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ABSTRACT
Contextual multi-armed bandit has shown to be an effective tool

in recommender systems. In this paper, we study a novel problem

of multi-facet bandits involving a group of bandits, each character-

izing the users’ needs from one unique aspect. In each round, for

the given user, we need to select one arm from each bandit, such

that the combination of all arms maximizes the final reward. This

problem can find immediate applications in E-commerce, health-

care, etc. To address this problem, we propose a novel algorithm,

named MuFasa, which utilizes an assembled neural network to

jointly learn the underlying reward functions of multiple bandits.

It estimates an Upper Confidence Bound (UCB) linked with the

expected reward to balance between exploitation and exploration.

Under mild assumptions, we provide the regret analysis of Mu-

Fasa. It can achieve the near-optimal Õ((𝐾 + 1)
√
𝑇 ) regret bound

where 𝐾 is the number of bandits and 𝑇 is the number of played

rounds. Furthermore, we conduct extensive experiments to show

that MuFasa outperforms strong baselines on real-world data sets.
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1 INTRODUCTION
The personalized recommendation is ubiquitous in web appli-

cations. Conventional approaches that rely on sufficient historical

records, e.g., collaborative filtering [37, 47], have proven successful

both theoretically and empirically. However, with the cold-start

problem and the rapid change of the recommendation content,

these methods might render sub-optimal performance [23, 28]. To

solve the dilemma between the exploitation of historical data and
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the exploration of new information, Multi-Armed Bandit (MAB)

[1, 7, 8, 10, 26] turns out to be an effective tool, which has been

adapted to personalized recommendation [23, 28], online advertis-

ing [40], clinical trials [12, 20], etc.

In the conventional contextual bandit problem setting [28], i.e.,

single MAB, the learner is presented with a set of arms in each

round, where each arm is represented by a feature vector. Then

the learner needs to select and play one arm to receive the cor-

responding reward that is drawn from an unknown distribution

with an unknown mean. To achieve the goal of maximizing the

accumulated rewards, the learner needs to consider the arms with

the best historical feedback as well as the new arms for potential

gains. The single MAB problem has been well studied in various

settings. With respect to the reward function, one research direc-

tion [1, 19, 23, 28, 29] assumes that the expected reward is linear

with respect to the arm’s feature vector. However, in many real ap-

plications, this assumption fails to hold. Thus many exiting works

turn to focus on the nonlinear or nonparametric bandits [13, 36]

with mild assumptions such as the Lipschitz continuous property

[13] or embedding in Reproducing Kernel Hilbert Space [18, 39].

Furthermore, the single MAB problem has been extended to best

arm identification [6, 7], outlier arm identification [10, 22], Top-K

arm problems [14], and so on.

In this paper, we define and study a novel problem of multi-facet
contextual bandits. In this problem, the users’ needs are charac-

terized from multiple aspects, each associated with one bandit.

Consider a task consisting of 𝐾 bandits, where each bandit presents

a set of arms separately and the learner needs to choose and play

one arm from each bandit. Therefore, a total of 𝐾 arms are played

in one round. In accordance with the standard bandit problem, the

learner can observe a reward after playing one arm from the bandit,

which we call "sub-reward", and thus 𝐾 sub-rewards are received

in total. In addition, a reward that is a function with respect to

these 𝐾 sub-rewards, called "final reward", is observed to represent

the overall feedback with respect to the 𝐾 selected arms. Note that

the functions of final reward and 𝐾 sub-rewards are allowed to be

either linear or non-linear. The goal of the learner in the multi-facet

bandit problem is to maximize the final rewards of all the played

rounds.

This problem finds many applications in real-world problems.

For instance, in the recommender system, instead of the single item

recommendation, an E-commerce company launches a promotion

campaign, which sells collections of multiple types of products

such as snacks, toiletries, and beverages. Each type of item can be

formulated as a multi-armed bandit and the learner aims to select

the best combination of snack, toiletry, and beverage. As a result, the

final reward is the review of this combined recommendation, while

the sub-reward is the review for a particular product . This problem

also exists in healthcare. For a diabetes patient, the doctor usually
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provides a comprehensive recommendation including medication,

daily diet, and exercise, where each type has several options. Here,

the final reward can be set as the change of key biomarkers for

diabetes (e.g., HbA1c) and the sub-reward can be the direct impact

of each type of recommendation (e.g., blood pressure change for a

medicine).

A major challenge of the proposed multi-facet bandit problem is

the partial availability of sub-rewards, as not every sub-reward is

easy to observe. For example, regarding the combined recommen-

dation of E-commerce, the user may rate the combination but not

individual items; regarding the comprehensive recommendation

for a diabetes patient, some sub-rewards can be difficult to measure

(e.g., the impact of low-calorie diets on the patient’s overall health

conditions). Therefore, in our work, we allow only a subset of all

sub-rewards to be observed in each round, which increases the

flexibility of our proposed framework.

To address these challenges, we aim to learn the mappings from

the selected 𝐾 arms (one from each bandit) to the final rewards, in-

corporating two crucial factors: (1) the collaborative relations exist

among these bandits as they formulate the aspects from one same

user; (2) the bandits contribute to the task with various weights

because some aspects (bandits) are decisive while some maybe not.

Hence, we propose a novel algorithm, MuFasa, to learn 𝐾 bandits

jointly. It utilizes an assembled neural networks to learn the final

reward function combined with 𝐾 bandits. Although the neural net-

works have been adapted to the bandit problem [34, 42, 45], they are

designed for the single bandit with one selected arm and one reward

in each round. To balance the exploitation and exploration of arm

sets, we provide a comprehensive upper confidence bound based

on the assembled network linking the predicted reward with the

expected reward. When the sub-rewards are partially available, we

introduce a new approach to leverage them to train bandits jointly.

Furthermore, we carry out the theoretical analysis of MuFasa and

prove a near-optimal regret bound under mild assumptions. Our

major contributions can be summarized as follows:

(1) Problem. We introduce the problem of multi-facet contex-

tual bandits to characterize the users’ needs from multiple aspects,

which can find immediate applications in E-commerce, healthcare,

etc.

(2) Algorithm. We propose a novel algorithm, MuFasa, which

exploits the final reward and up to 𝐾 sub-rewards to train the

assembled neural networks and explores potential arm sets with a

UCB-based strategy.

(3) Theoretical analysis. Under mild assumptions, we provide

the upper confidence bounds for a neural network and the assem-

bled neural networks. Then, we prove that MuFasa can achieve the

Õ((𝐾 + 1)
√
𝑇 ) regret bound, which is near-optimal compared to a

single contextual bandit.

(4)Empirical performance.We conduct extensive experiments

to show the effectiveness of MuFasa, which outperforms strong

baselines on real-world data sets even with partial sub-rewards.

2 RELATEDWORK

Multi-armed bandit. Themulti-armed bandit was first introduced

by [38] and then further studied by many works that succeeded

in both theory and practice such as 𝜖-greedy [26], Thompson

sampling[2], and upper confidence bound [7]. In the contrast with

traditional bandits [7, 10], the contextual bandit [1, 28, 40] has the

better representation capacity where each arm is represented by

a context vector instead of a scalar to infer the reward. Among

them, the linear contextual bandits are extensively studied and

many of them use the UCB strategy, achieving Õ(
√
𝑇 ) regret bound

[1, 11, 23]. To further generalize the reward function, many works

use a nonlinear regression model drawn from the reproducing ker-

nel Hilbert space to learn the mapping from contexts to rewards

such as the kernel-based methods [18, 39].

Neural bandits. The authors of [4] use a neural work to model an

arm and then applied 𝜖-greedy strategy to select an arm. In contrast,

MuFasa utilizes a UCB-based strategy working on𝐾 bandits instead

of one set of arms. In addition, the Thompson sampling has been

combined with deep neural networks [9, 31, 34, 42]. For instance,

[34, 42] regard the last layer of the neural network as the embed-

dings of contexts and then apply the Thompson sampling to play an

arm in each round. NeuUCB [45] first uses the UCB-based approach

constructed on a fully-connected neural network, while it only fits

on the single bandit with one set of arms. On the contrary, MuFasa

constructs an assembled neural networks to learn 𝐾 bandits jointly.

Deep neural network in multi-view learning has been well-studied

[21, 25, 43, 44, 46], to extract useful information among multiple

sources, which inspires one of the core ideas of MuFasa.

Other variant bandit setting. In the non-contextual bandit, a

number of works [16, 17, 32] study playing𝐾 arms at the same time

in a single bandit, while these approaches have limited representa-

tion power in the recommender system. The most similar setting

is the contextual combinatorial MAB problem[30, 33], where the

learner tends to choose the optimal subset of arms with certain con-

straints like the 𝐾-size. One key difference is that all the arms are

from the same single bandit where only one reward function exists.

