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Universidade de Lisboa—UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
2Department of Physics and Astronomy, Bowdoin College, Brunswick, Maine 04011, USA

(Received 8 November 2021; accepted 29 November 2021; published 13 December 2021)

Motivated by studies of critical phenomena in the gravitational collapse of vacuum gravitational waves
we compare, at the linear level, two common approaches to constructing gravitational-wave initial data.
Specifically, we construct analytical, linear Brill wave initial data and compare these with Teukolsky waves
in an attempt to understand the different numerical behavior observed in dynamical (nonlinear) evolutions
of these two different sets of data. In general, the Brill waves indeed feature higher multipole moments than
the quadrupolar Teukolsky waves, which might have provided an explanation for the differences observed
in the dynamical evolution of the two types of waves. However, we also find that, for a common choice of
the Brill-wave seed function, all higher-order moments vanish identically, rendering the (linear) Brill initial
data surprisingly similar to the Teukolsky data for a similarly common choice of its seed function.
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I. INTRODUCTION

Critical phenomena in gravitational collapse, first
reported by Choptuik [1], refer to properties of solutions
to Einstein’s equations close to the threshold of black hole
formation. Specifically, Choptuik considered spherically
symmetric massless scalar fields minimally coupled to
Einstein’s equations. Evolving several one-parameter fam-
ilies of initial data numerically, he observed the existence of
a critical parameter η! that separates supercritical data,
which ultimately form a black hole, from subcritical data,
which do not. Critical phenomena, with surprising resem-
blance to similar phenomena in other fields of physics,
emerge close to the critical parameter η!. For supercritical
data, for example, the black hole mass will follow an
approximate power law

M ≃ ðη − η!Þγ; ð1Þ

where the critical exponent γ depends on the matter model,
but not on the initial data. For massless scalar fields, for
example, Choptuik found γ ≃ 0.37. Also, close to criticality
the evolution of the initial data will, at intermediate times,
follow a self-similar critical solution with, depending on the
matter model, either discrete or continuous self-similarity.
Following Choptuik’s original announcement, numerous

authors have studied critical phenomena in gravitational
collapse, both numerically and analytically, for a number of
different matter models, symmetry assumptions, and
asymptotics (see [2,3] for reviews). As a result of these
studies, critical collapse is now well understood in the
context of spherical symmetry. For example, the power-law
scaling for dimensional quantities, like the mass in (1), can
be explained from perturbations of a unique self-similar

critical solution, with the inverse of the Lyapunov exponent
of a single unstable mode yielding the critical exponent γ
(see, e.g., [4–6]).
The situation is much less clear in the absence of

spherical symmetry, which includes what is perhaps the
most intriguing case of critical collapse, namely the
gravitational collapse of vacuum gravitational waves.
Critical phenomena in this collapse were first reported
by [7,8], but, despite significant effort by a number of
authors (see, e.g., Table I in [9] for a summary of attempts),
it has been difficult to reproduce these results (but see
[10,11] for recent progress). Some of the problems asso-
ciated with these calculations appear to be numerical in
nature, but others may also be conceptual issues that arise
in the absence of spherical symmetry (see also [12]).
Different authors have adopted different types of initial

data for simulations of vacuum gravitational waves. One
type of initial data are often called “Teukolsky waves”
([13], see Sec. II A below). These data represent quad-
rupolar, linear perturbations of the Minkowski spacetime,
which can be “dressed up” in different ways to yield
nonlinear solutions to Einstein’s constraint equations. A
second type of initial data are so-called Brill waves ([14],
see Sec. II B below). Constructing Brill waves entails
solving one elliptic equation [see Eq. (10)], whose solution
then provides a nonlinear vacuum solution to Einstein’s
constraint equations. Both Teukolsky and Brill waves allow
for an arbitrary “seed function,” for which many authors
have adopted Gaussian profiles.
One of the mysteries emerging from the study of critical

collapse of gravitational waves is that the above types of
initial data appear to behave differently when evolved
numerically. The authors of [11] report that different initial

PHYSICAL REVIEW D 104, 124036 (2021)

2470-0010=2021=104(12)=124036(11) 124036-1 © 2021 American Physical Society

https://orcid.org/0000-0002-6725-5759
https://orcid.org/0000-0002-6316-602X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.124036&domain=pdf&date_stamp=2021-12-13
https://doi.org/10.1103/PhysRevD.104.124036
https://doi.org/10.1103/PhysRevD.104.124036
https://doi.org/10.1103/PhysRevD.104.124036
https://doi.org/10.1103/PhysRevD.104.124036


data will result in different critical exponents γ, and hence,
presumably, different threshold solutions. Several authors
have also observed that the evolution of Brill wave initial
data is less stable numerically than that for Teukolsky
waves; the authors of [9] pose the question “Why is it so
difficult to evolve Brill wave data?” while the authors of
[11] report that “those [data] most defying our bisection
attempts were the Brill initial data.” It would therefore be
desirable to gain some understanding of what character-
istics distinguish the two types of initial data, and how they
affect the dynamical evolution.
In an independent approach to exploring the effects of

