get a diagram

H*(I', Z,[[T']) ®r N H*(, N) (4.35)

c?@Nl \ch

HY (T, Z,[[*T1]) ®5 N —= H*(¥T 8 N)

The right hand morphism c§ sends ¢ ® a to the cocyle

(X1, s %) = g D (eg(xn), - g (x5))g ®a
In the next result we use that the compact dualizing module D, (I") for
I' C G open is isomorphic to the compact dualizing module D, (G) for G with
action restricted to I". See Proposition 4.27.
Proposition 4.36 Suppose G is a compact p-adic analytic group of rank d

and T is an open subgroup and a Poincaré duality group. Let M be a left
I'-module. Then the map

*

D,(T) = HY(T, Z,[[TT) —~ D,(T) = HI(T, Z,[[*T)
is isomorphic to the map
rg = (—)g: Dp(g) - Dp(g)

and we have a commutative diagram

~

Tor, (Dy(G). M) H*™ (T, M)
(rg)*l CZ;
Tor'T (D, (G), $M) ——~ HI=S (T, ¢ M).
Proof The first statement is a repeat of Proposition 4.31. For the second, we
can proceed as in the proof of Proposition 4.28 and note it is sufficient to

check the case s = 0. This is exactly (4.35). The horizontal isomorphisms are
Poincaré Duality. See Theorem 4.19. O

Corollary 4.37 Suppose G is a compact p-adic analytic group of rank d and
I is an open subgroup and a Poincaré duality group. Suppose M is a trivial
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G-module and T' C G is normal. Then Proposition 4.36 gives a diagram

D,(G) ® M ——= HY (', M)

(”g)*@Ml \LC;

D,(G) ® M —= HY (', M)

where the left column is given by the right action of g on D, (G) and the right
column is given by the conjugation action of g on I'.

4.8 The dualizing module revisited

We can now give a formula for the discrete dualizing module 7,(G) due to
Serre. The module 1,(G) was defined in (4.24). Let G be a compact p-adic
analytic group of rank d with an exhaustive system

.Clyppcrc---crcg

of uniformly powerful open normal subgroups. The following gives exactly
Serre’s formula in §3.5 of [62].

Proposition 4.38 There is an isomorphism of left G-modules
1,(G) = colimy Hy(Ty, Z/ p™) (4.39)
where G acts on Hy(T';, Z) p®°) through conjugation on T';.
Proof Let D, (G )¢ be left-G-module obtained by transposing the right action;
thatis g -a = ag~!. Then if M is any continuous G-module we have a natural
isomorphism
Dy(G) ® M =7, &g (Dy()" ® M)

where D, (G ) ® M has the diagonal action. We thus get a natural isomorphism

Hy(G, Dp()" ® M) = Tor{ (D,(G), M).
There is an isomorphism of left G-modules

D) ®1,(G) =7Z/p™
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where the tensor product has the diagonal G-structure and the action on Z/ p™
is trivial. For i large Frobenius reciprocity (4.29) and Poincaré Duality Theo-
rem 4.19 give a commutative square

~

Hy(T;, Z/p™) HA=5(T;, 1,(G))

try lres

Hy(Tiy1, Z) p>) —= HI=S(Ti 41, 1,(G)) .

Thus, if we set s = d and M = Z/ p*>° we get an isomorphism

[1,)]" = Ha(Ty, 2/ p™).

This is a G-equivariant isomorphism by Proposition 4.36. If M is a discrete
G-module then the natural map

colimiMF" — M

is an isomorphism; now using the above commutative diagram, we get an
isomorphism of G-modules

1,(G) = colimy, Hy(T';, Z/ p™).

The following is a direct consequence of Corollary 5.2.5 of [64], although
it would take some translation to get from that statement to ours. The adjoint
representation was defined in Remark 2.5

Proposition 4.40 Let G be a compact p-adic analytic group of dimension d
and let g be the adjoint representation. Then there is a natural isomorphism
of right G-modules

Alg* =D, (G).
where
g* = Hom(g, Zp)

with right G-action given by (¢pg)(x) = ¢(gx) and A%g* is the top exterior
power.

Proof Since A%g* and D »(G) are free modules of rank 1 over Z, it is sufficient
to produce a surjective map of G-modules

Alg*— D,(G)/p’
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forall j > 1.Recall from Remark 2.5 that g; = p'~!g and, since g is p-torsion
free, that p'~!: g — g; is an isomorphism.

Fix j. Then D,,(g)/pf is a finite G-module, so we may choose i > j so
that I'; acts trivially on D,(G)/ p/. Then, using (2.6), we have a map of left
G-modules

pi—l ~
9—=0i/8i+j —=Ti/Tiy;

where G acts on the target by conjugation. This gives an isomorphism of right
G-modules

H'(Ti/Tiyj. Z/p’) = Hom(g, Z/ p).
We then obtain a map of right G-modules

g* = Hom(g, Z,)—> Hom(g, 7 p’)
= H'(Ty/Tivj, Z/p') = H Ty, Z/ p).

Using the cup product we get a map of right G-modules
Alg — HUT, 2/ pT)

which is surjective by Theorem 3.3. By Poincaré Duality and the fact that
D, (I';) = D,(G) with action restricted to I'; Corollary 4.37 gives an isomor-
phism of right G-modules

HYT, Z/p') = HUG, Z,1IG1) ®r; Z/p’ = HY (G, Z,[1G1)/p’.

The last isomorphism follows from the fact we have chosen i so that I'; acts
trivially on

Dy(G)/p’ = HY G, Z,IG1)/p’.
The composition
Alg*— H (T, Z/p’) = Dy(G)/p’
is the surjection we need. O

Remark 4.41 We can combine Proposition 4.38 and Proposition 4.40 to obtain
an isomorphism of left G-modules

1,(G)/p’ = colimy, HU(T;, Z/ p’) = Alg/p/.
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This follows from the fact that 1,(G) = Hom(D,(G),Z/p*>) and that the
dual of A9gis Ag*.

5 Two G-spheres

In this section, we produce the two p-complete G-spheres which are the main
characters of this paper. They are produced by the same method, so we will
give complete details for only one. Here as usual G is a compact p-adic analytic
group with an exhaustive system --- C I';;1 € I'; € ---T'; C G of uniformly
powerful open normal subgroups.

Notation 5.1 Here and hereafter we will work in the category of p-complete
spectra unless we specify otherwise. In particular we will write

BT for  (2FBIY), .
This is necessary as we will want to use Proposition 3.11.

The spectra X°BTI';/I"j and X3°BI'; have a G-action induced from the
conjugation actionof GonI';. Let j > 1;then we have an inclusion of a normal
subgroup of finite index I'; 1/ T";y; — I';/I';; and hence a G-equivariant
transfer map

EFB(Ti/ Tivj)—> BFBTit1/Tiv)).

By taking homotopy inverse limits, we then get an induced G-equivariant
transfer map

tr: °Bl— EPBl4. 5.2)
Remark 5.3 To produce the transfer map of (5.2) we use the following natural-

ity property of the transfer. Let K € H < G be anested sequence of subgroups
with all three inclusions normal. Then the following diagram commutes

tr
»¥BG S*BH

l l

SOB(G/K) — =~ 2®°B(H/K).

The following construction is motivated by Serre’s formula from Proposi-
tion 4.38.
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Definition 5.4 Let /g be the G-spectrum
Ig = hocolimX$”BT; (5.5)

where the colimit is over the transfer maps and in the category of p-complete
spectra; that is, we are taking the p-completion of the ordinary homotopy
colimit.

Proposition 5.6 We have the following calculations in homology.
(1) The map induced in homology by the transfer

try : Hk(BF,',Fp)—> Hk(BF,‘_H,IFp)

is zero if k # d and an isomorphism if k = d.
(2) Hilg = 0 unless k = d and Hylg = F,. In particular, 1g has the
homotopy type of a p-complete d-sphere.

Proof Using Proposition 4.28 the map induced by the transfer is isomorphic,
via Poincaré Duality, to the map induced in cohomology by restriction

H*4(BT;,F,)—> H*Y(BTi}1,F,).

By Part (2) of Theorem 3.3 the map H*(BT';,F,) — H*(BT';y1,F)) is zero
in positive degrees, and the result follows from the Whitehead Theorem for
connective spectra. O

We can use these same methods to build a p-complete G sphere from the
Lie algebra g of G. (The Lie algebra and its properties were discussed in
Definition 2.4 and material following that definition.) Specifically, we use the
abelian groups p'g C g in place of I';, and form the p-complete spectrum

S8 = hocolimeB(pig). (5.7)

As in Definition 5.4, the colimit is taken over transfers in the category of p-
complete spectra. The action of G on S9 is through the adjoint representation.
See Remark 2.5.

The following is the analog of Proposition 5.6.

Lemma 5.8 We have the following calculations in homology.

(1) The map induced in homology by the transfer
try : Hi(Bp'g, Fp)—> Hp(Bp''g. Fp)

is zero if k # d and an isomorphism if k = d.

@ Springer



Dualizing spheres for compact p-adic analytic groups

(2) HiS® = 0 unless k = d and HyS® = F,. In particular, S® has the
homotopy type of a p-complete d-sphere.

The next result identities the G action on H(Ig,Z,) and H.(S%,7Z),).

As these are both p-complete d-spheres, we have H,(lg,Z,) = Z, =
H, (5%, Zp).

Proposition 5.9 There are canonical isomorphisms of G-modules
Hy(lg, Zp) = A'g = Hy(S, Zy),
where A%g is the top exterior power of the adjoint representation.

Proof For Ig we have

Hy(Ig, Z,) =lim Hy(Ig, Z/pj) = lim colimy Hy (T';, Z/pj).
J J

Now apply Remark 4.41.
For §? we argue slightly differently. By Lemma 5.8 we have

Hy(S% Z,) = Hy(Bg, Z,) = A%g,
as Hi(Bg, Z),) = g. O

Proposition 5.9 suggests the following conjecture.

Linearization hypothesis

There is a G-equivariant equivalence S¢ =~ Ig.

This conjecture appeared in the work of Clausen [20, §6.4]. Furthermore,
[21] contains an outline of an argument for showing this conjecture in full
generality, including a discussion of what category is a natural home for this
equivalence.

If we restrict to a finite subgroup F' € G, we can regard Ig and S® as objects
in some standard category of spectra with an F-action, such as the functor
category from the classifying space B F to spectra, or the localization of (any
model of) genuine F-spectra at the underlying equivalences. Then we have the
following conjectural statement we can attack with neoclassical techniques,
as we do in the next few sections.

Finite linearization hypothesis
For every finite subgroup F € G there is an F-equivariant equivalence
S8~ [g.
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6 Restricting to finite subgroups

In this section we reduce the problem of producing an F-equivariant equiva-
lence Ig — S for a finite subgroup of G to a calculation of modules over the
Steenrod algebra. The main result is Theorem 6.25.

Notation 6.1 Both p-complete and non- p-complete spectra will appear in this
section, so we will be suitably decorating the p-complete objects. For spaces
X and Y, we will write map(X, Y) for the unpointed mapping space, and
map, (X, Y) for the pointed mapping space (if X, Y are based). The mapping
space of spectra will be denoted by map(—, —). For spaces we will write

[X, Y] =mnomap,(X,Y)

for based homotopy classes of maps.

Remark 6.2 Recall that if X and Y are pointed spaces then evaluation at the
basepoint of Y gives a fiber sequence

map,(X,Y) — map(X,Y) — Y

with a section given by the constant maps. When Y is a loop space, this gives
a splitting map(X, Y) >~ map, (X, Y) x Y. Therefore, if Y is connected, then

[X, Y] =momap, (X, Y) = romap(X, Y).

6.1 F-spheres

Let F be a finite group. An F-sphere is an F-spectrum X so that the underlying
spectrum is equivalent to a p-complete sphere SX, k € Z. We call k the virtual
dimension of X. An F-equivariant map X — Y of two F-spheres is an F-
equivalence if the underlying map of spectra is an equivalence. Let Sph be
the set of F'-equivariant equivalence classes of F-spheres. This a group under
smash product in the p-complete stable category.

We have the following classical result.

Lemma 6.3 Let Gll(Sg) be the space of self homotopy equivalence of the

p-complete sphere spectrum Sg. There is an isomorphism of abelian groups
Sphy = momap(BF, Z x BGl(S)))

so that an F-sphere corresponds to an unbased map BF — 7 x BGlI 1(S2),
which in turn classifies a stable, fiberwise p-complete spherical fibration over
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BF. We also have

Sphy = [BFy,Z x BGli(S))]
= Z x [BF, BGlL(S))].

Proof The first isomorphism goes back to Theorem 1.1 of [23] and has been
extensively explored and generalized in the follow-up literature. See, for exam-
ple, Theorem 1.2 of [24].!

For the isomorphisms of the second equation use Remark 6.2 and the fact
that Z x BGl, (SIO,) is an infinite loop space. O

Remark 6.4 The isomorphism of Lemma 6.3 allows for very explicit construc-
tions. For example, if X € Sphp, then the Thom spectrum of the associated
spherical fibration is equivalent to the homotopy orbits EF Ar X.

As just noted, Z x BGl; (Sg) is an infinite loop space; indeed, it is weakly
equivalent to is the Picard space Pic(Sg) of invertible p-complete spectra.
Thus, there is a spectrum pic(Sg) and an equivalence Z x BG11(S2) ~
Qoopic(Sg), yielding an isomorphism

Sphy =[S BF, pic(S))].

Compare Remark 12.1.
The spectrum pic(Sg) is not p-complete, but is nearly so, and it will be
useful to have some control over the difference. Note that

{1+ pZp} xCp_y if p>2;
moGlL (S)) = Z% =
(1447} x {£1} if p=2.

~

where Cj,_1 isacyclic group of order p—1. There are isomorphisms 1+ pZ,,
Zp and 1 + 47y = 7 using a logarithm.

Lemma 6.5 If p = 2, then BGll(Sg) is 2-complete. If p > 2 the canonical
map

BGli($)— BCp_,

has p-complete homotopy fiber.

! In later developments, an action of F on X is defined to be a map from B F to the classifying
space of self-equivalences of X. The connection to our definition can be found in Proposition
4.2.4.4 of [51]; see also Remark 1.2.6.2 of the same source.
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Proof By definition GIj(X) is a set of components in the mapping space
map(X, X) and, hence, for any basepoint and any £ > 1 we have

TGlL(X) = memap(X, X) = [=FX, X].
From this we can conclude that for £ > 1 the map
meGl (8%) — mGl(S))

is p-completion. The result follows. O

If X is an F-sphere of virtual dimension k, then F acts on Hy (X, Z) = Z,.
We write

ox : F— Z;
for the resulting character. The map
fx : BF—> [k} x BGL(S)) € Z x BGli(S))

induces ¢x on the fundamental group. There is also an action on Hy (X, F,) =
IF,. If p = 2, this action is necessarily trivial, and if p > 2 we write

vy F— IF; =Cp1
for this character. Note that ¥y is obtained from ¢x by composing with the
quotient map Z; — IF;.

Lemma 6.6 Let F be a finite group and Fy C F a p-Sylow subgroup. Then
two F-spheres X and Y are F-equivalent if and only if

(1) X and Y are equivalent as Fy-spheres and,
2)ifp>2,Yx=vYy: F— Cp_1.

Proof One implication is clear: if X is equivalent to Y as an F-sphere, then
the two listed conditions must hold. We work on the other implication.

Since X and Y are equivalent as Fy spheres, they have the same virtual
dimension. Because Z x BGly (Sg) is an infinite loop space, we can form the
difference map

g: = fx — fr: BF—> BGI|(S) = {0} x BGI|(S) € Z x BGI|(S))

and we need only show this map is null-homotopic. As in Lemma 6.5, let
C =Cp_1if p > 2;let C be trivial if p = 2. Let A be the homotopy fiber of
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the map BGl, (Sg) — BC. Then (2) implies that there is a (unique) factoring
of g as in the diagram

Ag— BGly(S)) —= BC.

We will will show g7 is null-homotopic. Since the order of C is prime to p, we
have [BFy, Ag] = [BFy, BGl; (Sg)]. Hence (1) implies that the composition

BFy— BF %'~ A,

is null-homotopic.
Let Xgli be the zero connected cover of pic(SlO,); thus, Q%3 gl =~

BGl; (Sg). Let A be the fiber of the map X gl/; — X HC;then QA >~ Ajand
g1 is adjoint to amap hy : ZBF — A. By Lemma 6.5, Ag is p-complete;
hence A is p-complete as well. Since Fy is a p-Sylow subgroup of F and A
is p-complete, the restriction map

[SPBF, A]— [S°BFy, Al

is an injection; the transfer for the inclusion Fy € F gives a splitting. Since
h1 maps to zero under this map, we must have 2; = 0, and hence g is null as
well. O

Remark 6.7 Our main examples of F-spheres are the two spheres constructed
in Sect. 5. When trying to compare /g with S9, the condition (2) of Lemma 6.6
holds automatically. See Proposition 5.9.

We now begin to specialize F. We let Slj(X) be the component of the
identity in Gl (X).

Lemma 6.8 Let F be a finite p-group. Then the map Gl;(S%) — G11(S2)
induced from the completion S — Sg induces a weak equivalence

map, (BF, BGl;(S%)) ~ map,(BF, BGl|(S))).
Proof For k > 1 the map of homotopy groups based at the identity
Gl (8°) — Gl (SY)
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is p-completion. If we set C; = {%1}, there is a short exact sequence
0 — oGl (8°) = Cy — mGli(S)) = Z% — Z%/Cy — 0.
We have a diagram of fiber sequences

BSI1; (8% —= BGI,(§°) —= BC,

T

BSI,(8Y9) — BGI,(SY) — BZ.

This is a diagram of infinite loop spaces so we still have an analogous dia-
gram of fiber sequences after p-completion. The space BSI; (Sg) is already p
complete so the map i defines an equivalence

BSI; (8%, ~ BSI(S)).

Hence, upon p completion the square (x) becomes the homotopy pullback
square

BGl(S%), —— (B(C2),

e

BGI($9), — (BZY),.

At odd primes, (BC3), =~ * and B(Z; )p = BZ, so (»*) reduces to a fiber
sequence

BGI1,(5°), — BGli(S), — BZ,. (6.9)

When p = 2, the spaces BC» and BZ are already 2-complete. Since () is
a pullback square, we get a fiber sequence (6.9) at the prime 2 as well.

At all primes, we have map,(BF, BZ,) =~ holimmap,(BF, BZ/ p).
Hence, fori > 0,

mimap, (BF, BZy) = lim H'"\(BF,7Z/p") =0,

so map,(BF, BZ),) is contractible.
We now take pointed maps from B F to (6.9) to get an equivalence

map, (BF, BGli(S°),) — map, (BF, BGL(S))).
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Finally, to get the claim, notice that since B F has no [, homology for £ # p,
and no rational homology, we also have

map, (BF, X) >~ map,(BF, X )

for any space X. O

Remark 6.10 As an addendum to Lemma 6.8 we examine the role of the fun-
damental group of BGI;(S°). There is a split fiber sequence

BS1; (5% — BGI;(5°) — BC».

