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1. Introduction

In what follows, Z>( and Z., denote the sets of nonnegative and positive integers, respectively.
Let

S = (m,ny, n3) = {x1m + x20; + X303 1 X1, %2, X3 € Lo}

denote a numerical semigroup (an additive subsemigroup of Z-,) with three generators
ny, Ma, 3 € Z~o [29]. We do not assume that the generators are given in a particular order; on
rare occasions, we even let them coincide. Although unconventional, these generous conventions
eliminate the need for some special cases and permit a few interesting and unusual applications.

A factorization of n € S is an expression n = x1n; + X1, + x3n3 in which x = (x1,x2,x3) €
ZZ.,. The set of all factorizations of n is denoted

Zs(n) ={x € Z;O i =x1n + X0 + X313}

A factorization functional is a linear functional of x. For example, the length x; + x, + x3 of x
is a factorization functional. Other examples are x; and x; — 2x, + 3x3. Values of factorization
functionals are weighted factorization lengths. Combinatorial descriptions of maximum and
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minimum weighted factorization lengths are obtained in [25]; the present paper pushes this work
in new directions.

In this paper, which complements the previous papers in the series [15-17], we answer many
questions about the asymptotic behavior of weighted factorization lengths for three-generator
numerical semigroups. We recover and extend [17], in which the asymptotic behavior of the
mean, median, and mode of (unweighted) factorization lengths are described. Our Theorem 1 is
more general and more precise than the main results of [17], and its proof is shorter and more
transparent.

The paper [16], which subsumes [17], treats numerical semigroups with arbitrarily many gen-
erators. However, the approach uses tools outside the mainstream of numerical semigroup theory,
such as algebraic combinatorics, harmonic analysis, measure theory, and functional analysis. In
contrast, our results here are geometric and transparent, only invoking analysis (of an elementary
sort) at the final stage. The results of this paper, although presented only for three-generator
numerical semigroups (but for general weighted factorization lengths), may provide a clearer path
to the results of [16] and their generalizations via polyhedral geometry techniques.

As convenience dictates, we denote (column) vectors in boldface, or as ordered pairs or triples.
A superscript T denotes the transpose. We let |X| denote the cardinality of a set or multiset X.
Here is our main result.

Theorem 1. Let ny, ny,n3 € Z~o have gcd(ny, ny, n3) = 1; let my, my, msy € Z be such that

ms my ny
<

1 T () ny

IN

>

with at least one inequality strict; let S = (ny, ny, n3); and let
A(x) = mix; + max; + msx;s
for x € Z7. Define the multiset (set with multiplicities)
Aln]l = {A(x) : x € Zs(n) }}.
Then for o < p and n € Z>,
|Aln] N [on, pn]| Jp

n?/(2nynyns)

F(x) dx

o

21’111’127’13 5d 2d 2d
<——|—+—+(B—a+— (1 +dmax{m,n})|,
n ny n
in which
m
0 if t<—,
ns
ths —m m m
_ Mmoo if Moy
F(t) _ 2n1nyns mpns — Mshy, ns3 ny
minz — msmn, my — nt m m
_momt if o™
min, — myn; "y np
. n
0 if t>—,
f >

is a (possibly degenerate) triangular probability density function, and
d = gcd(mans — many, myny — myny, myn, — mpny).

The rate of convergence to the triangular density is explicit, a huge improvement over [17].
Moreover, the error estimate can be improved at the expense of introducing a more complicated,
but still explicit, expression; see Remark 31. Modifications of our Lemma 23 should also permit
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us to recover the modular results of [15] in the three-generator setting, with the added bonus of
explicit bounds on the rate of convergence in [15, Theorem 3a].

The motivation for Theorem 1 stems from its centrality to the study of numerical semigroups.
Non-unique factorization has long been studied in commutative algebra, both for more general fam-
ilies of semigroups [1, 12, 13, 22, 23, 30] and for numerical semigroups specifically [7, 8, 24, 28]. The
study of length sets (as opposed to multisets) is well-established territory [2, 14, 19, 21, 26] and simi-
lar questions have been studied in both number-theoretic [5, 6, 11] and algebraic [3, 4, 20] contexts.
Our explicit asymptotic theorem on weighted factorization lengths and multisets breaks new ground
in the three-generator setting.