the absence of spherical symmetry, the authors of [15,16]
studied the critical gravitational collapse of electromagnetic
waves. In this case the initial data are constructed by
adopting an axisymmetric spherical electromagnetic wave
(which is linear by nature) of a given multipole moment l,
at the moment of time symmetry, and then solving
Einstein’s constraint equations. The nonlinear terms in
Einstein’s equations will couple different multipoles, of
course, but one nevertheless expects the initial data to be
dominated by the linear “seed” data. According to these
studies, initial data for different multipole moments will
result in qualitatively different threshold solutions, sug-
gesting the absence of a unique critical solution. For dipole
data, with l ¼ 1, for example, the authors of [15] found a
center of collapse at the origin, while, for quadrupole data,
with l ¼ 2, the authors of [16] found two separate centers
of collapse on the axis of symmetry. The latter is consistent
with the findings of [10,11] for gravitational waves.
Moreover, the evolution of higher-order multipoles appears
to be increasingly difficult, even apart from the need for
higher angular resolution.
This latter observation suggests a possible explanation

for the differences in the evolution between the Brill and
Teukolsky gravitational-wave initial data, namely in terms
of multiple moments. In this paper we therefore construct
analytical, linear solutions describing small-amplitude Brill
waves, and compare these directly with Teukolsky waves.
We compare the resulting data, for given choices of the seed
functions, in three different ways: (i) we compare the data
directly by transforming the Brill data to the transverse-
traceless (TT) gauge of the Teukolsky data (Sec. III A),
(ii) we compute the gauge-invariant Moncrief functions
of different orders l (see Sec. III B), and (iii) we compute
and compare the (gauge-invariant) Kretschmann scalar
(Sec. III C). As we will find in Sec. III, linearized Brill
data are, in general, linear combinations of different

multipole moments, and may therefore be more compli-
cated to evolve than Teukolsky data, which are purely
quadrupolar by construction. To our surprise, however, all
multipoles higher than quadrupole vanish exactly for a
common choice for the Brill-data seed function (see [17]).
For this choice, the two sets of initial data are in fact quite
similar qualitatively (assuming a Gaussian seed function
for the Teukolsky waves). We therefore conclude that the
root causes for their differences in nonlinear evolution
probably cannot be found at the linear level, at least not in
terms of the multipole moments.

II. LINEAR GRAVITATIONAL-WAVE
INITIAL DATA

A. Teukolsky waves

Quadrupolar vacuum gravitational-wave solutions to the
linearized Einstein equations are commonly referred to as
Teukolsky waves [13] (see also [18] for a generalization to
higher multipoles, as well as [19] for a textbook treatment).
Using geometrized units with c ¼ 1 the metric, expressed
in transverse-traceless gauge [see Eq. (29)], may be written
in the form

ds2 ¼ −dt2 þ dr2f1þAfrrgþ rdrdθf2Bfrθg

þ r sinðθÞdrdϕf2Bfrϕgþ r2dθ2f1þCfð1Þθθ þAfð2Þθθ g
þ r2 sinðθÞdθdϕf2ðA− 2CÞfθϕg

þ r2sin2ðθÞdϕ2f1þCfð1Þϕϕ þAfð2Þϕϕg; ð2Þ

where the fij are angular functions [which, for l ¼ 2 and
m ¼ 0, we list in Eq. (A2) of Appendix A] and the
coefficients A, B, and C can be constructed from a seed
function Fðt; rÞ (see, e.g., Sec. 9.1.2 in [19] for details). A
common choice for this seed function is a linear combi-
nation of Gaussians

Fðt; rÞ ¼ATλ4ððt− rÞe−ððr−tÞ=λÞ2 − ðrþ tÞe−ððrþtÞ=λÞ2Þ; ð3Þ

for which t ¼ 0 becomes a moment of time symmetry.
In (3) the dimensionless constant AT parametrizes the
amplitude of the wave, while λ, a constant with units of
length, determines its wavelength. Adopting this seed
function for axisymmetric data with m ¼ 0, the functions
A, B, and C take the form given by (A3) and the metric (2),
evaluated at t ¼ 0, becomes

ds2¼−dt2þdr2f1þATð72sin2ðθÞ−48Þe−ðr=λÞ2gþr2dθ2
!
1þ24AT

"
sin2ðθÞ

"
−
r4

λ4
þ4r2

λ2
−3

#
þ1

#
e−ðr=λÞ

2

$

þrdθdr
!
48AT sinðθÞcosðθÞ

"
3−2

r2

λ2

#
e−ðr=λÞ

2

$
þr2sin2ðθÞdϕ2

!
1þ24AT

"
sin2ðθÞ

"
r4

λ4
−
4r2

λ2

#
þ1

#
e−ðr=λÞ

2

$
: ð4Þ
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Note that, as a vacuum solution at a moment of time
symmetry, the metric (4) satisfies even the nonlinear
momentum constraint of Einstein’s constraint equations
identically, so that constructing valid (nonlinear) gravita-
tional-wave initial data from (4) requires solving the
Hamiltonian constraint only. This can be accomplished,
for example, by adopting the spatial part of the metric (4) as
a conformally related metric in the Hamiltonian constraint,
solving this equation for the conformal factor, and then
constructing a new spatial metric from the two.
In this paper, however, we focus on linear data only.