Since BGl;(SY) is an infinite loop space, we obtain a weak equivalence of
spaces

BSI; (8% x BC> =~ BGI;(S").

Hence, for any pointed connected space X, we have an equivalence

map, (X, BS1;(5°)) x Hom(m X, C;) ~ map, (X, BGl;(5%)). (6.11)
Here we use that map, (X, BC>) has contractible components and

momap, (X, BC>) = Hom(m1 X, C2).
If F is an elementary abelian p-group and p > 2 we then obtain an equivalence
map, (BF, BSI;(5°)) ~ map, (BF, BGl;(5")).

If p = 2 then (6.11) becomes

map, (BF, BSll(SO)) x Hom(F, Cy) >~ map,(BF, BG11(S0)).

There is a similar decomposition for maps into BO and, in fact, the map
BO — BGl;(8°) induces a commutative diagram

map, (BF, BSO) x Hom(F, C;) ———map,(BF, BO)

| l

map, (BF, BS1;(5°)) x Hom(F, C2) —— map, (BF, BGl;(59)).
In particular, we get that for a p-group F,

Sph = Z x Hom(F, C) x [BF, BSI;(§)]. (6.12)
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Thus we need to concentrate on computing [BF, BSI; (S?)], which is isomor-
phic to the unpointed homotopy classes of maps momap(B F, BSI;(5°)). See
Remark 6.2.

6.2 Interlude on characteristic classes and Steenrod operations

The comparison of F-spheres and vector bundles on B F will play a crucial
role below, when we specialize F' even further to an elementary abelian p-
group and reduce the calculation of F-spheres to a cohomology calculation.
We will use the theory developed by Lannes [48], giving us that it is sufficient
to understand H*(BSI;(S%)) /J where J is the ideal of nilpotent elements. As
a prelude we pull together what we need from the literature on characteristic
classes.

Let & be a stable real vector bundle of virtual dimension n over a space X
and let M& be the Thom spectrum. If p > 2, we assume & is oriented. Let
U € H"(ME&,F ) be the Thom class; then the Thom isomorphism is given by
the cup product

Uwv (=)=U-(=): HY(X,F,) - H*" (Mg, F)).

If p = 2 one can define the Steifel-Whitney classes w; (§) using Steenrod
operations

U-wi€)=SqU. (6.13)

This is the approach in [57, §4]. Then we have H*(B O, F») = Fa[wy, wa, .. .]
where w; = w;(y), with y the universal stable bundle over BO.

If p > 2, the relationship between Pontrjagin classes and Steenrod opera-
tions is more complicated. Recall that if £ is a real vector bundle over X, then
the Pontrjagin classes are defined in terms of Chern classes:

pi§) = (=1 c2i(6 ®r C) € HY (X, Zp)).
Then H*(BSO, Zp)) = Z(p)lp1, P2, - . .1, where p; is the Pontrjagin class of
the universal bundle over BSO.
If y1 over BU(1) = BSO(2) = CP® is the universal complex line bundle,

then H*(BU (1), Z(p)) = Zp)lcl, where ¢ = c¢1(y1). We have p1(y1) = 2,
and we write

t =c* e HY(BSO(2), Z)).

@ Springer



Dualizing spheres for compact p-adic analytic groups

We then get amap BSO(2)" — BSO classifying y;*", which on cohomology
factors as

C
H*(BSO, Zp)) —=Lplt1, -+, ta]* —= H*(BSO(2)", Z(p))-

The first of these maps is an isomorphism in degrees * < 4n; this initiates
the classical analysis of Pontrjagin classes using symmetric polynomials. By
the Cartan formula for Pontrjagin classes, each p; maps to the ith elementary
symmetric polynomial in the ;.

If £ is an oriented real n-bundle over a space X, we define a cohomology
class

gn (&) € HP~D (X, F))
by
U-qu&)=P'U (6.14)

where P” is the nth odd-primary Steenrod operation. By considering the uni-
versal case over X = BSO, we see that g, (§) must be a polynomial in the
Pontrjagin classes p; (§). More specifically, we have the following result.

Proposition 6.15 Let p = 2r + 1, so 4r = 2(p — 1). Then there is a congru-
ence

gnE) = (=D""Vyrp,, (&)  modulo I, (6.16)

where I, is the ideal generated by the Pontrjagin classes p;(§), 1 < rn.

Proof This is originally due to Wu [67]. However the result can be deduced by
putting together various ideas from Milnor-Stasheff [57]; we now go through
this exercise. As usual, it is sufficient to do the universal example.

First, we assert

l+qg+qp+ - +gn+--=0+1)---(A+1),) (6.17)
ink,lt,..., trn]®m = Fylpi1. ..., pral. This is in the proof of [57, Theorem

19.7], explicitly credited there to Wu. It can also be seen by observing that
since the Steenrod operations have a Cartan formula, we have that

g€ x0) =Y qj(€) x qx(0).

k=i
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Then to prove (6.17) we need only note that g1 (y1) = t" € H¥ (BSO(2), Fp)
and that g; (y;) = 0fori > 1.

Note that the right hand side of (6.17) is the reduction of an obvious integral
polynomial and we define integral lifts g; of the classes ¢; by the formula

1+q1+62+"'+§n+"'=(1+l1r)---(1+t:n)GZ(p)[tla---atrn]Em-

We may equally regard these as elements in R := Q(p)[t1, ..., P
To finish the argument, we use a variant of Girard’s formula, as in [57,
Problem 16A]. Apply the logarithm to the formula

l+pr+prt-tpp=0+10) - (1+1,)

to get that py = (— DTS tl.k/k modulo decomposables in the p; in R. If we
then apply the logarithm to the formula

1+q1+ 0+ g, + =0+ (41

we get g = (=DM 7% /k modulo decomposables in the g;, so also

modulo decomposables in the p;. This then gives
rn
(=D rpy = (DD )N ik ke = gy
I=1
This is an integral formula, so we can reduce modulo p to get (6.16) O

We now give a construction to realize the classes g; as generators for the
cohomology of a space. This is a variation on the discussion of [1, Lecture 4].
After we complete at an odd prime p, we have stable Adams operations

y*: BU,—> BU,, keZy.

The Adams summand of BU), can be realized as the homotopy fixed points
BUZC” ~! of the cyclic group C p—1 =F; C Z;. There is an equivalence

BUN " ~ BX(p—1)

where BX (p — 1) is the colimit of classifying spaces of certain p-compact
groups. This space is discussed in detail by Castellana [19].

Proposition 6.18 We have the following calculations in cohomology.
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(1) The map BX(p — 1) =~ BUZC’H — BU), induces an isomorphism

H*(BU, Fp)/1 = H*'BX(p—1= Fplep—1y, c2(p—1) - -]

where I C H*(BU) is the ideal generated by the Chern classes c,, with
n # 0 modulo (p — 1).

(2) Let f : BSO — BU classify the complexification of the universal bundle.
Then

f* T HY(BU, Zp)) = Zplcr, ca, -1 —> H*BSO = Zp)lp1, p2, -1

sends cop1 to zero and ¢y, to (—1)" p,,. Furthermore f induces an equiv-
alence

BSO, ~ BUM®.

hCp—
(3) There is an equivalence BX (p —1) >~ BSO, PV and an isomorphism
of unstable algebras over the Steenrod algebra

Fplgi,q2,.. 1= H*BX(p — 1)

where q; € H* P~V BSO is the class of (6.14) defined using Steenrod
operations.

Proof 1f X is a connected infinite loop space and G is a finite group of order
. . hG . . .
prime to p acting on X, then the map X"~ — X induces an isomorphism

H*(X,F,)/1(G) = H*(X"C,F,) (6.19)

where [ (G) is the ideal generated by elements of the form g.x — x with x €
H*(X,F)). If found nowhere else, this can be deduced using the techniques
of [34].2

If L is a line bundle, then ¥ (L) = L®*. Hence, y¥ci (L) = kc1(L). The
splitting principle then implies w,{fcn = k" cy,. Thus if k is any integer which
generates IF 7, the ideal generated by (Y — 1)H*BU in H*BU is generated
by ¢, with n % 0 modulo (p — 1). The first statement follows.

For k = —1, the ideal (! — 1)H*BU in H* BU is generated by the odd-
dimensional Chern classes ¢2,,+1. Since p, = (—1)"c2,, the second statement
follows from (6.19).

The final statement is the iteration of homotopy fixed points and (6.16). O

2 What can be proved easily from [34] is that Dy (Hy X”G) = [DyHy X]G where Dy (—) is the
graded Dieudonné module functor. The assertion here can be deduced from that.
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6.3 Characteristic classes and H* BGly (SO)

The following result is crucial for us. At p = 2 it can be found in [55]; for
p > 2 it can be found in [65]. Definitive references for both results are [22,
Theorems I1.5.1 and I1.5.2].

Theorem 6.20 Let J € H*(BGl;(S9), IF,) be the ideal of nilpotent elements.
(1) If p = 2, the map BSO — BS1,(S°) induces an isomorphism
H*(BSll(SO),IFz)/J = H*(BSO, ).

(2) If p > 2, the composition
BX(p—1), = BSOL'" "2 5 BSO, — BSl;(s"),
induces an isomorphism
H*(BS1;(S°),F))/J—> H*(BX(p —1),F,).

Below, we will use Theorem 6.20 as input along with the following result.
Let U be the category of unstable modules over the Steenrod algebra, and K
the category of unstable algebras over the Steenrod algebra.

Lemma 6.21 Let g: A* — B™ be a surjective homomorphism of connected
unstable algebras of finite type over the Steenrod algebra and let I* be the
kernel of g. If I’* consists of nilpotent elements, then g induces an isomorphism

Homy(B*, H*BF) = Homi(A*, H*BF)
for all elementary abelian p-groups F.

Proof 1tis sufficient to show that Homy,(/*, H* BF) = 0. At the prime p = 2
this is relatively easy to prove. Indeed, we have that the top Steenrod operation

Sqy = Sq" = (—)?: H"BF — H*'BF

is an injection. On the other hand, for all x € I* there is a k so that Sqé (x) =
2/{
x- =0.

If p > 2 the argument takes more technology because H* B F itself contains
nilpotent elements. First we have the Carlsson-Miller theorem that H*BF is
an injective object in the category U/. See [18], [54], and [52, Appendix A ].
Second, X H*BF = 0; see the proof of [52, Corollaire 7.2]. Combining these
two facts with [52, Proposition 6.1.4] gives the result. O
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We now have the following remarkable facts; see [19, Corollary 4.5]. In
sum, we conclude that if F is an elementary abelian p-group, then F-spheres
are in one-to-one correspondence with stable vector bundles over BF and
that any such vector bundle is completely determined by its Stiefel-Whitney
classes or Pontraygin classes depending on the prime. See Remark 6.2.

Theorem 6.22 Let p = 2 and let F be an elementary abelian 2-group. Then
there is a commutative diagram with all maps isomorphisms of sets

[BF, BO] Homx(H*BO, H*BF)

l l

[BF, BGl{(S§%)] —— Hom(H*BGl;(S°), H*BF).

Theorem 6.23 Let p > 2 and let F be an elementary abelian p-group. Then
there is a commutative diagram with all maps isomorphisms of sets

[BF, BX(p — 1)] — Hom(H*BX (p — 1), H*BF)

| |

[BF, BGl;(S°)] — Homyx (H*BGl,(S°), H*BF).

Proof The same argument, with variations, works for both Theorem 6.22 and
Theorem 6.23. We use [48, Théoréeme 0.4]. This result says that if Y is a
simply connected space with H*Y = H*(Y,F,) finite in each degree then
the set of unbased homotopy classes of maps from BF to Y is in bijection
with Homy (H*Y, H*BF). So, using Remark 6.2, we have that for a simply
connected infinite loop space Y, the natural map

[BF,Y]—— Homx(H*Y, H*BF)

is a bijection. The spaces in Theorem 6.22 and Theorem 6.23 are not simply
connected, so a little more care is required.

When p is odd, we use [48, Théoreme 0.4] with BSI1;(S%) in place of
BGI;(S?). Recall Remark 6.10 and note that the natural map BSI;(S%) —
BGI;(S?) induces an isomorphism in mod p cohomology, and as BX (p — 1)
is p-complete, any map BX(p — 1) — BGl; (S9) factors through BSL (59).
We get a commutative diagram

[BF, BX(p — 1)] — Homic(H*BX (p — 1), H*BF)

| |

[BF, BSI; (59)] Homy (H*BSI; (%), H*BF),
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with all maps isomorphisms, due to Theorem 6.20 and Lemma 6.21, giving
the claim.

When p = 2, we again appeal to [48, Théoreme 0.4], with BSO in place
of BO as well as BS1;(S°) in place of BGl,;(89). Using Theorem 6.20 and
Lemma 6.21 we get a commutative diagram with all maps isomorphisms of
sets

[BF, BSO] Homx(H*BSO, H*BF)

l l

[BF, BSI;(5°)] — Homy (H*BS1;(S%), H*BF).

To complete the proof, again use Remark 6.10 and the observation that
Hom(F, C3) = Homy(H*BC,, H*BF). O

Theorem 6.24 Let F be an elementary abelian p-group and let X be a p-
complete F-sphere of virtual dimension k. Then there is a stable vector bundle
& over BF of virtual dimension k and a p-equivalence of spectra

Mg ~ EF, Ap X.

Furthermore there is an F-equivalence X ~ 'Y of p-complete F-spheres if
and only if there is an isomorphism of modules over the Steenrod algebra

H*(EF. Ap X) = HY(EFy ApY).

Such an isomorphism uniquely determines the F-equivalence up to F-
homotopy.

Proof We have phrased this as a result about modules over the Steenrod alge-
bra, but there is more structure here that can be of use. Let £ be a spherical
fibration over a base space B; we assume & is oriented if p > 2. Then the
cohomology H*ME is a free module of rank 1 over H* B on the Thom class
U. Thus the Steenrod algebra structure on H*M§ is completely determined
by the Cartan formula and the action of the Steenrod operations on U. Note
that if p is odd, the Bockstein vanishes on U, because U is the reduction of
an integral class. This action is, in turn, completely determined by the Stiefel-
Whitney classes, as in (6.13), or the modified Pontrjagin classes of (6.14) and
(6.16).

Our result now follows by combining this observation with Lemma 6.8,
Proposition 6.18, and Theorem 6.22 or Theorem 6.23, as needed. O
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The key result of this section is the following application of Theorem 6.24.
Let G be a compact p-adic analytic group. For any group H let Z(H) denote
its center. Note that Z(G) acts trivially on both $¢ and Ig, since both actions
are defined by conjugation.

Theorem 6.25 Let G be a compact p-adic analytic group and let H be a
closed subgroup of G such that H/H N Z(G) is finite. Suppose the p-Sylow
subgroup F of H/H N Z(G) is an elementary abelian p-group. Then there
is an H-equivalence S% ~ Ig if and only if there there is an isomorphism of
modules over the Steenrod algebra

H*(EF, Ap §% = H*(EF, AF Ig). (6.26)

Proof Suppose we are given the isomorphism of (6.26). Then Theorem 6.24
gives an F-equivalence S¥ ~ Ig. We apply Lemma 6.6 and Remark 6.7
to get an equivalence of H/H N Z(G)-spectra. This is automatically an H-
equivalence.

For the converse, if S — Ig is an H-equivalence then, since the center
acts trivially, it is an H/H N Z(G)-equivalence and, by restriction, an F-
equivalence. Theorem 6.24 again applies, giving the claim. O

Remark 6.27 In our main examples, the center of G is small. For example,
if G = S, is the Morava stabilizer group and H is a finite subgroup, then
zZ(@S,) = Z;, so HN Z(S,) is a cyclic group of order at most p — 1 if p > 2.
In the more interesting case of p = 2, HNZ(S,,) is either trivial or {£1}. Note
that H can be a quaternionic group if p = 2. For more on the finite subgroups
of S, see [17,38].

Similarly, for G = Gl,(Z,), the center is the scalar matrices: diagonal
matrices with all entries equal. Thus the center is again Z;. Of course, any
finite group is isomorphic to a subgroup Gl,,(Z ) for some n.

7 Two algebraic preliminaries

In this section we collect two technical remarks about spectral sequences
needed for the proof of the main theorem of the next section. This should
perhaps not be read until after skimming the next section to see why on earth
we need such things.

We begin with a first quadrant cohomology spectral sequences

EDY —5 AP+

with differentials d, : E/? — EF tra=r+l e E>-term is bounded below in
p and g; that is, Eg 4 = 0 for p < 0and g < 0. This means, in particular, that
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EP? = EEYif r > max(p, ¢ + 1). The motivating example is the homotopy
orbit spectral sequence

HP(F,H1X) = HPYI(EF. Ap X)
for some F-spectrum X with the property that HYX = 0 for g < 0.
Here is the set-up. By the very nature of our project, we will have a dia-

gram of such spectral sequences for positive integers j bigger than some fixed
integer N

E}Y(j) === ArT4()) (7.1)

| ]

Ey(+ 1) == APH(j + 1)

i

E;’q s APt4

We make this diagram specific in (8.4).
Let K;"*(j) be the kernel of g: Ef"*(j) — Ef*(j + 1).

Lemma 7.2 Suppose the map induced by f
EY (/K () — Ey”
is an isomorphism for j > N. Then for j > N +m — 1 the map
A*(j)/Ker{A*(j) = A*(j+m + 1)} - A"
is an isomorphism in degrees n < m.

Proof We break this proof into a number of steps. In the first two steps we
show, by induction, that the map f: E;"*(j) — E; ™ induces an isomorphism
forj>N+4+r—-2

EF*()/K () —> Ef* (7.3)
We have assumed the base case of r = 2. The third step will complete the

argument.
Step 1. Here we show that

e E;kfl(j)_) E;k—:l
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isontofor j > N+ (r+1) —2 = N +r — 1. It is sufficient to do the case
where j = N +r — 1.

If we choose an r-cycle in E;"*, then the induction hypothesis implies
there is a class y € Ef"*(N + r — 2) with f(y) = x. We show that g(y) €
E"*(N +r — 1) is an r-cycle; this will complete this step.

Since the induced map

fEF(N+r—=2)/KP*(N+r—2)— EX*
is injective and d, (f (y)) = d»(x) = 0, we have that
dr(y) € KF*(N+r—2)

and hence that d,(g(y)) = 0 as needed.
Step 2. We now show that

[ ERLDIKE(G) — B

is injective for j > N +r — 1.

