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ABSTRACT

Contextual multi-armed bandit has shown to be an effective tool
in recommender systems. In this paper, we study a novel problem
of multi-facet bandits involving a group of bandits, each character-
izing the users’ needs from one unique aspect. In each round, for
the given user, we need to select one arm from each bandit, such
that the combination of all arms maximizes the final reward. This
problem can find immediate applications in E-commerce, health-
care, etc. To address this problem, we propose a novel algorithm,
named MuFasa, which utilizes an assembled neural network to
jointly learn the underlying reward functions of multiple bandits.
It estimates an Upper Confidence Bound (UCB) linked with the
expected reward to balance between exploitation and exploration.
Under mild assumptions, we provide the regret analysis of Mu-
Fasa. It can achieve the near-optimal 19} ((K + )VT) regret bound
where K is the number of bandits and T is the number of played
rounds. Furthermore, we conduct extensive experiments to show
that MuFasa outperforms strong baselines on real-world data sets.
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1 INTRODUCTION

The personalized recommendation is ubiquitous in web appli-
cations. Conventional approaches that rely on sufficient historical
records, e.g., collaborative filtering [37, 47], have proven successful
both theoretically and empirically. However, with the cold-start
problem and the rapid change of the recommendation content,
these methods might render sub-optimal performance [23, 28]. To
solve the dilemma between the exploitation of historical data and
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the exploration of new information, Multi-Armed Bandit (MAB)
[1, 7, 8, 10, 26] turns out to be an effective tool, which has been
adapted to personalized recommendation [23, 28], online advertis-
ing [40], clinical trials [12, 20], etc.

In the conventional contextual bandit problem setting [28], i.e.,
single MAB, the learner is presented with a set of arms in each
round, where each arm is represented by a feature vector. Then
the learner needs to select and play one arm to receive the cor-
responding reward that is drawn from an unknown distribution
with an unknown mean. To achieve the goal of maximizing the
accumulated rewards, the learner needs to consider the arms with
the best historical feedback as well as the new arms for potential
gains. The single MAB problem has been well studied in various
settings. With respect to the reward function, one research direc-
tion [1, 19, 23, 28, 29] assumes that the expected reward is linear
with respect to the arm’s feature vector. However, in many real ap-
plications, this assumption fails to hold. Thus many exiting works
turn to focus on the nonlinear or nonparametric bandits [13, 36]
with mild assumptions such as the Lipschitz continuous property
[13] or embedding in Reproducing Kernel Hilbert Space [18, 39].
Furthermore, the single MAB problem has been extended to best
arm identification [6, 7], outlier arm identification [10, 22], Top-K
arm problems [14], and so on.

In this paper, we define and study a novel problem of multi-facet
contextual bandits. In this problem, the users’ needs are charac-
terized from multiple aspects, each associated with one bandit.
Consider a task consisting of K bandits, where each bandit presents
a set of arms separately and the learner needs to choose and play
one arm from each bandit. Therefore, a total of K arms are played
in one round. In accordance with the standard bandit problem, the
learner can observe a reward after playing one arm from the bandit,
which we call "sub-reward", and thus K sub-rewards are received
in total. In addition, a reward that is a function with respect to
these K sub-rewards, called "final reward", is observed to represent
the overall feedback with respect to the K selected arms. Note that
the functions of final reward and K sub-rewards are allowed to be
either linear or non-linear. The goal of the learner in the multi-facet
bandit problem is to maximize the final rewards of all the played
rounds.

This problem finds many applications in real-world problems.
For instance, in the recommender system, instead of the single item
recommendation, an E-commerce company launches a promotion
campaign, which sells collections of multiple types of products
such as snacks, toiletries, and beverages. Each type of item can be
formulated as a multi-armed bandit and the learner aims to select
the best combination of snack, toiletry, and beverage. As a result, the
final reward is the review of this combined recommendation, while
the sub-reward is the review for a particular product . This problem
also exists in healthcare. For a diabetes patient, the doctor usually
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provides a comprehensive recommendation including medication,
daily diet, and exercise, where each type has several options. Here,
the final reward can be set as the change of key biomarkers for
diabetes (e.g., HbA1c) and the sub-reward can be the direct impact
of each type of recommendation (e.g., blood pressure change for a
medicine).

A major challenge of the proposed multi-facet bandit problem is
the partial availability of sub-rewards, as not every sub-reward is
easy to observe. For example, regarding the combined recommen-
dation of E-commerce, the user may rate the combination but not
individual items; regarding the comprehensive recommendation
for a diabetes patient, some sub-rewards can be difficult to measure
(e.g., the impact of low-calorie diets on the patient’s overall health
conditions). Therefore, in our work, we allow only a subset of all
sub-rewards to be observed in each round, which increases the
flexibility of our proposed framework.

To address these challenges, we aim to learn the mappings from
the selected K arms (one from each bandit) to the final rewards, in-
corporating two crucial factors: (1) the collaborative relations exist
among these bandits as they formulate the aspects from one same
user; (2) the bandits contribute to the task with various weights
because some aspects (bandits) are decisive while some maybe not.
Hence, we propose a novel algorithm, MuFasa, to learn K bandits
jointly. It utilizes an assembled neural networks to learn the final
reward function combined with K bandits. Although the neural net-
works have been adapted to the bandit problem [34, 42, 45], they are
designed for the single bandit with one selected arm and one reward
in each round. To balance the exploitation and exploration of arm
sets, we provide a comprehensive upper confidence bound based
on the assembled network linking the predicted reward with the
expected reward. When the sub-rewards are partially available, we
introduce a new approach to leverage them to train bandits jointly.
Furthermore, we carry out the theoretical analysis of MuFasa and
prove a near-optimal regret bound under mild assumptions. Our
major contributions can be summarized as follows:

(1) Problem. We introduce the problem of multi-facet contex-
tual bandits to characterize the users’ needs from multiple aspects,
which can find immediate applications in E-commerce, healthcare,
etc.