In particular, we read off the spatial “Teukolsky”
metric γTij from (4), and identify from these the metric
perturbations

hTij ¼ γTij − ηij; ð5Þ

where ηij is the flat metric (here in spherical polar
coordinates). The coefficients hTij can be read off from
the metric (4) above, but we also list them in Appendix A
for completeness.

B. Brill waves

Alternatively, fully nonlinear, axisymmetric vacuum
gravitational-wave initial data can also be constructed
following the procedure suggested by Brill [14].
Specifically, the spatial line element for such “Brill waves”
at a moment of time symmetry is assumed to take the
form

γijdxidxj ¼ ψ4ðe2qðdr2 þ r2dθ2Þ þ r2sin2ðθÞdφ2Þ; ð6Þ

where q ¼ qðr; θÞ is a seed function. Following Holz et al.
[17] as well as numerous other authors we will adopt the
choice

qðr; θÞ ¼ ABr2sin2ðθÞσ−2e−ðr=σÞ
2;

¼ ABρ2σ−2e−ðρ
2þz2Þ=σ2 ; ð7Þ

where AB is again an amplitude and σ a measure of the
wavelength. Expressing the angular dependence of qðr; θÞ
in terms of spherical harmonics we may also write the seed
function (7) as

qðr; θÞ ¼ q00ðrÞY00ðθÞ þ q20ðrÞY20ðθÞ; ð8Þ

where

q00ðrÞ ¼
ffiffiffi
π

p 4AB

3

"
r
σ

#
2

e−ðr=σÞ
2
; ð9aÞ

q20ðrÞ ¼ −
ffiffiffi
π
5

r
4AB

3

"
r
σ

#
2

e−ðr=σÞ
2
: ð9bÞ

Not surprisingly, the expansion of the axisymmetric func-
tion q requires the spherical harmonics with m ¼ 0 only,
which, in turn, depend on θ only.
Given the assumption of time symmetry, the momentum

constraint is satisfied identically, and the Hamiltonian
constraint can be shown to take the form

∇2ψ ¼ −
ψ
4
τ; ð10Þ

where the function τ ¼ τðr; θÞ is given by

τ≡ ∂2q
∂ρ2 þ

∂2q
∂z2 ; ð11Þ

and where ∇2 denotes the flat Laplace operator. For our
choice (7) we have

τðr; θÞ ¼ 2AB

σ6
e−ðr=σÞ

2ð2r4 − 6r2σ2 þ σ4

− 2r2ðr2 − 3σ2Þcos2ðθÞÞ; ð12Þ

which we may express as

τðr; θÞ ¼ τ00ðrÞY00ðθÞ þ τ20ðrÞY20ðθÞ; ð13Þ

with

τ00ðrÞ ¼
ffiffiffi
π

p 4AB

3σ6
e−ðr=σÞ

2ð4r4 − 12r2σ2 þ 3σ4Þ; ð14aÞ

τ20ðrÞ ¼ −
ffiffiffi
π
5

r
16AB

3σ6
e−ðr=σÞ

2ðr4 − 3r2σ2Þ: ð14bÞ

In general, the Hamiltonian constraint (10) does not
permit analytical solutions, and therefore has be solved
numerically. For our purposes of a direct comparison with
the (linear) Teukolsky waves of Sec. II A, however, it is
sufficient to consider linear solutions to (10). Towards that
end we write the conformal factor as

ψ ¼ 1þ u; ð15Þ

in which case the Hamiltonian constraint (10) becomes

∇2u ¼ −
1

4
τ ð16Þ

to linear order in the amplitude AB. Similarly, the line
element (6) becomes

γijdxidxj ¼ dr2 þ r2ðdθ2 þ sin2θdφ2Þ
þ ð4uþ 2qÞðdr2 þ r2dθ2Þ þ 4ur2sin2ðθÞdφ2

ð17Þ

to linear order.
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Using the Green function Gðr; r0Þ ¼ 1=jr − r0j
we may write the solution to the linear Hamiltonian
constraint (16) as

uðr; θ;φÞ ¼ 1

16π

Z
τðr0; θ0;φ0Þd3x0

jr − r0j
: ð18Þ

We now expand the Green function as

1

jr − r0j
¼ 4π

r>

X

l;m

1

2lþ 1

rl<
rl>

Y!
lmðθ0;φ0ÞYlmðθ;φÞ; ð19Þ

where r> (r<) is the greater (smaller) of the two radii r and
r0, and insert this together with (13) into (18) to find

uðr;θ;φÞ¼1

4

Z
ðτ00ðr0ÞY00ðθ0;φ0Þþτ20ðr0ÞY20ðθ0;φ0ÞÞ

×
X

l;m

1

2lþ1

rl<
rlþ1
>

Y!
lmðθ0;φ0ÞYlmðθ;φÞd3x0: ð20Þ

We now write the volume element as d3x0 ¼ r02dr0dΩ02 and
carry out the angular integration using the orthogonality of
the spherical harmonics,