It is equivalent to show that if a class in £ ::1 (j) maps to zero in £

it maps to zero in E,, (j + 1). Suppose we have y € E;"*(j) and

*,%

H_l,then

fO) = dy(w) € EX*,

By the induction hypothesis we may choose aclass z € E;*(j) sothat f(z) =
w. Then

FO=d @)= [O) —dr f@) = () —dr(w) = 0 € E*

so, again by the induction hypotheses y — d,(z) € K;"*(j). Hence y — d,(z)
maps to zero in E;"*(j + 1), or

dr(g(2) = g(y)

as needed.
Step 3. Here we complete the argument with another inductive procedure.
It is sufficient to show that for j > N 4+ m — 1 the map

A"(j)/Ker{A™(j) — A*(j+m + 1)} - A"
is an isomorphism, for in degreesn < m,wehave j > N+m—1> N+n—1.
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Note that in a particular bidegree (p, q), all our spectral sequences satisfy
EPY = EL? for r > max{p, g + 1}. By the first two steps we have that (7.3)
is an isomorphism for j > N + r — 2, hence

[ EET(H/ K& () — E&? (7.4)
is an isomorphism for

Jj > N+ max{p,q+1} - 2.

Since we have first quadrant cohomological spectral sequences, we have a
diagram of filtrations

Lams o S 10 ame e S < Lme e S . .
0=F A"(j) —= F°A"(j) —--- — F" A" (j) —= F"A"(j) = A"())

T |

0=F71Am gz FOAm e —— melAm = o FMAM =AM,
and diagrams of short exact sequences

0 —— FI1A"(j) —= FIA" (j) — E% *(j)) —=0 (1.5

| | |

0 Fa—1pm F1A™ E& 1

——0.

We will use induction on g to show
9 FIA"(j)/ ker{F1A™(j) = FIA"(j+q+ D} — FIA™ (7.6

is an isomorphism for j > N 4+ m — 1. The case ¢ = m is what we need to
prove; the case ¢ = 0 is the assertion that we have an isomorphism

E (/K3 () —= E5°,
which has already been proved and in fact requires only that j > N +m — 2.
Now assume inductively that £9~! is an isomorphism for j > N +m — 1.
To complete the induction step we examine the exact sequence of (7.5). The
inductive hypothesis gives that F4~1A™(j) — F4~'A™ is onto for j >
N + m — 1, hence by the snake lemma we have a short exact sequence

0— k1 —> k3 —> k3 — 0,
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where the k; are the kernels of the three vertical maps in (7.5). Note that since
also the outer two vertical map in (7.5) are onto, the snake lemma implies that
the middle map is onto as well.

It remains to identify ko = ker{ F1A™(j) — F9A™} with

ih =ker{F1A™(j) — FIA™(j +q + 1)}.

By construction, Ké is contained in k»; thus, we just need to show the reverse
containment. Let x be an element of k» € F9A™(j). Its image in Eny 77
is zero, and since k3 = ker{Es T7(j) — Es T9(j + 1)}, its image in

ES T%(j 4 1) is zero. Hence, from the exact sequence
0— FIT'A™(j+1) > FIA"(j +1) = Ex (G +1) = 0,

itlifts to an element y € F4~! A™(j4-1), with the property that y maps to zero
in F9=1A™; that s, itis inker{ F¢~' A™(j+1) — F9~! A™}. By the inductive
hypothesis, this kernel is ker{ F¢~1A™(j + 1) — FI71A"(j + 14 ¢)}. In
particular, the image of y in F?A™(j + g + 1) is zero; but this is the same as
the image of x in FYA™(j + g + 1); hence, x is in the kernel Ké. O

Our second algebraic result is about building isomorphisms from arrays of
graded abelian groups.

Remark 7.7 Suppose we are given a commutative diagram of graded abelian
groups

B, Bi Bi—1j

R

Bit1 j+1 — Bi j+1 — Bi—1 j+1

N

A AH_I Ai Ai—l

This is an infinite array, with i > 1 and j > i, but we haven’t put in the dots
because it makes for a very cluttered diagram. In our main examples, we will
have

A= HY(EF+ AF Ig),
Ai = H*(EFy Ap 2BT)),
Bij=H"(EF; Ap 2B/ T))).
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For integers i, j, d, and n, let

I1(i,d) = Ker{A; — A;_4},
J(i, j,m) = Ker{B; j — Bi jtm},

We make the following assumptions, which will have to be justified in our
main examples. See Lemma 8.5 and Lemma 8.6. The stipulation thati > d+1
arises there, and d will be the rank of G.

(1) Foralli > d + 1, the composition A — A; — A;/I(i, d) is an isomor-
phism of graded abelian groups; and,

(2) there is an integer N, so thatforalli > d + 1 andall j > N +m — 1 the
induced map B; ;/J (i, j, m) — A; is an isomorphism in degrees n < m.

If we fix i and j, let J,, be the kernel of either of the two ways around the
diagram

Bij——Bi_q,j

| l

Bi jym — Bi—d j+m-

Note we could write J (i, j, d, m) for J,,, but m will be the crucial index. Then
we can conclude

(3) Foralli > d+1andallj > N+m—1themap B; ;j/J,, — A;/1(i,d)
is an isomorphism in degrees n < m.

The proof is a diagram chase. We then can conclude we have maps

A—=Ai/I(i,d)<—B; j/Jm . (7.8)

Ifi >d+1and j > N 4+ m — 1 the first map is an isomorphism and the
second map is an isomorphism in degrees n < m.

8 Equivalences of G-spheres for finite subgroups

The goal of this section is to show that for suitable closed subgroups H of our
group G we have an equivalence of H-spectra /g =~ S9. This is accomplished
in Theorem 8.11, as corollary of the main calculation of this section: we will
show in Theorem 8.10 that for any finite subgroup F € G/Z(G), we have an
isomorphism of modules over the Steenrod algebra

H*(EFy A Ig) ~ H*(EFy Ap S9).
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Then we appeal to Theorem 6.25 to prove Theorem 8.11.

The strategy is as follows. Fix a finite subgroup F € G/Z(G). Since G acts
by conjugation on I'; and g;, F acts on all of the spaces BI';, B(I';/ I"}), Bg;,
and so on.

Recall we have compatible transfer maps tr : X°BI"; — BT, for
t > 0 by (5.2), and hence maps

r: XBli— colimy X BTy, = Ig.

We then have a diagram of F-spectra

SPB(T/T;j) <+ £°BT; ——~ Ig.
There is a corresponding diagram for S9

SXB(gi/g)) ~— S Bg; — = S°.

Finally, there is a group isomorphism I'; / I'j = g;/g; for j < 2i, as per (2.6).
Using the techniques of Sect. 7, we can put together the comparison we need.
The key intermediate results are Proposition 8.7 and Proposition 8.8.

In the final applications we will only need i large, so while more generality
is possible, all our preliminary lemmas will seti > d + 1, where d > 1 is
the rank of G and, hence, of T";. This will avoid having to spell out special
cases, especially when p = 2. As usual, all homology and cohomology in this
section is with [F',-coefficients.

Notation 8.1 In this section we will be working heavily with homotopy orbits

and it is convenient to shorten the notation. If Y is a G-spectrum for some
finite group G we will often write

Yig = EG+ NG Y.
Hence, if X is a G-space
(27X = EG4 A 27X

Notation 8.2 In what follows we will need to have names for the kernels of
various restriction and transfer maps. We will recall the definitions as needed,
but we collect them here to put the confusion in a place where it can be
organized. Compare Remark 7.7 as well.
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First, there are the kernels of maps before taking homotopy orbits; they are
decorated with subscript 0:

Io(i) = ker{tr* : H*BT;— H*BT;_;},
Jo(i, j) = ker{res* : H*BFi/Fj—> H*BFi/Fj_H}.

Next, there are the kernels of maps after taking homotopy orbits; they do not
have a subscript, but acquire a new index because we shift more than one step:

I(i,m) = ker{tr* : H* [ Bl 1pp—> H*[Z°BTi_nlnr},
J (i, j,m) =ker{res* : H[Z°BL;/Tjlhrp—> H BT/ Tj1mlnr).
There is one more kernel, which combines restrictions and transfers. Fixing i

and j, let J,, be the kernel of either of the two ways of composing around the
commutative diagram

H*[2%°BT;/Tjlhr ———= H*[SPBTi_a/ T jlar

lres* lres*

HAZE BT/ Ujtmlnr —= B [ZFBTi—a/Tjsmlnr -

We could write J (i, j, d, m) for J,,, but m will be the crucial index. Finally,
there are the kernels K;"*(j) in Lemma 7.2. These are distinct, but related,
and will also be recalled as needed.

We begin with the following algebraic result.
Lemma 8.3 (1) Let Iy(i) be the kernel of themap tr* : H* BI';—> H*BTI;_|.
Foralli > d + 1 the composition

H*Ig —"> H*BT; — H*BT;/Iy(i)

is an isomorphism of modules over the Steenrod algebra.

(2) Let Jo(i, j) be the kernel of res* : H*(BI';/T"j) — H*(BI';/Tjy1).
Thenforalli > d+1and j > i + 1 the map of modules over the Steenrod
algebra

H*(BT;/T})/Jo(i, j)— H*BT;

is an isomorphism.

Proof Part (1) follows from part (1) of Proposition 5.6 and part (2) is a conse-
quence of part (2) of Theorem 3.6. O

@ Springer



Dualizing spheres for compact p-adic analytic groups

Here is the input for an application of Lemma 7.2 and Remark 7.7. The fol-
lowing diagram makes (7.1) concrete; all the spectral sequences are homotopy
orbit spectral sequences.

HP(F, H1BT; /T j) === HP [ BT/ Tjlnr (8.4)

gi lg
HP(F, H1BT;/T j41) == HPTI[SPBT;/Tjtilnr
f |
HP(F, H1BT';) =—— HPTI[S° BT s

We continue to write d for the rank of G and, hence, of T';. See also Fig. 1
below.

Lemma 8.5 Let [ (i, d) the be the kernel of the map induced by the transfer
H*([ZLBTilwr)—> H* (2 BTi—alnr).
Foralli > d + 1 the composition
H*(Uglpp)—> H*([ZL BTilnr)— H*((ZF BTilnr) /13, d)

is an isomorphism of modules over the Steenrod algebra.
Proof By part (1) of Lemma 8.3 we have that the maps
H*(Ig)—> Im{tr*: H*BT;y; — H*BT;}—> H*BT;/Iy(i)
are isomorphisms. Furthermore H*(Ig) = [, is concentrated in degree d, the
map H¢(Ig) — H?BT; is an isomorphism, and H"BT; = 0if n > d by
Theorem 3.3.
The spectral sequence

E}(Ig) = HP(F, HY(Ig)) = H"(lg]hF)

has the property that Eg ! = 0 unless ¢ = d. Thus it collapses at Ej.
The map of spectral sequences

EY(Ig) = HP(F, H1(lg)) =—————= HP™([IgyF)

| |

E}Y(S%°BT;) = HP(F, HIL°BT;) == H? ([ BTi1nr)
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q q )
ker(res™)
¢ mpmig) _ d| mrmiery) 4| (e EYB))
ker(tr™) ker(tr*)
p p P

Fig. 1 Comparison of homotopy orbit spectral sequences

induces isomorphisms
.d ~ .d
EL (1) = EL (ST BT)

as EY'(2°BT;) = 0 for ¢ > d. In addition if x € H*([Z°BI1,r) is
detected by a € E&Q(ZfBFi) with ¢ < d, then

tr(a) =0 € ERY(ZPBT;_1);
hence,
tr*(x) € H*([ZBLi—11nF)

is detected by a class in E{,’o“"’*“(B I';—1) with s > 0. Thus if we apply the
transfer d times the class x will be sent to zero, as needed. O

Lemma 8.6 Letr J (i, j, m) be the kernel of the restriction map
H*([Z°BT;/Tjlhr) — H* (BT /T jimlnr)-

Leti > d+ 1andlet j > i + m. Then the homomorphism of modules over
the Steenrod algebra

H*(IZBTi/ Vigjlar)/ I G, jom)—> H*((ZLBTilnr)
is an isomorphism in degrees n < m.

Proof This is a direct application of Lemma 7.2, with N =i + 1, and part (2)
of Lemma 8.3.
To use Lemma 7.2 we must justify the hypotheses of that result. We let
Ey*(j) = H*(F, H*(BT;/T})) = H*((Z’ BT/ Tjlar) = A*(j),
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E}* = H*(F, H"(BT})) = H*([SZBTilyr) = A*, and
K3™(j) = Ker{E}™ (j)— E3™"(j + D}.

We need to check that we have an isomorphism
Ey ()K" ()— Ey™.

Suppose j > i 4+ 1 = N. From Lemma 8.3, we have exact sequences

0——— Jo(i, j) H*(BT';/T'j) —— H*BI'; ——=0

.

0—— Jo(i, j+1)——= H*(BT;/Tj41) —= H*BT; —0.

By Theorem 3.3 and Theorem 3.6 we have algebra splittings, as indicated, and
these splitting respect the F-action. Indeed, H*(BT;) = A(V;), where

V; = H'(BT;) = H'(BT;/T)).

The action of F preserves V; for degree reasons and thus A (V;) since F acts by
algebra homomorphisms. These short exact sequences would normally give
long exact sequences in group cohomology, but the splittings reduce these to
the following short exact sequences:

0— H*(F, Jo(i, j)) —— H*(F, H*(BT;/T})) — H*(F, H*BT;) = 0

| T

0 — H*(F, Jo(i, j + 1)) —— H*(F, H*(BT;/Tj4+1)) — H*(F, H*BT};) — 0
The left most vertical map is zero as the map
Jo(i, j) = ker{res* : H*BT';/Tj—> H*BI;/Tjt1}—> H*BT;/T i
is zero. An easy diagram chase implies that K; () is the kernel of
H*(F, H*(BT;/Tj)) - H*(F, H*BT;).
The splitting above implies that this map is surjective. O

Applying Lemma 8.5, Lemma 8.6, and the isomorphism of (7.8) we get the
following result. Fix i and j and let J,, be the kernel of either of the two ways
around the diagram
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H*[S°BT;/Tjlhr — = H*[ZFBTi—q/Tjlur

lres* \Lres*

HAZE BT/ Ujtmlnr ——= H[ZFBTi—a/Tjsmlnr -

Proposition 8.7 Leti > d+1and j > i +m. Let I (i, d) be the kernel of the
map induced by the transfer

H*([ZBTilhr)— H*([ZBTi—alnr).
Then the maps
q
SEBI/Tigj) <— BB —— Ig
define homomorphisms of modules over the Steenrod algebra
H*([glnF) = H*([Z°BUilnp) /1, d) <—— H*([ZL BT/ Ti1nr) ) Im-

The first map is an isomorphism and the second map is an isomorphism in
cohomological degreee n withn < m.

The same argument which proved Proposition 8.7 can be immediately
adapted to prove the following.

Proposition 8.8 Leti > d + 1 and j > i + m. Let 1°(i, d) be the kernel of
the map induced by the transfer

H*([ZFBgilnr)— H*(ZLBgi—alnr).
Let Jy denote the kernel of the map
res*tr* = tr'res™ : H*([X°Bgi/9jlnr) — H (X Bgi—a/8j+mlnF)-
Then the maps
q
E°B(gi/gi+j) <—— T B(gi) —— S9
define homomorphisms of modules over the Steenrod algebra
H*([S%]nF) = H*([EXBgilnr)/1°G, d) =<—— H* ([ Bgi/8j1nF)/ Jy-
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The first map is an isomorphism and the second map is an isomorphism in
cohomological degreee n withn < m.

We now come to our main calculation. Consider the following diagram of
modules over the Steenrod algebra withi < j < 2i and j > i + m.

H*([BT: /T 1hp) /) Im ——= H*((Bgi /g, 1nr)/ ]S (8.9)
H*([BT1np) /1 G, ) H*((Bgilnr)/1°G, j)
H*([Ig1F) H*([S*11F)

The horizontal isomorphism comes from the isomorphism of groups

Fi/Tj=gi/g;

discussed in (2.6). The upwards vertical maps are isomorphisms by Proposi-
tion 8.7 and Proposition 8.8. The same results show that the downward vertical
maps are isomorphisms in degrees n with n < m.

Theorem 8.10 Let F C G/Z(G) be a finite subgroup. Then the maps of (8.9)
define an isomorphism of modules over the Steenrod algebra

H*(EFy Ap Ig) = H*(EF, Ap S9).

Proof We look at (8.9). In any given range of degrees up to an integer m, we
may choose i and j sothati < j <2iand j > i+ m. O

Combining Theorem 6.25 and Theorem 8.10 immediately implies our key
result.

Theorem 8.11 Let G be a compact p-adic analytic group and let H be a
closed subgroup of G such that H/H N Z(G) is finite. Suppose the p-Sylow
subgroup of H/H N Z(G) is an elementary abelian p-group. Then there is an
H-equivariant equivalence

Ig >~ Sg.

9 Analyzing the linear action

In this section we write down a general result that allows us to use linear algebra
to analyze the equivariant homotopy type of S¥ for finite subgroups. The main
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result is Proposition 9.8, but before getting there we need an intermediate
result about the transfer for finite covering spaces of equivariant manifolds,
namely Proposition 9.6. This can be proved by putting together ideas from
standard sources such as [16] and [50], but it is easy enough and clearer to be
completely explicit.

9.1 Equivariant geometric transfer

Fix a finite group F and let
q: M— N

be a F-equivariant differentiable finite-sheeted cover of a closed F-manifold
N. To be clear:

(1) M and N are closed C°°-manifolds of dimension d with a differentiable
F-action;
(2) g is an F-equivariant differentiable map and a finite covering map.

If M is a differentiable manifold, let 7 M denote the tangent bundle and 7, M
the fiber of T M at m eM.

Remark 9.1 (Equivariant geometric transfers) Let i = {U;|i € A} be a finite
open cover of M by open subsets U; € M with the following properties:

(1) for all i the restriction of the covering map to ¢ : U; — N is an open
embedding defining a diffeomorphism onto its image; and,

(2) forall g € F and alli € A, there is a k € A so the action by g on M
restricts to a diffeomorphism g : U; — Uy.

Note that part (2) defines an action of F on A, and hence a permutation rep-
resentation W = RA.

Next, let ¢; be a partition of unity subordinate to the cover U with the
following equivariance property: if g € H and g : U; — Uy is as in Part (2),
then

dr(gx) = ¢i(x).

The existence of such partitions of unity can be found in §I11.6 of [16]. The
map

ji:M— W x N
x = ((¢i(x)), g(x))
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is an F-equivariant differentiable embedding and we have a commutative dia-
gram of F-maps

We have an isomorphism of the F-equivariant tangent bundles ¢*Ty = Tyy;
this a property of covering spaces. For any base F'-space Y let Oy be the trivial
F-bundle of Y with total space Y x W and diagonal F-action. Then we have
an isomorphism of F-bundles Ty y = 0w @ p5Tn. Thus we can conclude
that

J Twun Z 6w & Ty.