This paper is structured as follows. We first consider examples and applications in Section 2,
after which we move into the proof of Theorem 1 in Section 3.

2. Examples and applications

Throughout this section, we consider pairs of vectors m = (m;, m,, m3) € Z* and n = (ny,n,n3) €
Z3>0 which satisfy the conditions of Theorem 1. In each such context we define S = (n;, np, n3),
A(X) = myx; + max; + msx;,
and
Alln] = {A(x) : x € Zs(n) }.
as in the statement of Theorem 1. We also define
Z(m,n) = {x € Zg(n) : A(x) = m}. (2)

Our first application of Theorem 1 is to swiftly obtain general weighted versions of the main
results of [17], in which the asymptotic mean, median, and mode (unweighted) factorization
lengths are computed for three-generator numerical semigroups. In what follows, f ~ ¢ means

that lim, . f(n)/g(n) = 1.

Example 3. Let S = (n1, 5, n3), in which ged(ny,n,n3) = 1. Apply Theorem 1 with o« = 2 and
B = ’;’—11 and obtain [27, Theorem 3.9]:

1’!2

Aln] = [Zs(n)| ~

(4)

21’!11’127[3 '
For o < f§, Theorem 1 and (4) ensure that

Aol [

AL F(x)dx

o

as n — oo. Since the support of F is [J2, 7] and its peak is at 7, we have
m m m
Min Afn] ~ —n, Mode Aln] ~ —n, and Max Aln] ~ —n.
n3 ) 1y

ms

Symbolic integration and computer algebra reveals the unique y € [7*, 7] such that |7 F(t)dt =
1. This yields the asymptotic median:

1 1
L by L A R R e (A Y
ns 2 np ns np ns np 2 np ns
m 1/m m m m m 1/m m
mo_ Lm me\ (m ma\ e ma 1 (m ma
n 2 ny ns n ny ny 2 n ns

Median Afn] ~n -
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Consider the absolutely continuous probability measure v defined by

f
(e ) = j F(x) dx

for « < . Define the singular probability measures

1
= Outx),
= g 2 O

X€Zs(n)

in which J, is the unit point measure at x € R. Use (4) to deduce that

lim v,([o, f]) = lim [AL#] O [on, pr] = Jﬁ F(x)dx = v([o, ff]).

n—oo n—oo ‘Zs(n)‘ o

If g : R — R is bounded and continuous, then [9, Theorem 25.8] ensures that

m |A Z ( ) = lim JRgdvn = J]Rg(x)F(x) dx.

XEZ

The integral on the right-hand side can be evaluated explicitly for g(x) = x and g(x) = x*. From
here one obtains the asymptotic mean and variance of A[n]:

Mean Afn] ~ g<ﬂ+@+@>,

ny n; ns

noony mny mm n3n;

Var Afn] ~ —

2 2
m1 my  my  mymp  mpmz  msmy
18

Asymptotic formulas for the higher moments, skewness, harmonic mean, and geometric mean,
follow in a similar manner; see [16, Section 2.1] for definitions. For m; = m, = m3 =1, we
obtain the asymptotic formulas for factorization-length statistics obtained in [17]. Thus, Theorem
1 recaptures the results of [17], generalizes them to the weighted setting, and provides explicit
error bounds in some instances.

Example 5. In [16, Table 1, Figure 2], a special case of Theorem 1 was illustrated for factoriza-
tion lengths in the McNugget semigroup S = (6,9,20). Here we explore a different weighted fac-
torization length on S. Table 1 gives the actual and predicted values of several statistics pertaining
to A[n] for m = (4,7,2), n = (9,20,6), and n = 10°. The components of m and n are ordered
to comply with Theorem 1; in particular 4/9 > 7/20 > 2/6. If one charges $2 for a box of 6
McNuggets, $4 for 9 McNuggets, and $7 for 20 McNuggets, then A[n] is the multiset of prices
corresponding to all the ways to fill an order of n McNuggets.