(2) Algorithm. We propose a novel algorithm, MuFasa, which
exploits the final reward and up to K sub-rewards to train the
assembled neural networks and explores potential arm sets with a
UCB-based strategy.

(3) Theoretical analysis. Under mild assumptions, we provide
the upper confidence bounds for a neural network and the assem-
bled neural networks. Then, we prove that MuFasa can achieve the
%) ((K + )VT) regret bound, which is near-optimal compared to a
single contextual bandit.

(4) Empirical performance. We conduct extensive experiments
to show the effectiveness of MuFasa, which outperforms strong
baselines on real-world data sets even with partial sub-rewards.

2 RELATED WORK

Multi-armed bandit. The multi-armed bandit was first introduced
by [38] and then further studied by many works that succeeded
in both theory and practice such as e-greedy [26], Thompson

sampling[2], and upper confidence bound [7]. In the contrast with
traditional bandits [7, 10], the contextual bandit [1, 28, 40] has the
better representation capacity where each arm is represented by
a context vector instead of a scalar to infer the reward. Among
them, the linear contextual bandits are extensively studied and
many of them use the UCB strategy, achieving o (VT) regret bound
[1, 11, 23]. To further generalize the reward function, many works
use a nonlinear regression model drawn from the reproducing ker-
nel Hilbert space to learn the mapping from contexts to rewards
such as the kernel-based methods [18, 39].

Neural bandits. The authors of [4] use a neural work to model an
arm and then applied e-greedy strategy to select an arm. In contrast,
MuFasa utilizes a UCB-based strategy working on K bandits instead
of one set of arms. In addition, the Thompson sampling has been
combined with deep neural networks [9, 31, 34, 42]. For instance,
[34, 42] regard the last layer of the neural network as the embed-
dings of contexts and then apply the Thompson sampling to play an
arm in each round. NeuUCB [45] first uses the UCB-based approach
constructed on a fully-connected neural network, while it only fits
on the single bandit with one set of arms. On the contrary, MuFasa
constructs an assembled neural networks to learn K bandits jointly.
Deep neural network in multi-view learning has been well-studied
[21, 25, 43, 44, 46], to extract useful information among multiple
sources, which inspires one of the core ideas of MuFasa.

Other variant bandit setting. In the non-contextual bandit, a
number of works [16, 17, 32] study playing K arms at the same time
in a single bandit, while these approaches have limited representa-
tion power in the recommender system. The most similar setting
is the contextual combinatorial MAB problem[30, 33], where the
learner tends to choose the optimal subset of arms with certain con-
straints like the K-size. One key difference is that all the arms are
from the same single bandit where only one reward function exists.
On the contrary, in the multi-faced bandits, the selected K arms
come from K different bandits with K different reward functions
and the sub-rewards are allowed to be partially available. There
is another line of works [11, 23, 29] for bandit clustering, where a
bandit is constructed for each user. They try to leverage the depen-
dency among users to improve the recommendation performance.
However, in these works, they still play one arm in each round and
the reward function is required to be linear.

3 PROBLEM DEFINITION

In this section, we formulate the problem of multi-facet bandits,
with a total of K bandits, where the learner aims to select the
optimal set of K arms in each round, in order to maximize the final
accumulated rewards.

Suppose there are T rounds altogether. In each round t € [T]
([T] = {1,...,T}), the learner is faced with K bandits and each

bandit k € [K] has a set of arms X’tC = {x]t‘1 Xy nk} where

|X’t<| = ny is the number of arms in this bandit. In the bandit

k, for each arm x* . € Xk it is represented by a di.-dimensional

t,i

feature vector and we assume ||x ;ll2 < 1. Subsequently, in each

round ¢, the learner will observe K arm sets {Xk} and thus a

total of ZK ny arms. As only one arm can be played w1th1n each
bandit, the learner needs to select and play K arms denoted as



XtZ{X},...,XI;,...,

arm from X]t‘.

x{< } in which x]; € X; represents the selected

Once the selected arm x’f is played for bandit k, a sub-reward
rf will be received to represent the feedback of this play for bandit
k separately. The sub-reward is assumed to be governed by an
unknown reward function:

PR (xF) = B ().

where Ay can be either a linear [1, 28] or non-linear reward function
[18, 39]. As a result, in each round ¢, the learner needs to play
K arms in X; and then receive K sub-rewards denoted by r; =
{rtl,...,rf,...,rg(}.

As the K bandits characterize the users’ needs from various
aspects, after playing K arms in each round ¢, a final reward R;
will be received to represent the overall feedback of the group of
K bandits. The final reward R; is considered to be governed by an
unknown function with respect to r;:

Ri(ry) = H((hl(xb,---,hk(x’;)...,hK<x£<>)) +er.

where ¢; is a noise drawn from a Gaussian distribution with zero
mean. In our analysis, we make the following assumptions regard-
ing hy and H(vec(ry)):
(1) If x]; = 0, then h(xlt‘) = 0; If vec(r;) = (0,...,0), then
H(vec(ry)) = 0.
(2) C-Lipschitz continuity. H(vec(r;)) is assumed to be C-
Lipschitz continuous with respect to the r;. Formally, there
exists a constant C > 0 such that

[H(vee(r,)) ~ H(vee(rp)| < C | 3 [k = rf'12.
keK

Both assumptions are mild. For (1), if the input is zero, then the
reward should also be zero. For (2), the Lipschitz continuity can be
applied to many real-world applications. For the convenience of
presentation, given any set of selected K arms X;, we denote the
expectation of R; by:

H(X;) = B[R|X;] = H ((hl(x}), () hK(xf))) L)

Recall that in multi-facet bandits, the learner aims to select the
optimal K arms with the maximal final reward R} in each round.
First, we need to identify all possible combinations of K arms,
denoted by

Sy ={(x}...

where |S;| = Hllle ni because bandit k has nj arms for each k €
[K]. Thus, the regret of multi-facet bandit problem is defined as

XX X eXpke KL @)

T
Reg =E[ ) (R} - R/)]

t=1
T
= > (HX)) - H(X),
t=1

where X} = arg maxx, es, H (X;). Therefore, our goal is to design a
bandit algorithm to select K arms every round in order to minimize
the regret. We use the standard O to hide constants and O to hide
logarithm.