Z
Y!
lmðθ0;φ0ÞYl0m0ðθ0;φ0ÞdΩ02 ¼ δl;l0δm;m0 ; ð21Þ

to obtain

uðr; θÞ ¼ u00ðrÞY00 þ u20ðrÞY20 ð22Þ

with

u00ðrÞ ¼
1

4

Z
∞

0

τ00ðr0Þr02dr0

r>
; ð23aÞ

u20ðrÞ ¼
1

4

Z
∞

0

r2<τ20ðr0Þr02dr0

r3>
: ð23bÞ

The integrals in Eq. (23) have to be split into two parts in
order to account for r0 being either smaller or greater than r,
e.g.,

u00ðrÞ ¼
1

4r

Z
r

0
τ00ðr0Þr02dr0 þ

1

4

Z
∞

r
τ00ðr0Þr0dr0: ð24Þ

Inserting the coefficients (14) and carrying out the inte-
grations then yields

u00ðrÞ ¼ −
ffiffiffi
π

p

6σ2
ABe−ðr=σÞ

2ð2r2 þ σ2Þ; ð25aÞ

u20ðrÞ ¼ −
ffiffiffi
π
5

r
AB

24r3σ2

"
3

ffiffiffi
π

p
σ5erf

"
r
σ

#

− 2re−ðr=σÞ
2ð2r2σ2 þ 4r4 þ 3σ4Þ

#
; ð25bÞ

where the error function erfðzÞ is defined as

erfðzÞ≡ 2ffiffiffi
π

p
Z

z

0
e−t

2
dt: ð26Þ

The leading-order terms in a Taylor expansion of erfðzÞ
about z ¼ 0 are given by

erfðzÞ ¼ 2ffiffiffi
π

p
"
z −

z3

3

#
þOðz5Þ; ð27Þ

so that u20ðrÞ remains finite as r → 0.
Finally, we assemble the spatial metric by inserting the

expressions (8) and (22) into the line element (17), which,
together with the assumption of time symmetry, completes
the construction of (linear) Brill wave initial data γBij.
As for the Teukolsky waves, we then define the Brill wave
perturbations from

hBij ¼ γBij − ηij: ð28Þ

III. COMPARISONS

Superficially, the Teukolsky wave initial data γTij of
Sec. II A and the Brill wave data γBij of Sec. II B appear
different; for example, the ðrθÞ component of the spatial
metric vanishes for Brill data, γBrθ ¼ 0 but does not for
Teukolsky data. Such a direct comparison is not mean-
ingful, however, because the data appear in different
gauges. We therefore adopt three different approaches to
make such a comparison: in Sec. III A we transform the
Brill data directly into the TT gauge of the Teukolsky data,
in Sec. III B we employ the gauge-invariant Moncrief
formalism, and finally, in Sec. III C, we construct and
compare the Kretschmann scalar for both sets of data.

A. Gauge transformations

The Teukolsky data of Sec. II A adopt the TT gauge,
which, for the purely spatial metric perturbation hTij, means
that

ηijhij ¼ 0; ð29aÞ

∂jhij ¼ 0 ð29bÞ

[cf. Eqs. (2) and (3) in [13]]. Note that we will adopt
Cartesian coordinates in this section, so that ηij ¼
diagð1; 1; 1Þ and covariant derivatives associated with ηij
become partial derivatives. Note also that both the
Teukolsky and the Brill data satisfy the linearized vacuum
Hamiltonian constraint

∂i∂jhij − ∂i∂ihkk ¼ 0: ð30Þ
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Our goal is now to transform the Brill data of Sec. II B into
the TT gauge.
The linearized spatial gauge freedom is generated by a

spatial one-form ξi and can be expressed as

hB
0

ij ¼ hBij − 2∂ðiξjÞ; ð31Þ

where hB
0

ij represents the Brill wave perturbations in the new
gauge. Applying the condition (29b) to this new gauge we
obtain

∂j∂jξi þ ∂i∂jξj ¼ ∂jhBij: ð32Þ

Wemay solve this equation by decomposing ξi according to

ξi ¼ ξ̂i þ ∂iφ; ð33Þ

with

∂i∂iφ ¼ 1

2
hB; ð34aÞ

∂j∂jξ̂i ¼ ∂jhBij − ∂ihB; ð34bÞ

where hB ≡ ηijhBij.
Taking the divergence of (34b) we see that

∂j∂jð∂iξ̂iÞ ¼ ∂i∂jhij − ∂i∂ihkk ¼ 0; ð35Þ

where we have used the Hamiltonian constraint (30) in the
last step. Given suitable boundary conditions, this implies
that the divergence of ξ̂i vanishes everywhere,

∂iξ̂i ¼ 0: ð36Þ

so that the decomposition (33) splits the generator ξi into
transverse and longitudinal parts. Finally, we may take the
trace of (31) to see that

hB
0 ¼ hB − 2∂iξi ¼ hB − 2∂i∂iφ ¼ 0; ð37Þ

where we have used (36) in the second equality and (34a) in
the third. This shows that, with the decomposition (33) of ξi
satisfying equations (34), the new metric (31) will indeed
satisfy both TT conditions (29).
We invert the Laplace operators in (34) using the same

approach as in Sec. II B. We solve Eq. (34b) for Cartesian
components of ξ̂i, but carry out the integration over the
Green function using spherical polar coordinates together
with the expansion (19). Once ξ̂i and φ have been found,
we assemble ξi from (33) and compute the Brill initial data
in the TT gauge from (31). Quite remarkably, after carrying
out the transformation to the TT gauge, the Brill initial data
for the seed function (7) can also be expressed in the form
(A1) of a Teukolsky wave, but now with the coefficients
AB, BB, and CB, given by the expressions (A4).

