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We consider several families of functions fðαÞ that appear in the Bona-Masso slicing condition for the
lapse function α. Focusing on spherically symmetric and time-independent slices we apply these conditions
to the Schwarzschild spacetime in order to construct analytical expressions for the lapse α in terms of the
areal radius R. We then transform to isotropic coordinates and determine the dependence of α on the
isotropic radius r in the vicinity of the black-hole puncture. We propose generalizations of previously
considered functions fðαÞ for which, to leading order, the lapse is proportional to r rather than a noninteger
power of r. We also perform dynamical simulations in spherical symmetry and demonstrate advantages of
the above choices in numerical simulations employing spectral methods.
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I. INTRODUCTION

Among the most successful slicing conditions in numeri-
cal relativity is the Bona-Masso condition

ð∂t − βi∂iÞα ¼ −α2fðαÞK; ð1Þ

where α is the lapse function, βi the shift vector, and K the
trace of the extrinsic curvature (see [1]). Specific choices
for the function fðαÞ single out specific slicing conditions;
choosing fðαÞ ¼ 1, for example, results in harmonic
slicing. A very common choice for fðαÞ is the “1þ log”
condition

fðαÞ ¼ 2

α
; ð2Þ

which, together with a “gamma-driver” condition for the
shift (e.g., [2,3]), forms the so-called “moving-puncture”
gauge conditions that have played a crucial role in
simulations of black-hole spacetimes (see, e.g., [4,5]).
A number of authors have suggested modifications to

the Bona-Masso conditions and alternatives to the 1þ log
condition, for example to address the appearance of coor-
dinate shocks [6], to explore singularity avoidance [7], or
to improve the behavior of numerical simulations in the
presence of adaptive mesh refinement interfaces [8].
In this short paper we explore alternative choices for fðαÞ
from a “local” perspective, namely regarding the behavior of
the lapse function α in the vicinity of a black-hole puncture.
For the 1þ log slicing condition (2), for example, spheri-
cally symmetric and time-independent solutions satisfy

α ∝ r1.091 ðr → 0Þ; ð3Þ

where r is the isotropic radius (see [9] as well as Sec. III A
below).1 The appearance of the noninteger exponent in (3)
means that the second radial derivative of the lapse function
diverges at the black-hole puncture, for r → 0. For numerical
simulations employing spectral methods, powers with non-
integer exponents are also difficult to express in terms of the
most common basis functions, and therefore lead to slow
convergence.
Motivated by these considerations we generalize treat-

ments by, e.g., Hannam et al. [13,14] to construct spheri-
cally symmetric and time-independent Bona-Masso slices
of the Schwarzschild spacetime for a number of different
functions fðαÞ. We then follow Brüegmann [9] and trans-
form to isotropic coordinates in order to determine the
functional dependence of the lapse α on the isotropic
radius r. We identify special choices for fðαÞ for which
the lapse α becomes (approximately) proportional to the
isotropic radius r, rather than some noninteger power of r.
We also perform numerical simulations using a spectral
code that implements the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) equations [15–17] in spherical sym-
metry and demonstrate advantages of these special choices.

II. BASIC EQUATIONS

A. Transformation to Bona-Masso slices

We start with the metric for a Schwarzschild black hole
in Schwarzschild coordinates,

1In the absence of the shift term in (1), time-independent
solutions are maximally sliced (see [10,11]) and, adopting (2),
result in α ∝ r

ffiffi
2

p
as r → 0, see [12].
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ds2 ¼ −f0dt2 þ f−10 dR2 þ R2dΩ2: ð4Þ

Here R is the areal radius, we have defined f0 ≡ 1–2M=R
where M is the black hole mass, and we have adopted
geometrized units with c ¼ G ¼ 1. We transform to a new
time coordinate t̄ that is related to the old time coordinate t
by a “height function” hðRÞ,

t̄ ¼ tþ hðRÞ ð5Þ

In terms of t̄, the metric now takes the form

ds2 ¼ −f0dt̄2 þ 2f0h0dt̄dRþ ðf−10 − f0h02ÞdR2 þ R2dΩ2

ð6Þ

where the prime denotes a derivative with respect to R, i.e.,
h0 ≡ dh=dR (see, e.g., [18–20]; see also Sec. IV.2 in [21]
for a textbook treatment). From (6) we can identify the
lapse function