It follows that the normal bundle of M in W x N is isomorphic to the trivial
bundle 6w over M. Choose an equviariant tubular neighborhood v of M in
W x N € S¥ x N. (See Theorem IV.2.2 of [16].) Then one model for the
transfer is the Thom collapse map

SV ANLZ(SY x N)/({oo) x N)

— SV x NSV xN) =) =Zv/0v =SV AM,. 9.2)

This last isomorphism uses that the normal bundle is trivial, so there is an
equivariant diffeomorphism

Wx MZv. (9.3)

The collapse map of (9.2) is an unstable model for the transfer, so we write
tryy - S ANy — SY A M, for this map. After further suspension we can
cancel the representation sphere S" and get the stable equivariant transfer
map

tr: X°N— M.
This is independent of the choices.

The next result is a special case of the equivariant tubular neighborhood
theorem. See Theorem VI.2.2 of [16].

Lemma 9.4 Let M be a smooth manifold with a differentiable action by a
finite group F. Let m € M be a fixed point for the action. Then there exists an
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F-invariant open neighborhood U of m and an F -equivariant diffeomorphism
f:U = T,M taking m to 0.

Furthermore, the closure U of U is homeomorphic to a closed ball and the
map f extends to an F-equivariant collapse map

fuo:M—> M/(M—-U)ZU/oU = §TM, 9.5)

If g : M — N is our covering map, then g(m) € N is also an F-fixed
point. We may suppose further that ¢ maps U and U diffeomorphically onto
the images V and V in N. Note that g : M — N defines an isomorphism of
representations T, M = Ty n)N.

Proposition 9.6 There is an F-equivariant commutative diagram of spectra
00 tr 00
PN ——= XM

Ef/\fvl \LZfAfU

STyamyN o ¢TuM

where fy and fy are the equivariant collapse maps of (9.5).

Proof We claim there is a commutative diagram of F-spaces

SW AN o sV A My (9.7)

SWAfvl lSWAfU
SW+TymN SWH+TuM

To see this, let vy < v be the image of W x U under the equivariant
diffeomorphism W x M = v of (9.3). Then a model for the square (9.7) is

SWxN SWxN

{oo}x N (SWxN)—v

SYxN SV xN
{00} x NUSW x (N—V) (SWxN)—vy*

We can now take the diagram of (9.7), stabilize, and cancel the representation
sphere S" to obtain the result. 0
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9.2 Linear spheres

Let G be a compact p-adic analytic group of rank d and let g be the adjoint
representation.

Proposition 9.8 Let F C G be a finite subgroup. Suppose there is a finitely
generated free abelian group L C g with the properties that

(1) L is stable under the adjoint action of F on g, and

(2) L/pL =g/pg.

LetV =RQ® L andlet SV be the one-point compactification of V. Then there
is an F-equivariant map S¥ — S% which becomes a weak equivalence after
completion at p.

The proof is below, after Proposition 9.11. The argument we have in mind
proceeds geometrically, using that V/L = (R ® L)/L is an F-parallelizable
manifold, as shown in Lemma 9.9.

As before, if Y is any F-space and W is a real representation of F, then
Ow denotes the trivial bundle with total space Y x W. If M has an action by a
finite group F and m € M is a fixed point, then 7, M is real representation of
F.Note also that 0 = 0 + L € V/L is fixed under the action of F.

Lemma 9.9 Let F be a finite group acting on a finitely generated free abelian
group L. Let V. = R® L. Then there is an equivariant isomorphism of bundles
over V/L

T(V/L) = 6y.

In particular there is an isomorphism of F -representations To(V /L) = V.

Proof The standard linear trivialization 6y = TV over V descends to the
needed trivialization over V /L. Specifically, the trivialization over V is the
map

VxV—TV

sending (v, w) to (v, y’(0)) where y (r) = v + tw. O
Lemma 9.9 and Lemma 9.4 immediately imply the following.

Proposition 9.10 Let F be a finite group acting on a finitely generated free

abelian group L. Let V.= R ® L. Then there is a choice of F-equivariant

neighborhood U of 0 + L € V /L that gives an equivariant collapse map
fu:V/L— SV,

This map sends 0+ Lto0 eV C sV,

@ Springer



A. Beaudry et al.

The following result is an immediate consequence of Proposition 9.6 and
Proposition 9.10.

Proposition 9.11 Let F be a finite group acting on a finitely generated free
abelian group L. Let V = R ® L. Then there is a stable F-equivariant equiv-
alence

hocolimE5°(V/p'L) ~ SV

where the colimit is over the transfers for the covering maps V/p't'L —
V/p'L.

We can now prove the main result of this section.
Proof of Proposition 9.8 Let I'; € G be our preferred set of open uniformly

powerful subgroups of the compact p-adic analytic group G. Recall from
Definition 3.10 that we have defined

B(p'g) =holimB(p'g/p'/g)

and we proved in Proposition 3.11 that there is an equivalence after p-
completion

EPB(p'g) ~ holimE°B(p'g/p' T g). (9.12)

Finally, $¢ >~ hocolimX%° B( p'g), again after p-completion.

Our assumption that L /pL = g/ pg allows us to conclude that for all i the
map

B(p'L)—> B(p'9)
induces p-completion on the fundamental group. The map V/p' L — B(p'L)
classifying the principal p’'L bundle V — V/p'L is a weak equivalence and
we also have that the composition
V/p'L— B(p'L)— B(p'9)
induces p-completion on the fundamental group. Since both spaces have no
non-zero higher homotopy groups it is then an isomorphism on H,(—, ).
Then
2XV/p'L— £°B(p'g)
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is also an isomorphism on Hy(—, ). Using (5.7) and Proposition 9.11 we
can now conclude that

SV =~ hocolimE°V/p' L— hocolimEB(p'g) = §°

is an isomorphism on Hy(—, IF ;). This implies the result. O

In our examples the natural choice of a finitely generated free abelian group
L C g may not have the property that L/pL = g/pg. The following result
will let us relax this hypothesis.

Lemma 9.13 Let M be a free Z,-module of finite rank and let Ly € M be a
finitely generated free abelian group so that Q, ® Lo = Qp ®z, M. Define

L={xeM|pkxeL0f0rsomek20}§M.

Then L is a finitely generated free abelian group, Q, ® L = Q) ®z, M,
Lo C L has finite index, and

L/pL=M/pM.

Furthermore, if f : M — M is any continuous Zp-linear isomorphism such
that f(Lo) = Lo, then f(L) = L.

Proof Filter M by powers of p; that is, set FxM = p*M. Let E.M be the
associated graded module. Then ExM = ,[x] ® M /pM where M /pM has
filtration 0 and x has filtration 1 and is the residue class of p in E4Z,. Since
M /pM is finite, EM is a finitely generated I ,[x]-module.

We have induced filtrations on Lg and L; for example, F;L = FsM N L.
The hypothesis that Q, ® Lo = Q, ®z, M implies there is an integer n so
that we have inclusions of graded I ,[x]-modules

x"ExM C EyLo C ELL C E.M.

We first show the last inclusion is an equality.
Suppose a € EgM is represented by o € FyM. Then x"a € E,Lg so there
isap e FyynLoand z € p*™"t M = Fy, .1 M so that

pla=pB+z.
Since p : F;M — Fy41 M is an isomorphism, we may choose y € Fs1M so
that p"y = z. Set y = o — y. Then y = « modulo F;; M and hence y also
represents a. Furthermore

p'y =B €Ly
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Thus y € L as needed.

We can now prove the result. Since p"L € Lo and p" : L — p"L is an
isomorphism, we have that L is finitely generated and free. The inclusions
p"L C Lo € L imply L is of finite index in L, that Lo and L have the same
rank, and that

Q®Li=Q,®L=Q,8z, M.

The equality ExL = EM shows L/pL = M/pM.

Let f : M — M be any isomorphism, and let x € L so that pXx € L for
some k. Since L is invariant under f, we have p* f(x) € Lo, so f(x) € L.
That every x € L isin f(L) is an easy exercise. O

Using this we have the following useful variant of Proposition 9.8.

Proposition 9.14 Let F C G be a finite subgroup. Suppose there is a finitely
generated free abelian group Lo C g with the properties that

(1) Lo is stable under the adjoint action of F on g, and
(2) Qp® Lo = Q, ®z, 6.

Let V. =R ® Lg and let SV be the one-point compactification of V. Then
there is an F-equivariant map SY — S® which becomes a weak equivalence
after completion at p.

Proof Use Lemma 9.13 to produce a finitely generated free abelian group L so
that Lo € L C g, L is F-invariant, and L/pL = g/pg. Since V =R ® Ly =
R ® L, Proposition 9.8 now applies. O

10 Lubin-Tate theory and its fixed points

We fix pand n > 1. If F is a formal group law of height n over a finite
algebraic extension k of I, let E = E(k, F)) be the Lubin—Tate spectrum
— aka the Morava E-theory — associated to the pair (k, F). The spectrum E
is an Eso-ring spectrum with an action, through E,-ring maps, of the group
G = Aut(k, F) of the automorphisms of pair (k, I') [30,60]. Namely, the

elements of G are pairs (f, ¢) where ¢ € Gal(k/F,) and f: ¢*F = F
is an isomorphism; an explicit description of G for the Honda formal group
law is given in Example 2.15. A general theory is possible here, but we will
focus on two examples. For both, the pair (k, ') will have the property that
for any algebraic extension k C &’ the inclusion Aut(k, F) € Aut(k’, F) is an
isomorphism. We will say that the pair (k, F) has all automorphisms at k.

Example 10.1 The classical example is the Honda formal group law F of
height n over [F . In this case F is the unique p-typical formal group law
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defined over IF, with p-series x?". Not all automorphisms of F are defined
over I ,; for this we need to pass to I .

Example 10.2 The other case of interest is specific to n = 2, and we only
concentrate on p = 2 or 3. Then F is the formal group law of a supersingular
elliptic curve defined over [F,,. We can and will choose the curves so that once
we pass to I > we get all automorphisms.

From now on we assume we are working with one of these two examples.
In both cases k = IF,», where 7 is the height of the formal group.

Remark 10.3 (Structure of the Morava stabilizer group) Because the formal
group law F is defined over I, there is a split surjective homomorphism

G = Aut(Fpn, F)—) Gal(Fpn/Fp)

with kernel the group S := Aut(F/F ), the group of automorphisms of F
over IF ,n. Both G and its subgroup S € G are compact p-adic analytic groups.
We write

.CTyy Sy C--CM CS (10.4)

for the filtration of Example 2.15.

There is a non-canonical isomorphism
WEpllur, - ... w1 ]l ] = Eq

where the power series ring is in degree 0 and u is in degree —2. The power
series ring Eq is a complete local Noetherian ring with maximal ideal m =
(p,ui,...,u,—1) and residue field IF ,». Define K = K (n) to be the version
of Morava K-theory with K, = I [u*'] and formal group law F. There
is map of complex oriented ring spectra E — K which, on coefficients, is
the quotient by m. The category of K-local spectra is the standard K (n)-local
category.

The K-local category is a closed symmetric monoidal category with smash
product Lg (X A Y). As is commonly done, we define

E.X =, Lx(E A X).

This is not quite a homology theory, so the notation is slightly abusive. It has
very nice algebraic properties; see for example Remark 10.10. The action of
G on E gives a continuous action of G on E, X making E. X a Morava module
(see [10, Section 1.3] for a definition).
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Remark 10.5 Recall that L,-localization is localization with respect to the
homology theory K (0) Vv ...V K (n) or, equivalently, with respect to E. Here
K (0) is rational homology.

Using the periodicity results of Hopkins and Smith [44], Hovey and Strick-
land produce a sequence of ideals J (i) € m C Eg and finite type n spectra
M ;) with the following properties:

() J@+1) S J@)and (), J(G) =0;

(2) Eo/J (i) is finite;

(3) Ex(M,;)) = E,/J (i) and there are spectrum maps g : Myi+1) — My
realizing the quotient E,./J (i + 1) — E,/J(i);

(4) There are maps n = n;: Y| J(i) inducing the quotient map Ey —
Eo/J (i) and gnit1 = ni: SO — Myqy;

(5) If X is a finite type n spectrum, then the map X — holim; (X A Mj;))
induced by the maps 7 is an equivalence.

(6) If X is any L,-local spectrum, then Lg X = holim; X AM ;). In particular
we have E >~ holim;E A M ;).

Most of this is proved in [45, Section 4], while (6) is proved in [45, Proposition

7.10]. In the same source, Hovey and Strickland also prove that items (1)—(5)

characterize the tower {M;)} up to equivalence in the pro-category of towers

under S; see [45, Proposition 4.22]. Note that the topology on Eq defined by

the sequence {J (i)} is same as the m-adic topology and that G acts on E,./ J (i)

through a finite quotient of G.

We can now prove the following useful recognition lemma.

Lemma 10.6 Let f : X — Y be a map of L,-local spectra. Then LK f :
Lx X — LY is an equivalence if and only if there is a finite type n complex
T so that

AT : XANT— Y AT

is an equivalence.

Proof The collection of type n complexes forms a thick subcategory C, of
finite spectra, so if f AT is an equivalence forany T' € C,, itis an equivalence
for all T € C,. Thus one implication follows from item (6) of Remark 10.5.
The other implication follows from the fact that if X is L,-local and 7T is of
type n, the map X AT — Lg(X A T) is an equivalence. O

Remark 10.7 (Fixed point spectra and transfers) According to the theory of
Devinatz and Hopkins [27], for any closed subgroup K C G there is a contin-
uous homotopy fixed point spectrum EX_ These are again E.-ring spectra,
and there is a fixed point spectral sequence

H*(K,E;) = m,_,E"K. (10.8)
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The E»-term is continuous group cohomology. We have E'® ~ Ly SO and
the spectral sequence of (10.8) with K = G is the E-based Adams-Novikov
spectral sequence in the K-local category.

The spectral sequence of (10.8) has a very rigid convergence properties.
There is an integer N, independent of K, so that E3° = 0 for s > N. If
K CTy(or K CIif p > 2), then

H*(K,E;) =0

for s > n?, as K is then a Poincaré duality group of dimension < n?.

These fixed point spectra of E also have the property that if K1 C K> is
normal and of finite index, then E"X1 has an action by K»>/K and there is a
weak equivalence

E'K2 ~ (ghK1yhK2 /Ky (10.9)

This is proved as Theorem 4 of [27]. In particular, we have a transfer map
tr : E"K1 5 EMK2 If K € Gis open (and hence closed), then K is of finite
index in G and we have a transfer map

tr: E"K LKSO ~ EhG,

Remark 10.10 Let H € G be a closed subgroup. A crucial property of the
fixed point spectrum E*#  from [27, Theorem 2], is that there are isomorphisms

K.E"M = 7 Ly (K AE"™) = map(G/H, K,)
E.E" = 7, Lx(E AE"™) = map(G/H, E,) (10.11)

where map denotes continuous set maps. The action of G on the left factor
of E defines the Morava module structure on E,E"# . The isomorphism of
(10.11) becomes an isomorphism of Morava modules if we give the module
of continuous maps the conjugation action

(gp)(x) = go(g ™' x).

If H is normal, then G acts on E*#. The isomorphism of (10.11) becomes
equivariant if we define an action on the module of continuous maps by

(& *9)(x) = (xg).

Remark 10.12 (Continuous actions and fixed points) For one of our main
results we will need some details about how the continuous fixed points of
[27] are constructed. See Lemma 11.12.
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Let G = lim; G; be a profinite group. We are thinking of G = G, S, or
['; € S. Let X be a spectrum presented as a homotopy inverse limit

X >~ holimX

with 77, X ; finite for all j and 7. We are thinking of the E >~ holim;E A M),
as in point (6) of Remark 10.5. Define the spectrum of continuous map by

F.(25°G, X) = ho}im hoc?lim F(ZXGi, X)). (10.13)

This definition is built so that
Jr*FC(EiOQ, X) = map(G, m. X), (10.14)

where the target is the group of continuous maps. We can extend this definition
of the continuous function spectrum to

Fo(2°6' X)) = ho}im hocolim F(2°G!T, X)),

where G™ is the m-fold Cartesian product of G with the product topology. Then
the data of a continuous action of G on X is a map X — FC(EJOFOQ , X) which
extends (in the obvious way) to a map of cosimplicial spectra

X— F.(Z3G'*, X).
One of the main theorems of [27] is that the action of G in E can be refined to

a continuous action.
If ' C G is open, then we define

X" = holima Fe.(£°G" ™, X)T' = holima F.(2°(G/ T x G*), X).

The Bousfield-Kan Spectral Sequence of this cosimplicial space then gives the
homotopy fixed point spectral sequence

HY (T, 7, X) = m,_ X7,

where the E>-term is continuous cohomology.

This notion of homotopy fixed points commutes with various types of
inverse limits; the following will be sufficient for our purposes. If X is a
spectrum, let P, X be its nth Postnikov section.
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Lemma 10.15 Let G be a profinite group and let ' C G be an open subgroup.
Suppose X is presented as a homotopy inverse limit

X =~ holimX;

with ;X ; finite for all j and t and that, with this presentation, X has a
continuous G-action. Then P,X >~ holim P, X ; and the natural map

) LN holimn(PnX)hF
is an equivalence.
Proof Note that by the definition (10.13) and (10.14)
1 Fe(22°G°, X)—> 1 Fo(25°G*, P, X)
is an isomorphism for ¢ < n. Thus the natural map
F(2°G'*, X)— holim, F.(2°G'**, P, X)

is an equivalence of cosimplicial spectra. The result follows. O

11 Dualizing the Lubin-Tate spectrum

In this section we prove one of our main theorems, identifying the equivariant
homotopy type of the Spanier—Whitehead dual of E. See Theorem 11.16 and
Corollary 11.18.

Let D(-) = F(-, LgS°) denote Spanier—Whitehead duality in the K-local
category. By definition, a K-local spectrum X is dualizable if the natural map

Lk(DX AY) = F(X,Y)
is an equivalence for all K-local spectra Y.

Lemma 11.1 (1) Let T' € G be an open subgroup. Then E' is dualizable in
the K-local category. Furthermore, E.DE" is zero in odd degrees and
there is a G-equivariant isomorphism

EoDE" = E'E'" = Ej[G/ T
where G acts on Eo[G/ T by g(O_aixiT') = > g(ai)gx;T.
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(2) Let T; € S C G be the open subgroups of (10.4). The natural maps
E'"Ti — E induce a G-equivariant equivalence in the K-local category

hocolimEMi —=+ E .