Availability of sub-rewards. In this framework, the final R; is
required to be known, while the sub-rewards r; are allowed to be
partially available. Because the feedback of some bandits cannot be
directly measured or is simply not available in a real problem. This
increases the flexibility of our proposed framework.

More specifically, in each round ¢, ideally, the learner is able to
receive K + 1 rewards including K sub-rewards { rtl, C rf( } and
a final reward R;. As the final reward is the integral feedback of
the entire group of bandits and reflects how the bandits affect each
other, R; is required to be known. However, the K sub-rewards are
allowed to be partially available, because not every sub-reward is
easy to obtain or can be measured accurately.

This is a new challenge in the multi-facet bandit problem. Thus,
to learn H, the designed bandit algorithm is required to handle the
partial availability of sub-rewards.

4 PROPOSED ALGORITHM

In this section, we introduce the proposed algorithm, MuFasa.
The presentation of MuFasa is divided into three parts. First, we
present the neural network model used in MuFasa; Second, we detail
how to collect training samples to train the model in each round;
In the end, we describe the UCB-based arm selection criterion and
summarize the workflow of MuFasa.

4.1 Neural network model

To learn the reward function H, we use K + 1 fully-connected
neural networks to learn K bandits jointly, where a neural network
fi is built for each bandit k € [K] to learn its reward function Ay,
and a shared neural network F is constructed to learn the mapping
from the K neural networks (fi, ..., fx) to the final reward R;.

First, in round t, for each bandit k € [K], given any context
vector x’f € R%, we use a Li-layer fully-connected network to
learn Ay , denoted by fi.:

fi(x§:6%) = YmiW,0(Wr, —10(...o(W1ix;))),

where o(x) is the rectified linear unit (ReLU) activation function.
Without loss of generality, we assume each layer has the same
width my for the sake of analysis. Therefore, ok = (vec(Wr)T,...,
vec(W1)T)T € R, where Wy € R™M>dk W; € R™M*™M1 vj ¢ [1:
Li—1],and Wy, € R™X™M1_Note that fk(x];; 0%) e R™, where 7 is
set as a tuneable parameter to connect with the following network
F. Denote the gradient Vekﬁc(XIt(; 6%) by g(xlt‘; 0%).

Next, to learn the final reward function H, we use a Ly-layer
fully-connected network to combine the outputs of the above K
neural networks, denoted by F:

F (ft;gz) = \VmyWr,o(...c(W1(f)))

where f; = (ﬁ(x};OI)T, .. .,fK(x{(; OK)T)T € RMK_ Also, we as-
sume that each layer has the same width mj. Therefore, > =
(vec(Wr,)T,...,vec(W)T)T € RP2, where W1 € R™XmK w; ¢
R™2XMz2 Vi € [Ly — 1] and W, € RP™2 Denote the gradient
Vs F (f,; 92) by G(f;; 6%).

Therefore, for the convenience of presentation, the whole assem-
bled neural networks can be represented by ¥ to learn H (Eq.(6)),



Algorithm 1 MuFasa

Algorithm 2 GradientDescent 45

Input: 7,7,K,8,n,]
1: Initialize 6 = (67, 6], ..., 68K)
2: for eacht € [T] do
3 for each bandit k € [K] do
4 Observe context vectors X]f ={x

5 Collect Sy (Eq. (2))
6: Choose K arms, X;, by:

k k
t,l""’xt,nk}

X; = arg max F(X;;0;-1) + UCB(X})|. ( Theorem 5.3)
+ €S

7: Play X; and observe rewards R; and r;.

8: if |r;| = K then ## sub-rewards are all available.

9: 0; = GradientDescent oy (F{X;}!_,, {Ri}i_ . {ri}i_; .
J.n)

10: else ## sub-rewards are partially available.

11: Collect {Q;}!_, (Eq.(4))

12: 0, = GradientDescentpgaypiqr (F, {Qi}i_, T, 1)

13: Update UCB(X]).

given the K selected arms X;:
F(Xe:0) = (F(';e% o (fl(‘;el),u-,fK(';@K))) (Xe),

where 6 = (6%,01, ..., 6X).
Initialization. € is initialized by randomly generating each param-
eter from the Gaussian distribution. More specifically, for ok k€

w

[K], W is set to (0

3}) for any [ € [L;] where w is drawn from

N(0,4/my). For 6%, W is set to ‘:; v(:, forany! € [Ly —1] where

w is drawn from N(0,4/m3); Wy, is set to (wT,—wT) where w is
drawn from N (0, 2/my).

4.2 Training process

Only with the final reward R; and K selected arms X, the train-
ing of the neural network model ¥ is the following minimization
problem:

T
min £(0) = ) (7 (X¢:0) = Re)* /2 + mAl6 — Boll3/2. (3)
t=1

where £(6) is essentially l;-regularized square loss function and
0y is the randomly initialized network parameters. However, once
the sub-rewards are available, we should use different methods to
train ¥, in order to leverage more available information. Next, we
will elaborate our training methods using the gradient descend.

Collection of training samples. Depending on the availability
of sub-rewards, we apply different strategies to update 0 in each
round. When the sub-rewards are all available, the learner receives
one final reward and K sub-rewards. We apply the straightforward
way to train each part of # accordingly based on the corresponding
input and the ground-truth rewards in each round, referring to the
details in Algorithm 2, where m in F should be set as 1.