α2 ¼ f0
1 − f0h02

; ð7Þ

the shift vector

βR ¼ f20h
0

1 − f20h
02 ¼ αðα2 − f0Þ1=2; ð8Þ

and the RR component of the spatial metric γij

γRR ¼ 1 − f20h
02

f0
¼ α−2: ð9Þ

Finally, the trace of the extrinsic curvature can be written as

K ¼ 1

R2

d
dR

ðR2f0αh0Þ

¼ 1

R2

d
dR

"
R2 β

R

α

#

¼ 2

R
βR

α
þ ðβRÞ0

α
−
βR

α2
α0: ð10Þ

In spherical symmetry, and for time-independent slices,
the slicing condition (1) results in

βRα0 ¼ α2fðαÞK: ð11Þ

We now follow [13,14] and construct Bona-Masso slices by
inserting (10) into (11) to obtain

dα
αfðαÞ

þ dα
α

¼ 2dR
R

þ dβR

βR
: ð12Þ

Integration then yields

α2 ¼ 1 −
2M
R

þ Ce2IðαÞ

R4
; ð13Þ

where we have used (8), where C is a constant of
integration, and where IðαÞ is defined by the integral

IðαÞ≡
Z

α

0

dα̃
α̃fðα̃Þ

: ð14Þ

In order to determine the constant of integration in (13)
we insert (8) into (10), and then use the result in (11) to
obtain an equation for the derivative of the lapse α alone,

α0 ¼ − αfðαÞ
R2

3M − 2Rþ 2Rα2

1 − 2M=Rþ α2fðαÞ − α2
: ð15Þ

We now observe that, for α0 to remain regular across
any point at which the denominator on the right-hand side
of (15) vanishes, the numerator has to vanish simultane-
ously (see [13]). We refer to such a point as a “critical
point”, and label the corresponding variables with a
subscript c.
For a given choice of the function fðαÞ we may therefore

construct static and spherically symmetric black-hole slices
as follows. We first insert fðαÞ into (15) and search for
simultaneous roots of the numerator and denominator,
which, if they exist, determine the critical values αc
and Rc. We then insert these values into (13), which
determines the constant of integration C.
We will be particularly interested in the behavior of the

slices in the neighborhood of roots of the lapse. Towards
that end, we first determine the point R0 at which α
vanishes by evaluating (13),

1 −
2M
R0

þ Ce2Ið0Þ

R4
0

¼ 0: ð16Þ

While it may be possible to express solutions to this
quartic equation in closed form, these expressions are
often unwieldy and not particularly useful. It is possible,
however, to find numerical values for R0 for some choices
of the function fðαÞ.
Finally, we take derivatives of the function (13) in order

to evaluate

a1 ≡
"
dα
dR

#

R¼R0

; ð17Þ

in terms of which we may write the lapse in the neighbor-
hood of its root as

αðRÞ ¼ a1ðR − R0Þ þOððR − R0Þ2Þ ð18Þ

(see [9]).
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B. Transformation to isotropic coordinates

We now transform the spatial metric on slices of constant
time t̄ to isotropic coordinates with a radial coordinate r. In
particular, we identify the spatial line element correspond-
ing to the spacetime line element (6),

dl2 ¼ α−2dR2 þ R2dΩ2; ð19Þ

with that of a spatial metric in isotropic coordinates,

dl2 ¼ ψ4ðdr2 þ r2dΩ2Þ; ð20Þ

where ψ is a conformal factor. This identification results in
the two conditions

α−1dR ¼ ψ2dr and R ¼ ψ2r; ð21Þ

which we may combine to obtain

dr
r
¼ dR

Rα
¼ dR=dα

R
dα
α

ð22Þ

and hence

r ¼ exp
Z

dR=dα
R

dα
α
: ð23Þ

To leading order in r we may now approximate dR=dα ≃
1=a1 and R ≃ R0 and carry out the integration to obtain

r ∝ αγ ðr → 0Þ; ð24Þ

where, following [9], we have defined

γ ≡ 1

a1R0

: ð25Þ

Inverting (24) we find that, in the vicinity of the black-hole
puncture, the lapse behaves according to

α ∝ r1=γ; ðr → 0Þ ð26Þ

(cf. Eq. (56) in [9]).

III. EXAMPLES AND GENERALIZATIONS

In this section we consider several examples for the
function fðαÞ, and suggest generalizations that result in
exponents 1=γ ≃ 1. We summarize our findings in Table I.