Proof Since T' is open, it is of finite index in G; therefore, (10.11) implies
that E,E"T is finitely generated as an E,-module. Then Theorem 8.6 of [45]
implies that E'T" is dualizable. To finish the proof of part (1) we use the standard
Spanier—Whitehead duality isomorphism, the Universal Coefficient Spectral
Sequence

EoDE"" = E’E"" = Homg, (EoE"", E)

and (10.11). Note that to make this isomorphism G-equivariant we must act
by conjugation on the target; that is, (gy)(a) = glﬂ(g_la).
For (2) we need to check that

hocolim K,EM" = K,E".
By (10.11), this is equivalent to showing the map
hocolim map(G/ T';, K,) — map(G, K,)

is an isomorphism, where map continues to denote the continuous set maps.
Since the topology on K, is discrete, this is clear. O

In order to assemble the Spanier—Whitehead duals of E*I for various i we
need a version of Frobenius reciprocity. Let R be an Eo-ring spectrum and
suppose G is a finite group that acts on R through E-ring maps. Then the
spectrum R" := F(EG,, R) is an Eo-ring in genuine G-equivariant spectra
[41].> The notation is chosen so that for any subgroup H € G, the categorical
fixed points (R")H agree with the homotopy fixed points of the original H-
action on R. Suppose that K € H < G are subgroups. Then we have the
following maps

(a) the inclusion (restriction) map r : R — RMK;

(b) the transfer (induction) map tr : R"X — R and,

(c) conjugation maps cg : RM s RhGT'Hg),

These maps are in fact defined for any genuine G-spectrum, and are at the

core of the identification of genuine G-spectra with spectral Mackey func-
tors [3,33]. Because it will be important for the next Lemma, let us recall

3 In fact, the same source explains that R" has more equivariant multiplicative structure, but
we don’t need that here.
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the provenance of these maps. The restriction is induced by the map of G-
sets p : G/K — G/H; then r = F(p,, R")C. The conjugation maps are
similarly induced by maps of G-sets, namely the conjugation by g € G maps
G/¢g~'Hg — G/H.The transfer is not induced by a map of G-sets, but rather
by the Spanier—Whitehead dual of p in G-spectra [53].

Lemma 11.2 The inclusion, transfer, and conjugation maps have following
properties.

(1) The inclusion r : R™ — R"K and conjugation Cg RM s Rh('Hg)
are maps of Ex-ring spectra.
(2) We have Frobenius Reciprocity commutative diagrams such as

RhK A RhK m RhK
ral

RhH A RHK tr

RhH A RhH — RhH.

Proof We use ideas from [28]. More generally, this result holds for any Eo-
ring A in genuine G-spectra, not just those of form A = R”.

For such an A, we have that the restriction and conjugations are maps of
Eo-rings, since they are obtained by taking G-fixed points (a lax monoidal
functor) of the E,-ring maps

F(G/H.,R) — F(G/K+,R) and F(G/H,R) — F(G/g 'Hgy, R).

For the transfer, it suffices torestrict to H, so that tr will be the H -fixed points
of the A-module map F(H/K, A) — A, obtained by mapping into A the
Spanier—Whitehead dual in H -spectra of the map of H-sets H/K+ — H/H.
Upon taking H-fixed points, we get that AKX — A# is an A”-module map,
where AX has the A¥ -algebra structure given by the restriction map. Frobenius
Reciprocity is simply the diagramatic form of the statement that tr is an A¥-
module map. O

Much more sophisticated results are possible, using the language of spectral
Mackey functors and spectral Green functors. See [3] and [11].
From Lemma 11.2 we have pairings

RhH A RhH m RhH r RhG

and get maps
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that switch restriction and transfer; for example, the following diagram com-
mutes

R'K > F(R'K RNO) (11.3)

trl lF(r,l)

RhH F(RhH, RhG).

Lemma 11.4 Letr; : E"Ti — EMi+t be the restriction maps. The maps f j
fit into a G-equivariant commutative diagram

BT DL AT Ly s0)

trl lF(rj,l)

EM — F(E"i, Lk S).

J
Furthermore, we have a K-local G-equivariant equivalence
holim "/ ~ DE.
tr

Proof The commutative square can be obtained from (11.3) by taking R =
EMit1 G =G/Tiy1, H=T;/T41 and K = {e} = I';41/ 1. Note that
R"G = LkS°.

The last statement follows from Part (2) of Lemma 11.1. O

Remark 11.5 Itis an observation due to the third author (see [63]), that there is
an underlying (that is, non-equivariant) equivalence of spectra DE ~ »"’E.
This included a calculation the G-action on 7, DE. This older result is a corol-
lary of our theorem Theorem 11.16, but we will end up giving a proof of this
fact as we go; the argument is essentially the same as in [63]. In summary, we
will show certain spectral sequences that appear in the proof of Lemma 11.9
have only one non-zero line and the shift of 12 is due to the degree of that line.

We now add an algebraic result which will be used in several arguments to
follow. There is nothing special about the group G; the argument works equally
well for any compact p-adic analytic group G. We fix a nested sequence of
open subgroups I'; € G, as in Notation 2.18. An abelian group A is finite
p-torsion if A is finite and there is an integer n so that p" A = 0.

Lemma 11.6 Let G be a compact p-adic analytic group of rank d and A be a
finite p-torsion discrete G-module.
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(1) There is an integer N so that for all i > N the subgroup T; acts trivially
on A.
(2) Taking the limit over transfers gives an isomorphism

A, s=d;
lim H¥(T';, A) = g
j 0, s #d.
Ifi > N, then the natural map lim ; Hd(Fj, A) — Hd(Fi, A)=E Aisan
isomorphism.
(3) Taking the colimits over restriction gives an isomorphism

A 5s=0;
colim H*(Iy, Ay = {° °
i 0 s>0.
If j > N, then natural map A = HY(T';, A) — colim; H(T;, A) is an
isomorphism.

Proof To prove (1) we use that if A is discrete the orbit of any elementa € A
is finite. Let H, C G be the isotropy subgroups of a, then H, is open, so N, H,
is also open, since this is a finite intersection. Choose N so that I'y € N, H,.

We next prove part (2). Since the limit depends only on large j, we make
take j > N and assume the action is trivial. Furthermore, since H*(I';, F p)is
finite for all k, by Theorem 3.3, the functor

Avr— limH ('}, A)
J

sends short exact sequences in A to long exact sequences. If A = Z/ p the result
can be found in Proposition 5.6; more precisely, that result is for homology, but
in this case cohomology is dual to homology. The result is then immediate if
pA = 0. Now use induction on k and the long exact sequence in cohomology
obtained from the short exact sequence

k—1
0—=A/pAl A= A/ptlA— 0.
Part (3) is proved the same way, now using part (2) of Theorem 3.3 O

The next step is to decompose the homotopy inverse limit of Lemma 11.4
even further, using part (2) of Lemma 11.1.

Lemma 11.7 The G-equivariant K-local equivalence hocolim; E'Ti ~ E
induces a G-equivariant K-local equivalence

hocolim; [(EfT1)"T/] —== [hocolim; E"Ti 1T/ ~ EAT)
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and hence a G-equivariant K-local equivalence
holim ; hocolim; [(E"T")"'1] ~ holim ; E'J

Proof We apply Lemma 10.6: to prove it is a K-local equivalence, it is suffi-
cient to check we have an equivalence after smashing with some finite type n
complex 7. Since T is finite, (—) A T commutes with homotopy fixed points
and the map becomes

hocolim; [((E A T)T)Ti]l—s (E A T)"i (11.8)

We may assume that we have chosen T so that for all 7 the G-module E;T
is discrete, finite, and annihilated by m* for some k. Such T appeared in
Remark 10.5. Write X; = (E A T)"T.
In the next diagram we use the following basic fact: If G = lim Gy is
profinite and M is finite and discrete, then colimH*(G,, M) = H*(G, M).
We now have a diagram of spectral sequences

colim,-Hs(F‘,-,rr,X,-) HS(Fj,EtT)

ﬂ U

colim; 7, (XY ——= 7, (B A T)MT.

Since colimm,. X; = E,T and m; X; is finite and discrete for each ¢, the map
across the top is an isomorphism. Since each of the spectral sequences

h

1—“
H' (T, mX;) = m—s(X; /)

strongly converge and colim is an exact functor, the spectral sequence on
the left strongly converges. Since the spectral sequence on the right strongly
converges as well, we are done. O

The next step is to switch the limit and colimit.

Lemma 11.9 The natural map
colim; holim ; (E""")"T/ — holim  colim; (E*'")"'/ ~ DE (11.10)
is a G-equivariant K-local equivalence.

Proof As akey to the upcoming argument, we make the following convention.
If we use the index i we will be taking a colimit along maps induced by
restrictions; thus for example
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.. > Ehli-t T ghli " ghlipr o ..

If we use the index j we will be taking the limit along maps induced by transfer;
thus for example,

e SR W gAT; W RRT o L

The spectra E"i are K-local, hence L,-local. Since L,-localization is
smashing, the category of L,-local spectra is closed under homotopy col-
imits and homotopy limits; hence the map of (11.10) is a map of L,-local
spectra. We now apply Lemma 10.6: to prove it is a K-local equivalence, it is
sufficient to check it is an equivalence after smashing with some finite type n
complex 7. Since T is finite the map may be rewritten

colim;holim; ((E A T)"T7)"Ti — holim ;colim; ((E A T)"T1)"T7 . (11.11)
As before we assume that for all ¢, the G-module E,;T is discrete, finite and
annihilated by m¥ for some k; see Remark 10.5. In particular, E, T satisfies the
hypotheses of Lemma 11.6.
By Lemma 10.6, the fixed point spectral sequences

HS (T, E,T) = 7, s(E A T)M

have a horizontal vanishing line at s = n? at E, for all i > 2. For all 7, the
cohomology groups are finite and p-torsion; hence, 7r; (EAT)"T is finite and of
bounded p-power order for all 7. A similar argument shows 7; (E A T)/Ti)TJ
is also finite and of bounded p-power order for all z. Thus, to prove the result,
it’s enough to prove that

colim lim 7z, (E A 7))/ — Tim colim 7, ((E A T)7)"T
l J J 4

is an isomorphism as all lim !-terms vanish.
By assembling the I'; fixed point spectral sequences we get a diagram of
spectral sequences

colim; lim; H(T'j, 7r,(E A T)"'1) == colim; lim; 7r,—s (E A T)"i)"T;

l !

lim colim; H(T'j, 7r;(E A T)"1) == lim; colim; ;s (E A T)"i)"J .

There is an issue here: while colim is exact on directed systems of abelian
groups, lim is not, so applying lim to a system of spectral sequences does
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not necessarily yield a spectral sequence. Here again we use that the terms
H*(Tj, m;(EA T)"T'i) are all finite, so that there will be no lim!-terms and we
do get a diagram of strongly convergent spectral sequences.

It is now sufficient to show that the right vertical map on E>-terms is an
isomorphism. We will show much more: it will turn out that both the source
and target of the map on Ej-terms are zero unless s = n?; this directs our
attention to s = n?.

We now use Lemma 11.6. Choose j large enough that the action of I"; on
7 (E A T) is trivial. Then we have a diagram

colim; lim; H"(T';, ,(E A T)") — colim; H" (T';, ,(E A T)"T1)

|

lim; colim; H" (Tj, m(E A T)M)

|

lim; H" (T}, m,(E A T)) H" (T}, m,(EAT)).

ByLemma 11.6, we know H" (T'j, m;(EAT)) = 7, (EAT) and that the natural

map lim; av Ty, m(EAT)) - H”Z(Fj, 7:(E A T)) is an isomorphism.
Thus we have a commutative triangle

colim; lim; H™ (T;, m;(E A TY'T) — o lim, colim; H" (T';, 7, (E A T)'TH)
J J J J

T (EAT)

We show both the maps f and g are isomorphisms.
We begin with the map f. Using part (2) of Lemma 11.6 we have

m(EATYT s =n?

lim H* (L', 7, (BE A T)M7) =
m (7 )){O, S
Then, using part (2) of Lemma 11.1, we have (as needed) that

7 (EAT), s=n%

colimlim H*(T';, m,(E A T)'Ti) =
li lj (', 7 ( )70 :0’ s £ n?.

We complete the argument by analyzing the map g. We claim the maps

EATTi ~ i AT S EAT
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induce an isomorphism
colim; H* (T, m;(E A T)")) = H* (T, m (E A T))
and hence, by Lemma 11.6, isomorphisms

m(EAT), s=n%

lim colim H*(T';, 7, (E A T)"iy) =
m col (T, m ( )7 ) 0. s o nl.

J

If M is any finite and discrete G-module, then I'; acts trivially on M for
large k. It follows that for all j we have

colimg H*(I'j/ T jsx, M) = H*(I'j, M).

This applies to M = m;(EA T)" and M = 7;(E A T). Note also that by part
(2) of Lemma 11.1 we have hocolim;E"'i A T ~ E A T. We now have

colim; H*(T'j, m; (E A )iy = colim;colimy H*(T'; /T j 14, 7, (E A )iy
= colimycolim; H* (T / T jx, m (E A T)')
= colimg H*(T';/ T'j 44, colim;r, (E A T)"7)
= colim H*(T'j /T jx, ;i (EAT))
= H* (T, m;(EAT)).

The second to last isomorphism uses part (2) of Lemma 11.1. O

In light of Lemma 119, the project now is to compute
hocolim;holim (EMTi)"Tj; see Lemma 11.15. The next result is the first step.

Lemma 11.12 Let j > i so that the action I"j on E"i is trivial. Then there
is a G-equivariant K-local equivalence

(E'THATS 5 F(SP BT, EM.

where G acts on X BT; through conjugation and diagonally on the function
spectrum.

Proof We use the following basic fact about fixed point spectra. Let G be a
finite group, K a normal subgroup of G, and X a G spectrum on which K acts
trivially. Then there is a natural equivalence of G-spectra

X"K =~ F(£BK, X)
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where G acts on X{°BK through conjugation and diagonally on the function
spectrum. The difficulty here is that G is not finite.

Since we seek a K-local equivalence we need only prove this after smash-
ing with a type n-complex 7. See Lemma 10.6. Thus we assume we have a
spectrum X with a trivial I' = I'; action and with the property that 7, X finite,
discrete, and annihilated by some power of p. We will show there is a natural
G-equivariant equivalence

X" ~ F(EPBT}, X).

In practice, we will take X = E"'i A T ~ (E A T)"T,

LetT" =T';. Since I' acts trivially of X, we have a trivial action of the finite
group I'/ T’ of X for all k > j and the maps XT/Tk — X"T induced by the
quotient map on groups give us a natural equivariant diagram

hocolim X"/ Tk —=— hocolim F (£° B(I'/ T'k), X)

/ ig

xhr F(Z°BT, X).

Our strategy is now as follows. We will show that the maps f and g are
equivalences when X is bounded above in homotopy; that is, there is an integer
n so that 7; X = 0 for t > n. For general X, this will then provide us a natural
equivalence

(P, X)" ~ F(Z°BT, P,X).
for all n. We now then can use Lemma 10.15 to get an equivalence
X" ~ holim,, (P, X)"" = holim, F(S° BT, P,X) =~ F(2 BT, X).

Thus, for the rest of the argument, assume 7; X = 0if r > n.

We first show g is an equivalence. The basic fact we will use is that if A is
a finite discrete abelian group with the property that p* A = 0 for some k with
trivial I"-action, then

H*(, A) = colimH*(T"/ Tk, A)
= colimH*(SPB(T/Ty), A) = H*(ST°BT, A).  (11.13)

See Proposition 3.11.
We are asserting that the natural map

hocolim F(£° B(I'/ T), X)—> F(holimZPB(T'/Ty), X) (11.14)
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is an equivalence. This follows from (11.13) and an Atiyah-Hirzebruch Spec-
tral Sequence argument. We use that if Y is a space, then

EYIY)=HP(Y,n_¢X) = n_p_gF(EY, X) = XPT(Y)
is zero if p < 0 or ¢ < —n. This implies that for any pair (p, g), there is an
r so that EE?(Y) = EF'?(Y) independent of Y and, hence, that the spectral
sequences converge. Combined with part (2) of Theorem 3.6 this is sufficient
to show (11.14) is an isomorphism.

We now show that f is an equivalence. We have a diagram of spectral
sequences

colim H* (') T, ;X)) = colim 7, _; X1/ T

| K

H' ([, 7, X) ——— 7, X"T.

The question then remains whether the upper spectral sequence converges.
However, for all £ the homotopy fixed point spectral sequence

ES' = HS(T/ Ty, 1 X) = m_ X"/ Tk

has the property that E;” = 0if ¢ > n so for a fixed pair (s, ¢) there is an r,

independent of k, such that E5! = E;’'. This is enough to give convergence.
O

Lemma 11.15 There is a G-equivariant K-local equivalence
colim; holim ; (E""")"T/ ~ F(Ig, E).
Proof Lemma 11.12 and Frobenius Reciprocity imply that

holim ; (E""")""'j ~ holim ; F (2%° BT ;, M)
~ F(colim; X BT;, E")
~ F(Ig, EM)

since the (co-)limit is taken over transfer maps. Since Ig is a p-complete
sphere, it is dualizable; hence, by part (2) of Lemma 11.1

hocolim; F (Ig, E'') ~ F(Ig, E).
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We now come to the main theorem of the section. If X, Y and Z are left
G-spectra the diagonal G-action on F (Y, Z) is the action for which the stan-
dard adjunction between smash product and function spectra restricts to an
adjunction isomorphism

Fc(XANY,Z)E Fg(X, F(, 2))

where Fg denotes the spectrum of G-maps and G acts diagonally on X A Y.
If we were allowed to use functional notation and ¢ € F (Y, Z), then

(gd)(y) = gp(g~'y).

Recall that /g = hocolim; X%° BT"; where the colimit is in the category of
p-complete spectra and taken over the transfer maps. The G action is given
by conjugation on the subgroups I';. See Definition 5.4.

Theorem 11.16 There is a G-equivariant K-local equivalence
DE ~ F(Ig,E) ~ I;' AE

where G acts diagonally on both F (Ig, E) and the smash product.

Proof Thisfollows by combining Lemma 11.7, Lemma 11.9,and Lemma 11.15.
|

Remark 11.17 In Theorem 7.3.1 of [7], Behrens and Davis give an entirely
different expression of the Spanier—Whitehead dual of E as a homotopy fixed
point spectrum. It would be interesting to make a detailed comparison of that
result with Theorem 11.16.

The following is now a consequence of Theorem 8.11 and Theorem 11.16.

Corollary 11.18 Let F C G be a finite subgroup with p-Sylow subgroup Fy.
Suppose that Fy/(Fo N Z(G)) is an elementary abelian p-group. Then there
is an F-equivariant K-local equivalence

DE >~ ST¢ AE.

12 The Spanier—Whitehead duals of E*F: some theory

As an application of the theory developed so far, we will give some calculations
of D(E"F) where F C G is a finite subgroup whose p-Sylow subgroup F
has the property that Fy/Fo N Z(G) is an elementary abelian p-group. Recall
that Z(G) is the center of G. This recovers in a coherent way all the known
calculations of this kind in the literature. We also produce a new example.
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This section provides background and set-up. The precise calculations, which
involve the representation theory of specific groups, are in Sect. 13 and Sect. 14.

12.1 Generalities on Picard groups

Because Tate spectra vanish in the K (n)-local category (see [36]), the norm
map E,r— E"F is a weak equivalence; it follows immediately that

DE"Y = FEM , LS ~ F(Epr, Lk S°) ~ (DE)"F .