The next example illustrates another use of Theorem 1.

Example 6. Let S = (6,9,20) as in the previous example. We now let n=(1,1,1) and m =
(20,9,6). Then |A[n] N [an, fn]| is the number of possible orders of n boxes of McNuggets that
contain between an and fn McNuggets. For example, when n =100, « =38, and # =15, we have
|A[100] N [800, 1500]| = 3785; that is, there are 3785 ways to order between 800 and 1500
McNuggets using 100 boxes. Table 2 illustrates predictions and error bounds afforded by
Theorem 1 and (30).

% versus 7 (in blue) overlaid with F(x) versus x

(in red). These make sense to plot together because Lemma 18 and Equation (22) imply that
|Z(myn)|
dn/(2nnyns)

In the following examples, we plot

is within 22 of F (3). Since |Z(m,n)| gives the multiplicity of m in A[n], we refer
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Table 1. Actual versus predicted statistics (rounded to two decimal places) for A[10°T] with n = (9,20,6) and m = (4,7,2).

Statistic Actual Predicted Statistic Actual Predicted
Mean AL10°]] 37,591.84 37,592.59 Mode A[10°] 35,000 35,000

Median A[10°]] 37,200 37,200.89 StDev A[10°] 2446.32 2446.27
Min AL10°] 33,334 33,333.33 Max A[10°] 44,440 44,444 .44

Table 2. Error analysis (rounded to 6 decimal places) for m = (20,9,6) and n = (1,1,1).

n o B w j,ﬁ F(x) dx Error Theorem 1 bound Equation (30) bound
100 8 15 0.757 0.742424 0.014576 0.3812 0.151286
1000 8 15 0.743884 0.742424 0.001460 0.038012 0.015056
10000 8 15 0.742570 0.742424 0.000146 0.003800 0.001505

100 7 7.1 0.0058 0.005 0.0008 0.1052 0.01

1000 7 7.1 0.00509 0.005 0.00009 0.010412 0.000927
10,000 7 7.1 0.005009 0.005 0.000009 0.001040 0.000092

to this sort of plot as the scaled histogram of A[n]. These plots illustrate the convergence of the
distribution of A[n] to F(x).

Example 7. Figure 1 gives the scaled histograms of A[100] and A[1000] for m = (20,9,6)
andn=(1,1,1).

Example 8. Theorem 1 does not require m;, m,, ms3 to be positive. Figure 2 demonstrates the the-
orem when m; < 0.

Example 9. The error bound in Theorem 1 and the definition of the scaled histogram involve
the quantity d = ged(mans — msny, myns — myny, myn, — myn;). For d=1, the scaled histogram
of Afn] approximately coincides with the plot of F(x) at each point. For d # 1, Lemma 15 says
that there is a ¢ = ¢, such that Z(m, n) is empty unless m = ¢ (mod d). If Z(m, n) is nonempty,
Lemma 18 implies that its cardinality is d times larger than what we would expect for d=1. This
is accounted for in the definition of the scaled histogram so that d - 1 out of every d points of
the scaled histogram of A[n] are 0, but the remaining points approximately lie on the plot of
F(x); see Figure 3.

Example 10. The proof of Theorem 1 defines p, = myn3 — man, and p; = myn, — myn;. Although
these are denominators in the formula for F, we permit one of them to be 0. Figure 4 illustrates the
case n = (6,9,20) and m = (1,0,0), for which p, = 0. Here A(x) = x; is the number of 6s in the
factorization 6x; + 9x, + 30x3 = n. Since p; = 0, the “left side” of the triangle is degenerate.

Theorem 1 concerns large-n asymptotic behavior. On the other hand, Proposition 12 identifies
a curious exact phenomenon even for small n. We first illustrate this with an example.