On the contrary, in the multi-faced bandits, the selected 𝐾 arms

come from 𝐾 different bandits with 𝐾 different reward functions

and the sub-rewards are allowed to be partially available. There

is another line of works [11, 23, 29] for bandit clustering, where a

bandit is constructed for each user. They try to leverage the depen-

dency among users to improve the recommendation performance.

However, in these works, they still play one arm in each round and

the reward function is required to be linear.

3 PROBLEM DEFINITION
In this section, we formulate the problem of multi-facet bandits,

with a total of 𝐾 bandits, where the learner aims to select the

optimal set of 𝐾 arms in each round, in order to maximize the final

accumulated rewards.

Suppose there are 𝑇 rounds altogether. In each round 𝑡 ∈ [𝑇 ]
([𝑇 ] = {1, . . . ,𝑇 }), the learner is faced with 𝐾 bandits, and each

bandit 𝑘 ∈ [𝐾] has a set of arms X𝑘𝑡 = {x𝑘
𝑡,1
, . . . , x𝑘𝑡,𝑛𝑘 }, where

|X𝑘𝑡 | = 𝑛𝑘 is the number of arms in this bandit. In the bandit

𝑘 , for each arm x𝑘
𝑡,𝑖

∈ X𝑘𝑡 , it is represented by a 𝑑𝑘 -dimensional

feature vector and we assume ∥x𝑘
𝑡,𝑖
∥2 ≤ 1. Subsequently, in each

round 𝑡 , the learner will observe 𝐾 arm sets {X𝑘𝑡 }𝐾𝑘=1 and thus a

total of

∑𝐾
𝑘=1

𝑛𝑘 arms. As only one arm can be played within each

bandit, the learner needs to select and play 𝐾 arms denoted as



X𝑡 = {x1𝑡 , . . . , x𝑘𝑡 , . . . , x𝐾𝑡 } in which x𝑘𝑡 ∈ X𝑡 represents the selected
arm from X𝑘𝑡 .

Once the selected arm x𝑘𝑡 is played for bandit 𝑘 , a sub-reward

𝑟𝑘𝑡 will be received to represent the feedback of this play for bandit

𝑘 separately. The sub-reward is assumed to be governed by an

unknown reward function:

𝑟𝑘𝑡 (x𝑘𝑡 ) = ℎ𝑘 (x𝑘𝑡 ).
whereℎ𝑘 can be either a linear [1, 28] or non-linear reward function

[18, 39]. As a result, in each round 𝑡 , the learner needs to play

𝐾 arms in X𝑡 and then receive 𝐾 sub-rewards denoted by r𝑡 =

{𝑟1𝑡 , . . . , 𝑟𝑘𝑡 , . . . , 𝑟𝐾𝑡 }.
As the 𝐾 bandits characterize the users’ needs from various

aspects, after playing 𝐾 arms in each round 𝑡 , a final reward 𝑅𝑡
will be received to represent the overall feedback of the group of

𝐾 bandits. The final reward 𝑅𝑡 is considered to be governed by an

unknown function with respect to r𝑡 :

𝑅𝑡 (r𝑡 ) = 𝐻
((
ℎ1 (x1𝑡 ), . . . , ℎ𝑘 (x𝑘𝑡 ) . . . , ℎ𝐾 (x𝐾𝑡 )

))
+ 𝜖𝑡 .

where 𝜖𝑡 is a noise drawn from a Gaussian distribution with zero

mean. In our analysis, we make the following assumptions regard-

ing ℎ𝑘 and 𝐻 (vec(r𝑡 )):
(1) If x𝑘𝑡 = 0, then ℎ(x𝑘𝑡 ) = 0; If vec(r𝑡 ) = (0, . . . , 0), then

𝐻 (vec(r𝑡 )) = 0.

(2) 𝐶-Lipschitz continuity. 𝐻 (vec(r𝑡 )) is assumed to be 𝐶-

Lipschitz continuous with respect to the r𝑡 . Formally, there

exists a constant 𝐶 > 0 such that

|𝐻 (vec(r𝑡 )) − 𝐻 (vec(r′𝑡 )) | ≤ 𝐶
√∑
𝑘∈𝐾

[𝑟𝑘𝑡 − 𝑟𝑘𝑡
′]2 .

Both assumptions are mild. For (1), if the input is zero, then the

reward should also be zero. For (2), the Lipschitz continuity can be

applied to many real-world applications. For the convenience of

presentation, given any set of selected 𝐾 arms X𝑡 , we denote the
expectation of 𝑅𝑡 by:

H(X𝑡 ) = E[𝑅𝑡 |X𝑡 ] = 𝐻
((
ℎ1 (x1𝑡 ), . . . , ℎ𝑘 (x𝑘𝑡 ) . . . , ℎ𝐾 (x𝐾𝑡 )

))
. (1)

Recall that in multi-facet bandits, the learner aims to select the

optimal 𝐾 arms with the maximal final reward 𝑅∗𝑡 in each round.

First, we need to identify all possible combinations of 𝐾 arms,

denoted by

S𝑡 = {(x1𝑡 , . . . , x𝑘𝑡 , . . . , x𝐾𝑡 ) | x𝑘𝑡 ∈ X𝑘𝑡 , 𝑘 ∈ [𝐾]}, (2)

where |S𝑡 | =
∏𝐾
𝑘=1

𝑛𝑘 because bandit 𝑘 has 𝑛𝑘 arms for each 𝑘 ∈
[𝐾]. Thus, the regret of multi-facet bandit problem is defined as

Reg = E[
𝑇∑
𝑡=1

(𝑅∗𝑡 − 𝑅𝑡 )]

=

𝑇∑
𝑡=1

(
H(X∗

𝑡 ) − H (X𝑡 )
)
,

whereX∗
𝑡 = argmaxX𝑡 ∈S𝑡 H(X𝑡 ). Therefore, our goal is to design a

bandit algorithm to select 𝐾 arms every round in order to minimize

the regret. We use the standard O to hide constants and Õ to hide

logarithm.

Availability of sub-rewards. In this framework, the final 𝑅𝑡 is

required to be known, while the sub-rewards r𝑡 are allowed to be

partially available. Because the feedback of some bandits cannot be

directly measured or is simply not available in a real problem. This

increases the flexibility of our proposed framework.

More specifically, in each round 𝑡 , ideally, the learner is able to

receive 𝐾 + 1 rewards including 𝐾 sub-rewards {𝑟1𝑡 , . . . , 𝑟𝐾𝑡 } and
a final reward 𝑅𝑡 . As the final reward is the integral feedback of

the entire group of bandits and reflects how the bandits affect each

other, 𝑅𝑡 is required to be known. However, the 𝐾 sub-rewards are

allowed to be partially available, because not every sub-reward is

easy to obtain or can be measured accurately.

This is a new challenge in the multi-facet bandit problem. Thus,

to learnH , the designed bandit algorithm is required to handle the

partial availability of sub-rewards.

4 PROPOSED ALGORITHM
In this section, we introduce the proposed algorithm, MuFasa.

The presentation of MuFasa is divided into three parts. First, we

present the neural networkmodel used inMuFasa; Second, we detail

how to collect training samples to train the model in each round;

In the end, we describe the UCB-based arm selection criterion and

summarize the workflow of MuFasa.

4.1 Neural network model
To learn the reward functionH , we use 𝐾 + 1 fully-connected

neural networks to learn 𝐾 bandits jointly, where a neural network

𝑓𝑘 is built for each bandit 𝑘 ∈ [𝐾] to learn its reward function ℎ𝑘 ,

and a shared neural network 𝐹 is constructed to learn the mapping

from the 𝐾 neural networks (𝑓1, . . . , 𝑓𝐾 ) to the final reward 𝑅𝑡 .

First, in round 𝑡 , for each bandit 𝑘 ∈ [𝐾], given any context

vector x𝑘𝑡 ∈ R𝑑𝑘 , we use a 𝐿1-layer fully-connected network to

learn ℎ𝑘 , denoted by 𝑓𝑘 :

𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘 ) =
√
𝑚1W𝐿1𝜎 (W𝐿1−1𝜎 (. . . 𝜎 (W1x𝑘𝑡 ))),

where 𝜎 (𝑥) is the rectified linear unit (ReLU) activation function.