By Corollary 11.18 we have, for F satisfying our hypothesis, that there is an
F-equivariant equivalence

DE >~ S 9AE

where S9 is the G-sphere obtained from the adjoint representation. We will
assume that the F action on S9 satisfies the hypotheses of Proposition 9.8,
so that we have a finite dimensional real representation V of F and an F-
equivariant equivalence of p-complete F-spheres SV ~ S8, The project then
is to calculate the homotopy type of (S~ A E)"F.

We begin with some nomenclature. If F' is a finite group, let RO (F) be
the real representation ring of F. If V € RO(F), we write S V' for the stable
one-point compactification of V as an F-sphere, |V| for the dimension of V,
and SV for the stable sphere of dimension |V|. Then S!V! is the underlying
non-equivariant spectrum of SV .

Remark 12.1 (Picard spectra) We begin with such basic theory as we need.
A good summary and references to the classical literature can be found in
Section 2 of [58]. We work in the category of local spectra for some ambient
homology theory, but leave this assumption implicit.

Let R be an Eo-ring spectrum. The space Gl{(R) € QR is defined by
the pull-back diagram

Gl (R) QR

| |

(moR)™ ——= QR = 7o R.

The Eo-multiplication on R gives Gl;(R) the structure of an infinite loop
space.

Let Pic(R) be the category of invertible R-modules and R-module equiv-
alences; in a slight abuse of notation we will also write Pic(R) for the nerve
of the category. Then
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moPic(R) = Pic(R)

where Pic(R) is now the group of invertible R-module spectra up to equiva-
lence. The space Pic(R) is an infinite loop space; indeed, there is a connective
spectrum pic(R) with

Q%pic(R) =~ Pic(R) =~ Pic(R) x BGI|(R).

Remark 12.2 (Group actions on Picard spectra) Let R be an algebra in G-
spectra over the terminal No.-operad (as in [12]). In particular, R has all
multiplicative norms. We assume that R is cofree, so that R — F(EG4, R) is
an equivalence in G-spectra. We also assume that the natural map R"® — R
is a faithful Galois extension in the sense of Rognes [61]. With appropriate
care and using [12,13,41], in particular, [12, Theorem 6.23], we may assume
these assumptions hold for E with its action of a finite subgroup of G; see
Remark 2.1 of [5].

Let H € G be a subgroup. Define Picy (R) to be the category of invertible
R-modules P with a compatible H-action; that is, the module multiplica-
tion map R A P — P is an H-map, where H acts diagonally on the
smash product. Let picgy (R) be the associated spectrum. There is a functor
Pic(R"™) — Picy(R) sending Q to R A gt Q. Under our assumptions,
this is an equivalence of categories. Hence Pic(R"™) = Picy(R) or, more
generally, there is an equivalence of spectra

pic(R™) ~ picy (R). (12.3)
See Proposition 3.1 of [5].
If K € H is a subgroup, there is a restriction map Picy(R) — Picg (R).

There is also a transfer tr : Pick (R) — Picy(R) defined using the Hill-
Hopkins-Ravenel norm functor N 1? . The assignment

G/H —— Picy (R) = mopicy (R)

is then a Mackey functor, which we write Pic(R), with G understood. See
Corollary 3.12 of [5]. All of this uses technology developed in [13].

Remark 12.4 (Homotopy fixed point spectral sequences) Let R and G be as in

Remark 12.2. Then G acts on the category of invertible R-modules: if g € G,
and P is an invertible R-module spectrum, then

_ 8
gP=RAS P
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where we have extended scalars along the map g: R — R.If P € Picg(R),
then multiplication by g defines an R-module equivalence

1 ~
RAS P 5 RAgP—=>P.
This yields a map of spectra
picg (R)—> pic(R)"C (12.5)

which is an equivalence on (—1)-connected covers. See Theorem 3.3.1 of [58]
and the further references there. In particular we have isomorphisms

Pic(R"C) = Picg(R) = mopicg (R) = mopic(R)"C.
There is then a homotopy fixed point spectral spectral sequence
ES'(R.G) = H*(G. mypic(R) = m_gpic(R)'C. (12.6)

Remark 12.7 (The J-homomorphism) Let R and G be as in Remark 12.2 and
H C G asubgroup. If V is areal H-representation, then R A S V e Picy (R),
where we give R A SV the diagonal H action. As in Proposition 3.13 of [5]
this extends to a morphism of Mackey functors

Jr : RO — Pic(R)

where RO is the Mackey functor G/H — RO(H).

In fact, more is true. If we let Rep(H ) be the category of real representations
and isomorphisms; this is a symmetric monoidal category under direct sum.
Then we have a symmetric monoidal functor J If :Rep(H) — Picyg(R) and
hence a map of spectra kogy — picy(R). Here kogy is the spectrum of H-
equivariant real K-theory. This is surely part of a morphism between spectral
Mackey functors in sense of [3], but we won’t need that much structure. We
will use that we have a commutative diagram for all H € G

ko —— picy (R)

L

ko — pic(R)"H .
The action of H on ko is trivial, so there is a weak equivalence

F(S°BH, ko) ~ ko"#
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and the homotopy fixed point spectral sequence for ko is the Atiyah-
Hirzebruch Spectral Sequence for ko*BH.

Proposition 12.8 Let R be as in Remark 12.2.

(1) Let f: SV — R be a G-equivariant map so that the underlying map of
spectra SWI = R is a unit in w4 R. Then Jg(V) = Rh"G e Pic(R"9).

(2) Let K C H be a subgroup. If V. € RO (K) is in the kernel of Jg then
W= indg V is in the kernel of Jl(e;-

Proof For part (1) we extend f toamap g : R A SV — R of G-equivariant
R-modules. This an underlying equivalence by our assumption on f, and so a
G-equivalence since R is cofree. (Note that if R is cofree, so is the R-module
R A SY). The claim follows.

Part (2) follows from the fact that Jg : RO — Pic(R) is a morphism of
Mackey functors and induction of representations is the transferin RO. O

When R = E, the Lubin-Tate spectrum and G is a finite subgroup of the
Morava stabilizer group, the fixed point spectral sequence of (12.6) vanishes
in high degree at E,. This inspires the following result. If X is a spectrum,
let f : X(n) — X denote the (n — 1)-connected cover of X; thus my f is an
isomorphism for k > n and m; X (n) = 0if k < n.

Proposition 12.9 Let R be as in Remark 12.2. Let € be an integer such that
EZJ(R) = 0 for s > £ in the homotopy fixed point spectral sequence

Ey'(R) = H'(G, mpic(R)) = m—spic(R)"C
Then the composite mapping
[Z°BG, ko(£)] — [E°BG, ko] — mopic(R)"C

is zero.

Proof The G-equivariant maps ko(¢) — ko — pic(R) induces a diagram of
homotopy fixed point spectral sequences

E5' (ko(€)) = H(G, mko(€)) == 71,_sF(SP BG, ko(t))

| |

Ey' (ko) = H(G, mko) =—— 1, F(£° BG, ko)

| |

ES'(R) = H*(G, mpicR) =——= m,_ (picR)"C.
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By construction E5* (ko(€)) = 0if s < £ and by hypothesis Ec5 (R) = 0 is
s > £. The result follows. O

Remark 12.10 The question now is how to check the hypotheses of Proposi-
tion 12.9. One technique, which we will employ below, is to access the ideas
and techniques of [58] to relate the differentials in the homotopy fixed point
spectral sequence for pic(R) to the differentials in the homotopy fixed point
spectral sequence for R itself.

12.2 Applications to the Lubin-Tate spectrum

We now consider the case where R = E for some prime p and some height
n formal group. We established conventions and notation at the beginning of
Sect. 10. Let F' € G be a finite subgroup. We are interested in calculating the
image of specific representations under the map J{ : RO(F) — Pic(E"F).
We have the following useful preliminary result.

Proposition 12.11 Let F C S be a finite subgroup that contains the central
subgroup Cy = {£1}. The regular representation pr € RO (F) maps to the
trivial element of Pic(E"") under J{ .

Proof As describe in Remark 12.2, we can replace E by a cofree genuine
N ring G-spectrum. In particular, it admits all norm maps. The key for this
argument is to refine a unit x € mi,E to an equivariant map x: §” — i aE
where i}, E is the restriction of E to an H-spectrum. With this established, one
applies Proposition 12.8.

At the prime 2 the question is very subtle, but has been accomplished in
[46].

If p is odd this is much easier. Since E is p-local and p is odd, we have that

7 Qi E = (ST AEYC = (noif (S AE)? = (mif, (577 AE) .
As a Cr-module,
T4 (8" AE) = 1, E @ Z(—1)

where Z(—1) is the sign representation of C» on Z. Choose a complex orien-
tation x € miJE, and note that yx = —x for y a generator of C. Therefore,
x ® 1 gives an element of (mi E ® Z(—1))€2 which corresponds to a Cr-
equivariant map x: S”2 — i aE that refines x. O

Remark 12.12 We can now outline the general strategy we use below. Fix a
finite subgroup F € G with p-Sylow subgroup Fy. Suppose F contains the
central C, and that Fy/Fp N Z(G) is an elementary abelian p-group, so that
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Theorem 6.25 applies. Finally suppose we have identified a finite dimensional
real representation V of F so we can apply Proposition 9.8 and write $9 = SV
as an F-equivariant sphere.

It follows from [27] that the homotopy fixed point spectral sequence

H'(F,E;) = m,_,E"

has a horizontal vanishing line at E~,. Applying the ideas from [58] one can
then conclude that the spectral sequence (12.6)

Ey'(E) = H*(F, mpic(E)) = 7, pic(E)"F

has the property that E5; = 0 for large s. So we can apply Proposition 12.9;
that is, there will be an integer £ so that the composition

[E°BF, ko(t)] — [EBF, kol — mopic(E)"F = mopic(E"F)

is zero. In specific examples, we can be very explicit about the integer £. For
example, if n = 2 and p = 2 and F is the automorphism groups of our
supersingular curve, then we take £ = 8. See [58], especially Figure 9 and the
surrounding narrative.

Now let

1{6) = RO(F) NIm{[E°BF, ko(£)] — [EBF, kol}.
Since C> C F Proposition 12.11 implies that we have a map
RO(F)/(I{€) + pr) — Pic(E"").

The source here is the quotient group of RO (F') by the subgroups generated
by 7(£) and the regular representation pr. Since F is a finite group,

Im{[E°BF, ko(€)] — [SBF, kol} € [SXBF, ko]

is of finite index, so RO (F) /(I (£) + pr) is a finite abelian group. Our project
is then to calculate the image of a given representation W in this group as well
as its image in Pic(E"F).

Remark 12.13 We will use classical characteristic class arguments to calculate
RO(F)/I{¢). Let P,X denote the nth Postnikov section of X. Then there is
an injection (which is often an isomorphism)

RO(F)/1{t)—> [SPBF, Pi_1ko ] = [BF,Z x Py BO].
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For example, suppose £ = 8. We have a tower of fibrations

BO(8) — BSpin BSO BO
I
K(Z,4) K(Z/2,2) K(Z/2,1)

with w; and w; the first and second Stiefel-Whitney classes of the universal
bundles and A € H*(BSpin, Z) a class so that that 2 is the first Pontrjagin
class. In particular, PB O =~ P;BSpin is a three stage Postnikov tower. Thus,
we have a filtration of RO (F)/I(8)

c C C
0 Ay = As = A = RO(F)/1(8)
)\\L lwz lw] idlm
H*(BF,7) H%(BF,7/2) HY(BF,7/2) Z

where dim assigns to any virtual representation its rank. If the Atiyah-
Hirzebruch Spectral Sequence for ko*(X$°BF) collapses, the vertical maps
in this filtration will be surjective.

The class A lies outside the standard list of characteristic classes, but we do
have the following result. Let ¢; denote the Chern classes.

Lemma 12.14 Let & be a stable complex bundle over X with the property that
c1(§) =0 ¢ H2(X,F5). Then we can choose a Spin structure on & and a
fixed choice of Spin structure determines a class d(§) € H 2(X, Z) with the
property that 2d (§) = c1(&). For this Spin structure on & we have

AE) =dE)c1(§) — c2(8).
Furthermore, for such bundles, the characteristic class X is additive; that is,

A(E1 @ &) = A(51) + A(&2).

Proof The first statement follows from examining what happens in integral
cohomology in the fiber sequence

B——~BU -~ K(Z/2,2).
We can obtain the equation for A by studying the universal example &y over

B. Note that H*(B, Z) = 72 generated by d (Eo)2 and c>(&p). Now use that if
& is any complex bundle, then

piE) = -2 ®C) = —c2(E ®E) = c1(§) — 2c2(£)
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where & is £ with its conjugate complex structure. Additivity follows from this
same formula by considering the universal example over B x B. O

Remark 12.15 There is a p-complete variant on the constructions of Rem-
ark 12.12. The unit map S° — E extends to a unit map Sg — E, so the map
F(XBF, ko) — pic(EhF) factors as a map

F(X°BF, ko) — F(SPBF, pic(S9)) — pic(E"F).
Note that by combining (12.3) and (12.5) we have that the natural map

pic(E") - pic(B)"F

induces an equivalence on (—1)-connected covers. If X is any spectrum, define
L%zX by the homotopy push-out diagram

X(2) —=X(2),

|

>2
Lp X

where Y, is the p-completion of Y. Note that L%ZX has homotopy groups

M L3X = {”’X .

(M X)p t>2.
Since the homotopy groups of pic(Sg) are p-complete above dimension 1,
then L%zpic(Sg) o~ pic(Sg) and the map ko — pic(Sg) factors through a map
le)zko — pic(Sg). The direct analog of Proposition 12.9 is still true, with
the same proof, and with ko and ko(¢) replaced by le,zko and L,Z)Zko(Z) as

needed. Thus there will be an integer integer £ so that the composition
[Z°BF, L;*ko(€)] — [E°BF, Ly ko] — mopic(E)"" = mopic(E"")

is zero. Indeed, we can choose the same integer £ as in the uncompleted case.

In our examples, we will have ¢ > 2 and, in that case, L;zko(ﬁ) = ko(¢€) .

If we let

I,(€) = RO(F) NIm{[X°BF, L;*ko(¢)] — [E°BF, L3 kol},
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then our variant of Proposition 12.9 gives a map
RO(F)/(I,(0) + pr) — mopic(E")
and we have an injection
RO(F)/1,(6)—> [E°BF, P L>?ko].

We again get a filtration of RO (F)/I, (). For example, if £ = 8 and p = 2
we have only a slight change:

0 Ay = A = Al —=—> RO(F)/1,(8)
H*(BF,Z,) H%(BF,7/2) HY(BF,7/2) Z

where now H*(BF, Z,) = lim H*(BF,Z/2").If p > 2 and £ = 8 we have

0 A4 = Al —=—=RO(F)/1,(8) .
Al lwl ldim
H*(BF,Z,) HY(BF,7/2) Z

In all of these examples, the vertical maps will be surjective if the Atiyah-
Hirzebruch Spectral Sequence for (L;zko)*(B F) collapses.

13 The Spanier—Whitehead duals of E”F: examples from elliptic curves

We now focus our attention at height n = 2 and the primes p = 2 and p = 3.
In both cases we take a formal group of height 2 obtained from a supersingular
elliptic curve. We wish to give a concrete calculation of the Spanier—Whitehead
dual D(E"F) where F is a finite subgroup of G,. Our main interest is when
F is actually the automorphisms of the chosen elliptic curve. The results are
in Theorem 13.12 and Theorem 13.25.

At either prime, the basic case will be when F C Sy = O is a subgroup
containing a maximal finite p-torsion subgroup Fy. At p = 2, Fy isisomorphic
to the quaternion group of order 8 and at p = 3 we have Fy is cyclic of order
3. In both cases Corollary 11.18 applies and we have an F-equivariant K-
equivalence DE = S7% A E where S? is the linear dualizing sphere. By Tate
vanishing [36] we know that

DE") ~ DE)F ~ (§79 AE)F.
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We will be able to use Proposition 9.8 to write S9 as the p-completion of a
representation sphere SV and hence we have

DE") ~ DE)F ~ (S7V AE)T. (13.1)

The strategy then developed in Remark 12.15 applies to complete the cal-
culation. In our examples, the subgroups F are such that Pic(E"F) is cyclic
generated by SE"F; therefore, there is an integer k so that

S~V AEYMF ~ SFERE

In both cases we will prove k = 44.

We can extend these results to subgroups of the larger Morava stabilizer
group Gz = Sy x Gal(F 2/F ;). At both the prime 2 and 3 there is a finite
subgroup G C G so that

E'C ~ Lgtmf

where tmf is the Hopkins-Miller spectrum of topological modular forms. We
will then have

D(Lgtmf) ~ S* [ gtmf.

This recovers results of Behrens [9] and Bobkova [14] at p = 3 and p = 2
respectively.

13.1 Thecasen =2and p =3

We first consider the case p = 3. There is a supersingular elliptic curve C with
Weierstrass equation

y2 =x>—x. (13.2)

While defined over [F3, we work over [Fg, and the formal group F¢ of this curve
is a formal group of height 2 over that field. Because C is supersingular, the
endomorphism ring £ of C over Fg is a maximal order in a quaternion algebra
ramified only at 3 and co. The completion of £ at p = 3 is the endomorphism
ring O, of F¢. Thus £ C O, is alattice and £/3& = 0,/30;.

Leti € IFg be a fourth root of unity, so i 2 — —1. This induces an automor-
phism

(x,y) = ((%x,i%y) = (—x, —iy)
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of C which we will also call i. There are two automorphisms of exact order 3
given by

(x,y) = (x £1,y).

We will fix one in a moment, after giving a bit more of the structure of £.
The Frobenius ¢ given by

(x,y) = (3, 7)

defines an endomorphism of C as well. Since C has four points over I3 (includ-
ing the point at co) we have that

¢* =3

as an endomorphism of C. See Theorem 4.10 of [66], for example. Note that
¢i = —i¢. The element of order 3 in the automorphism group of C can be
chosen to be

o= —%(1 + ).

In fact, if o is any element of exact order 3 then o2+ +1 = 0,50 (1+20)? =
—3. Thus 1 + 20 = %¢. The automorphisms of C are generated by i and o
and the subgroup C3 of the automorphism group generated by o is normal.
The group

Gin=Aut(C)=EC3 xCy CE* C O;

defines a maximal finite subgroup of O, which contains 3 torsion.

For our calculations we will follow the outline of Remark 12.15, and we will
use the notation established there. Let w1 be the first Stiefel-Whitney class and
A the characteristic class for spin bundles discussed in Lemma 12.14; recall
that 2 is the first Pontrjagin class.

The inclusion C4 — G 1> induces an isomorphism

E(x) @ Fo[y] = H*(C4,TF2) = H*(G12, F2)

where x is in degree 1 and y is the second-order Bockstein on x. In addition,
the inclusion C3 — G, defines an isomorphism

73[2)/(3z) = H*(G12, Z3) = H*(C3, Z3) "

where we chose z in degree 4 to be the square of either generator of H?(C3, Z3).
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Thus to calculate the characteristic classes w; and A of representations of
G 12 we can restrict those representations to the subgroups C3 and Cs4. Note
that every non-trivial irreducible real representation of Cj3 is the restriction of
a complex representation and, hence, Lemma 12.14 can be used to calculate
A.