Input: 7, {X;}i_,, {Ri}i_, {ti}i_, . Jon
Output: 0;

1: for each k € [K] do

2
2 Define £L(0%) = X!, (fk(xf;ok) —rf) /2 + miA||6F —
6oll3/2
3: for each j € [J] do
k _ pk k
4 6; =07, - r;vL(Oj_l)

2
5. Define £(6%) = YL, (F(Vec(ri);é)z) - Ri) /2 + maA||0> —

6oll3 /2.
6: for each j € [J] do
. S_p9> _ >
Oj —91;1 17V£(9j71)

. 2 pl K
8: return (0], 0], . ..,0] )

Algorithm 3 GradientDescentpg,;iq1
Input: 7, {Q;}!_, J,n
Output: 6;
1: Define £(6) = X, 3 (xryeq, (F(X:0) = R)* /2 +mp216 -
6oll3/2.
2: for each j € [J] do
3: 0]' = Gj—l - I]V.E(gj—l)

4: return 6;

However, when the sub-rewards are partially available, the above
method is not valid anymore because the bandits without available
sub-rewards cannot be trained. Therefore, to learn the K bandits
jointly, we propose the following training approach focusing on
the empirical performance.

As the final reward is always available in each round, we col-
lect the first training sample (X¢, R;). Then, suppose there are K
available sub-rewards r;, K < K. For each available sub-reward
rf € r; and the corresponding context vector x];, we construct the
following pair:

Xt,k:{o,...,x’;,...,o} and T; :{O,...,r;‘,...,O}.

We regard )’it,k as a new input of . Now, we need to determine
the ground-truth final reward H (;(t,k) = H(vec(T;x)).

Unfortunately, H(vec(T; )) is unknown. Inspired by the UCB
strategy, we determine H(vec(T;)) by its upper bound. Based
on Lemma 4.1, we have H(vec(tyx)) < C_rf. Therefore, we set
H(vec(T;)) as:

H(vec(Fyx)) = Crf

because it shows the maximal potential gain for the bandit k. Then,
in round t, we can collect additional K sample pairs:

{(Xe ke Crf) e -

where [K] denotes the bandits with available sub-rewards.
Accordingly, in each round ¢, we can collect up to K + 1 samples
for training ¥, denoted by Q;,:

Q= {(Xp o Cri) biee iy |_HXe RO} (4)



t

Therefore, in each round, we train ¥ integrally, based on {Q;};_;,

as described in Algorithm 3.

LEMMA 4.1. Let 0 = (0,...,0) and |0| = K. Given it,k andT; .,
then we have H(vec(t; ;) < C_rf.

PrROVE 4.1. AsH is C’-Lipschitz continuous, we have

|H (vec(Fyx)) — H(0)| < C / Z (r—0)2=Crk.

4.3 Upper confidence bound

In this subsection, we present the arm selection criterion based
on the upper confidence bound provided in Section 5 and then
summarize the high-level idea of MuFasa.

In each round ¢, given an arm combination X;, the confidence
bound of ¥ with respect to H is defined as:

P (IF (Xe; 0:) — H(Xe)| > UCB(Xy)) <6,

where UCB(X;) is defined in Theorem 5.3 and § usually is a small
constant. Then, in each round, given the all possible arm combina-
tions Sy, the selected K arms X; are determined by:

X; = arg Jnax (F(X';6;) + UCB(X})) . 5)
+ &9t

With this selection criterion, the workflow of MuFasa is depicted
in Algorithm 1.

5 REGRET ANALYSIS

In this section, we provide the upper confidence bound and regret
analysis of MuFasa when the sub-rewards are all available.

Before presenting Theorem 5.3, let us first focus on an L-layer
fully-connected neural network f(x;; 8) to learn a ground-truth
function h(x;), where x € R?. The parameters of f are set as
Wi € R™ W; e R™M vj e [1:L-1],and W € R™™, Given
the context vectors by {x,-}iT:1 and corresponding rewards {rt}thl,
conduct the gradient descent with the loss £ to train f.

Built upon the Neural Tangent Kernel (NTK) [15, 24], h(x;) can
be represented by a linear function with respect to the gradient
g(x¢; 0p) introduced in [45] as the following lemma.

LEmMMA 5.1 (LEMMA 5.1 IN [45]). There exist a positive constant C
such that with probability at least 1-8, ifm > CT4L% log(T%L/8) /A%
foranyx; € {xt}thl, there exists a 0 such that

h(xt) = (g(xt: 60), 0%)

Then, with the above linear representation of h(x;), we provide
the following upper confidence bound with regard to f.

LEMMA 5.2. Given a set of context vectors {xt}z;l and the corre-
sponding rewards {rt}tT:1 LE(rs) = h(x;) foranyx; € {Xi}iT:1~ Let
f(x¢; 0) be the L-layers fully-connected neural network where the
width is m, the learning rate is 1, and 0 € RP. Assuming ||0%]|2 <

S/A/m, then, there exist positive constants C1, Cy such that if
m > max{O (T7/1_7L21(10g m)3) .0 ()L_l/ZL_S/Z(Iog(TLZ /5))3/2) }
n=0(TmL+mA)~", J > O(TL/A),

then, with probability at least 1 — 8, for any x; € {xt}thl, we have
the following upper confidence bound:

|h(x:) = f(x1:00)| <y1llg(xe; ot)/‘/E”A;‘ + Yz||9(Xt;90)/\/E||A’[—1

+y1y3 + ya, where
yi(m.L) = (A+tO(L)) - (1 = gma)y/2\fe/2) +1

det(A;
y2(m, L, ) :Jlog( et( t)) —210g5+/11/25

det(AI)

y3(m, L) = Com ™6 \flog mt'/62~7/67/2
ya(m,L) = Clm—l/6 ’10g mi2/3,-2/313

t
Ap =+ > g(x4;01)g(xs;0;)T /m
=1

¢
Al =21+ Zg(xt; 00)g(xs;60)T /m.

i=1

Now we are ready to provide an extended upper confidence
bound for the proposed neural network model F.