Without loss of generality, we assume each layer has the same

width𝑚1 for the sake of analysis. Therefore, 𝜽𝑘 =
(
vec(W𝐿1 )⊺, . . . ,

vec(W1)⊺
)⊺ ∈ R𝑃1 , where W1 ∈ R𝑚1×𝑑𝑘

, W𝑖 ∈ R𝑚1×𝑚1 ,∀𝑖 ∈ [1 :

𝐿1 − 1], andW𝐿1 ∈ R𝑚×𝑚1
. Note that 𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘 ) ∈ R𝑚 , where𝑚 is

set as a tuneable parameter to connect with the following network

𝐹 . Denote the gradient ▽𝜽𝑘 𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘 ) by 𝑔(x𝑘𝑡 ;𝜽𝑘 ).
Next, to learn the final reward function 𝐻 , we use a 𝐿2-layer

fully-connected network to combine the outputs of the above 𝐾

neural networks, denoted by 𝐹 :

𝐹

(
f𝑡 ;𝜽Σ

)
=
√
𝑚2W𝐿2𝜎 (. . . 𝜎 (W1 (f𝑡 )))

where f𝑡 =
(
𝑓1 (x1𝑡 ;𝜽 1)⊺, . . . , 𝑓𝐾 (x𝐾𝑡 ;𝜽𝐾 )⊺

)⊺
∈ R𝑚𝐾 . Also, we as-

sume that each layer has the same width 𝑚2. Therefore, 𝜽Σ =

(vec(W𝐿2 )⊺ , . . . , vec(W1)⊺)⊺ ∈ R𝑃2 , whereW1 ∈ R𝑚2×𝑚𝐾
,W𝑖 ∈

R𝑚2×𝑚2 ,∀𝑖 ∈ [𝐿2 − 1] and W𝐿2 ∈ R1×𝑚2
, Denote the gradient

▽𝜽 Σ𝐹

(
f𝑡 ;𝜽Σ

)
by 𝐺 (f𝑡 ;𝜽Σ).

Therefore, for the convenience of presentation, the whole assem-

bled neural networks can be represented by F to learn H (Eq.(6)),



Algorithm 1 MuFasa

Input: F , 𝑇 , 𝐾 , 𝛿 , 𝜂 , 𝐽

1: Initialize 𝜽0 = (𝜽Σ
0
, 𝜽 1

0
, . . . , 𝜽𝐾

0
)

2: for each 𝑡 ∈ [𝑇 ] do
3: for each bandit 𝑘 ∈ [𝐾] do
4: Observe context vectors X𝑘𝑡 = {x𝑘

𝑡,1
, . . . , x𝑘𝑡,𝑛𝑘 }

5: Collect S𝑡 (Eq. (2))
6: Choose 𝐾 arms, X𝑡 , by:

X𝑡 = arg max

X′
𝑡 ∈S𝑡

(
F (X′

𝑡 ;𝜽𝑡−1) + UCB(X′
𝑡 )

)
. ( Theorem 5.3 )

7: Play X𝑡 and observe rewards 𝑅𝑡 and r𝑡 .
8: if |r𝑡 | = 𝐾 then ## sub-rewards are all available.
9: 𝜽𝑡 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑡𝐴𝑙𝑙 (F ,{X𝑖 }𝑡𝑖=1, {𝑅𝑖 }

𝑡
𝑖=1

, {r𝑖 }𝑡𝑖=1 ,

𝐽 , 𝜂)

10: else ## sub-rewards are partially available.
11: Collect {Ω𝑖 }𝑡𝑖=1 ( Eq.(4) )

12: 𝜽𝑡 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑖𝑎𝑙 (F , {Ω𝑖 }𝑡𝑖=1, 𝐽 , 𝜂)
13: Update UCB(X′

𝑡 ).

given the 𝐾 selected arms X𝑡 :

F (X𝑡 ;𝜽 ) =
(
𝐹 (·;𝜽Σ) ◦

(
𝑓1 (·;𝜽 1), . . . , 𝑓𝐾 (·;𝜽𝐾 )

))
(X𝑡 ),

where 𝜽 = (𝜽Σ, 𝜽 1, . . . , 𝜽𝐾 ).
Initialization. 𝜽 is initialized by randomly generating each param-

eter from the Gaussian distribution. More specifically, for 𝜽𝑘 , 𝑘 ∈

[𝐾], W𝑙 is set to

(
w 0
0 w

)
for any 𝑙 ∈ [𝐿1] where w is drawn from

𝑁 (0, 4/𝑚1). For 𝜽Σ,W𝑙 is set to

(
w 0
0 w

)
for any 𝑙 ∈ [𝐿2−1] where

w is drawn from 𝑁 (0, 4/𝑚2); W𝐿2 is set to (w⊺,−w⊺) where w is

drawn from 𝑁 (0, 2/𝑚2).

4.2 Training process
Only with the final reward 𝑅𝑡 and 𝐾 selected arms X𝑡 , the train-

ing of the neural network model F is the following minimization

problem:

min

𝜽
L(𝜽 ) =

𝑇∑
𝑡=1

(
F (X𝑡 ;𝜽 ) − 𝑅𝑡

)
2 /2 +𝑚2𝜆∥𝜽 − 𝜽0∥22/2. (3)

where L(𝜽 ) is essentially 𝑙2-regularized square loss function and

𝜽0 is the randomly initialized network parameters. However, once

the sub-rewards are available, we should use different methods to

train F , in order to leverage more available information. Next, we

will elaborate our training methods using the gradient descend.

Collection of training samples. Depending on the availability

of sub-rewards, we apply different strategies to update 𝜽 in each

round. When the sub-rewards are all available, the learner receives

one final reward and 𝐾 sub-rewards. We apply the straightforward

way to train each part of F accordingly based on the corresponding

input and the ground-truth rewards in each round, referring to the

details in Algorithm 2, where𝑚 in F should be set as 1.

Algorithm 2 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑡𝐴𝑙𝑙
Input: F , {X𝑖 }𝑡𝑖=1, {𝑅𝑖 }

𝑡
𝑖=1

, {r𝑖 }𝑡𝑖=1 , 𝐽 , 𝜂
Output: 𝜽𝑡
1: for each 𝑘 ∈ [𝐾] do
2: Define L(𝜽𝑘 ) =

∑𝑡
𝑖=1

(
𝑓𝑘 (x𝑘𝑖 ;𝜽

𝑘 ) − 𝑟𝑘
𝑖

)
2

/2 + 𝑚1𝜆∥𝜽𝑘 −
𝜽0∥2

2
/2

3: for each 𝑗 ∈ [𝐽 ] do
4: 𝜽𝑘

𝑗
= 𝜽𝑘

𝑗−1 − 𝜂▽L(𝜽𝑘
𝑗−1)

5: Define L(𝜽Σ) =
∑𝑡
𝑖=1

(
𝐹 (vec(r𝑖 );𝜽Σ) − 𝑅𝑖

)
2

/2 +𝑚2𝜆∥𝜽Σ −
𝜽0∥2

2
/2.

6: for each 𝑗 ∈ [𝐽 ] do
7: 𝜽Σ

𝑗
= 𝜽Σ

𝑗−1 − 𝜂▽L(𝜽Σ
𝑗−1)

8: return (𝜽Σ
𝐽
, 𝜽 1
𝐽
, . . . , 𝜽𝐾

𝐽
)

Algorithm 3 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑡𝑃𝑎𝑟𝑡𝑖𝑎𝑙
Input: F , {Ω𝑖 }𝑡𝑖=1, 𝐽 , 𝜂
Output: 𝜽𝑡
1: Define L(𝜽 ) = ∑𝑡

𝑖=1

∑
(X,𝑅) ∈Ω𝑖

(
F (X;𝜽 ) − 𝑅

)
2 /2 +𝑚2𝜆∥𝜽 −

𝜽0∥2
2
/2.

2: for each 𝑗 ∈ [𝐽 ] do
3: 𝜽 𝑗 = 𝜽 𝑗−1 − 𝜂▽L(𝜽 𝑗−1)
4: return 𝜽 𝑗

However, when the sub-rewards are partially available, the above

method is not valid anymore because the bandits without available

sub-rewards cannot be trained. Therefore, to learn the 𝐾 bandits

jointly, we propose the following training approach focusing on

the empirical performance.

As the final reward is always available in each round, we col-

lect the first training sample (X𝑡 , 𝑅𝑡 ). Then, suppose there are K
available sub-rewards r𝑡 , K < 𝐾 . For each available sub-reward

𝑟𝑘𝑡 ∈ r𝑡 and the corresponding context vector x𝑘𝑡 , we construct the
following pair:

X̃𝑡,𝑘 = {0, . . . , x𝑘𝑡 , . . . , 0 } and r̃𝑡,𝑘 = {0, . . . , 𝑟𝑘𝑡 , . . . , 0}.

We regard X̃𝑡,𝑘 as a new input of F . Now, we need to determine

the ground-truth final reward H(X̃𝑡,𝑘 ) = 𝐻 (vec (̃r𝑡,𝑘 )).
Unfortunately, 𝐻 (vec (̃r𝑡,𝑘 )) is unknown. Inspired by the UCB

strategy, we determine 𝐻 (vec (̃r𝑡,𝑘 )) by its upper bound. Based

on Lemma 4.1, we have 𝐻 (vec (̃r𝑡,𝑘 )) ≤ 𝐶𝑟𝑘𝑡 . Therefore, we set

𝐻 (vec (̃r𝑡,𝑘 )) as:
𝐻 (vec (̃r𝑡,𝑘 )) = 𝐶𝑟𝑘𝑡

because it shows the maximal potential gain for the bandit 𝑘 . Then,

in round 𝑡 , we can collect additional K sample pairs:

{(X̃𝑡,𝑘 ,𝐶𝑟𝑘𝑡 )}𝑘∈[K] .

where [K] denotes the bandits with available sub-rewards.