A. 1 + log slicing

The 1þ log slicing condition [1] is obtained for the
choice (2). Integration of (14) then yields

IðαÞ ¼ α
2
; ð27Þ

so that (13) becomes

α2 ¼ 1 −
2M
R

þ Ceα

R4
; ð28Þ

(see [13]). From the simultaneous roots of the numerator
and denominator of (15) we then find

αc ¼
ffiffiffiffiffi
10

p
− 3 ≃ 0.162 ð29aÞ

Rc ¼
3þ

ffiffiffiffiffi
10

p

4
M ≃ 1.541M; ð29bÞ

which, when inserted into (28), yields

C ¼ 1

128
ð3þ

ffiffiffiffiffi
10

p
Þ3e3−

ffiffiffiffi
10

p
≃ 1.554M4; ð30Þ

(see also [14]). We next evaluate (28) at α ¼ 0 to find

R0 ≃ 1.312M ð31Þ

TABLE I. A summary of our results for different families of the Bona-Masso functions fðαÞ. For each family we list the integral (14),
and, for selected parameter choices, the critical values of the lapse αc and areal radius Rc, the integration constant C in (13), the
areal radius R0 at which the lapse vanishes, and the exponent 1=γ in (26) that determines the power-law behavior in the vicinity of the
black-hole puncture, α ∝ r1=γ .

fðαÞ References IðαÞ Parameter αc Rc=M C=M4 R0=M 1=γ

k=α [1] α=k k ¼ 2 0.162 1.541 1.554 1.312 1.091
k ¼ 1.46263 0.217 1.574 1.450 1.240 1.000

ð1 − αÞ=α [22] − lnð1 − αÞ … 1=2 2 1 1 1

1þ κ
α2

[6] 1

2
ln
α2 þ κ

κ
κ > 1=3 0 3=2 33=24 3=2

"
6κ

3κ − 1

#
1=2

a20
2αþ ða0 − 2Þα2

[7]
α
2a20

ð4þ ða0 − 2ÞαÞ a0 ¼ 4=3 0.305 1.654 1.179 1.090 0.801
a0 ¼ 1.7365 0.206 1.567 1.468 1.252 1.000
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(another real root of R0 ≃ 1.66 leads to negative values of α
for R > R0), as well as

a1 ≃ 0.832M−1: ð32Þ

Finally, we compute γ ≃ 0.916 from (25), so that

α ∝ r1.091: ð33Þ

All of the above is in complete agreement with the results
of [9].
As a generalization of (2) we may consider

fðαÞ ¼ k
α

ð34Þ

(see, e.g., [14]). Carrying out the same calculations as
above we find that, for

k ≃ 1.46263; ð35Þ

we obtain γ ¼ 1.0 to high accuracy, so that the lapse α is
approximately proportional to the isotropic radius r close to
the black-hole puncture (see Table I for details).

B. Analytical trumpet slices

As an alternative we consider

fðαÞ ¼ 1 − α
α

; ð36Þ

which results from the analytical trumpet slices constructed
in [22].2 We can again integrate (14) analytically,

IðαÞ ¼ − lnð1 − αÞ; ð37Þ

so that (13) becomes

α2 ¼ 1 −
2M
R

þ C2

R4

1

ðα − 1Þ2
: ð38Þ

The numerator and denominator of (15) now have simul-
taneous roots for

αc ¼
1

2
; Rc ¼ 2M; ð39Þ

which, when inserted into (38), yields C ¼ M4. The
desirable root of (38) for α ¼ 0 is R0 ¼ M. We then have
a1 ¼ M−1 and therefore γ ¼ 1 exactly, indicating that the
lapse now satisfies

α ∝ r ð40Þ

close to the origin, in complete agreement with the
analytical solution

α ¼ r
rþM

ð41Þ

provided in [22]. We note, however, that fðαÞ → 0 as
α → 1, making this choice undesirable in general (in
spherical symmetry, however, it provides a powerful
numerical test with a simple analytical solution).