Example 11. Let m; = (2,3,1), n; = (2,6,3), my, = (3,1,2), and m; = (3,2,6); note that n; and
n, generate the same semigroup. Figure 5 shows the scaled histograms of the multisets A [n] and
Ay [n] corresponding to my,n; and to my, n,, respectively. The histograms are the same up to a
horizontal translation. To be specific, there is an r, which depends only upon 5, such that the
multiplicity of x in A;[n] equals the multiplicity of x+r in A,[n]. In Figure 5, we have n=75
and r=2. Observe that the probability density F depends only upon m;/n;, my/n,, and ms/n,,
so Theorem 1 predicts the same asymptotic distribution for A;[n] and A,[n] because

m 2 m; 3 my 3 mh 1 my 1 mj 2

—=s=—=3z=1 —=-=—F=-, and —=-=-—F=—.
m 2 n 3 n, 6 n, 2 ns 3 n3; 6
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However, this only implies that A;[n] and A,[#] should appear similar for large n, not that they

should be translations of each other.

(a) n = 100

Figure 1. Scaled histograms of A[n] withn=(1,1,1) and m =

04

-2 -1 1 2 3 4

(a) n = 5000
Figure 2. Scaled histograms of Alln]
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(b) 7 = 50000
= (20,9,6).
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0.1
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(b) n = 50000

with m = (—9,20,6) and n = (4,5,3).

20
15
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5
0.52 0.54 0.56 0.58 0.60

.
.o
0.60

0.58

(a) n = 1000

(b) n = 30000

Figure 3. Scaled histograms of A[n] with n = (5,17,8) and m = (3,9,4); here d=2.

Proposition 12 says that two different weighted lengths on the same numerical semigroup yield
nearly the same (translated) statistical behavior. This is consistent with Theorem 1 since

{acabbC}
a’ b’ ¢

{a,b,c} = {ac, ib, bc}’
c a b

so the asymptotic distribution functions in the two cases are equal. The numerical semigroups in

Proposition 12 are called supersymmetric [10].

Proposition 12. Fix distinct, pairwise coprime a,b,c € Zq, and let m; = (b,a,¢), my = (a,¢,b),

and n = (ab, ac, bc). Define

T
Al = |:m1 :| S M2X3(Z) and A2

n'

nT2 € My,5(2),
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(a) n = 5000 (b) n = 50000
Figure 4. Scaled histograms of A[n] with n = (6,9,20) and m = (1,0,0).

04 0.5 0.6 0.7 0.8 0.9 1.0

(@ m; = (2,3,1), n; = (2,6,3) (b) my = (3,1,2) and n, = (3,2,6)

Figure 5. Different values of m and n can produce scaled histograms that are translations of each other. In the context of
Proposition 12, (a,b,¢) = (1,2,3).

along with

zl(m,n)z{xeziozAlx: [’:]} and zz(m,n):{xeziO:Azx: {’ﬂ}

For all n € Z>, there exists an r, € Z such that for all m € Z,

|Z1(m,n)| = |Z2(m + 1, 1))
Moreover, 1, = tyiap for all n € Z,.
Proof. Let S = (ab,ac,bc) and fix n € S. We can write n = qabc + r with r € S and r — abc & S.
By [18, Proposition 1, Theorem 12], we have |Zs(r)| = 1,

Zs(qabc) = {(z16,22b, 230) € Zy - 21 + 22 + 23 = q}

and

Zs(n) = Zs(qabc) + Zs(r).
For any z,25,23 € Z> with z; + 2z, + z3 = g, we have

(z16,22b, z3a) - my = z1bc + zpab + zzac = (z3¢,21b, z,a) - my,

which implies |Z,(m, gqabc)| = |Z,(m, qabc)| for all m € Z. Writing Zg(r) = {x}, linearity then
implies

Zi(m+ (my -x),n) = Z1(m,qabc) +x and Z(m+ (my - x),n) = Z,(m, qabc) + x
for all m € Z. This yields the desired claim upon letting r, = (m, — m,) - x. O
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3. Proof of Theorem 1

The proof of Theorem 1 is geometric: the limiting distribution arises from the projection of a
simplex with one vertex on each axis, with each vertical value in the distribution being the vol-
ume of a cross section. This yields a piecewise-polynomial function; the transition between each
polynomial piece occurs when the cross section contains a vertex. Making this general and pre-
cise, with explicit error bounds, adds to the complexity of the argument.