Remark 13.3 We now calculate characteristic classes of the needed real rep-
resentations of C3, Cy4, and G15.

We begin with the regular representation p¢,,. Restricted to C4 we have an
isomorphism

PG, = 3pc, = 3(AR + oR + ¥4)

where op is the real sign representation and y4 is the 2-dimensional real rep-
resentation given by rotation by 90 degrees. The latter is the restriction of a
complex representation so wi(y4) = 0 and we have

wi(pG,,) =x € H' (G2, F2). (13.4)
Restricted to C3 we have an isomorphism
PGy = 4:0C3 = 4(1R + V3)

where y3 is the unique non-trivial 2-dimensional real representation of C3. This
is the restriction of a one-dimensional complex representation with non-zero
first Chern class in H>(C3, Z) = Z/3. Hence by Lemma 12.14 we have

AMpGp) = —2* € HY(C3,73) = Z/3. (13.5)

Next we examine the conjugation action of G on &, the endomorphism
ring of C. Let

So=7®Li L ®Lip C E.

This inclusion is not equality, as o ¢ &, but since £ is of rank 4 over Z we
have that R ® &y = R ® £ and we can use the conjugation action of G5 on
&o to determine the real representation R ® &.

Restricted to C4 € G2, the subgroup generated by i, there is an isomor-
phism of Cy4-representations

RRE=1c Poc
where o is the complex sign representation. Thus

wi(R® &) =0. (13.6)
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If we restrict to the subgroup C3 € G, generated o then there is an
isomorphism of Cz-representations

RRE=Z1cDy;
where 1¢ is the trivial 2-dimensional real representation and y3 is the unique
non-trivial 2-dimensional real representation. Both are restrictions of complex
representations. Thus, again using that y3 has non-trivial first Chern class and
using Lemma 12.14, we have

AR ®E) = —z% € H¥(C3, Z3) = 7./3. (13.7)

Proposition 13.8 (1) Let G1p C Sy be the automorphism group of the super-
singular elliptic curve y* = x3 — x over Fg. The composite mapping

[SXBG12, L7 ko(8)] — [E°BG1a, L5 ko] — mopic(E)C12

is zero.
(2) There is an isomorphism

¥ ROGR)/13(8) —~ L& L2 L/3
sending a representation V to (dim(V), a, b) with

wi (V) =ax € H'(C4, Fy)
AMV) = bz € HY(C3, Z3).
Proof For Part (1) we use (the evident variant of) Proposition 12.9. See
Remark 12.15. By Theorem 8.1.3 (see also Figure 6) of [58] we have that
in the spectral sequence
H* (G2, mpic(E)) = m,—spic(E)" 12
EZXS = 0for s > 6. Note also that ko(8) = ko(6).

Part (2) follows from the filtration of RO (G 12)/13(8) givenin Remark 12.15.
Note that the composite mappings

RO(G12) — RO(Cy) —~ H'(C4, Z/2) = /2
RO(G12) —= RO(CR) — H'(C3,73) = 7/3
are both onto by (13.6) and (13.7). O
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We now give a more specific calculation. Let i be the map of part (2) of
Proposition 13.8.

Proposition 13.9 (1) If pG,, € RO(G12) is the regular representation, then

ll’(PGu) = (127 1’ _1)

(2) The group RO(G12)/(I3(8) 4+ pg,,) is generated by the trivial 1-
dimensional real representation; this choice of generator determines an
isomorphism

Z]72 = RO(G12)/(I3(8) + pG,)- (13.10)
Furthermore, the J-homomorphism

Jg'2: RO(G12)/(I3(8) + pg,,)—> Pic(E912)

is an isomorphism.

Proof Part (1) follows from (13.4) and (13.5). The isomorphism (13.10) is
then immediate. The fact the J-homomorphism is an isomorphism then fol-
lows from the fact that E"G12 has periodicity 72; that is Pic(E"912) = 7/72
generated by TE"¢12, See [58]. O

Proposition 13.11 Let £ be the endomorphism ring of C and give R ® & the
conjugation action by G 12. Then

R®E=—d4-1p

in RO(G12)/(I3(8) + pG,)-
Proof By (13.6) and (13.7) we have

VR®E) =(4,0,-1) e ZSZ/2®Z/3.
By Proposition 13.9, part (1) we have ¥ (pg,,) = (12, 1, —1). Since
4,0,—1)—4(12,1,—-1) =(—44,0,0) e ZS Z/2 ® Z/3
the result follows. O

We now have a calculation of the Spanier—Whitehead duals to E*F . Let

Goy = G1p x Gal(Fg/F3) C Oy x Gal(Fy/F3) = Go.
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We have, here at p = 3,
E!C2% ~ Lgtmf

where tmf is the spectrum of topological modular forms.

Theorem 13.12 Let p = 3 and F C G4 C Gy for Gy = Aut(F9, F¢) the
stabilizer group associated to the formal group law Fc of a supersingular
elliptic curve C with Weierstrass equation (13.2). Then

DE"") ~ Z¥E",
Proof First suppose F € G1». Then, as in (13.1), we have
D(EhF) ~ (S—(R®5) A E)hF

and the result follows from Proposition 13.9 and Proposition 13.11.

The other possibility is that the composition F — Go4 — Gal(Fg/F3) is
onto. Let Fj be the kernel of this map and write Gal for Gal(Fy/F3). We know
from [10, Lemma 1.37] that there is a Gal(IF9 /IF3) equivariant equivalence

$XGal A EM' ~ g0,
We now have

D(E'F) ~ DE)HF
~ [D(E)hFo]hGal ~ (244EhFo)hGal

~ [ZiOGal A 244EhF]hGal
~ 244EhF.

13.2 Thecasen =2and p =2

We proceed exactly as in the case of n = 2 and p = 3, working with the
endomorphism ring of a supersingular elliptic curve over 4. This is a reca-
pitulation of ideas already laid out by the first author in [8]; see in particular
Lemma 2.4.3 of that paper.

Over F4, there is a supersingular elliptic curve C with Weierstrass equation

v 4y =x. (13.13)

The endomorphism ring £ of C over 4 is a maximal order in a quaternion
algebra ramified only at 2 and oo. It is possible to be quite explicit.
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Choose @ € F4q with @* + w + 1 = 0; that is, w is a primitive third root of
unity. Then C has an automorphisms w and i with

w(x,y) = (wx,y)
ix,y)=+1,y+x 4+ w).

There is a slight abuse of notation here with the symbol w. Set j = wiw? and
k = w?iw. These elements generate a normal subgroup of Aut(C) isomorphic
to the quaternion group Qg of order 8. The automorphism w defines a cyclic
subgroup C3 € Aut(C) of order 3 and there is an isomorphism

Gy = Qg x C3 = Aut(C).

The group C3 acts on Qg by cyclicly permuting i, j, k. The element w € £
can be written
i+ g+ k

2

w =

and we have

1+i+j+k

E=LRLiDL]DL 5

The completion of £ at 2 is the endomorphism ring O, of the formal group
associated to C, which is necessarily of height 2. Then G4 C O> is a choice
a maximal finite subgroup containing a subgroup isomorphic to Qs.

Remark 13.14 Let
H=R(l,i,jk}/(’=j>=k>=—1,ij =k =—ji}

be the quaternion algebra. Up to isomorphism, this is the unique 4-dimensional
associative division algebra over the real numbers. The group Qg is a group
of units in H and left multiplication by Qg on H gives, up to isomorphism, the
unique irreducible 4-dimensional representation of Qg.

We have an evident inclusion

ECH

which is closed under both the left action and the conjugation action by Gog4.
Furthermore

R® & =H.
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Since £/2& = 0,/20,, we find that we are exactly in the situation of Propo-
sition 9.8 with V = H,; where H,; is H with its conjugation action by G4.
Thus the main goal is to analyze the homotopy type of

(§7Had A E)'O2 € Pic(EMO).

Remark 13.15 We will need to know the cohomology of Qg and G»4. We have
that Qg/[Qs, Os] = Z/2 x 7Z/2 where we choose the residue classes of i and
Jj as the generators. Then

H*(Q3,F2) = A®F[P]
where P € H 4(Qg, IF») and A is the 3-dimensional Poincaré duality algebra
A =Fyla, bl/(a*> + ab + b*, a’b + ab?).

generated by classes a and b of degree 1 dualtoi and j respectively. A generator
of the group C3 acts on H'(Qg, F») by sending a to b and y to a + b, so there
is an ismorphism

H*(Ga, F2) = H*(Qs, F2)@ = E(Q) ® F[ P]
where Q € H3(Qs, IFy) is the top class in A. We also have
H*(Ga4, Z2)) = Z[P]/(8P)

where, by abuse of notation, P € H 4(G24, , Z(2)) is an integral class which
reduces to P € H4(G24, F>). We will give a more specific generator for
H4(G24, , Z2)) below in Lemma 13.21.

Remark 13.16 We review the representation theory of Qg and Go4.

We have defined two real representations H and H,;. There are also three
isomorphism classes of non-trivial 1-dimensional real representations of Qg.
Each of the elements i, j, k generates a subgroup of order 4 in Qg; taking the
quotient by these subgroups in turn defines homomorphisms Qg — {1} =
C> and representations x;, xj, and i by restricting the sign representation of
C». If we write 1 for the trivial representation, then the regular representation
of Og decomposes as

Pos 1R ® Xi @ x;j © xx © H.
As areal representation of Qg we have

Hoyg =1 @ Xi @ xj D Xk-
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and hence
pos = Hyq © H. (13.17)

Because of the symmetries in Qg, the representation x; @ x; ® xx and Hyq
can be given the structure of Spin representations. To see this, let w(§) =
1+ wi(€§) +wy(§) + - - - be the total Stiefel-Whitney class. Then, using the
notation of Remark 13.15, we have that

w(Hag) = w(xi ® xj D xx)
=0+a)+b)(1+(a+b)=1¢€c H(Qg, ).

The representation H of Qg is the restriction of an irreducible complex
representation. If we use the right action of C on H to give H the structure of
a complex vector space, then the action Qg on H is through complex linear
transformations given by the matrices

. i 0 . 01 0 —i
G0 = (0 e=(07)

This defines an inclusion 4: Qg — SU(2).

The representation H,; is a stabilization of the restriction of the adjoint
representation of SU(2) along the inclusion /4. Concretely, the Lie algebra
su(2) of SU(2) is the real vector space of 2 x 2 skew Hermitian complex
matrices A of trace 0; thus a 2 x 2 complex matrix A is in su(2) if A+A' =0
and trace(A) = 0. Thus

5u(2)§{<b; _‘Z) |b eR, zec}.

The group SU (2) acts on the Lie algebra by conjugation; this is the adjoint
representation of SU (2). There is an isomorphism of real representations of

Os
1Ir ® su2) = Hyy.

Remark 13.19 Let V be a G-representation for some compact Lie group G
and let £y be the bundle

EG xg V— BG.
Thus if V is a complex representation, we get Chern classes ¢; (V) = ¢;(§y) €

H*(BG, 7). For example, if V. = C" with its standard left action by U (n)
then this bundle is the dual of the tautological bundle over BU (n). Hence
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ci(§on) = (=D
where ¢; denotes the universal Chern class. Note that if a homomorphism

¢: G — U (n) defines the representation V, then there is an isomorphism of
bundles over BG

Ev = By*Ecn.

As preparation for our calculations in Proposition 13.22 and Proposi-
tion 13.24 we next calculate some characteristic classes. Since BSU (2) is
3-connected every vector bundle over BSU (2) has a unique Spin structure
and the characteristic class A of Lemma 12.14 is unambiguously defined.

Lemma 13.20 (1) We have an isomorphism
Z[yl= H*(BSU(2), Z)
where
y =) = —e2(6c2) € HY(BSU (). 7)
is the characteristic class determined by the unique Spin structure on the

bundle £> associated to the standard left action of SU (2) on C2
(2) Let su(2) be the adjoint representation of SU (2). Then

Asu(2)) = A(1r @ su(2)) =2y

Proof Since H*(BSU (2),7) = Z[c;] part (1) follows from Remark 13.19
and an application of the formula

A(E) =dE)ci(§) — c2(8)

of Lemma 12.14.

For Part (2),letg : BU(1)—> BSU(2) be the map defined by the inclusion
of Lie groups U (1) — SU(2)

— (2 0
Z 0 z)
The map g classifies the bundle § = | @ y;, where y; is the tautological line
bundle. Since ¢ (§) = —cl(yl)z, we have

gy =AT, ®n) =c7.
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In addition, g*: H*(BSU(2),Z) — H*(BU(1),Z) is an isomorphism.*
Thus to calculate A(1r @ su(2)) we can restrict to U (1).
If we identify 1r with the 2 x 2 diagonal matrices

(CREY

we can then identify the U (1)-representation 1r & s1(2) as the direct sum
X @ Y of two 1-dimensional complex representations with

v={(59)iacc) wa y={(0F)wec]

The conjugation action of U (1) on X is trivial and the conjugation action of
z € U(1) on Y is by multiplication by z2. Thus if ¢ is the bundle over BU (2)
defined by 1g @ su(2) we have g*¢ = 1g @ y; 2. Thus

g (1R @ su(2)) = (1/2)(—c2(y1))* = 2g*y.

Since A(§ ® ¢) = A(§) + L(¢) we also get the formula for A(su(2)). O

Lemma 13.21 LetH be the real representation of G4 extending the left action
of Qg on the quaternions. Then

H*(Goa, Z2) = Zo[A(H)]/81(H).

Furthermore A(H,4) = 2A(H).

Proof By Remark 13.15 we have that H*(G4, Z2) = Z,[P]/(8P), where
P has degree 4. Thus we need only show A(H) generates H 4Y(Goa, Z»). Let
C; C Goq4 be the subgroup generated by i. Since the restriction map

r*: HY(Gas, Zo)—> H*(Ci, 7o) = 7/4

is onto, we need only check that A(H) generates H 4(C;, 7).
We can use the constructions of Remark 13.16 to produce a commutative
diagram

BC,— !~ BU)

l Js

BQg— >~ BSU(2).

4 The map U (1) — SU (2) is the inclusion of the maximal torus. The Weyl group is C2 and we
have explicitly written down the canonical isomorphism H*(BSU (2), Z) = H*(BU (1), Z) G
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We have h*éq2 = &p, 8%€c2 = 71 @ y1. and f is induced by the representation
y; of acyclic group of order 4 on C given by multiplicationby i. If y = A(§2) €
H*(BSU(2), Z), then we have

A(H) = h*y € H*(Qs, Z2)
gy =c1(n)? € HY(BU(1), Zy).

Since HZ(BC,-, Z») = 7Z/4 generated by c1(y;) we have that
g y
FAE) = f*g*y = c1(y)* € HY(Ci, Z)

is a generator, as needed.
The calculation of A(H,,) follows from Part (2) of Lemma 13.20. O

We are now ready to give our calculations. We will follow the outline of
Remark 12.15, and we will use the notation established there.

Proposition 13.22 (1) Let Gog C Sy be the automorphism group of the super-
singular elliptic curve y* + y = x3 over Fy4. The composite mapping

[ZXBGa, L5 ko(8)] — [EXBGa, L5 ko] — mopic(E)"C%

is zero.
(2) There is an isomorphism

V: RO(Gu)/L(8)=Z®Z/8

sending a representation W to (dim(W), k) where A(W) = kA(H) €
H*(Gaa, ).

Proof For Part (1) we again use the evident variant of Proposition 12.9. See

Remark 12.15. By Theorem 8.2.2 (see also Figure 7) of [58] we have that in
the spectral sequence

H* (G4, mipic(E)) = ;- spic(E)" 9
EX =0fors > 8.
Part (2) follows from the filtration of RO (G24)/1>(8) givenin Remark 12.15.
Note that by Lemma 13.21
H'(G24,7/2) = 0 = H*(G24, 2/2)

and A: RO(Gy) — H*(Gas, 7o) = 7./8 is onto. |

@ Springer



A. Beaudry et al.

Proposition 13.23 (1) If pG,, € RO(G24) is the regular representation, then

‘/f(szzt) = (24, 1).

(2) The group RO(G24)/(12(8)+ pg.,) is generated by the 1-dimensional real
representation 1, this choice of generator determines an isomorphism

Z/192 = RO(G24)/(I12(8) + pGas)-
Furthermore, the J-homomorphism
JEG”I RO(G24)/(12(8) + pG,y)—> Pic(E"C24)

is an isomorphism.

Proof We must calculate A(pg,,). The inclusion Qg € G4 defines an iso-
morphism

HY (G4, Zo) = HY(Q8, Zo) = Z/8.
Restricted to Qg, we have pg,, = pgg. We have, by (13.17) and Lemma 13.21
A(pgg) = AHaq) + A(H) = 3A(H),
whence
V(0pGyy) = (24,9) = (24, 1).

Thus Z/192 = RO(G24)/(12(8) + pG,,) generated by 1R.

The fact the J-homomorphism is an isomorphism then follows from the
fact that E"©24 has periodicity 192; that is Pic(E"¢2*) = Z /192 generated by
TE"92. See [58]. O

Proposition 13.24 We have an equation
Hyg = —44 - 1

in RO(G24)/(12(8) + pGsy).
Proof By Lemma 13.21 we have

V(Haa) = (4,2) e ZS Z/8.

Since
4,2) —2(24,1) = (—44,0)

the result follows from Proposition 13.23. O
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We now have a calculation of the Spanier—Whitehead duals to "7 If G4g =
Go4 x Gal(IF4/TF2), we have

E'C4 ~ [ tmf.

Theorem 13.25 Let F C G4z C Gy for Gy = Aut(F4, F¢) the stabilizer
group associated to the formal group law Fc¢ of a supersingular elliptic curve
C with Weierstrass equation (13.13). Then

DE"") ~ sH¥EM.
Proof First suppose F € G4. Then by Remark 13.14 we have
DE"F) =~ (§7Hed AEYF

and the result follows from Proposition 13.24.

The other possibility is that the composition F — Gag — Gal(IF4/F») is
onto. Let Fy be the kernel of this map an write Gal for Gal(IF4/F;). We know
from Lemma 1.37 of [10] that there is a Gal(IF4/F») equivariant equivalence

»Gal A EM' ~ g0,
We now have

D(EM) ~ DE)
~ [D(E)hFO]hGal ~ (244EhFo)hGal
~ [Z3°Gal A THE/F1MGal
~ pHELT O
Remark 13.26 (Using the String orientation) In Proposition 13.8 and Proposi-
tion 13.22 we showed that (roughly) the restriction of the /-homomorphism

J 1 [ BF, ko(8)] — mopic(E") = mopicy (E)

is the zero map for various finite subgroups F' of the Morava Stabilizer Group
G». We used fixed point spectral sequence technology, but this can also be
deduced from the existence of the String orientation of tmf given in [2].