THEOREM 5.3. Given the selected contexts {Xt}thl’ the final re-
wards {Rt}thl, and all sub-rewards {r;}{zl, let F be the neural net-
work model in MuFasa. In each round t, with the conditions in Lemma
5.2 and suppose m = 1, then, with probability at least 1 — 8, for any

t € [T], we have the following upper confidence bound:

K
|F (X3 0;) — H(X)| < C Z B + BF = UCB(X,), where
k=1

o
B = y1llgi (x7: 6F) [ Nm1l g1 + v2 () llgi (655 60) [Nmll o
t +1 A¥

+Y1y3s +va
1
B = 1161 07) [Vmall yp-1 + 2 ()G (£ 603) [Nmzll s
Ay k+1 A7
+Y1y3 +va

t
A]t‘ =AM+ ng(xf;af)gk(xf;efﬁ/ml
i=1

t
AF =20+ ) g (xF; 0F)gic(xF3 65) T
i=1

t
Al =M+ )" G(f; 07)G (£ 67)T /ma
i=1

t
AF =1+ Z G(fi;07)G(£1;07)T /my
i=1

With the above UCB, we provide the following regret bound of
MuFasa.

THEOREM 5.4. Given the number of rounds T and suppose that
the final reward and all the sub-wards are available, let ¥ be the
neural network model of MuFasa, satisfying the conditions in Theorem
5.3. Then, assuming C = 1, my = mp = m, L1 = Ly = L and thus



Py = P = P, with probability at least 1 — 8, the regret of MuFasa is
upper bounded by:

Reg <(CK + 1)\/?2\/1710g(1 +T/D)+1/1+1

. (\/(17— 2) log (w) +1/A+ 2128 + 2| +2(CK + 1),

AS

where P is the effective dimension defined in Appendix (Definition
8.3).

Prove 5.4. First, the regret of one round ¢ :
Reg, = H(X}) - H(X,)
< [H(X)) = F X))+ F(X}) — H(Xy)
< UCB(X}) + F(X}) — H(X¢)
< UCB(X}) + F(Xy) — H(X;) < 2UCB(Xy)

where the third inequality is due to the selection criterion of MuFasa,
satisfying 7 (X}) + UCB(X}) < ¥ (X;) + UCB(X;). Thus, it has

T T T K
Reg= > Reg, <2 UCB(X;) <2 ) [C) 8%+ 8"
t=1 t=1 t=1 k=1

First, for any k € [K], we bound

T T T
2,85 <1 ) lglers 00 /Nmlly -y +v2 ) llg(xes 00)/Vmll o
t=1 t=1 t=1

I] I2
+ Tyl Y3 + T)/4

Because the Lemma 11 in [1], we have

b=y 1( D latos 002 | < T 1oe
= 2,19t At|S det(AD)
det(A%) det(AT) det(A%)
SYIJT(IOg deon T8 qean 8 Geran

< yl\/T (ﬁlogm FTIA) +1/0+ 1)

where the last inequality is based on Lemma 8.4 and the choice of
m. Then, applying Lemma 11 in [1] and Lemma 8.4 again, we have

o det(A7)
8 “get (A1)

< \/(17- 2) log (w) +1/A+ 212

Ad

: \/T (ﬁlog(l +T/A) + 1/)L)
As the choice of ], y1 < 2. Then, as m is sufficiently large, we have
Ty1ys < 1,Tys < 1.
Then, because m; = ma, L; = Ly and C = 1, we have

T
Reg < 2(CK +1) Z Bk,
t=1

Putting everything together proves the claim.

P is the effective dimension defined by the eigenvalues of the
NTK ( Definition 8.3 in Appendix). Effective dimension was first
introduced by [39] to analyze the kernelized context bandit, and
then was extended to analyze the kernel-based Q-learning[41] and
the neural-network-based bandit [45]. P can be much smaller than
the real dimension P, which alleviates the predicament when P is
extremely large.

Theorem 5.4 provides the o ((K + VT ) regret bound for Mu-
Fasa, achieving the near-optimal bound compared with a single
bandit ( 5(\/? ) ) that is either linear [1] or non-linear [39, 45]. With
different width m1, my and the Lipschitz continuity C, the regret
bound of MuFasa becomes 5( (CK + 1)VT).

6 EXPERIMENTS

To evaluate the empirical performance of MuFasa, in this section,
we design two different multi-facet bandit problems on three real-
world data sets. The experiments are divided into two parts to
evaluate the effects of final rewards and availability of sub-rewards.
The code has been released !.

Recommendation:Yelp?. Yelp is a data set released in the Yelp
data set challenge, which consists of 4.7 million rating entries for
1.57 X 10° restaurants by 1.18 million users. In addition to the
features of restaurants, this data set also provides the attributes of
each user and the list of his/her friends. In this data set, we evaluate
MuFasa on personalized recommendation, where the learner needs
to simultaneously recommend a restaurant and a friend (user) to a
served user. Naturally, this problem can be formulated into 2 bandits
in which one set of arms X} represent the candidate restaurants
and the other set of arms X? formulates the pool of friends for
the recommendation. We apply LocallyLinearEmbedding[35] to
train a 10-dimensional feature vector x},i for each restaurant and
a 6-dimensional feature vector x? ; for each user. Then, for the
restaurant, we define the reward ac,:cording to the rating star: The
reward r} is 1 if the number of rating stars is more than 3 (5 in
total); Otherwise, the reward rt1 is 0. For friends, the reward r? =1
if the recommended friend is included in the friend list of the served
user in fact; Otherwise r? = 0. To build the arm sets, we extract
the rating entries and friends lists of top-10 users with the most
ratings. In each round ¢, we build the arm set X! and X? by picking
one restaurant/friend with 1 reward and then randomly picking the
other 9 restaurants/friends with 0 rewards. Thus |X}| = |X§| =10.