3.1. Setup

Let m = (my, my, m3), n = (ny,np, n3), and

[z % 2] [ e

ny Ny N3
The hypotheses on the ratios m;/n; imply that
py = mahy — many, p, = mnz —man;, and p; = miny — mon, (13)

are all non-negative, and moreover that p, > 0. Observe that
ms; m m, m
p1:0 —3:—2 and p3:0 <~ _2:_11
ns 12 n; ni
so at most one of p,, p; can be zero, since otherwise p, = 0 and m3/n; = my/ny, = my/n;. Treat
the corresponding interval 72, 52] or [72, 1] as degenerate in these cases. This also means that at
least two of the three inequalities in (13) are strict.

The one-dimensional subspace {m}* N {n}* of R® is spanned by

MmMyonsz — MmMshy P1
r=mxn= |mn —mmn; | = | —p, | €2Z°\{0}.
miny; — myny P3

By construction, Ar = 0. Define A(x) and A[n] as in the statement of Theorem 1 and note
that A(x) = m - x.

3.2. The sets Z(b) and Z(b)
We adjust the notation (2) to permit vector arguments: for b = (m, n) € Z2, let
Z(b) ={x€Zl,: Ax=b} = {x € Zs(n) : A(x) = m}. (14)
Similarly, define
Z(b) = {xe€Z’: Ax=Db}.

We may denote these as Z(m,n) and Z(m, n), respectively, as convenient. Both Z(b) and Z (b) may
be empty; the following lemma gives some crucial insight on when Z(b) is empty. Although the
lemma is a special case of [25, Theorem 3.2b], we provide another proof since the three-dimensional
setting permits the use of the cross product and geometric reasoning to simplify the argument.

Lemma 15. Let d = gcd(p;, p,, p3). For each n € Z, there is some ¢ € {0,1,...,d — 1} such that
Z(m,n) # Q if and only if m = ¢ (mod d).

Proof. The definition of d ensures that, p; =0 (mod d) for i=1,2,3. Thus,
min; = m;n; (mod d)

for i,j = 1,2,3. For any x = (x1,%,%3) € Z> and i € {1,2,3}, it follows that
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mi(nyx) + nyxy + n3x3) = ni(myx) + max; + msxs) (mod d);
that is,
m;(n-x) = n;(m - x) (mod d).

(=) Suppose there is an x € Z(m,n). Since gcd(ny,m,ns3) =1, Bézouts identity provides
ai,a3,a3 € Z such that a;n; + any + asnz = 1. Let ¢ denote the least nonnegative residue of
(aymy + aymy + azms)n modulo d. Then

m=m-X

= (a1n + ayny + aznz)(m - x)

(aymy + aymy + azm3)(n - x) (mod d)

(alml +aym; + a3m3)n (mod d)
¢ (mod d).

(«=) Since d = gcd(py, py, p3), Bézout's identity provides a v € Z> such that
r-v=(p, —pyps) v=d.
Let w = n x v and observe that
n-w=n-(nxv)=Mnxn)-v=0
and
m-w=m-(nxv)=(mxn) - v=r-v=d.

Fix n € Z. Since ged(ny, ny,n3) = 1, there is a z = (21,22, 23) € Z? such that n-z = n. Let s
m-z, so that z € Z(s,n). The first half of the proof ensures that s=c (mod d). If m
¢ (mod d), then d|(m — s) and hence

+m—s +m s +m—sd

m - VA —_— = m:Z —m - — _ X
7 w 7 w=s 7 m
Therefore,

z+$w€§<s+?d,n> =Z(m,n). O

Lemma 16. Let b € Z2. If z € Z(b), then Z(b) = {z+ st/d : s € Z} where d = gcd(p,, py, p3)-

Proof. Since Ar=0, we have A(z+sr/d)=b. Additionally, r/d € Z> because d=
ged(pys py» p3). Therefore, {z + sr/d : s € Z} C Z(b). Suppose that x € Z(b). Then A(x —z) =
Ax —Az=0, so x—z=sr/d for some s € R. Then sr/d =x—z € Z’, and hence s Z
because ged(p;, py> p3) = d. Thus, Z(b) C {z +sr/d : s € Z}.