C. Gauge-shock avoiding slices

As a means to avoid gauge shocks, Alcubierre [6]
suggested

fðαÞ ¼ 1þ κ
α2

; ð42Þ

as yet another alternative choice for the function fðαÞ
(see also [7] as well as [23] for numerical simulations
with κ ¼ 1). The integral (14) can again be carried out
analytically,

IðαÞ ¼ 1

2
ln
"
α2 þ κ

κ

#
; ð43Þ

where we have assumed κ > 0.
This case differs from the previous cases, however, in

that αfðαÞ on the right-hand side of (15) diverges as κ=α as
α → 0. Therefore, a root of the denominator of (15) may
result from a vanishing of α rather than a root of the
denominator of the second fraction on the right-hand side
of (15). In fact, for κ > 1=3, the outermost root of the
denominator (i.e., the one for the largest radius) occurs
for α ¼ 0 so that αc ¼ 0. The critical radius Rc is hence
equal to R0 and takes the value Rc ¼ 3M=2. Inserting (43)
into (13) we find C ¼ 33M4=24 as well as a1, and finally

1

γ
¼

"
6κ

3κ − 1

#
1=2

; ðκ > 1=3Þ: ð44Þ

For κ ¼ 1, for example, we have 1=γ ¼
ffiffiffi
3

p
. However, we

can also make 1=γ take an integer value n by choosing
κ ¼ n2=ð3n3 − 6Þ. An attractive choice from our perspec-
tive here, while satisfying our assumption κ > 1=3, is
κ ¼ 2=3, which results in 1=γ ¼ 2.
In numerical experiments with (42), however, we found

that the lapse can take negative values during the evolution,
as anticipated in [7], and dynamical evolutions also appear
to take significantly longer to settle down to equilibrium
than for the other choices of fðαÞ discussed here. We
therefore follow [7] in considering functions fðαÞ that are
gauge-shock avoiding to leading order only.
Specifically, we adopt the ansatz (82) of [7], which is

defined in terms of coefficients p0, q1, and q2. Rather
than imposing first-order shock avoidance, which results in

2This choice is the special case R0 ¼ M of a larger family
satisfying fðαÞ¼ð1−αÞα−1ð2M−R0ð1þαÞÞ=ð3M−R0ð2þαÞÞ;
see [22] for details.
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the conditions (83)–(85) of [7] for these coefficients, we
require that fðαÞ ∝ α−1 as α → 0, which instead results in
the condition q2 ¼ q1 − 1. Further imposing zeroth-order
shock avoidance then leads to the family

fðαÞ ¼ a20
2αþ ða0 − 2Þα2

; ð45Þ

where the parameter a0 ¼ q0 yields the value of fðαÞ for
α ¼ 1. Note that the 1þ log slicing condition (2) is a
member of this family with a0 ¼ 2, while first-order shock
avoidance is achieved for a0 ¼ 4=3 (see [7] as well as [24]
for numerical experiments).
For (45), the integral (14) can be evaluated to yield

IðαÞ ¼ α
2a20

ð4þ ða0 − 2ÞαÞ; ð46Þ

so that (13) becomes

α2 ¼ 1 −
2M
R

þ C2 exp fαð4þ ða0 − 2ÞαÞ=a20g
R4

: ð47Þ

Adopting a0 ¼ 4=3 we find αc ≃ 0.305 and Rc ≃ 1.654M
from simultaneous roots of the numerator and denominator
of (15), which, when inserted into (47), yields C≃1.179M4.
A root of (47) is then given by R0 ≃ 1.090M, from which
we compute γ ¼ 1.249 and hence

1=γ ≃ 0.801; ða0 ¼ 4=3Þ: ð48Þ

Repeating the analysis for

a0 ¼ 1.7365; ð49Þ

however, we find 1=γ very close to unity, so that the lapse is
again approximately proportional to the isotropic radius r in
the vicinity of the black-hole puncture.

IV. NUMERICAL EXAMPLES

We next present numerical examples in order to illustrate
some of the results of Sec. III, and to demonstrate the
respective advantages and disadvantages of some of the
choices. We will focus on single black holes in spherical
symmetry, evolving the BSSN equations with spectral
methods in the context of the moving-puncture method
without excision.

A. Spectral code

Our code solves the BSSN equations in spherical
symmetry (see, e.g., [25]) using a multidomain Galerkin-
collocation spectral method ([26,27], see also [28] for a
textbook treatment). Details of this code will be presented
elsewhere (see [29]), so that we will discuss only some of
its main features here.

