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ABSTRACT
Unsupervised domain adaptation has been successfully applied

across multiple high-impact applications, since it improves the gen-

eralization performance of a learning algorithm when the source

and target domains are related. However, the adversarial vulner-

ability of domain adaptation models has largely been neglected.

Most existing unsupervised domain adaptation algorithms might be

easily fooled by an adversary, resulting in deteriorated prediction

performance on the target domain, when transferring the knowl-

edge from a maliciously manipulated source domain.

To demonstrate the adversarial vulnerability of existing domain

adaptation techniques, in this paper, we propose a generic data

poisoning attack framework named I2Attack for domain adapta-

tion with the following properties: (1) perceptibly unnoticeable: all
the poisoned inputs are natural-looking; (2) adversarially indirect:
only source examples are maliciously manipulated; (3) algorithmi-
cally invisible: both source classification error and marginal domain

discrepancy between source and target domains will not increase.

Specifically, it aims to degrade the overall prediction performance

on the target domain by maximizing the label-informed domain

discrepancy over both input feature space and class-label space be-

tween source and target domains. Within this framework, a family

of practical poisoning attacks are presented to fool the existing do-

main adaptation algorithms associated with different discrepancy

measures. Extensive experiments on various domain adaptation

benchmarks confirm the effectiveness and computational efficiency

of our proposed I2Attack framework.

CCS CONCEPTS
• Theory of computation→ Adversarial learning; • Comput-
ing methodologies→ Transfer learning.
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(a) Images on Office-31 (c) Attack on DANN

(b) Attack on DANTransfer

Figure 1: Illustration of indirect invisible poisoning attacks
on DAN [16] and DANN [7] adapting from labeled source do-
main (i.e., Webcam on Office-31) to unlabeled target domain
(i.e., DSLR on Office-31)

1 INTRODUCTION
Unsupervised domain adaptation [21] has been successfully ap-

plied across many high-impact applications when the source and

the target domains follow similar data distributions. It improves

the generalization performance of a learning algorithm under mild

assumptions, e.g., the covariate shift assumption [14]. Specifically,

conventional domain adaptation theory [1, 18] shows that the clas-

sification error on the target domain could be bounded in terms of

source classification error and marginal domain discrepancy. This

has motivated a line of practical unsupervised domain adaptation

algorithms [7, 26] with the objective of minimizing the source clas-

sification error and empirical marginal discrepancy across domains

(see Subsection 3.2 for a unified view of domain adaptation).

Nevertheless, very little (if any) effort has been devoted to ex-

ploring the adversarial vulnerability of existing domain adaptation

algorithms [7, 16, 33], especially in the cases where (1) source data

is usually publicly available for any potential adversary [2, 32]; (2)

recent work [35] argued that under mild conditions, exact mar-

ginal distribution matching across domains might lead to negative

transfer [30] with undesirable predictive performance on the target

domain.

To demonstrate the adversarial vulnerability of existing domain

adaptation algorithms [7, 16, 27, 33], in this paper we propose a

generic indirect invisible poisoning framework named I2Attack
for generating the poisoned source data such that existing domain

adaptation algorithms could be easily fooled when predicting the

target examples. Figure 1 provides an example to show the impact

of poisoned source examples learned by our I2Attack framework

on unsupervised domain adaptation algorithms, e.g., DAN [16] and

DANN [7]. It is observed that the classification performance on
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the target domain deteriorates dramatically without degrading the

overall source classification error and empirical marginal domain

discrepancy (e.g., multi-kernel maximum mean discrepancy [12] in

DAN andH -divergence [1] in DANN). It is worth noting that the

empirical domain discrepancy becomes even smaller with poisoned

source examples, which implies that the marginal distribution of

source and target domains can be better matched after poisoning

the source domain.

In particular, wewould like to point out that the following proper-

ties of our I2Attack framework would make the poisoning attacks

more destructive in real scenarios. (P1) Perceptibly unnoticeable:
all the poisoned inputs are perceptibly indistinguishable from real

inputs by adding the carefully chosen adversarial noise [11]. (P2)
Adversarially indirect: only the source domain is maliciously

manipulated because source data tends to be publicly available to

the adversary in real scenarios; (P3) Algorithmically invisible:
the loss terms of a domain adaptation algorithm (e.g., source clas-

sification error and marginal discrepancy across domains) under

I2Attack would not increase significantly compared to learning

from the clean source and target data, thus making the adversarial

attacks difficult to notice during model training.