3.3. Some geometry
Fory = (y1,72) € R?, let £(y) denote the length of the line segment
L(y)={xeRy,: Ax =y}

if it is nonempty; let ¢(y) = 0 otherwise. On occasion, we may write L(y1,y,) and £(y1,y2)
instead. The line £(y) is contained in the plane {x € R’ : n - x = y,} which, owing to the positiv-
ity of the components of n, has compact intersection with R2. Thus, /(y) is finite. Observe that
for n € Z,~o, -
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née 1) = 0(x, n). (17)
Lemma 18. Let d = ged(p,, p,» p;) and b € Z2. If Z(b) # O, then
dib) 1 < |Zb)] < adL) + 1.
I g

Proof. Suppose that Z(b) # @. Then Lemma 16 provides a z € Z° such that
Zb)=Zi n{z+sr/d:seZ}.
Define
a=inf{scR:z+sr/dec Ry} and b=sup{scR:z+sr/dc R}
Then z + st/d € ]R320 if and only if s € [g, b]. Consequently,
|2(b)] = |la,] N Z| = [b] — [a] + 1.

Since
b—1<|b/<b and —a—-1<—[a] < —q,
it follows that
b—a—-1<|Zb)|<b-a+1. (19)
The length of £(b) is
£4b) = 12+ be/d) — 2+ ax/d)| = =2 e,
Substitute b — a = d¢(b)/||r|| in (19) and obtain the desired inequalities. O

3.4. The triangle emerges

Recall that f : I — R is Lipschitz on a (possibly infinite) interval I with Lipschitz constant C if
If(x) = f(y)| < Clx — y| for all x,y € I.

Lemma 20. Suppose that p;,p; # 0. For t € R,

. ms
0 if t<—,
if n
t_
mt—myems
r n n
ot 1) _ Il , ’ ?
pr | momt om_ m
P3 mT T om
. my
0 > —.
if "

is a “triangular” function of t with base [1*, ], peak at t =72, and height

ny’
4@,1) el
%) n20,
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Furthermore, £(t,1) is Lipschitz with Lipschitz constant
[l hs M
—max { —, — 5.
P2 Pr Ps3
Proof. If it is nonempty, the line segment £(t,1) lies in R2; its endpoints each lie on one of the

coordinate planes. Solve the corresponding equations and obtain the points of intersection with
the three coordinate planes:

e p,() 11(0, n3t — m3, my — nyt), hence p,(t) € ]R;O = tez

1\ =p
e p,(t) = p,'(nst — m3,0,m; — nyt), hence p,(t) € ]R3>0 = tc ['"3 my,
3\l)=p

o ps(t) = p3'(mat — my,my — mt,0), hence p,(t) € Ry, <=t € [22, 1],

ny 4 ny
since p;, p,, p3 > 0. In particular, if p, =0 or p; =0, then £(#,1) does not meet the correspond-
ing coordinate plane in ]R o (recall that p, > 0).

For t <2 or t > 71, we have £(t,1) = 0. For t € 22, 2|, we see that L(t,1) is the line seg-

ny > my
ment from p,(t) to pz( ). A computation confirms that

(1) = llpy(6) = o0l = =2 .

For t € [72, 1], we see that £(t,1) is the line segment from pz(t) to p,(¢), so

(1) = [[py(t) — py(0)]| = 2 ”‘t||||

via another computation. This yields the desired piecewise-linear formula for ¢(¢,1). An admissible
Lipschitz constant is the maximum of the slopes of £(¢,1) on [%2, ®2] and [*2, "], so long as the corre-

n3’ ny ny > m

sponding interval is nondegenerate. Elementary computations confirm the remainder of the lemma. O

Remark 21. If p; =0 or p; = 0 (the conditions are mutually exclusive), then the corresponding
interval in the definition of ¢(#,1) and term in the maximum above are omitted. Moreover, £(t,1)

is Lipschitz on [}, 00) or (—o0, 3], respectively.