Rather than using the isotropic radius r, our code uses a
coordinate x ¼ LðrÞ ¼ ðr − L0Þ=ðrþ L0Þ, where LðrÞ
maps the infinite domain ð0;∞Þ into the finite domain
ð−1; 1Þ, and where L0 is a parameter with dimension of
length.3 Our code also allows this “global” domain to be
split into multiple subdomains; for the examples presented
below we will use two such subdomains. In each sub-
domain we apply a second, linear map so that the local
coordinates again cover the interval ð−1; 1Þ, and then
expand all functions into basis functions. For the lapse
function αðt; rÞ, for example, we write

αðt; xÞ ¼ 1þ
XN

k¼0

α̂kðtÞψkðxÞ ð50Þ

in each subdomain, where the α̂kðtÞ are mode coefficients,
the ψkðxÞ form a complete set of basis functions, and where
N is the truncation order. In the inner subdomains we adopt
the rational Chebyshev functions ψkðxÞ ¼ TkðxÞ as basis
functions (see e.g., [28]), while, in the outermost subdo-
main, we use the combinations ψkðxÞ ¼ Tkþ1ðxÞ − TkðxÞ,
since the latter automatically satisfy the boundary con-
ditions at spatial infinity.
We next insert the expansion for all dynamical fields

into the BSSN equations, the slicing condition (1) for the
lapse, and the “gamma-driver” gauge condition for the shift
(see [2,3]). Evaluating these equations at N þ 1 collocation
points then casts the set of coupled partial differential
equations as a set of coupled ordinary differential equations
for the mode coefficients. We integrate this set of equations
using a standard Runge-Kutta method, and thus obtain all
mode coefficients, e.g., the α̂kðtÞ, as functions of time.
Finally we can reconstruct the physical fields by inserting
these mode coefficients into the respective expansions,
e.g., (50). We again refer to [29] for a more detailed
description and discussion.

B. Numerical results

We adopt “wormhole” data as initial data, i.e., the
Schwarzschild solution in isotropic coordinates on a slice
of constant Schwarzschild time. At the initial time we also
choose a “precollapsed” lapse, α ¼ ð1þM=ð2rÞÞ−2, as
well as zero shift. We then evolve these data with the Bona-
Masso slicing condition (1) for two families of functions
fðαÞ, namely the “generalized 1þ log” slices of Sec. III A
[see Eq. (34)] and the “zeroth-order gauge-shock avoiding”
slices of Sec. III C [see Eq. (45)], both for different choices
of the respective parameters k and a0. For all results shown
here we use two subdomains, and 90 collocation points in
each subdomain.

3We note that the new coordinate x will inherit the power-law
scaling (26) as long as the map x ¼ LðrÞ is linear in the vicinity of
r ¼ 0. In our specific case, r ≃ L0ðx − x0Þ=2 to leading order in
x − x0, where x0 ¼ xð0Þ ¼ −1, so α ∝ ðx − x0Þ1=γ .
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During the first phase of the numerical evolution the
fields change with time as the data undergo a coordinate
transition from the initial wormhole geometry to a trumpet
geometry (see, e.g., [14]). This transition takes a time of
approximately 30M or so, after which the evolution settles
down into a new equilibrium and the data become approx-
imately time independent (at least in the vicinity of the
black hole). In the following we show results from our
dynamical evolutions at a time t ¼ 50M, when the data
should be well approximated by the equilibrium solutions
constructed in Sec. III.
We first consider the “generalized 1þ log” choice

fðαÞ ¼ k=α of Sec. III A. In Fig. 1 we show profiles of

the lapse α as a function of radius r at t ¼ 50M, both for the
“canonical” choice k ¼ 2 (top panel) and for k ¼ 1.46263
(bottom panel). In both panels we include the numerical
results as solid (blue) and dashed (red) lines (in the inner
and outer subdomain), as well as the expected power-law
scaling (26) as dotted lines. We also mark the location rinner
of the innermost collocation point by the vertical lines.
Evidently, the expected power-law scaling extends to much
smaller radii for k ¼ 1.46263, when the power-law expo-
nent is approximately unity, than for k ¼ 2, when the
exponent takes a noninteger value. In particular, we see that
the numerical results reproduce the expected power-law
behavior to r ≪ rinner in the former case, but only to about
r ≃ rinner in the latter case.
The improved numerical behavior can also be seen in