Accordingly, in each round 𝑡 , we can collect up toK + 1 samples

for training F , denoted by Ω𝑡 ,:

Ω𝑡 = {(X̃𝑡,𝑘 ,𝐶𝑟𝑘𝑡 )}𝑘∈[𝐾 ]
⋃

{(X𝑡 , 𝑅𝑡 )}. (4)



Therefore, in each round, we train F integrally, based on {Ω𝑖 }𝑡𝑖=1,
as described in Algorithm 3.

Lemma 4.1. Let 0 = (0, . . . , 0) and |0| = 𝐾 . Given X̃𝑡,𝑘 and r̃𝑡,𝑘 ,
then we have 𝐻 (vec (̃r𝑡,𝑘 )) ≤ 𝐶𝑟𝑘𝑡 .

Prove 4.1. As 𝐻 is 𝐶-Lipschitz continuous, we have

|𝐻 (vec (̃r𝑡,𝑘 )) − 𝐻 (0) | ≤ 𝐶
√ ∑
𝑟 ∈̃r𝑡,𝑘

(𝑟 − 0)2 = 𝐶𝑟𝑘𝑡 .

4.3 Upper confidence bound
In this subsection, we present the arm selection criterion based

on the upper confidence bound provided in Section 5 and then

summarize the high-level idea of MuFasa.

In each round 𝑡 , given an arm combination X𝑡 , the confidence
bound of F with respect to H is defined as:

P
(
|F (X𝑡 ;𝜽𝑡 ) − H (X𝑡 ) | > UCB(X𝑡 )

)
≤ 𝛿,

where UCB(X𝑡 ) is defined in Theorem 5.3 and 𝛿 usually is a small

constant. Then, in each round, given the all possible arm combina-

tions S𝑡 , the selected 𝐾 arms X𝑡 are determined by:

X𝑡 = arg max

X′
𝑡 ∈S𝑡

(
F (X′

;𝜽𝑡 ) + UCB(X′
𝑡 )

)
. (5)

With this selection criterion, the workflow of MuFasa is depicted

in Algorithm 1.

5 REGRET ANALYSIS
In this section, we provide the upper confidence bound and regret

analysis of MuFasa when the sub-rewards are all available.

Before presenting Theorem 5.3, let us first focus on an 𝐿-layer

fully-connected neural network 𝑓 (x𝑡 ;𝜽 ) to learn a ground-truth

function ℎ(x𝑡 ), where x ∈ R𝑑 . The parameters of 𝑓 are set as

W1 ∈ R𝑚×𝑑
,W𝑖 ∈ R𝑚×𝑚,∀𝑖 ∈ [1 : 𝐿 − 1], andW𝐿 ∈ R1×𝑚 . Given

the context vectors by {x𝑖 }𝑇𝑖=1 and corresponding rewards {𝑟𝑡 }𝑇𝑡=1,
conduct the gradient descent with the loss L to train 𝑓 .

Built upon the Neural Tangent Kernel (NTK) [15, 24], ℎ(x𝑡 ) can
be represented by a linear function with respect to the gradient

𝑔(x𝑡 ;𝜽0) introduced in [45] as the following lemma.

Lemma 5.1 (Lemma 5.1 in [45]). There exist a positive constant 𝐶
such that with probability at least 1−𝛿 , if𝑚 ≥ 𝐶𝑇 4𝐿6 log(𝑇 2𝐿/𝛿)/𝜆4
for any x𝑡 ∈ {x𝑡 }𝑇𝑡=1, there exists a 𝜽

∗ such that

ℎ(x𝑡 ) = ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ∗⟩

Then, with the above linear representation of ℎ(x𝑡 ), we provide
the following upper confidence bound with regard to 𝑓 .

Lemma 5.2. Given a set of context vectors {x𝑡 }𝑇𝑡=1 and the corre-
sponding rewards {𝑟𝑡 }𝑇𝑡=1 , E(𝑟𝑡 ) = ℎ(x𝑡 ) for any x𝑡 ∈ {x𝑖 }𝑇𝑖=1. Let
𝑓 (x𝑡 ;𝜽 ) be the 𝐿-layers fully-connected neural network where the
width is𝑚, the learning rate is 𝜂, and 𝜽 ∈ R𝑃 . Assuming ∥𝜽 ∗∥2 ≤
𝑆/
√
𝑚, then, there exist positive constants 𝐶1,𝐶2 such that if

𝑚 ≥ max{O
(
𝑇 7𝜆−7𝐿21 (log𝑚)3

)
,O

(
𝜆−1/2𝐿−3/2 (log(𝑇𝐿2/𝛿))3/2

)
}

𝜂 = O(𝑇𝑚𝐿 +𝑚𝜆)−1, 𝐽 ≥ Õ(𝑇𝐿/𝜆),

then, with probability at least 1 − 𝛿 , for any x𝑡 ∈ {x𝑡 }𝑇𝑡=1, we have
the following upper confidence bound:��ℎ(x𝑡 ) − 𝑓 (x𝑡 ;𝜽𝑡 )�� ≤𝛾1∥𝑔(x𝑡 ;𝜽𝑡 )/√𝑚∥A−1

𝑡
+ 𝛾2∥𝑔(x𝑡 ;𝜽0)/

√
𝑚∥A′−1

𝑡

+ 𝛾1𝛾3 + 𝛾4, where

𝛾1 (𝑚, 𝐿) = (𝜆 + 𝑡O(𝐿)) · ((1 − 𝜂𝑚𝜆) 𝐽 /2
√
𝑡/𝜆) + 1

𝛾2 (𝑚, 𝐿, 𝛿) =

√√√
log

(
det(A′

𝑡 )
det(𝜆I)

)
− 2 log𝛿 + 𝜆1/2𝑆

𝛾3 (𝑚, 𝐿) = 𝐶2𝑚−1/6√
log𝑚𝑡1/6𝜆−7/6𝐿7/2

𝛾4 (𝑚, 𝐿) = 𝐶1𝑚−1/6√
log𝑚𝑡2/3𝜆−2/3𝐿3

A𝑡 = 𝜆I +
𝑡∑
𝑖=1

𝑔(x𝑡 ;𝜽𝑡 )𝑔(x𝑡 ;𝜽𝑡 )⊺/𝑚

A′
𝑡 = 𝜆I +

𝑡∑
𝑖=1

𝑔(x𝑡 ;𝜽0)𝑔(x𝑡 ;𝜽0)⊺/𝑚.

Now we are ready to provide an extended upper confidence

bound for the proposed neural network model F .

Theorem 5.3. Given the selected contexts {X𝑡 }𝑇𝑡=1, the final re-
wards {𝑅𝑡 }𝑇𝑡=1, and all sub-rewards {r𝑡 }

𝑇
𝑡=1

, let F be the neural net-
work model in MuFasa. In each round 𝑡 , with the conditions in Lemma
5.2 and suppose𝑚 = 1, then, with probability at least 1 − 𝛿 , for any
𝑡 ∈ [𝑇 ], we have the following upper confidence bound:

|F (X𝑡 ;𝜽𝑡 ) − H (X𝑡 ) | ≤ 𝐶
𝐾∑
𝑘=1

B𝑘 + B𝐹 = UCB(X𝑡 ), where

B𝑘 = 𝛾1∥𝑔𝑘 (x𝑘𝑡 ;𝜽𝑘𝑡 )/
√
𝑚1∥A𝑘

𝑡

−1 + 𝛾2 (
𝛿

𝑘 + 1

)∥𝑔𝑘 (x𝑘𝑡 ;𝜽𝑘0 )/
√
𝑚1∥A𝑘

𝑡

′−1

+ 𝛾1𝛾3 + 𝛾4

B𝐹 = 𝛾1∥𝐺 (f𝑡 ;𝜽Σ𝑡 )/
√
𝑚2∥A𝐹

𝑡

−1 + 𝛾2 (
𝛿

𝑘 + 1

)∥𝐺 (f𝑡 ;𝜽Σ0 )/
√
𝑚2∥A𝐹

𝑡

′−1

+ 𝛾1𝛾3 + 𝛾4

A𝑘𝑡 = 𝜆I +
𝑡∑
𝑖=1

𝑔𝑘 (x𝑘𝑖 ;𝜽
𝑘
𝑡 )𝑔𝑘 (x𝑘𝑖 ;𝜽

𝑘
𝑡 )⊺/𝑚1

A𝑘
′
𝑡 = 𝜆I +

𝑡∑
𝑖=1

𝑔𝑘 (x𝑘𝑖 ;𝜽
𝑘
0
)𝑔𝑘 (x𝑘𝑖 ;𝜽

𝑘
0
)⊺/𝑚1

A𝐹𝑡 = 𝜆I +
𝑡∑
𝑖=1

𝐺 (f𝑖 ;𝜽Σ𝑡 )𝐺 (f𝑖 ;𝜽Σ𝑡 )⊺/𝑚2

A𝐹
′
𝑡 = 𝜆I +

𝑡∑
𝑖=1

𝐺 (f𝑖 ;𝜽Σ0 )𝐺 (f𝑖 ;𝜽Σ0 )
⊺/𝑚2

With the above UCB, we provide the following regret bound of

MuFasa.