Lemma 20 states that £(x,1) is a triangular function with base [J2, 7] and height -, H . Since
the base width is
my M3 nhis —mims P,
ny ns nins 111}’13

the area of the triangle is

el el

1
Jf(x,l) dx =~ 12 = .
R 2 mnz mpp, 2nnyn;3

In particular,

F(t) = 21’[11’121’13 (22)

is the probability density from Theorem 1.

3.5. A technical lemma

The next lemma permits us to approximate a discrete sum by an integral with a completely expli-
cit error estimate.
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Lemma 23. Suppose that

(a) g:R — R satisfies |g(x)| < C; for x € R;
(b) g is Lipschitz on some closed interval I with Lipschitz constant C,;

() mncdeZsyand c<d;
(d) f:Z — Z satisfies
kd
‘f(c—f— kd)/d — ng(%) ’ <1

for k € Z; and
(e) f(x) = 0 for x # ¢ (mod d).
Then for real o. < 8 such that [0, f] C I,

(5_ a+27d)(1 +dGCy) +d(5C; +7)

n

<

p
LS sk - Lg<x> dx

kezZn[on, fn)

Proof. Since the proof is somewhat long, we break it up into several pieces.
An auxiliary function. Let G(x) = 5f(c + [nx/d|d). Then

fn—c pn—c

diaraunl B+
J ' G(x) dx:J ‘ éG<éu)du

e P AR

P+
:J ~ fle+ [u]d)du

()} (24)

For k € Z, condition (d) ensures that

n? n

’G(kd/n) _g(c+kd)‘ _ Zf(c+ {”I;ZJ d) _g(c+kd>

flc+kd)/d — n{%#)

n
<L (25)
n
We also need a bound afforded by (a) and (d):
G(;c) _ f(c+ [nx/d]d)| < l+ ’g(c—i— Lnx/djd)’ <c +l. 26)
n dn n n n

A Lipschitz estimate. Observe that G(x) = G(|nx/d|d/n) and
—d < c—i—nx—d_x o ot Lnx/djd_x o ctnx

n n n n

S I
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If x and (c + |nx/d]d)/n are both in I, condition (b) and (25) imply that
G(x) G(|nx/d|d/n) g(c + |nx/d) d) ‘
2

— <
D] < [A1 ”

(c+ Lr;x/djd) B

+le )

Sl—i—dCZ.
n

27)

A containment. We claim x and (¢ + [nx/d|d)/n belong to [«, f] C I whenever

e << 2]

Suppose that the inequality above holds. Then

d(om—c ) d—c
x> - +1) =0+ > o
n d

and

Next observe that

c+ [Bxjd €T E(Z[%JFIDJ”I c+ [%+1Wd>c+om—c+d>a
n n n - n -

and

o lpatd e [AFD)]E_coitrid_copoc_

n - n n n

This completes the proof of the claim.
An observation. Since

é{ﬁn—CJ _il[om—c+l—‘ <p_C (oc+d_c> :[)’—oc—ii
n d n d n n n

and

we conclude that
d

n

VM_CJ_grm_c_kl—‘.gmax{ﬁ—“—é’O‘_ﬁ—"z_d}' (28)
d | n " !