Classification:Mnist [27] + NotMnist. These are two well-known
10-class classification data sets. The evaluation of contextual bandit
has been adapted to the classification problem [18, 39, 45]. There-
fore, we utilize these two similar classification data sets to construct
2 bandits, where the 10-class classification is converted into a 10-
armed contextual bandit. Considering a sample figure x € RY,
we tend to classify it from 10 classes. Under the contextual ban-
dit setting, x is transformed into 10 arms: x; = (x,0,...,0);x2 =
0,%,...,0);...;x10 = (0,0,...,x) € R10d matching the 10 classes.
In consequence, the reward is 1 if the learner plays the arm that

!https://github.com/banyikun/KDD2021_MuFasa
Zhttps://www.yelp.com/dataset



matches the real class of x; Otherwise, the reward is 0. Using this
way, we can construct two contextual bandits for these two data
sets, denoted by (Xl, rtl) and (Xz, r?). Then, in each round, the arm
pools will be |X}| = |X§| =10.

To evaluate the effect of different final reward function, with
the sub-rewards r; = {rt1 r?}, we design the following final reward
function:

Hi(vec(ry)) = r} +r2; Ha(vec(r;)) = 2r} +rZ. (6)

For (1), it describes the task where each bandit contributes equally.
Of (2), it represents some tasks where each bandit has different
importance.

As the problem setting is new, there are no existing algorithms
that can directly adapt to this problem. Therefore, we construct
baselines by extending the bandit algorithms that work on a single
bandit, as follows:

(1) (K-)LinUCB. LinUCB [28] is a linear contextual bandit al-
gorithm where the reward function is assumed as the dot
product of the arm feature vector and an unknown user pa-
rameter. Then, apply the UCB strategy to select an arm in
each round. To adapt to the multi-facet bandit problem, we
duplicate LinUCB for K bandits. For example, in Yelp data set,
we use two LinUCB to recommend restaurants and friends,
respectively.

(2) (K-)KerUCB . KerUCB [39] makes use of a predefined kernel
matrix to learn the reward function and then build a UCB for
exploration. We replicate K KerUCB to adapt to this problem.

(3) (K-)NeuUCB. NeuUCB[45] uses a fully-connected neural
network to learn one reward function with the UCB strategy.
Similarly, we duplicate it to K bandits.

Configurations. For MuFasa, each sub-network fi (x]t‘; Gk) is set as
a two-layer network: fi. (x’f; ok) = \/m_IWZO'(Wlx’f), where W1 €
leXdk,Wg € Rﬁ’xml, and my = m = 100. Then, the shared layers
F(fr; 0%) = ymaWao(Wif;), where Wy € R™2X2M W, € R1Xm
and my = 100. For the Hy, C is set as 1 and set as 2 for Hy. To learn
K bandits jointly, in the experiments, we evaluate the performance
of Algorithm 1 + 3. For K-NeuUCB, for each NeuUCB, we set it as a
4-layer fully-connected network with the same width m = 100 for
the fair comparison. The learning rate 7 is set as 0.01 and the upper
bound of ground-truth parameter S = 1 for these two methods. To
accelerate the training process, we update the parameters of the
neural networks every 50 rounds. For the KerUCB, we use the radial
basis function (RBF) kernel and stop adding contexts to KerUCB
after 1000 rounds, following the same setting for Gaussian Process
in [34, 45]. For all the methods, the confidence level § = 0.1, the
regularization parameter A = 1. All experiments are repeatedly run
5 times and report the average results.

6.1 Result 1: All sub-rewards with different H

With the final reward function H; (Eq.(6)), Figure 1 and Figure
3 report the regret of all methods on Yelp and Mnist+NotMnist
data sets, where the first top-two sub-figure shows the regret of
each bandit and the bottom sub-figure shows the regret of the
whole task (2 bandits). These figures show that MuFasa achieves
the best performance (the smallest regret), because it utilizes a com-
prehensive upper confidence bound built on the assembled neural
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Figure 1: Regret comparison on Yelp with H; final reward
function.
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Figure 2: Regret comparison on Yelp with H, final reward
function.

networks to select two arms jointly in each round. This indicates
the good performance of MuFasa on personalized recommendation
and classification. Among these baselines, NeuUCB achieves the
best performance, which thanks to the representation power of
neural networks. However, it chooses each arm separately, neglect-
ing the collaborative relation of K bandits. For KerUCB, it shows
the limitation of the simple kernels like the radial basis function
compared to neural network. LinUCB fails to handle each task, as
it assume a linear reward function and thus usually cannot to learn
the complicated reward functions in practice.

With the final reward function Hy (Eq.(6)), Figure 2 and Fig-
ure 4 depict the regret comparison on Yelp and Mnist+NotMnist
data sets. The final reward function Hy indicates that the bandit 1
weights more than bandit 2 in the task. Therefore, to minimize the
regret, the algorithm should place the bandit 1 as the priority when
making decisions. As the design of MuFasa, the neural network
¥ can learn the relation among the bandits. For example, on the
Mnist and NotMnist data sets, consider two optional select arm

sets {x!. ,x?. }and {x; I xf i }. The first selected arm set receives

tiy> 7L,y
1 reward on Mnist while 0 reward on NotMnist. In contrast, the
second selected arm set receives 0 reward on Mnist while 1 reward

on NotMnist. However, these two bandits have different weights
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Figure 5: Regret comparison on Yelp with different reward
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Figure 4: Regret comparison on Mnist+NotMnist with H,.

and thus the two arm sets have different final rewards, i.e., R} =2
and Rf = 1, respectively. To maximize the final reward, the learner
should select the first arm set instead of the second arm set. As Mu-
Fasa can learn the weights of bandits, it will give more weight to the
first bandit and thus select the first arm set. On the contrary, all the
baselines treat each bandit equally, and thus they will select these
two arm sets randomly. Therefore, under the setting of Hz, with
this advantage, MuFasa further decreases the regret on both Yelp
and Mnist+NotMnist data sets. For instance, on Mnist+NotMnist
data sets, MuFasa with Hy decrease 20% regret over NeuUCB while
MuFasa with H; decrease 17.8% regret over NeuUCB.