Theorem 5.4. Given the number of rounds 𝑇 and suppose that
the final reward and all the sub-wards are available, let F be the
neural network model of MuFasa, satisfying the conditions in Theorem
5.3. Then, assuming 𝐶 = 1, 𝑚1 = 𝑚2 = 𝑚, 𝐿1 = 𝐿2 = 𝐿 and thus



𝑃1 = 𝑃2 = 𝑃 , with probability at least 1 − 𝛿 , the regret of MuFasa is
upper bounded by:

Reg ≤(𝐶𝐾 + 1)
√
𝑇 2

√
𝑃 log(1 +𝑇 /𝜆) + 1/𝜆 + 1

·
(√

(𝑃 − 2) log
(
(𝜆 +𝑇 ) (1 + 𝐾)

𝜆𝛿

)
+ 1/𝜆 + 𝜆1/2𝑆 + 2

)
+ 2(𝐶𝐾 + 1),

where 𝑃 is the effective dimension defined in Appendix (Definition
8.3).

Prove 5.4. First, the regret of one round 𝑡 :
Reg𝑡 = H(X∗

𝑡 ) − H (X𝑡 )
≤ |H (X∗

𝑡 ) − F (X∗
𝑡 ) | + F (X∗

𝑡 ) − H (X𝑡 )
≤ UCB(X∗

𝑡 ) + F (X∗
𝑡 ) − H (X𝑡 )

≤ UCB(X𝑡 ) + F (X𝑡 ) − H (X𝑡 ) ≤ 2UCB(X𝑡 )
where the third inequality is due to the selection criterion ofMuFasa,

satisfying F (X∗
𝑡 ) + UCB(X∗

𝑡 ) ≤ F (X𝑡 ) + UCB(X𝑡 ). Thus, it has

Reg =

𝑇∑
𝑡=1

Reg𝑡 ≤ 2

𝑇∑
𝑡=1

UCB(X𝑡 ) ≤ 2

𝑇∑
𝑡=1

©­«𝐶
𝐾∑
𝑘=1

B𝑘 + B𝐹 ª®¬
First, for any 𝑘 ∈ [𝐾], we bound
𝑇∑
𝑡=1

B𝑘 ≤ 𝛾1
𝑇∑
𝑡=1

∥𝑔(x𝑡 ;𝜽𝑡 )/
√
𝑚∥2A𝑡

−1︸                            ︷︷                            ︸
I1

+𝛾2
𝑇∑
𝑡=1

∥𝑔(x𝑡 ;𝜽0)/
√
𝑚∥2

A𝑡
′−1︸                             ︷︷                             ︸

I2
+𝑇𝛾1𝛾3 +𝑇𝛾4

Because the Lemma 11 in [1], we have

I1 ≤ 𝛾1

√√√√
𝑇

©­«
𝑇∑
𝑡=1

∥𝑔(x𝑡 ;𝜽𝑡 )/
√
𝑚∥2

A𝑡
−1

ª®¬ ≤ 𝛾1

√
𝑇

(
log

det(A𝑇 )
det(𝜆I)

)

≤ 𝛾1

√√√
𝑇

(
log

det(A′
𝑇
)

det𝜆I) + | log det(A𝑇 )
det(𝜆I) − log

det(A′
𝑇
)

det(𝜆I) |
)

≤ 𝛾1
√
𝑇

(
𝑃 log(1 +𝑇 /𝜆) + 1/𝜆 + 1

)
where the last inequality is based on Lemma 8.4 and the choice of

𝑚. Then, applying Lemma 11 in [1] and Lemma 8.4 again, we have

I2 ≤ 𝛾2

√√√
𝑇

(
log

det(A′
𝑇
)

det(𝜆I)

)
≤ ©­«

√
(𝑃 − 2) log

(
(𝜆 +𝑇 ) (1 + 𝐾)

𝜆𝛿

)
+ 1/𝜆 + 𝜆1/2𝑆ª®¬

·
√
𝑇

(
𝑃 log(1 +𝑇 /𝜆) + 1/𝜆

)
As the choice of 𝐽 , 𝛾1 ≤ 2. Then, as𝑚 is sufficiently large, we have

𝑇𝛾1𝛾3 ≤ 1,𝑇𝛾4 ≤ 1.

Then, because𝑚1 =𝑚2, 𝐿1 = 𝐿2 and 𝐶 = 1, we have

Reg ≤ 2(𝐶𝐾 + 1)
𝑇∑
𝑡=1

B𝑘 .

Putting everything together proves the claim.

𝑃 is the effective dimension defined by the eigenvalues of the

NTK ( Definition 8.3 in Appendix). Effective dimension was first

introduced by [39] to analyze the kernelized context bandit, and

then was extended to analyze the kernel-based Q-learning[41] and

the neural-network-based bandit [45]. 𝑃 can be much smaller than

the real dimension 𝑃 , which alleviates the predicament when 𝑃 is

extremely large.

Theorem 5.4 provides the Õ
(
(𝐾 + 1)

√
𝑇

)
regret bound for Mu-

Fasa, achieving the near-optimal bound compared with a single

bandit ( Õ(
√
𝑇 ) ) that is either linear [1] or non-linear [39, 45]. With

different width𝑚1,𝑚2 and the Lipschitz continuity 𝐶 , the regret

bound of MuFasa becomes Õ((𝐶𝐾 + 1)
√
𝑇 ).

6 EXPERIMENTS
To evaluate the empirical performance of MuFasa, in this section,

we design two different multi-facet bandit problems on three real-

world data sets. The experiments are divided into two parts to

evaluate the effects of final rewards and availability of sub-rewards.

The code has been released
1
.

Recommendation:Yelp2. Yelp is a data set released in the Yelp

data set challenge, which consists of 4.7 million rating entries for

1.57 × 10
5
restaurants by 1.18 million users. In addition to the

features of restaurants, this data set also provides the attributes of

each user and the list of his/her friends. In this data set, we evaluate

MuFasa on personalized recommendation, where the learner needs

to simultaneously recommend a restaurant and a friend (user) to a

served user. Naturally, this problem can be formulated into 2 bandits

in which one set of arms X1

𝑡 represent the candidate restaurants

and the other set of arms X2

𝑡 formulates the pool of friends for

the recommendation. We apply LocallyLinearEmbedding[35] to

train a 10-dimensional feature vector x1
𝑡,𝑖

for each restaurant and

a 6-dimensional feature vector x2
𝑡, 𝑗

for each user. Then, for the

restaurant, we define the reward according to the rating star: The

reward 𝑟1𝑡 is 1 if the number of rating stars is more than 3 (5 in

total); Otherwise, the reward 𝑟1𝑡 is 0. For friends, the reward 𝑟2𝑡 = 1

if the recommended friend is included in the friend list of the served

user in fact; Otherwise 𝑟2𝑡 = 0. To build the arm sets, we extract

the rating entries and friends lists of top-10 users with the most

ratings. In each round 𝑡 , we build the arm set X1

𝑡 and X
2

𝑡 by picking

one restaurant/friend with 1 reward and then randomly picking the

other 9 restaurants/friends with 0 rewards. Thus |X1

𝑡 | = |X2

𝑡 | = 10.

Classification:Mnist [27] +NotMnist. These are twowell-known
10-class classification data sets. The evaluation of contextual bandit

has been adapted to the classification problem [18, 39, 45]. There-

fore, we utilize these two similar classification data sets to construct

2 bandits, where the 10-class classification is converted into a 10-

armed contextual bandit. Considering a sample figure x ∈ R𝑑 ,
we tend to classify it from 10 classes. Under the contextual ban-

dit setting, x is transformed into 10 arms: x1 = (x, 0, . . . , 0); x2 =

(0, x, . . . , 0); . . . ; x10 = (0, 0, . . . , x) ∈ R10𝑑 matching the 10 classes.

In consequence, the reward is 1 if the learner plays the arm that

1
https://github.com/banyikun/KDD2021_MuFasa

2
https://www.yelp.com/dataset



matches the real class of x; Otherwise, the reward is 0. Using this

way, we can construct two contextual bandits for these two data

sets, denoted by (X1

𝑡 , 𝑟
1

𝑡 ) and (X2

𝑡 , 𝑟
2

𝑡 ). Then, in each round, the arm

pools will be |X1

𝑡 | = |X2

𝑡 | = 10.