In Fig. 1 we compare these coefficients with those for
the Teukolsky perturbations. We see that, with a suitable
rescaling of the amplitudes, AT ¼ AB=80, the qualitative
features of the two sets of initial data, for the given seed
functions, indeed appear quite similar.
We note, however, that the transformation of the linear-

ized Brill wave initial data to TT gauge results in a purely
quadrupolar Teukolsky wave only for the specific angular
dependence of the seed function (7). In general, linearized
Brill wave initial data are superpositions of waves with
different multipole moments, as one might have suspected,
but for the seed function (7) all multipoles different from
the quadrupole moment are suppressed. We will explore
this result in more detail below.

FIG. 1. Comparisons of the functions A (top panel), B (middle
panel, and C (bottom panel) for Teukolsky waves and Brill
waves, both expressed in the TT gauge. From these functions,
which are listed in Eqs. (A3) and (A4), respectively, the initial
spatial metric γij can be computed from (A1). For the purposes of
these comparisons we adopt AT ¼ AB=80 and σ ¼ λ, and show
the functions A, B, and C divided by AB for both sets of data.
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B. Gauge-invariant Moncrief formalism

As a second approach to comparing the Teukolsky and
Brill data we employ the gauge-invariant Moncrief formal-
ism (see [20]; see also [21] for a review as well as Sec. 9.4.1
in [19] for a textbook treatment). In general, the Moncrief
formalism assumes that the spacetime metric can be
decomposed into a background metric gBab given by the
Schwarzschild metric and a perturbation hab. In our
specific case the background metric is flat, and hence
corresponds to a zero-mass Schwarzschild spacetime. The
perturbation hab is then decomposed into scalar, vector, and
tensor spherical harmonics of even or odd parity, from
which the gauge-invariant Moncrief functions Rlm can be
computed for each mode l and m.
For both the Teukolsky and the Brill data, only even-

parity contributions enter the decomposition of the pertur-
bative metric, for which we may follow the prescription
starting with Eq. (9.77) in [19]. Specifically, we compute,
for both the Teukolsky data γTij and the Brill data γBij, the
projections H2lm, h1lm, Klm, and Glm from Eqs. (9.78)
through (9.81). In these integrals, the components of the
tensor spherical harmonics can be expressed in terms of
functions Wlm and Xlm, which we list in Appendix B 1.
For example, we compute Glm from

Glm ¼ 1

2ðl − 1Þlðlþ 1Þðlþ 2Þ
1

r2

Z
γ−W!

lmdΩ ð38Þ

(where γ− ≡ γθθ − γϕϕ= sin2 θ, and where we have
assumed γθϕ ¼ 0).
In the next step, we find the functions k1lm and k2lm

from (9.88) and (9.89) in [19]. Finally, these functions can
be combined into the gauge-invariant Moncrief functions
Rlm as in (9.87) in [19].
For the Teukolsky waves of Sec. II A, we list all

intermediate results in Appendix B 2. Since these data
are constructed as an axisymmetric, purely quadrupolar
wave, it is not surprising that the only nonvanishing terms
are those with l ¼ 2 and m ¼ 0. The final result for the
gauge-invariant Moncrief function RT

20 is

RT
20 ¼ −

ffiffiffi
π
5

r
8AT

λ4
r3e−ðr=λÞ

2ð2r2 − 7λ2Þ: ð39Þ

The Brill waves of Sec. II B, on the other hand, are not
purely quadrupolar by construction. In Sec. III A we have
already seen that, for the special choice of the seed function
(7), a transformation of the data to TT gauge again results
in a purely quadrupolar Teukolsky wave. It is therefore not
surprising that, in this case, the only nonvanishing
Moncrief function is again that with l ¼ 2 and m ¼ 0.
Alternatively, we may apply the Moncrief formalism to the
Brill wave in its original gauge of Sec. II B. In this case, the
intermediate results for the projections H2lm, h1lm, Klm,
and Glm as well as the functions k1lm and k2lm are listed in

Appendix B 3. The Moncrief function R20 is, by construc-
tion, independent of gauge, and given by

RB
20 ¼

ffiffiffi
π
5

r
AB

&
1

6rσ2
e−ðr=σÞ

2ð4r4 þ 2r2σ2 þ 3σ4Þ

−
ffiffiffi
π

p

4

σ3

r2
erf

"
r
σ

#'
: ð40Þ

Both (39) and (40) can also be written in the form

R20 ¼
r
6

ffiffiffi
π
5

r
ðr∂rA − 6A − 6Bþ 12CÞ; ð41Þ

with the functions A, B, and C given by (A3) for Teukolsky
waves, and by (A4) for Brill waves (see also exercise 9.7
in [19]).
In Fig. 2 we compare the Moncrief functions (39) and