6.2 Result 2: Partial sub-rewards

As the sub-rewards are not always available in many cases, in
this subsection, we evaluate MuFasa with partially available sub-
rewards on Yelp and Mnist+NotMnist data sets. Therefore, we build
another two variants of MuFasa: (1) MuFasa (One sub-reward) is
provided with the final reward and one sub-reward of the first ban-
dit; (2) MuFasa (No sub-reward) does not receive any sub-rewards
except the final reward. Here, we use the H; as the final reward
function.

Figure 5 and Figure 6 show the regret comparison with the two
variants of MuFasa, where MuFasa exhibits the robustness with
respect to the lack of sub-rewards. Indeed, the sub-reward can pro-
vide more information to learn, while MuFasa (One sub-reward)
still outperforms all the baselines, because the final reward enables
MuFasa to learn the all bandits jointly and the sub-reward strength-
ens the capacity of learning the exclusive features of each bandit.
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Figure 6: Regret comparison on Mnist+NotMnist with differ-
ent reward availability.

In contrast, all the baselines treat each bandit separately. Without
any-rewards, MuFasa still achieves the acceptable performance.
On the Yelp data set, the regret of MuFasa (No sub-reward) is still
lower than the best baseline NeuUCB while lacking considerable
information. On the Mnist+NotMnist data set, although MuFasa
(No sub-reward) does not outperform the baselines, its performance
is still closed to NeuUCB. Therefore, as long as the final reward is
provided, MuFasa can tackle the multi-facet problem effectively.
Moreover, MuFasa can leverage available sub-rewards to improve
the performance.

7 CONCLUSION

In this paper, we define and study the novel problem of the
multi-facet contextual bandits, motivated by real applications such
as comprehensive personalized recommendation and healthcare.
We propose a new bandit algorithm, MuFasa. It utilizes the neural
networks to learn the reward functions of multiple bandits jointly
and explores new information by a comprehensive upper confidence
bound. Moreover, we prove that MuFasa can achieve the o ((K+
1)VT) regret bound under mild assumptions. Finally, we conduct
extensive experiments to show the effectiveness of MuFasa on
personalized recommendation and classification tasks, as well as
the robustness of MuFasa in the lack of sub-rewards.
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8 APPENDIX

Definition 8.1. Given the context vectors {Xf}tT=1 and the rewards
{rt}thl, then we define the estimation 6’ via ridge regression:

¢
Al =21+ Zg(xt; 00)g(xt;60)T /m

i=1
t
b; = Zrtg(xt;eo)/ﬁ
i=1
0’ = A;'b;

¢
Ap = A+ Zg(Xz; 0:)9(x:;6:)T /m
i=1

Definition 8.2 (NTK [15, 24]). Let N denote the normal distribu-
tion. Define

0 _+0 _ ) X 1 _
M;; =% = &ix)), Nj; =

Loyl )
i ij
I !
i X
Zg,j = 2Ea,b~N(0,N§jjl) [o(a)a(b)]
Mg,j = zMi_lea,b~N(0,N£_jl) [¢’(a)o’ ()] + Zﬁ,]"

T

Then, given the contexts {X;}tzl,

defined as M = (ML + =L) /2.

the Neural Tangent Kernel is

Definition 8.3 (Effective Dimension [45]). Given the contexts {x,}thl,
the effective dimension P is defined as
log det(I+ M/A)

log(1+T/A)

sl

Proof of Lemma 5.2. Given a set of context vectors {x}zﬂ=1 with
the ground-truth function h and a fully-connected neural network
f, we have

|h(Xt) = f(xs 9t)|
<[xe) = (g xes 00). 07 I + [ (3 00) = g x5 60). 67 V)|

where 0’ is the estimation of ridge regression from Definition 8.1.
Then, based on the Lemma 5.1, there exists 8* € R such that
h(xy) = (g(xi, 6y), 9*). Thus, we have

[1x0) = (g x1:60). 67/ V)|
= ‘<9(Xi, 60)/Nm, \/59*> - <g(xi, 60)/Nm, 9’>

det(Aj)
log
det(AI)
where the final inequality is based on the the Theorem 2 in [1],

with probability at least 1 — §, for any ¢ € [T].
Second we need to bound

[F(x4: 00) = (g(x2: 00), 0 [V
<|f(x¢:61) = (g(x+: 60). 6 — 60)]
+[(g0xt3 60). 0 = 00) = (g(xs3 60), 6/ /)

<

—2log 8+ AY2s | |1g(xs; 90)/W||A't—x

To bound the above inequality, we first bound
|f (xt:6r) = (g(xt: 60). 6: ~ 60)
=|f(x¢:0:) — f(xz500) — {g(xz; 60), 6 — 6p)]
SCZT4/3L3W < Cym~1/® log mt?3)723 13,

where f(x;;60p) = 0 due to the random initialization of 6. The first
inequality is derived by Lemma 8.5. According to the Lemma 8.7,

it has ||6; — 6|2 < 2, /ﬁ Then, replacing 7 by 2 ﬁ we obtain
the second inequality.
Next, we need to bound

[{g(xz; 60), 6 — 60) — (g(xt: 60), 8’ /N'm)|
=(g(xt; 60) /N'm, Nm(6; — 60 — 6" [N'm))|
<llg(xs; 00)/Nml| o1 - Nml|6; — 60 — 0"/ a,
<llg(xe: 00) /Nl o1 - Nl Acllz - [|6; = 60 = 07/l
Due to the Lemma 8.6 and Lemma 8.7, we have
Vml|Allz - 116 — 60 — 8" /Vmll2 < Vm(A +1O(L))
. ((1 - I]m).)]/zx/m+ C4m_2/3\/@L7/2t5/3)._5/3(1 + \/t/_A))
< (A+1tO(L))
S((1- r]m).)]/zx/t/_/l+C4m_1/6\/10EL7/2t5/3/1_5/3(1 + m))
< (A+tO(L)) - (1= nmA)!2\t/2) +1

where the last inequality is because m is sufficiently large. Therefore,
we have

[F(x4: 00) — (g(x2: 00), 0 Vi)

< (A+10) - (1= ymd) N2 +1) g xes 00) [Vl
+sz—1/6\/@tz/3l—2/3L3
And we have
lg(xe: 60) /Nl
=|lg(xt; 0r) + g(xs5 60) — (x5 9t)||A[—1/\/m
<llg(xe: 60)/ Vmllp-1 + A7 l2llg (xe: 60) = g(xe: 60) 12/ Vm
Sllg(xt;Ot)/\/ﬁllAt—l +A—1m—1/6\/@t1/6/1—1/6L7/2

where the last inequality is because of Lemma 8.8 with Lemma 8.7
and [[A¢[lz = [|AL][2.
Finally, putting everything together, we have

|h(xe) = £ (xe:60)] < y1llg(xe; 6) /Vmll o1 + y2llg (s 00)/Nmll 5

+Y1Y3 + Ya.