To evaluate the effect of different final reward function, with

the sub-rewards r𝑡 = {𝑟1𝑡 , 𝑟2𝑡 }, we design the following final reward

function:

𝐻1 (vec(r𝑡 )) = 𝑟1𝑡 + 𝑟2𝑡 ; 𝐻2 (vec(r𝑡 )) = 2𝑟1𝑡 + 𝑟2𝑡 . (6)

For (1), it describes the task where each bandit contributes equally.

Of (2), it represents some tasks where each bandit has different

importance.

As the problem setting is new, there are no existing algorithms

that can directly adapt to this problem. Therefore, we construct

baselines by extending the bandit algorithms that work on a single

bandit, as follows:

(1) (K-)LinUCB. LinUCB [28] is a linear contextual bandit al-

gorithm where the reward function is assumed as the dot

product of the arm feature vector and an unknown user pa-

rameter. Then, apply the UCB strategy to select an arm in

each round. To adapt to the multi-facet bandit problem, we

duplicate LinUCB for𝐾 bandits. For example, in Yelp data set,

we use two LinUCB to recommend restaurants and friends,

respectively.

(2) (K-)KerUCB . KerUCB [39] makes use of a predefined kernel

matrix to learn the reward function and then build a UCB for

exploration. We replicate𝐾 KerUCB to adapt to this problem.

(3) (K-)NeuUCB. NeuUCB[45] uses a fully-connected neural

network to learn one reward function with the UCB strategy.

Similarly, we duplicate it to 𝐾 bandits.

Configurations. ForMuFasa, each sub-network 𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘 ) is set as
a two-layer network: 𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘 ) =

√
𝑚1W2𝜎 (W1x𝑘𝑡 ), where W1 ∈

R𝑚1×𝑑𝑘 ,W2 ∈ R𝑚×𝑚1
, and𝑚1 =𝑚 = 100. Then, the shared layers

𝐹 (f𝑡 ;𝜽Σ) =
√
𝑚2W2𝜎 (W1f𝑡 ), where W1 ∈ R𝑚2×2𝑚,W2 ∈ R1×𝑚2

and𝑚2 = 100. For the 𝐻1, 𝐶 is set as 1 and set as 2 for 𝐻2. To learn

𝐾 bandits jointly, in the experiments, we evaluate the performance

of Algorithm 1 + 3. For K-NeuUCB, for each NeuUCB, we set it as a

4-layer fully-connected network with the same width𝑚 = 100 for

the fair comparison. The learning rate 𝜂 is set as 0.01 and the upper

bound of ground-truth parameter 𝑆 = 1 for these two methods. To

accelerate the training process, we update the parameters of the

neural networks every 50 rounds. For the KerUCB, we use the radial

basis function (RBF) kernel and stop adding contexts to KerUCB

after 1000 rounds, following the same setting for Gaussian Process

in [34, 45]. For all the methods, the confidence level 𝛿 = 0.1, the

regularization parameter 𝜆 = 1. All experiments are repeatedly run

5 times and report the average results.

6.1 Result 1: All sub-rewards with different 𝐻
With the final reward function 𝐻1 (Eq.(6)), Figure 1 and Figure

3 report the regret of all methods on Yelp and Mnist+NotMnist

data sets, where the first top-two sub-figure shows the regret of

each bandit and the bottom sub-figure shows the regret of the

whole task (2 bandits). These figures show that MuFasa achieves

the best performance (the smallest regret), because it utilizes a com-

prehensive upper confidence bound built on the assembled neural
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Figure 1: Regret comparison on Yelp with 𝐻1 final reward
function.
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Figure 2: Regret comparison on Yelp with 𝐻2 final reward
function.

networks to select two arms jointly in each round. This indicates

the good performance of MuFasa on personalized recommendation

and classification. Among these baselines, NeuUCB achieves the

best performance, which thanks to the representation power of

neural networks. However, it chooses each arm separately, neglect-

ing the collaborative relation of 𝐾 bandits. For KerUCB, it shows

the limitation of the simple kernels like the radial basis function

compared to neural network. LinUCB fails to handle each task, as

it assume a linear reward function and thus usually cannot to learn

the complicated reward functions in practice.

With the final reward function 𝐻2 (Eq.(6)), Figure 2 and Fig-

ure 4 depict the regret comparison on Yelp and Mnist+NotMnist

data sets. The final reward function 𝐻2 indicates that the bandit 1

weights more than bandit 2 in the task. Therefore, to minimize the

regret, the algorithm should place the bandit 1 as the priority when

making decisions. As the design of MuFasa, the neural network

F can learn the relation among the bandits. For example, on the

Mnist and NotMnist data sets, consider two optional select arm

sets {𝑥1
𝑡,𝑖1
, 𝑥2
𝑡,𝑖2

} and {𝑥1
𝑡, 𝑗1
, 𝑥2
𝑡, 𝑗2

}. The first selected arm set receives

1 reward on Mnist while 0 reward on NotMnist. In contrast, the

second selected arm set receives 0 reward on Mnist while 1 reward

on NotMnist. However, these two bandits have different weights
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Figure 3: Regret comparison on Mnist+NotMnist with 𝐻1.
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Figure 4: Regret comparison on Mnist+NotMnist with 𝐻2.

and thus the two arm sets have different final rewards, i.e., 𝑅1𝑡 = 2

and 𝑅2𝑡 = 1, respectively. To maximize the final reward, the learner

should select the first arm set instead of the second arm set. As Mu-

Fasa can learn the weights of bandits, it will give more weight to the

first bandit and thus select the first arm set. On the contrary, all the

baselines treat each bandit equally, and thus they will select these

two arm sets randomly. Therefore, under the setting of 𝐻2, with

this advantage, MuFasa further decreases the regret on both Yelp

and Mnist+NotMnist data sets. For instance, on Mnist+NotMnist

data sets, MuFasa with 𝐻2 decrease 20% regret over NeuUCB while

MuFasa with 𝐻1 decrease 17.8% regret over NeuUCB.

6.2 Result 2: Partial sub-rewards
As the sub-rewards are not always available in many cases, in

this subsection, we evaluate MuFasa with partially available sub-

rewards on Yelp and Mnist+NotMnist data sets. Therefore, we build

another two variants of MuFasa: (1) MuFasa (One sub-reward) is

provided with the final reward and one sub-reward of the first ban-

dit; (2) MuFasa (No sub-reward) does not receive any sub-rewards

except the final reward. Here, we use the 𝐻1 as the final reward

function.

Figure 5 and Figure 6 show the regret comparison with the two

variants of MuFasa, where MuFasa exhibits the robustness with

respect to the lack of sub-rewards. Indeed, the sub-reward can pro-

vide more information to learn, while MuFasa (One sub-reward)

still outperforms all the baselines, because the final reward enables

MuFasa to learn the all bandits jointly and the sub-reward strength-

ens the capacity of learning the exclusive features of each bandit.
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Figure 5: Regret comparison on Yelp with different reward
availability.
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Figure 6: Regret comparison onMnist+NotMnist with differ-
ent reward availability.

In contrast, all the baselines treat each bandit separately. Without

any-rewards, MuFasa still achieves the acceptable performance.

On the Yelp data set, the regret of MuFasa (No sub-reward) is still

lower than the best baseline NeuUCB while lacking considerable

information. On the Mnist+NotMnist data set, although MuFasa

(No sub-reward) does not outperform the baselines, its performance

is still closed to NeuUCB. Therefore, as long as the final reward is

provided, MuFasa can tackle the multi-facet problem effectively.

Moreover, MuFasa can leverage available sub-rewards to improve

the performance.

7 CONCLUSION
In this paper, we define and study the novel problem of the

multi-facet contextual bandits, motivated by real applications such

as comprehensive personalized recommendation and healthcare.

We propose a new bandit algorithm, MuFasa. It utilizes the neural

networks to learn the reward functions of multiple bandits jointly

and explores new information by a comprehensive upper confidence

bound. Moreover, we prove that MuFasa can achieve the Õ((𝐾 +
1)
√
𝑇 ) regret bound under mild assumptions. Finally, we conduct

extensive experiments to show the effectiveness of MuFasa on

personalized recommendation and classification tasks, as well as

the robustness of MuFasa in the lack of sub-rewards.
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8 APPENDIX
Definition 8.1. Given the context vectors {x𝑡 }𝑇𝑡=1 and the rewards

{𝑟𝑡 }𝑇𝑡=1, then we define the estimation 𝜽 ′
via ridge regression:

A′
𝑡 = 𝜆I +

𝑡∑
𝑖=1

𝑔(x𝑡 ;𝜽0)𝑔(x𝑡 ;𝜽0)⊺/𝑚

b′𝑡 =
𝑡∑
𝑖=1

𝑟𝑡𝑔(x𝑡 ;𝜽0)/
√
𝑚

𝜽 ′ = A−1
𝑡 b𝑡

A𝑡 = 𝜆I +
𝑡∑
𝑖=1

𝑔(x𝑡 ;𝜽𝑡 )𝑔(x𝑡 ;𝜽𝑡 )⊺/𝑚

Definition 8.2 ( NTK [15, 24]). Let N denote the normal distribu-

tion. Define

M0

𝑖, 𝑗 = 𝚺
0

𝑖, 𝑗 = ⟨x𝑖 , x𝑗 ⟩, N𝑙𝑖, 𝑗 =

(
𝚺
𝑙
𝑖,𝑖 𝚺

𝑙
𝑖, 𝑗

𝚺
𝑙
𝑗,𝑖 𝚺

𝑙
𝑗, 𝑗

)
𝚺
𝑙
𝑖, 𝑗 = 2E

𝑎,𝑏∼N(0,N𝑙−1
𝑖,𝑗

) [𝜎 (𝑎)𝜎 (𝑏)]

M𝑙
𝑖, 𝑗 = 2M𝑙−1

𝑖, 𝑗 E𝑎,𝑏∼N(0,N𝑙−1
𝑖,𝑗

) [𝜎
′(𝑎)𝜎 ′(𝑏)] + 𝚺

𝑙
𝑖, 𝑗 .