Small intervals. Consider the intervals [u, dfan—c 1]} and {g |fne), ﬁ} . Since

d
d—c dfon—c
0< =— ] +1)—ua

n n
El[om—c_’_l“ —cx<é<om_c+2>—cx
n d n d

_2d—c

>

IN

n
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the first interval is nonempty with length at most — ¢)/n. Similarly,

(2d
c pn — d|fn—c
0<%~ 7( a )Sﬁ‘ﬂTJ
<ﬁ_c_l<ﬁn—c_1>_c+d’

n

so the second interval has length at most (c + d)/n. In summary,

0<g[°‘"d_c+ﬂ—a<2d;c and o<ﬁ——{ﬁ”d_CJ<C:d. (29)

Conclusion. We conclude that

o 2 s [ato

kezZnlon, pn]

gl p
= L ‘ G(f) dx—J g(x) dx by (24)
d m W n o
dirassile 40 6
- j () dx+J AW
faq) 1 fageyn) 1
) g B
+J . ’Ex) dx —J g(x) dx
45
] Al
< [TTTCW] g [TTTCW)] g
dran- n? d) n?
Al 4%
d|fre G B
‘ (;C) dx—J g(x) dx
%[?Jrl.\ n o
5 Gk aleger]
< J < (2) —g(x)) dx —j g(x) dx
dfamc 1] n o
b 2d 1
— d. —({C+- by (26
Jy o 00 3 (ci+3) y (26)
1 |G(x) dfazrei]
S| R
draeiq)] 1 o
b 2d 1
+ lgx)| dx+— | Ci +—
e n 7
d|pn—c d|an—c 1+dC2>
< |- —— 1 by (27
T |n L d J n [ d + H( n ¥ (27)
2d — 2 1
L 24=9G e+ d)C | 2d (Cl +—) by (a), (29)
n n n n
d 2d| (1+d
§max{ﬁ—a——,a—ﬂ+—}( + C2> by (28)
n n n

3dC, 2d
R Che)
n n

< (ﬁa+7d)(1+dcz)+d(5cl+%)'

- n
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3.6. A simplification
If x = (x1,%2,x3) and A(x) € A[n], then
m m m
A(X) = mix; + mpx; + msxz = —1n1x1 + —2n2x2 + —3n3x3
n Ny ns3

ms ms
>—(nx) + mpxp + n3x3) = —n.
ns ns

Thus, A[n] N [~oo, 72n] = 0 and, in a similar manner, A[n] N[5 7, o0] = 0. Since F is supported

3
on [72, ], we may assume that [o, f] € [2, J]. In particular, we can assume that the function

ny > m

£(x, 13 of Lemma 20 is Lipschitz on [o, f5].

3.7. Conclusion

We now conclude the proof of Theorem 1. Fix n € Z>, and let

f(m) =|Z(m,n)| = {x € Zs(n) : A(x) = m} and g(x) =

Let d = gcd(py, p,p3) and deduce from (17) and Lemmas 15 and 18 that there is a c€
{0,1,...,d — 1} such that

W_ ng(chkd)‘ 1Z(c + kd, n)| ”£<

|Z(c+kd,n)|  £(c+ kd,n)
d el

<1

for all k € Z; moreover, f(x) = 0 if x # ¢ (mod d).
Suppose that p;, p; # 0. Apply Lemma 23 to the functions f and g and the parameters ¢, d, n
defined above, and to the constants

1 1
C = and C, = —max {E, ﬂ}
n2p, P2 P1 P3
provided by Lemma 20:
. 5 B—o+2)(1+dC,) +d(5C; +2)
DY f(m)—jg<x>dxg( ) - .

meZN|on, fn)

Since

Y f(m)=|Aln] N [on, ]

meZN|an, fin]
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and p,, p,, p53 > 1, it follows that

'mnn]} 0 [om, ]| J” 1) dx'

2

x|l
2d 2
(ﬁ—a+—>(1+dC2)+d<5C1+_>
< n n
- n
<ﬁa+2—d) 1+imax{ﬁ,ﬂ} d( > +z>
n P> P1 P3 mp, n
B n

ny n

(ﬁ— oc+27d>(1 + dmax {n;,n3}) +d<i+g>

<

(30)
n

To complete the proof of Theorem 1 in this case, multiply by 2n;n,n;5 and use (22). If p; =0
or p; =0, the corresponding term in the maximum in (30) is omitted by virtue of Remark 21
and the restriction of [, ff] in Section 3.6. O

Remark 31. The bound implied by (30) is better, but more complicated, than the bound in
Theorem 1. The two bounds are compared in Table 2.
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