Proof of Theorem 5.3. First, considering an individual ban-
dit k € [K] with the set of context vectors {x’;}tll and the set
of sub-rewards {ric }thl, we can build upper confidence bound of
fk(xlt‘; 9;‘) with respect to Ay, (XI;) based on the Lemma 5.2. Denote
the UCB by B(xlt‘, m, L1, 8"), with probability at least 1 — ¢, for any
t € [T] we have

e (K3 0F) — b ()| < B(xE,m, 11,67, 1) = BF.



Next, apply the union bound on the K + 1 networks, we have §’ =
6/(K +1) in each round ¢.
Next we need to bound

|H (vec(rs)) — H ()]

K
<\ D e 0F) — b (<2
k=1

K K
<C Z(Bk)z < C‘ZBk
\ =

k=1

where the first inequality is because H is a C-lipschitz continuous
function. Therefore, we have

|F (X¢) = H(Xe)| = |F(fr;07) — H(vec(ry))|

K
<|Ft;0% - H (ft)) +|H () - H(vee(r;))| < € ) 8% + 8.
k=1
This completes the proof of the claim.

LEMMA 8.4. With probability at least 1 — §’, we have

(DllAll2, 1ALz < A +tO(L)

det(A;) ~
(2)log i 3b < Plog(1+T/2) +1/A
det(A;) det(A}) ~1/6 4,5/3,-1/6
(3)|log det(11) detal) | < O(m™/°\logmL*t>/°A7/°).

where (3) is referred from Lemma B.3 in [45].

Proof of Lemma 8.4. For (1), based on the Lemma 8.6, for any
Xt € {Xi}l?;p
llg(x¢;60)||F < O(VmL). Then, for the first item:

t

Al = 141+ > g(xi; 0)g(xi; 0 /mlla
i=1

t
<ALz + 11 > 9(xis 0)g(xi3 61) T /mlly
i=1

t t

<A+ D llgxis 013 /m < A+ ) llg(xis 013 /m
i=1 i=1

< A+tO(L).

Same proof workflow for [|A|2. For (2), we have

det(A] T
o8 dit((,lf)) = log det(I + ; 9(xt5600)g(x; 00) T /(mA))
=det(I+GGT/A)

where G = (g(x1; 0p), . .., g(xT; 00)) /\m.

6
According to the Theorem 3.1 in [5], when m = Q(%)

5

with probability at least 1 — 8, for any x;,x; € {xt}le, it has

|9(xi; 00) T g(xj;600)/m — M j| <e.

Therefore, we have

T T
IGGT = Mllp = | > > lg(xi; 00)Tg(x; 60) /m — My |2
i=1 j=1

i=
< Te.

Then, we have
log det(I+GGT/A)
= log det(I+ MA + (GGT — M) /1)
< logdet(I+M2) + ((I+ MM L, (GGT — M)/A)
< log det(I+MA) + [|(T+MA)IGGT — M||g/A
< log det(I+MA) + VT||GGT — M||p/A
< log det(I+MA) + 17!
=Plog(1+T/A) +A~\.

The first inequality is because the concavity of log det ; The third
inequality is due to ||(I+MA)~!|r < [I7Y|F < VT; The last in-
equality is because of the choice the m; The last equality is because
of the Definition 8.3.

LEMMA 8.5 (LEMMA 4.1 IN [15] ). There exist constants {C_'l.3=1} >0
such that for any § > 0, if T satisfies that

< C_zL_(’[log m] -3/2,
then with probability at least 1-3, for all 81, 02 satisfying || 01 -6y <

7,102 — 6| < 7 and for anyx; € {xt}thl, we have

|f(x;91) - f(x; 0%) - {(g9(x; 0%),0' — 6%))| < C_‘3T4/3L3\/mlog m.

2

LemMma 8.6 (LEMMA B.3 1N [15] ). There exist constants {Ci};_,

such that for any § > 0, if T satisfies that
T < C1L % (log m)—z/z,

then, with probability at least 1 — &, for any ||6 — 6|| < 7 and
Xt € {Xt}thl we have ||g(x¢;0)||2 < CoVmL.

LEMMA 8.7 (LEMMA B.2 IN [45] ). For the L-layer full-connected
network f, there exist constants {C,‘}?:1 > 0 such that for § > 0, if
forallt € [T], n, m satisfy

24/t/(mA) > Cym 321732 [1og(TL?/8)1%/?,

2v/t/(mA) < C;min{L™®[logm] >/, (m(An)*L ™" (log m)™")*/%},
n < C3(mA+tmL)™},

ml/6 > C4\/@L7/2t7/6/1—7/6(1 +\/t/_/1),

then, with probability at least 1 — 6, it has

[16: — 6ol < 2vt/(mA)

6: — 60— 6| <

(1 = nmAY 2\t (mA) + Csm™23log mL7/2133 1753 (1 + \t/ 7).

LEMMA 8.8 (THEOREM 5 IN [3]). With probability at least 1 — 6,
there exist constants Cy,Cy such that if < C1L™%%log™3 m, for
[|6; = 6ll2 < 7, we have

llg(xe3 6r) — g(x£300)|l2 < Canlogmri/3L3||g(xs: 6p) 2.
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