(40). While the two results for Teukolsky and Brill wave
evidently differ quantitatively, their general qualitative
features are, in fact, quite similar—which is consistent
with our findings of Sec. III A.
Finally, it is instructive to consider multipole moments

with l > 2 for the Brill wave initial data. Starting with
these data in the gauge of Sec. II B, the projections H2lm,
h1lm, and Klm must all vanish identically for l > 2, but
Glm, given by (38), could be nonzero. To evaluate this term
for Brill waves we observe that, from (17), we have
γ− ¼ 2q, which contains both monopole and quadrupole
terms [see Eq. (8)]. We also note that the functionsWl0 can
be written as a linear combination of spherical harmonics
Yl00 with l0 ≤ l (see Appendix C). Using (C12), the
integral in (38) may therefore be written as

1

r2

Z
γ−W!

l0dΩ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Z
qð

ffiffiffi
5

p
Y20 þ Y00ÞdΩ

¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
ð

ffiffiffi
5

p
q20 þ q00Þ; ðl > 2 evenÞ; ð42Þ

FIG. 2. The gauge-invariant Moncrief function R20=AB for
Teukolsky (orange dashed line) and Brill (blue continuous line)
waves. As in Fig. 1 we choose AT ¼ AB=80 and λ ¼ σ and plot
both functions in units of the amplitude AB.
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where we have employed the decomposition (8) in the last
step. In general, this integral will therefore not vanish, and
will instead give rise to multipole moments higher in order
than l ¼ 2. For the seed function (7), however, we have
q20 ¼ −q00=

ffiffiffi
5

p
[see Eq. (9)], leading to an exact cancel-

lation in (42), and therefore to a vanishing of all higher-
order multipole moments. This result is consistent with our
finding in Sec. III A that, when transformed to the TT
gauge, Brill waves become purely quadrupolar if the seed
function has the angular dependence of (7).

C. Kretschmann scalar

As a third way of comparing the Teukolsky and Brill data
we compute the Kretschmann scalar

I ¼ ð4ÞRabcdð4ÞRabcd; ð43Þ

where ð4ÞRabcd is the (four-dimensional) spacetime
Riemann tensor of the spacetime. For our time-symmetric
vacuum data, the Kretschmann scalar can be expressed in
terms of the (three-dimensional) spatial Ricci tensor Rij
only,

I ¼ 8γijγklRikRjl: ð44Þ

We compute the Kretschmann scalar I for both the
Teukolsky data of Sec. II A and the Brill data of
Sec. II B to leading order (i.e., quadratic) in their respective
amplitudes. We compare the results in Fig. 3. As in our
previous comparisons, we see that all qualitative features
are very similar.
As a more direct way of comparing the Kretschmann

scalars IT and IB we show their ratio in Fig. 4. Evidently,
this ratio is defined only up to a constant related to the ratio
between the two amplitudes AT and AB; as in the previous
figures we fix this ratio by adoptingAT ¼ AB=80 in Fig. 4.
Given that the ratio shows some spatial variations, we see
that the Kretschmann scalars IT and IB are indeed different
quantitatively, despite the similarity in their qualitative
features.

IV. SUMMARY AND DISCUSSION

We compared, at the linear level, two common
approaches that have been adopted in the construction of
gravitational wave initial data, namely Teukolsky data [13]
(see Sec. II A) and Brill data [14] (see Sec. II B). Both
approaches employ a seed function, for which we chose,
following numerous other authors, the Gaussian profiles (3)
and (7). While the Teukolsky waves are constructed as
purely quadrupolar l ¼ 2 waves, the Brill waves are not.
Since the two sets of initial data appear in different

spatial gauges, they cannot be compared directly. Instead
we adopted three different approaches to compare the data:
we transformed the Brill data into the TT gauge of the
Teukolsky data (Sec. III A), computed the gauge-invariant
Moncrief functions (Sec. III B), and evaluated the
Kretschmann scalar (Sec. III C).
To our surprise we found that, while linearized Brill

waves will in general not be purely quadrupolar, and will
instead be superpositions of waves with different multipole
moments, for special seed functions with the angular
dependence of (7) all higher-order moments cancel out
exactly, casting the Brill waves again as a purely quad-
rupolar wave. While these waves are not identical to

FIG. 3. The Kretschmann scalar I for both Teukolsky waves (left panel) and Brill waves (right panel). As in Figs. 1 and 2 we adopt
AT ¼ AB=80 and λ ¼ σ, and show I divided by AB

2 for both waves.

FIG. 4. The ratio IT=IB between the Kretschmann scalars for
Teukolsky and Brill waves. As in the previous figures we adopt
AT ¼ AB=80 and λ ¼ σ.
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Teukolsky waves with the seed function (3), they share
many qualitative features in all our comparisons.
Teukolsky and Brill wave data play an important role in

the context of vacuum critical collapse, where they have
been adopted by a number of different authors. Our study
was motivated by the observations that (i) the two types of
data appear to lead to different threshold solutions (with
different critical exponents γ; see [11]), and also appear to
behave different numerically (see also [9]), and (ii) initial
data with different multipole moments lead to quantita-
tively different threshold solutions in the critical collapse of
electromagnetic waves (see [15,16]). The latter suggests
that higher-order multipole moments present in the Brill
data might result in the observed differences in their
evolution from those of Teukolsky data. However, as we
discussed above, for precisely the seed function typically
employed for Brill waves those higher-order multipole
moments vanish exactly. We therefore conclude that the
multipole structure of Brill waves cannot be held respon-
sible for the observed differences.
We note, however, that even for our choices of the seed

functions the data are not identical. We have discussed before
that they appear in different gauges; moreover, while a Brill
wave with the seed function (7) is quadrupolar, it corresponds
to a seed function that is different from (3). While it may well
be worth exploring whether either one of these differences is
related to the observed differences in the evolution of the
data, it is also possible that the latter are related to nonlinear
effects, which we have ignored in our analysis here.
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APPENDIX A: EXPRESSIONS FOR THE SPATIAL
METRIC IN THE TT GAUGE