Fig. 2, where we show the coefficients α̂k corresponding to
the solutions shown in Fig. 1 in the inner subdomain.
We see that, for k ¼ 1.46263, the coefficients (marked by
red circles) drop off somewhat faster than for k ¼ 2
(marked by blue crosses), and reach the noise level of
approximately 10−7 (which is caused at least in part by
deviations from true equilibrium) for smaller values of k.
While the difference is clearly noticeable, it is not very
large, presumably because the expected power-law expo-
nent of 1=γ ≃ 1.091 for k ¼ 2 is not very different from
unity, the expected exponent for k ¼ 1.46263.
In order to explore this behavior for a different example

we next consider the family (45) with a0 ¼ 4=3 and
a0 ¼ 1.7365. In Fig. 3 we again show profiles of the lapse
α as a function of radius r at time t ¼ 50M. As before, we
observe much better agreement between the numerical
solution and the expected power-law scaling at radii well
inside the innermost collocation point when the exponent is
(approximately) unity (for a0 ¼ 1.7365) than for a non-
integer exponent (for a0 ¼ 4=3).

FIG. 1. Profiles of the lapse function α as a function of radius r
at a time t ¼ 50M for fðαÞ ¼ k=α [see Eq. (34)]. The top panel
shows results for k ¼ 2, and the bottom panel for k ¼ 1.46263.
The solid (blue) and dashed (red) lines show numerical results in
the inner and outer subdomain, while the dotted line shows the
expected power-law scaling α ∝ r1=γ , with 1=γ ≃ 1.091 for k ¼ 2
(top panel) and 1=γ ≃ 1 for k ¼ 1.46263. The vertical (gray) line
marks the location of the innermost collocation point at
rinner ≃ 3.05 × 10−4M. Note that, for k ¼ 1.46263, the numerical
solution follows the expected power law to much smaller values
of r than for k ¼ 2.

FIG. 2. The mode coefficients α̂k at time t ¼ 50M for fðαÞ ¼
k=α with k ¼ 2 (blue crosses) and k ¼ 1.46263 (red circles) in
the inner subdomain.
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This improvement is also evident in Fig. 4, where we
show the corresponding mode coefficients α̂k. Clearly,
these coefficients drop off much faster for a0 ¼ 1.7365
(red circles) than for a0 ¼ 4=3 (blue crosses), indicating
that constructing the latter with an expansion (50) requires
many more basis functions ψk than the former. This is not
unexpected, of course, since the latter features a noninteger
power-law for small radii r, while, for the former, the
behavior α ∝ r can be reproduced quite easily in a spectral
representation. In our example we find that the coefficients
drop off to a level of about 10−6 for k ≃ 10 for a0 ¼ 1.7365,
but only for k ≃ 60 for a0 ¼ 4=3, indicating a much
improved convergence for the former. We believe that
the improvement seen in this example is larger than that
shown in Fig. 2 because here the difference in the power-
law exponents is also larger; for a0 ¼ 4=3 we expect
1=γ ≃ 0.801, which differs from unity more than the
exponent 1=γ ≃ 1.091 found for k ¼ 2 in Fig. 2.

V. SUMMARY

We generalize the treatments of Hannam et al. [13,14]
and Brügmann [9] to construct spherically symmetric and
time-independent slices of the Schwarzschild spacetime
satisfying the Bona-Masso slicing condition (1) for a
number of different functions fðαÞ. Specifically, we derive
analytical expressions for the lapse function α in terms of
the areal radius R, and then transform these expressions to
isotropic coordinates in order to obtain the leading-order
dependence of α on the isotropic radius r in the vicinity of
the black-hole puncture, α ∝ r1=γ [see Eq. (26)].
For many common choices of fðαÞ, the exponent 1=γ

takes noninteger values (see Table I), which may have
undesirable consequences for numerical simulations, in
particular in the context of spectral methods. We suggest
generalizations of these functions fðαÞ for which 1=γ takes
either exact or approximate integer values.
Finally, we perform numerical simulations using a

spectral implementation of the BSSN equations in spherical
symmetry. Adopting “wormhole” initial data we compare
evolutions for different choices of fðαÞ, and demonstrate
the improved convergence for those functions fðαÞ that
feature integer exponents 1=γ.
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FIG. 3. Same as Fig. 1, but for the function fðαÞ given by (45)
with a0 ¼ 4=3 in the top panel and a0 ¼ 1.7365 in the bottom
panel. The dotted lines represent the expected power-law scalings
α ∝ r1=γ with 1=γ ≃ 0.801 in the top panel and 1=γ ≃ 1 in the
bottom panel.

FIG. 4. Same as Fig. 2 but for the family (45) with a0 ¼ 4=3
(blue crosses) and a0 ¼ 1.7365 (red circles).
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