Suppose V : BF — BGI;{(S?) defines an action of a finite group on
the 0-sphere S°. Write SV for this F-sphere. For any ring spectrum R, the
composition

BF —Y~ BGI;(5°) —~ BGI;(R)
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defines an action of F on R; this F-spectrum is equivalent to R A SV with the
trivial action on R.

Now let F be a finite subgroup of G and let R = E"F. Then we can write
J(V) € Picp(E) as

J(V)=EASY ~EAgir BT A SV,

We have the diagonal action on both sides of this equation, although F acts
trivially on E"F,

Next suppose the map BF — BGl; (E"F) is null-homotopic. Then we have
an equivalence of F-spectra ¥ A SV ~ E" and hence of elements

J(W)=EASY ~E

in Pic(R). Put another way, J (V) = 0 € Pic(R) = mopicp(E).

The existence of a String orientation M O (8) — tmf is proved by showing
that the composition

ko(8) — ko — bgll(SO) — bgl, (tmf)

is null-homotopic. Now letn = p = 2 and F C G4g. Then we have a map of
ring spectra

Lgtmf ~ EF0# s EIF
so we may conclude the composition
ko(8) — ko — bgl;(5°) — bgl, (E"F)
is null-homotopic and that the map
[X°BF, ko(8)]— mopicp(E)

is zero. A similar statement holds at the prime 3.

This approach, using the String orientation, works only at height 2 because,
ultimately, it depends on the geometry of elliptic curves. In Sect. 14 we will

present a higher height example and, by necessity, return to homotopy fixed
point techniques.

14 The Spanier—-Whitehead duals of E”: examples from higher heights

In this section, we fix a prime p > 3. We will work with the Honda formal
group law F, of height n = p — 1 over F». Our intention is to use the
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theory we have developed to calculate D(E") for certain finite subgroups of
Gn = Aut(IF ,n, F,,). We will then use that calculation to make some remarks
about exotic elements in the Picard group of the K (n)-local category. The
main results are Theorem 14.14 and Theorem 14.16.

The group S,, = Aut(F,/F,n) contains a maximal finite subgroup

G=CpxCp.
There is also an extension of subgroups of G,
1—-—G— H—Gal—>1 (14.1)

where Gal = Gal(IF,» /). This is discussed, for example, in [37, 3.6.3.1].
We review some of these facts here.

Let W = W(IF,») be the Witt vectors on I ,» and let O, be the endomor-
phism ring of F;;; see Example 2.15. We have an isomorphism

W(S)/(S" = p,Sa =a’S) = O,
where a € W and o € Gal is the Frobenius. Let
wel, CW*CS, =0,

be a primitive p" — 1 root of unity. We then define elements of O,, by

T=w n? and X = o"/?S.

Then X" = —p and the element 7 has order n°. In particular, t” € IF; isa
primitive (p — 1)st root of unity. By Lemma 19 of [37] the subfield

Qp(X) ch, = Qp ®Zp On

contains a primitive pth root of unity; we choose one such and call it £,. Since
any root of unity must have norm 1, {,, € S,.

Since X" = —p, Q,(X) has degree n = p — 1 over Q, and it then follows
that as subfields of DD,

Qp({p) = Qp(X)-

Let C, = (¢p) be the subgroup of S, generated by ¢,. Conjugation by
induces an automorphism of C,, of order p — 1, so there is a primitive root of
unity in e € (Z/p)* such that

-1
Tt =4,
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If we let G € S, be the subgroup generated by ¢, and 7, then we have an
isomorphism

G=CpxCp= (|t = zo).

The extension H is more subtle to describe and we won’t need any of the
details here.

Let Z(¢p) € O, be the subring generated ¢,; there is an isomorphism
Zx]/®p(x) = Z(&)p) where @, (x) = (x? —1)/(x — 1) is the pth cyclotomic
polynomial.

Lemma 14.2 Let
E=Z¢)l,t, % ..., 7" C O,

be the sub-7.(¢,)-module generated by th0<i<n-—1.

(1) & is stable under the conjugation action of G, and
(2) Qp ®E&= Qp ®Zp On

Proof Part (1) follows from the facts that rg“pt_l = g“; and g“prjg“p_l =
g;_ejtj .

For (2) let K = Q) ® &. Since " € Z, K is the sub-algebra of D,
generated by ¢, and 7. By construction, T is an n?
examine T in the extension Z, C W(de).

root of unity over Z,. We

If the field F pd contains an n? root of unity, then n | ( pd — 1)/n, which
implies that n|d. Consider the field extensions

Qp € Qp(0) € Q)

where w € W(IF ) is our chosen (p" — 1)st root of unity. Both Q,(7) and
Q(w) are unramified extensions of Q, of degree n and, hence, Q, (1) = Q,(w)
and it follows that w € K. However, since X € K, w € K and S € K, we
have that K =D, =Q, ®z, O,. O

Remark 14.3 We find that we are exactly in the situation of Proposition 9.14.
We let

V=R®E

with action induced by the conjugation action of G on £. Thus our goal is to
analyze the homotopy type of

S~V AE)'C € Pic(E").
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Remark 14.4 Here we describe the additive structure of the real orthogonal
representation ring RO (G).

Let k be an integer, Cy the cyclic of order k, and y = ¢2™//% ¢ C. Multi-
plication by ™ on C defines a 1-dimensional complex representation C(m)
of Cx. As ™ and y*~™ are complex conjugate, the representations C (i) and
C(k — m) become isomorphic as 2-dimensional real representations.

Suppose k is odd. Let m # 0 and let «;,, be C(m) regarded as a real represen-
tation. Then «, is irreducible as a real representation and R O (Cy) is generated
by the trivial one-dimensional representation 1g and oy, 1 <m < (k—1)/2.1f
kisevenand 1 < m < k/2,write A,, for C(mm) regarded as areal representation.
These are again irreducible. We also have the 1-dimensional sign representa-
tion o obtained by restriction along the unique quotient map Cy — C3. Then
RO (Cy) is generated by 1, o, and A, 1 <m < (k —2)/2.

Let G = Cp x C,2, withn = p — 1. We induce a,, along the inclusion
Cp € G to obtain n/2 irreducible 2n?-dimensional real representations

Ap =Ind¢ (@), 1 =m=<n/2.

The representations A, are also restrictions of complex representations.
There is an embedding RO (C,2) — RO (G) given by restriction along the
quotient map G — C,2. From this, we conclude that

RO(G) = RO(C,2) ® Z{Ay, ..., Ayp2}.
This gives
RO(G) EZ{1r, 0, A1, ..., )»(,12_2)/2, Aq, oo, Mg}

Except for 1r and o, the listed generators of RO (G) are all restrictions of com-
plex representations. A dimension count shows that we have a decomposition
of the regular representation

PG ZIR DO B @ Bhr 0 DA @ ® Ay, (14.5)

Note there are no repeated summands.

Remark 14.6 We now fix some generators for the relevant cohomology groups.
Let zg € H2(Cp, Z(py) be such that zo = i*cy where ¢ € H'(BU, Lpy) is
the first Chern class and i : BC;, — BU is the canonical map induced by the
inclusion of Cj, C U (1) which maps the generator ¢, to e>milp,

Letz = zg_l € H*(C), Zp)) = Zpylzol/ pzo. Since r{,,r*‘ = ¢, where
e generates Z/ p*, the action of t on zq is by multiplication by a generator of
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Z/p* and so
H*(G. L) = H(Cp, L) = L[]/ pz.
We also let y be a generator of (recalln = p — 1)
H'(G.Z%) = Z/n{y).

Next, we gather information about some characteristic classes which will
be used below.

Remark 14.7 If X is a space, let K°(X) denote the complex K -theory of X in
degree 0. Recall that the Chern character

ch: K%(X) - H*(X,Q)
is the unique ring homomorphism defined using the splitting principle and

the formula ch(L) = exp(c1(L)) when L is a line bundle. If we write chy €
H¥(X, Q) for the kth homogeneous component of ci, thenif L is a line bundle

cr(L)*
chy(L) = o
and in general
chy = sk(ct, - - -, Ck)
k!
where si(cq, ..., cx) is kth Newton polynomial in the Chern classes. In par-

ticular, modulo decomposables,
chy=acy, a€Q, a#0.

We can evaluate chj on the universal bundle over BU and obtain a cohomol-
ogy class chy € H**(BU, Q). The classes chy, are algebraic generators and
primitives for the Hopf algebra structure on H*(BU, Q). If we choose the Bott
class v € myBU = Hy(BU, Z) so that {(c1, v) = 1, then the multiplicative
properties of the Chern character imply

(chy, V") =1 (14.8)

and chy is the unique primitive with this property.
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The map BU — B O classifying the underlying real bundle of the universal
complex line bundle defines an isomorphism

H*(BO,Q) —> H*(BU, Q)

where C acts via complex conjugation. If L is a line bundle with conjugate
L, then ¢1(L) = —ci(L), and it then follows that for any bundle chy(§) =
(—l)kchk(é). Hence cho; € H*(BO, Q) and chyy (§) is defined for any real
bundle &. Note that if &g is the real bundle underlying some complex vector
bundle &, then chox (§r) = chox(£).

If 1 <k < p, the defining expression for ch; makes sense over Z,) and in
fact there is a unique lift of chy to a class chy € H**(BU, Z(py)- This gives a
characteristic class chi(§) € H 2k(x; Z(py) for any complex vector bundle &
over X. Furthermore, the additivity of chj over QQ and the fact that

H*(BU x BU; Z)) — H*(BU x BU; Q)
is injective implies that chy is additive, that is,
chi (€1 @ &) = chi(&1) + chi(&2) € HX (X, Z(p))

for any bundles &1, & over X.
If p is odd, k is even, and k < p, then we have

chy € H*(BO, Z(y)) = H*(BU, Z)©>

and we can define characteristic classes chi (&) for any virtual real bundle as
well.

Remark 14.9 Suppose 1 < k < p.Let& be a stable complex bundle of virtual
dimension 0 and suppose the classifying map £ : X — BU lifts to a map

& :X - BU(2k).

If ku is the connective complex K-theory spectrum, then £ is detected in the
Atiyah-Hirzebruch spectral sequence for kuz"p)(X ) by the cohomology class

chp(§) e H 2k(X, morku(p)); that is, the class given by the composition

chy

X — BUQ2k) =5 K(Z(p). 2k).

This follows from (14.8).
If pisodd, kisevenand 1 < k < p we can make a similar observation
about a stable real bundle & of virtual dimension 0. Suppose the classifying
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map £: X — BO lifts to BO(2k). If ko is the connective real K-theory
spectrum, then & is detected in the Atiyah-Hirzebruch spectral sequence for
kofp)(X) by the cohomology class chi (&) € H?**(X, ko p)).

Note that since p is odd ko(,) = ku?pc)2 and
— 27 _ C
ko) = Zip)[v*] = (mikugy))
Remark 14.10 We can now relate the characteristic classes of Remark 14.7
to the representations of Remark 14.4. Suppose p is odd, n = p — 1 and

G = Cp x C,2. Since n is even, ch,, is defined for real vector bundles and we
get a homomorphism

chy: RO(G) — H*(G, Zp)).
We will be most interested in representations W which are the restriction of
a complex representation and ch, (W) can then be computed using complex
characteristic classes. Note that
2chy,(Ar) = chy(2 - 1r) = chy(1¢) =0,

so ch,(1r) = 0.If 0 € RO(G) is the sign representation, then o is obtained
by restriction along the unique quotient map q : G — Z/2, so ch, (o) = 0 as
H>™(7./2, L)) = 0.

We are ready to work with the J-homomorphism.

Proposition 14.11 (1) The composite mapping
[Z°BG, L3 *ko(2p)] — [EF°BG, Ly *ko] — mopic(E)"¢

is zero.
(2) There is a homomorphism

Y:ROG) > ZDL/2BZL/p
which maps W to (dim W, a, b) where

wi(W) = ay
ch,(W) = bz

where y, z are as in Remark 14.6.
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Proof 1t is shown in [42] that in the spectral sequence

H' (G, mpic(E)) = m,_ypic(E)"C

EXJ = 0fors > 2p. This gives (1).
For (2), we use the techniques of Remark 12.15. From Remark 14.6 we know
H*(G, Zpy) = 0for 0 < s < 2n. Then Remark 14.9 give us a filtration

C C
0 Aoy = A ——=RO(G)/1,(2p)
chznl \Lwl ldim
H"(BG,Z) HYBG,Z/2) Z

which we use to define the desired homomorphism.

Proposition 14.12 (1) If pg is the regular representation of G, then
¥(p) = (pn®, 1, —n/2).

(2) The group RO(G)/(1,(2p) + pc) is generated by the 1-dimensional real
representation 1g; this choice of generator determines an isomorphism

Z/2p*n? = RO(G)/(1,(2p) + pc).

Furthermore, the J-homomorphism

IS RO(G)/(I,(2p) + pG)—> Pic(E"Y)

is an isomorphism.

Proof To prove (1), we use (14.5) to see that pg contains a single copy of the
sign representation o and no other non-orientable direct summands. Therefore,
wi(pg) = 1.

To compute ch, (pg), note that
chy(tes*pg) = n*cha(pc,)
= n*(chy(@1) ® ... ® chy(an)2))

However,

c1 (o))" .

chy(am) = o = —Z.

@ Springer



A. Beaudry et al.

The first equality follows since «;;, is one dimensional. The second equality
follows since ¢ () is non-zero, and any unit in Z/p raised to the power n
is equal to 1. We have also used the fact that n! = —1 mod p. Finally, since
n?> =1 mod p, we have

chn(pg) = n* (chan(etr) + ... + chap(on)2))

. n
= ZZ.

For (2), the fact that RO(G)/(I,(2p) + pG) = 7Z/2p*n® generated by
Yv(Ar) = (1,0,0) is a computation using part (1) and part (2) of Propo-
sition 14.11. Furthermore, by [42], Pic(E"®) = Z/2p’n® generated by
SE'Y = y(1p). =

Finally, let V. = R® £ be as in Remark 14.3. We need to identify the image
of V under the J-homomorphism.

Proposition 14.13 In RO(G)/(I,(2p) + pc)
V =n?(1+2p)-1p.
Proof We show that
Y (V)= > 0,—(n— n/2)
which implies that
v(V)= @ pn—1) +n?) - 1g =n’(1 +2p)1g  mod 2n%p? - 1p.

First, dim V = n? gives the first coordinate. To determine if V is orientable,
it suffices to restrict to the action of t. The vector space underlying V has basis
{C;,‘L'J :0<i,j<n-—1}and

i_jo—1 _ sie_j
rgpr T = §p T/
So, as a representation of C,2, V is n copies of the same representation. Since
n is even, V is orientable and so w; (V) = 0.
To compute chy,(V), we note that after restricting to C), there is an iso-
morphism
res"V Z1gr @ (n — 1)pc,-
The action is given by

. _ __] .
ool =)
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Note that 1 — e/ #0forl < j <n—1ase generates Z/p> and
I+¢p+...+¢, =0.

So,

.. -1 =0
Ricici :0<i<n—1y=|" R /77
P
pc, 1=j=n-1

where oc, is the reduced regular representation. Noting that oc, Z1r oc,
proves the claim. From this, we conclude that

chon (V) = (n — Dchan(pc,) = —(n — Dn/2. .

We can now have a calculation of the Spanier—Whitehead duals to E** for
various finite subgroups F.

Theorem 14.14 Letn = p—land F C H C G, for G, = Aut(F yn, F,,) the
stabilizer group of the Honda formal group law F,, and for H is as in (14.1).
Then
D(EhF) ~ 2—n2(2p+1)EhF.
Proof First suppose F' € G. By Remark 14.3, we have that
DEY ~ STV AE)F

and the result follows from Proposition 14.13.

The other possibility is that the composition F — H — Gal([F» /) is
non-trivial. Let Fy be the kernel of this map an write Gal for the image of the
composite in Gal = Gal(F ,» /F ) so that

1—>F0—>F—>C?eﬁ—>1

isexact. From Lemma 1.37 of [10], we can deduce that thereisa Gal equivariant
equivalence

$2°Gal A E" ~ EMO,
Letting r = —n?(2p + 1), we now have
D(E'F) ~ DE)HF
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~ hF
~ S"E" -

Remark 14.15 We note that E*¥ is always periodic of period 2p2?n?, though
depending on F C H, the period could be shorter. For example, the period of
G and H is exactly 2p?n?. That of Cpis 2p2.

Also note that if p = 3, ENF ig 72-periodic, and

s Cp+O)phF _ y—28ghF ~ s#4ghF

Hence Theorem 13.12 and Theorem 14.14 produce the same shift. Note,
however, that the formal group of the supersingular elliptic curve used in
Theorem 13.12 is not isomorphic over [Fg to the Honda formal group.

We end with a simple but interesting application of Theorem 14.14 to the
study of the Picard group of the K-local category. We refer the reader to
[39,45], and Section 2.4 of [32] for more background, but recall some of the
key ideas here. We let Pic, be the Picard group of the homotopy category of
K-local spectra. For X an invertible K-local spectrum, E, X is an invertible
Morava module. If E, X = E, S? as Morava modules, we say that X is exotic
and denote the subgroup of exotic elements in Pic, by «;,.

For aK-local spectrum X, let /,,(X) be the Gross—Hopkins dual of X . Gross—
Hopkins duality and Spanier—Whitehead duality are related by the equation

L,(X) ~ I, A D(X).

Furthermore, if 1, = I,(S"), then the work of Gross and Hopkins implies that
there is a p-adic G-sphere S(det) and an element P, € x;, such that

I, ~ S A S(det) A P,.
The invertible K-local spectrum S(det) is described in great detail in [4] and
the spectrum P, is in fact defined by this equation.

As a consequence of [6, Theorem 1.1] which analyzes I, (E"F) and Theo-
rem 14.14 above, we have the following result.

Theorem 14.16 Letn = p — 1 and F' = C),. Then,
Py AEMF ~ nPHPEHF
In particular, P, is a non-trival element of k.
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Proof By the discussion above, we have a K-local equivalence
L,(E"Fy ~ I, A D(E"F) ~ §7~" A S(det) A P, A DE'F).  (14.17)

The spectrum E"¥" is periodic with minimal periodicity 2p2. Using this, The-
orem 14.14 simplifies to

D(EhF) ~ 27n2(1+2p)EhF ~ E*(pz‘l’l)EhF'
Note that F' C ker(det). In [4], it is shown that this implies that
E"F A S(det) ~ E"F .

Furthermore, [6, Theorem 1.1] states that I,,(EAF) ~ $7°EAF
These facts together with (14.17) imply that

SR ~ 5771 A po A (PPHDERF

from which the first claim follows. Furthermore, since p> + p < 2p?, P,
cannot be equivalent to Lk S° otherwise E"f would have a shorter periodicity.
O
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