When expressed in the TT gauge, the nonvanishing
initial metric perturbations for the Teukolsky data of
Sec. II A and Brill data of Sec. II B, expressed in spherical
polar coordinates, can be written in the form

hrr ¼ Afrr; ðA1aÞ

hrθ ¼ rBfrθ; ðA1bÞ

hθθ ¼ r2ðCfð1Þθθ þ Afð2Þθθ Þ; ðA1cÞ

hϕϕ ¼ r2sin2θðCfð1Þϕϕ þ Afð2ÞϕϕÞ: ðA1dÞ

In (A1), the angular functions are those for l ¼ 2 and
m ¼ 0,

frr ¼ 2 − 3sin2ðθÞ; ðA2aÞ

frθ ¼ −3 sinðθÞ cosðθÞ; ðA2bÞ

fð1Þθθ ¼ 3sin2ðθÞ; ðA2cÞ

fð2Þθθ ¼ −1; ðA2dÞ

fð1Þϕϕ ¼ −fð1Þθθ ; ðA2eÞ

fð2Þϕϕ ¼ 3sin2ðθÞ − 1: ðA2fÞ

For Teukolsky data, with the seed function Fðt; rÞ given by
(3), the coefficients A, B, and C, evaluated at the moment of
time symmetry t ¼ 0, are given by

AT ¼ −24ATe−ðr=λÞ
2
; ðA3aÞ

BT ¼ 8AT

λ2
e−ðr=λÞ

2ð2r2 − 3λ2Þ; ðA3bÞ

CT ¼ 8AT

λ4
e−ðr=λÞ

2ðr4 − 4r2λ2 þ 3λ4Þ: ðA3cÞ

For Brill data, once transformed to TT gauge as
described in Sec. III A, these coefficients take the form

AB ¼ ABσ2

8r5

&
2re−ðr=σÞ

2ð4r2 þ 9σ2Þ

þ
ffiffiffi
π

p
σð2r2 − 9σ2Þerf

"
r
σ

#'
; ðA4aÞ

BB ¼ −
AB

12r5

&
2re−ðr=σÞ

2ð4r4 þ 6r2σ2 þ 9σ4Þ

− 9
ffiffiffi
π

p
σ5erf

"
r
σ

#'
; ðA4bÞ

CB ¼ AB

96r5σ2

&
2re−

r2

σ2ð16r6 þ 36r2σ4 þ 63σ6Þ

þ 3
ffiffiffi
π

p
σ5ð2r2 − 21σ2Þerf

"
r
σ

#'
: ðA4cÞ

APPENDIX B: CONSTRUCTION OF MONCRIEF
FUNCTIONS

1. Auxiliary angular functions

In the construction of the gauge-invariant Moncrief
functions it is useful to express the components of the
tensor spherical harmonics in terms of the functions

Wlm ¼
"
∂2
θ − cot θ∂θ −

1

sin2θ
∂2ϕ

#
Ylm; ðB1aÞ
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Xlm ¼ 2∂ϕð∂θ − cot θÞYlm ðB1bÞ

(see, e.g., Sec. 9.4.1 and Appendix D in [19]). For l ¼ 2
and m ¼ 0, these functions reduce to

W20 ¼
3

2

ffiffiffi
5

π

r
sin2ðθÞ; ðB2aÞ

X20 ¼ 0: ðB2bÞ

2. Teukolsky waves

As one might expect for an axisymmetric, purely
quadrupolar wave, the only nonvanishing terms for the
Teukolsky wave of Sec. II A are those with l ¼ 2 and
m ¼ 0. From Eqs. (9.78) through (9.81) in [19] we
compute the functions H220, h120, K20, and G20 to be

HT
220 ¼ −96

ffiffiffi
π
5

r
ATe−ðr=λÞ

2
; ðB3aÞ

hT120 ¼
ffiffiffi
π
5

r
16AT

λ2
re−ðr=λÞ

2ð2r2 − 3λ2Þ; ðB3bÞ

KT
20 ¼ 48

ffiffiffi
π
5

r
ATe−ðr=λÞ

2
; ðB3cÞ

GT
20 ¼ −

ffiffiffi
π
5

r
8AT

λ4
e−ðr=λÞ

2ð2r4 − 8λ2r2 þ 3λ4Þ: ðB3dÞ

Following (9.88) and (9.89) we can then combine these
functions to form

kT120 ¼
ffiffiffi
π
5

r
32ATr2

λ6
e−ðr=λÞ

2ð2r4 − 15λ2r2 þ 21λ4Þ; ðB4aÞ

kT220 ¼−
ffiffiffi
π
5

r
48ATr2

λ6
e−ðr=λÞ

2ð2r4 − 13λ2r2þ 14λ4Þ: ðB4bÞ

Finally, the gauge-invariant Moncrief function R20 for the
Teukolsky wave of Sec. II A, computed from (9.87) in [19],
is given by

RT
20 ¼ −

ffiffiffi
π
5

r
8ATr3

λ4
e−ðr=λÞ

2ð2r2 − 7λ2Þ ðB5Þ

(see also exercise 9.7 in [19]).