Then, given the contexts {x𝑡 }𝑇𝑡=1, the Neural Tangent Kernel is

defined as M = (M𝐿 + 𝚺
𝐿)/2.

Definition 8.3 (Effective Dimension [45]). Given the contexts {x𝑡 }𝑇𝑡=1,
the effective dimension 𝑃 is defined as

𝑃 =
log det(I +M/𝜆)
log(1 +𝑇 /𝜆) .

Proof of Lemma 5.2. Given a set of context vectors {x}𝑇
𝑡=1

with

the ground-truth function ℎ and a fully-connected neural network

𝑓 , we have��ℎ(x𝑡 ) − 𝑓 (x𝑡 ;𝜽𝑡 )��
≤

���ℎ(x𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/
√
𝑚⟩

��� + ���𝑓 (x𝑡 ;𝜽𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/
√
𝑚⟩

���
where 𝜽 ′

is the estimation of ridge regression from Definition 8.1.

Then, based on the Lemma 5.1, there exists 𝜽 ∗ ∈ R𝑃 such that

ℎ(x𝑡 ) =
〈
𝑔(x𝑖 , 𝜽0), 𝜽 ∗

〉
. Thus, we have���ℎ(x𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/

√
𝑚⟩

���
=

����〈𝑔(x𝑖 , 𝜽0)/√𝑚,√𝑚𝜽 ∗
〉
−

〈
𝑔(x𝑖 , 𝜽0)/

√
𝑚, 𝜽 ′

〉���� ≤
©­­«
√√√
log

(
det(A′

𝑡 )
det(𝜆I)

)
− 2 log𝛿 + 𝜆1/2𝑆

ª®®¬ ∥𝑔(x𝑡 ;𝜽0)/
√
𝑚∥A′−1

𝑡

where the final inequality is based on the the Theorem 2 in [1],

with probability at least 1 − 𝛿 , for any 𝑡 ∈ [𝑇 ].
Second we need to bound���𝑓 (x𝑡 ;𝜽𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/

√
𝑚⟩

���
≤

��𝑓 (x𝑡 ;𝜽𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽𝑡 − 𝜽0⟩
��

+
���⟨𝑔(x𝑡 ;𝜽0), 𝜽𝑡 − 𝜽0⟩ − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/

√
𝑚⟩

���

To bound the above inequality, we first bound��𝑓 (x𝑡 ;𝜽𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽𝑡 − 𝜽0⟩
��

=
��𝑓 (x𝑡 ;𝜽𝑡 ) − 𝑓 (x𝑡 ;𝜽0) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽𝑡 − 𝜽0⟩

��
≤𝐶2𝜏4/3𝐿3

√
𝑚 log𝑚 ≤ 𝐶2𝑚−1/6√

log𝑚𝑡2/3𝜆−2/3𝐿3 .

where 𝑓 (x𝑡 ;𝜽0) = 0 due to the random initialization of 𝜽0. The first
inequality is derived by Lemma 8.5. According to the Lemma 8.7,

it has ∥𝜽𝑡 − 𝜽0∥2 ≤ 2

√
𝑡
𝑚𝜆

. Then, replacing 𝜏 by 2

√
𝑡
𝑚𝜆

, we obtain

the second inequality.

Next, we need to bound

|⟨𝑔(x𝑡 ;𝜽0), 𝜽𝑡 − 𝜽0⟩ − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/
√
𝑚⟩|

=|⟨𝑔(x𝑡 ;𝜽0)/
√
𝑚,

√
𝑚(𝜽𝑡 − 𝜽0 − 𝜽 ′/

√
𝑚)⟩|

≤∥𝑔(x𝑡 ;𝜽0)/
√
𝑚∥A−1

𝑡
·
√
𝑚∥𝜽𝑡 − 𝜽0 − 𝜽 ′/

√
𝑚∥A𝑡

≤∥𝑔(x𝑡 ;𝜽0)/
√
𝑚∥A−1

𝑡
·
√
𝑚∥A𝑡 ∥2 · ∥𝜽𝑡 − 𝜽0 − 𝜽 ′/

√
𝑚∥2 .

Due to the Lemma 8.6 and Lemma 8.7, we have

√
𝑚∥A𝑡 ∥2 · ∥𝜽𝑡 − 𝜽0 − 𝜽 ′/

√
𝑚∥2 ≤

√
𝑚(𝜆 + 𝑡O(𝐿))

·
(
(1 − 𝜂𝑚𝜆) 𝐽 /2

√
𝑡/(𝑚𝜆) +𝐶4𝑚−2/3√

log𝑚𝐿7/2𝑡5/3𝜆−5/3 (1 +
√
𝑡/𝜆)

)
≤ (𝜆 + 𝑡O(𝐿))

· ((1 − 𝜂𝑚𝜆) 𝐽 /2
√
𝑡/𝜆 +𝐶4𝑚−1/6√

log𝑚𝐿7/2𝑡5/3𝜆−5/3 (1 +
√
𝑡/𝜆))

≤ (𝜆 + 𝑡O(𝐿)) · ((1 − 𝜂𝑚𝜆) 𝐽 /2
√
𝑡/𝜆) + 1

where the last inequality is because𝑚 is sufficiently large. Therefore,

we have���𝑓 (x𝑡 ;𝜽𝑡 ) − ⟨𝑔(x𝑡 ;𝜽0), 𝜽 ′/
√
𝑚⟩

���
≤

(
(𝜆 + 𝑡O(𝐿)) · ((1 − 𝜂𝑚𝜆) 𝐽 /2

√
𝑡/𝜆) + 1

)
∥𝑔(x𝑡 ;𝜽0)/

√
𝑚∥A−1

𝑡

+𝐶2𝑚−1/6√
log𝑚𝑡2/3𝜆−2/3𝐿3

And we have

∥𝑔(x𝑡 ;𝜽0)/
√
𝑚∥A−1

𝑡

=∥𝑔(x𝑡 ;𝜽𝑡 ) + 𝑔(x𝑡 ;𝜽0) − 𝑔(x𝑡 ;𝜽𝑡 )∥A−1
𝑡
/
√
𝑚

≤∥𝑔(x𝑡 ;𝜽𝑡 )/
√
𝑚∥A−1

𝑡
+ ∥A−1

𝑡 ∥2∥𝑔(x𝑡 ;𝜽0) − 𝑔(x𝑡 ;𝜽𝑡 )∥2/
√
𝑚

≤∥𝑔(x𝑡 ;𝜽𝑡 )/
√
𝑚∥A−1

𝑡
+ 𝜆−1𝑚−1/6√

log𝑚𝑡1/6𝜆−1/6𝐿7/2

where the last inequality is because of Lemma 8.8 with Lemma 8.7

and ∥A𝑡 ∥2 ≥ ∥𝜆I∥2.
Finally, putting everything together, we have��ℎ(x𝑡 ) − 𝑓 (x𝑡 ;𝜽𝑡 )�� ≤ 𝛾1∥𝑔(x𝑡 ;𝜽𝑡 )/√𝑚∥A−1

𝑡
+ 𝛾2∥𝑔(x𝑡 ;𝜽0)/

√
𝑚∥A′−1

𝑡

+ 𝛾1𝛾3 + 𝛾4 .

Proof of Theorem 5.3. First, considering an individual ban-

dit 𝑘 ∈ [𝐾] with the set of context vectors {x𝑘𝑡 }𝑇𝑡=1 and the set

of sub-rewards {𝑟𝑘𝑡 }𝑇𝑡=1, we can build upper confidence bound of

𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘𝑡 ) with respect to ℎ𝑘 (x𝑘𝑡 ) based on the Lemma 5.2. Denote

the UCB by B(x𝑘𝑡 ,𝑚, 𝐿1, 𝛿 ′), with probability at least 1−𝛿 ′, for any
𝑡 ∈ [𝑇 ] we have

|𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘𝑡 ) − ℎ𝑘 (x𝑘𝑡 ) | ≤ B(x𝑘𝑡 ,𝑚, 𝐿1, 𝛿 ′, 𝑡) = B𝑘 .