3. Brill waves

For the Brill waves of Sec. II B we compute

HB
220 ¼

ffiffiffi
π
5

r
AB

r3

&
e−ðr=σÞ

2

3σ2
ð4r5 þ 2r3σ2 − 3rσ4Þ

−
ffiffiffi
π

p σ3

2
erf

"
r
σ

#'
; ðB6aÞ

hB120 ¼ 0; ðB6bÞ

KB
20 ¼

ffiffiffi
π
5

r
AB

6r2

&
2e−ðr=σÞ

2ð2r2 þ 3σ2Þ

−
3

ffiffiffi
π

p
σ3

r
erf

"
r
σ

#'
; ðB6cÞ

GB
20 ¼

ffiffiffi
π
5

r
2AB

3σ2
r2e−ðr=σÞ

2
; ðB6dÞ

and then combine these functions to find

kB120 ¼ −
ffiffiffi
π
5

r
AB

6r3σ4

&
3

ffiffiffi
π

p
σ7erf

"
r
σ

#

þ e−ðr=σÞ
2ð16r7 − 40r5σ2 − 4r3σ4 − 6rσ6Þ

'
; ðB7aÞ

kB220¼
ffiffiffi
π
5

r
AB

4r3σ4

&
−3

ffiffiffi
π

p
σ7erf

"
r
σ

#

þe−ðr=σÞ
2ð16r7−24r5σ2þ4r3σ4þ6rσ6Þ

'
: ðB7bÞ

The gauge-invariant Moncrief function R20 is then
given by

RB
20 ¼

ffiffiffi
π
5

r
AB

12r2σ2

&
2re−ðr=σÞ

2ð4r4 þ 2r2σ2 þ 3σ4Þ

− 3
ffiffiffi
π

p
σ5erf

"
r
σ

#'
: ðB8Þ

APPENDIX C: EXPANSION OF Wl0 IN TERMS
OF SPHERICAL HARMONICS Yl0

The functions Wlm may also be written as

Wlm ¼ lðlþ 1ÞYlm þ 2∂2
θYlm ðC1Þ

[see, e.g., Eq. (D.12) in [19]]. Since the second derivative of
Ylm with respect to θ can be expressed in terms of spherical
harmonics Yl0m with l0 ¼ l − 2, l0 ¼ l − 4 etc., we see
that, for even (odd) l, the Wlm can be written as a linear
combination of all Yl0ms with even (odd) l0 satisfying
l ≥ l0 ≥ m. In axisymmetry, i.e., for m ¼ 0, we can derive
this linear combination from the properties of Legendre
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polynomials Pl, which are related to the axisymmetric
spherical harmonics by

Yl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Pl: ðC2Þ

We start with the Legendre equation, which we may
write in the form

d2Pl

dθ2
¼ −

cos θ
sin θ

dPl

dθ
− lðlþ 1ÞPl ¼ x

dPl

dx
− lðlþ 1ÞPl;

ðC3Þ

where x≡ cos θ in the last step. We then use the recurrence
relation

xP0
l ¼ P0

l−1 þ lPl ðC4Þ

[see, e.g., Eq. (12.25) in [22]] to find

d2Pl

dθ2
¼ P0

l−1 − l2Pl: ðC5Þ

Now we can use the identity

P0
nþ1 ¼ P0

n−1 þ ð2nþ 1ÞPn ðC6Þ

[see, e.g., (12.23) in [22]] repeatedly. Starting with
n ¼ l − 2, Eq. (C5) becomes

d2Pl

dθ2
¼ P0

l−3 þ ð2l − 3ÞPl−2 − l2Pl; ðC7Þ

next we use (C6) for n ¼ l − 4 etc. Starting with an even l,
we at some point end up with a term P0

3, which we write as

P0
3 ¼ P0

1 þ 5P2 ¼ 5P2 þ P0; ðC8Þ

where we have used P0
1 ¼ 1 ¼ P0. We may therefore write

d2Pl

dθ2
¼
Xl−2

n¼0

ð2nþ1ÞPn−l2Pl ðl>2 even;nevenÞ: ðC9Þ

Using (C2) again we then have

∂2
θYl0 ¼ −l2Yl0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Xl−2

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Yn0

ðl > 2 even; n evenÞ; ðC10Þ

which we may insert into (C1) to obtain

Wl0 ¼ lYl0 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Xl−2

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Yn0

ðl > 2 even; n evenÞ: ðC11Þ

Since the function q in (8) contains only monopole
and quadrupole terms, only the last two terms in this
expansion,

Wl0 ¼ …þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
ð

ffiffiffi
5

p
Y20 þ Y00Þ ðl > 2 evenÞ;

ðC12Þ

can yield a contribution in the integral (42) for l > 2.
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