Next, apply the union bound on the 𝐾 + 1 networks, we have 𝛿 ′ =
𝛿/(𝐾 + 1) in each round 𝑡 .

Next we need to bound��𝐻 (
vec(r𝑡 )

)
− 𝐻 (f𝑡 )

��
≤𝐶

√√√ 𝐾∑
𝑘=1

|𝑓𝑘 (x𝑘𝑡 ;𝜽𝑘𝑡 ) − ℎ𝑘 (x𝑘𝑡 ) |2

≤𝐶

√√√ 𝐾∑
𝑘=1

(B𝑘 )2 ≤ 𝐶
𝐾∑
𝑘=1

B𝑘

where the first inequality is because 𝐻 is a 𝐶-lipschitz continuous

function. Therefore, we have

|F (X𝑡 ) − H (X𝑡 ) | = |𝐹 (f𝑡 ;𝜽Σ) − 𝐻 (vec(r𝑡 )) |

≤
���𝐹 (f𝑡 ;𝜽Σ) − 𝐻 (f𝑡 )

��� + ��𝐻 (f𝑡 ) − 𝐻 (vec(r𝑡 ))
�� ≤ 𝐶 𝐾∑

𝑘=1

B𝑘 + B𝐹 .

This completes the proof of the claim.

Lemma 8.4. With probability at least 1 − 𝛿 ′, we have

(1)∥A𝑡 ∥2, ∥A′
𝑡 ∥2 ≤ 𝜆 + 𝑡O(𝐿)

(2) log
det(A′

𝑡 )
det(𝜆I) ≤ 𝑃 log(1 +𝑇 /𝜆) + 1/𝜆

(3) | log det(A𝑡 )
det(𝜆I) − log

det(A′
𝑡 )

det(𝜆I) | ≤ O(𝑚−1/6√
log𝑚𝐿4𝑡5/3𝜆−1/6) .

where (3) is referred from Lemma B.3 in [45].

Proof of Lemma 8.4. For (1), based on the Lemma 8.6, for any

x𝑡 ∈ {x𝑖 }𝑇𝑖=1,
∥𝑔(x𝑡 ;𝜽0)∥𝐹 ≤ O(

√
𝑚𝐿). Then, for the first item:

∥A𝑡 ∥2 = ∥𝜆I +
𝑡∑
𝑖=1

𝑔(x𝑖 ;𝜽𝑡 )𝑔(x𝑖 ;𝜽𝑡 )⊺/𝑚∥2

≤ ∥𝜆I∥2 + ∥
𝑡∑
𝑖=1

𝑔(x𝑖 ;𝜽𝑡 )𝑔(x𝑖 ;𝜽𝑡 )⊺/𝑚∥2

≤ 𝜆 +
𝑡∑
𝑖=1

∥𝑔(x𝑖 ;𝜽𝑡 )∥22/𝑚 ≤ 𝜆 +
𝑡∑
𝑖=1

∥𝑔(x𝑖 ;𝜽𝑡 )∥2𝐹 /𝑚

≤ 𝜆 + 𝑡O(𝐿).

Same proof workflow for ∥A′
𝑡 ∥2. For (2), we have

log

det(A′
𝑡 )

det(𝜆I) = log det(I +
𝑇∑
𝑡=1

𝑔(x𝑡 ;𝜽0)𝑔(x𝑡 ;𝜽0)⊺/(𝑚𝜆))

= det(I + GG⊺/𝜆)

where G = (𝑔(x1;𝜽0), . . . , 𝑔(x𝑇 ;𝜽0))/
√
𝑚.

According to the Theorem 3.1 in [5], when𝑚 = Ω( 𝐿
6
log𝐿/𝛿
𝜖4

),
with probability at least 1 − 𝛿 , for any x𝑖 , x𝑗 ∈ {x𝑡 }𝑇𝑡=1, it has

|𝑔(x𝑖 ;𝜽0)⊺𝑔(x𝑗 ;𝜽0)/𝑚 −M𝑖, 𝑗 | ≤ 𝜖.

Therefore, we have

∥GG⊺ −M∥𝐹 =

√√√√ 𝑇∑
𝑖=1

𝑇∑
𝑗=1

|𝑔(x𝑖 ;𝜽0)⊺𝑔(x𝑗 ;𝜽0)/𝑚 −M𝑖, 𝑗 |2

≤ 𝑇𝜖.
Then, we have

log det(I + GG⊺/𝜆)
= log det(I +M𝜆 + (GG⊺ −M)/𝜆)
≤ log det(I +M𝜆) + ⟨(I +M𝜆)−1, (GG⊺ −M)/𝜆⟩
≤ log det(I +M𝜆) + ∥(I +M𝜆)−1∥𝐹 ∥GG⊺ −M∥𝐹 /𝜆

≤ log det(I +M𝜆) +
√
𝑇 ∥GG⊺ −M∥𝐹 /𝜆

≤ log det(I +M𝜆) + 𝜆−1

= 𝑃 log(1 +𝑇 /𝜆) + 𝜆−1 .
The first inequality is because the concavity of log det ; The third

inequality is due to ∥(I + M𝜆)−1∥𝐹 ≤ ∥I−1∥𝐹 ≤
√
𝑇 ; The last in-

equality is because of the choice the𝑚; The last equality is because

of the Definition 8.3.

Lemma 8.5 ( Lemma 4.1 in [15] ). There exist constants {𝐶3

𝑖=1
} ≥ 0

such that for any 𝛿 ≥ 0, if 𝜏 satisfies that

𝜏 ≤ 𝐶2𝐿−6 [log𝑚]−3/2,
then with probability at least 1−𝛿 , for all 𝜽 1, 𝜽 2 satisfying ∥𝜽 1−𝜽0∥ ≤
𝜏, ∥𝜽 2 − 𝜽0∥ ≤ 𝜏 and for any x𝑡 ∈ {x𝑡 }𝑇𝑡=1, we have

|𝑓 (x;𝜽 1) − 𝑓 (x;𝜽 2) − ⟨(𝑔(x;𝜽 2), 𝜽 1 − 𝜽 2)⟩| ≤ 𝐶3𝜏4/3𝐿3
√
𝑚 log𝑚.

Lemma 8.6 (Lemma B.3 in [15] ). There exist constants {𝐶𝑖 }2𝑖=1
such that for any 𝛿 > 0, if 𝜏 satisfies that

𝜏 ≤ 𝐶1𝐿−6 (log𝑚)−3/2,
then, with probability at least 1 − 𝛿 , for any ∥𝜽 − 𝜽0∥ ≤ 𝜏 and
x𝑡 ∈ {x𝑡 }𝑇𝑡=1 we have ∥𝑔(x𝑡 ;𝜽 )∥2 ≤ 𝐶2

√
𝑚𝐿.

Lemma 8.7 (Lemma B.2 in [45] ). For the 𝐿-layer full-connected
network 𝑓 , there exist constants {𝐶𝑖 }5𝑖=1 ≥ 0 such that for 𝛿 > 0, if
for all 𝑡 ∈ [𝑇 ], 𝜂,𝑚 satisfy

2

√
𝑡/(𝑚𝜆) ≥ 𝐶1𝑚−3/2𝐿−3/2 [log(𝑇𝐿2/𝛿)]3/2,

2

√
𝑡/(𝑚𝜆) ≤ 𝐶2min{𝐿−6 [log𝑚]−3/2, (𝑚(𝜆𝜂)2𝐿−6𝑡−1 (log𝑚)−1)3/8},

𝜂 ≤ 𝐶3 (𝑚𝜆 + 𝑡𝑚𝐿)−1,

𝑚1/6 ≥ 𝐶4
√
log𝑚𝐿7/2𝑡7/6𝜆−7/6 (1 +

√
𝑡/𝜆),

then, with probability at least 1 − 𝛿 , it has

∥𝜽𝑡 − 𝜽0∥ ≤ 2

√
𝑡/(𝑚𝜆)

∥𝜽𝑡 − 𝜽0 − 𝜽 ′∥ ≤

(1 − 𝜂𝑚𝜆) 𝐽 /2
√
𝑡/(𝑚𝜆) +𝐶5𝑚−2/3√

log𝑚𝐿7/2𝑡5/3𝜆−5/3 (1 +
√
𝑡/𝜆) .

Lemma 8.8 (Theorem 5 in [3]). With probability at least 1 − 𝛿 ,
there exist constants 𝐶1,𝐶2 such that if 𝜏 ≤ 𝐶1𝐿

−9/2
log

−3𝑚, for
∥𝜽𝑡 − 𝜽0∥2 ≤ 𝜏 , we have

∥𝑔(x𝑡 ;𝜽𝑡 ) − 𝑔(x𝑡 ;𝜽0)∥2 ≤ 𝐶2
√
log𝑚𝜏1/3𝐿3∥𝑔(x𝑡 ;𝜽0)∥2 .
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