The most similar line of work is the adversarial robustness on

fine-tuning based transfer learning algorithms [22, 25, 29, 34]. How-

ever, our problem setting fundamentally differs from them in the

following aspects. (1) We study the unsupervised domain adapta-

tion without labeled training examples from the target domain,

while previous works require some labeled target examples for fine-

tuning during model training; (2) We aim to explore the adversarial

vulnerability with poisoning attacks by manipulating the source

training examples in the training phase, whereas previous ones

focus on performing the evasion attacks by generating adversarial

examples for a pre-trained model in the test phase; (3) We constrain

our attacks to be indirect and invisible, whereas this is not taken

into consideration in previous works. The main contributions of

this paper are summarized as follows:

• We formulate a novel indirect invisible poisoning attack prob-

lem for analyzing the adversarial vulnerability of existing

unsupervised domain adaptation algorithms.

• A generic framework I2Attack is proposed for degrading

the overall performance on the target domain, followed by a

family of instantiated poisoning attack algorithms.

• Extensive experiments on publicly accessible domain adap-

tation benchmarks demonstrate the effectiveness and effi-

ciency of our proposed I2Attack1 framework.

The rest of the paper is organized as follows. We review the

related work in Section 2. In Section 3, we present our problem

definition on the adversarial vulnerability of domain adaptation.

We propose a generic indirect invisible poisoning attack framework

I2Attack in Section 4, followed by a family of instantiated poison-

ing attacks in Section 5. The experiments are provided in Section 6.

Finally, we conclude the paper in Section 7.

2 RELATED WORK
In this section, we briefly introduce the related work on adversarial

machine learning and domain adaptation.

1
The source code is available at: https://github.com/jwu4sml/I2Attack.

2.1 Adversarial Machine Learning
It has been observed that modern neural network models can be

easily fooled by the adversarial examples that are perceptibly indis-

tinguishable with respect to the clean inputs [11]. The adversarial

robustness of machine learning models [3, 15, 24] has been ex-

plored with the assumption that training and test data follow the

same distribution. In particular, poisoning adversarial attacks aim

to manipulate the training process by injecting carefully crafted

examples, with the goals of either reducing the overall predictive

performance of a learning algorithm [2, 19] or controlling the model

behavior on some specific test examples without degrading the over-

all predictive performance [23, 40]. However, our problem setting is

fundamentally different in the following aspects: (1) our poisoning

attacks are explored under the distribution shift across domains; (2)

the goal of our poisoning attacks is to degrade the overall predictive

performance for test examples (from the target domain) without

affecting the training process (e.g., training loss).

2.2 Domain Adaptation
Unsupervised domain adaptation [4, 21, 38] aims to improve the

predictive performance on the target domain with only unlabeled

training examples by transferring the knowledge from a related

source domain with adequate labeled training examples. The do-

main adaptation theory [1, 18, 33] argues that the target error is

bounded in terms of source error and discrepancy across domains.

This has motivated a line of practical algorithms [7, 17, 26, 28] by

minimizing the marginal domain discrepancy and source classifi-

cation error. However, recent work [35] demonstrated that exact

marginal distribution matching across domains might lead to nega-

tive transfer with undesirable performance on the target domain.

This might allow the adversary to fool the existing unsupervised do-

main adaptation algorithms by maliciously manipulating the source

data. A similar line of work to us is the adversarial robustness of

fine-tuning based transfer learning [22, 25, 29, 34] with adequate

labeled source examples and limited labeled target examples. To

the best of our knowledge, this is the first work aiming at studying

the adversarial vulnerability of unsupervised domain adaptation

with no labeled training examples from the target domain.

3 PRELIMINARIES
In this section, we derive a unified view of unsupervised domain

adaptation, followed by our problem definition on data poisoning

attacks to domain adaptation.

3.1 Notation
Let X and Y denote the input feature space and output label space.

We denote Q, P to be the source and target domains associated with

data distributions Q𝑋𝑌 , P𝑋𝑌 over X ×Y, respectively. The source
and target marginal distributions over X are denoted as Q𝑋 and

P𝑋 , respectively. We let 𝑙Q and 𝑙P denote the labeling functions

of the source and target domains. In this paper, we consider the

unsupervised domain adaptation setting where there are 𝑛𝑠 labeled

training examples {(𝑥𝑠
𝑖
, 𝑦𝑠

𝑖
)}𝑛𝑠

𝑖=1
from the source domain and 𝑛𝑡

unlabeled training examples {𝑥𝑡
𝑗
}𝑛𝑡
𝑗=1

from the target domain. Let

H be the hypothesis class on X where a hypothesis is a function

ℎ : X → Y. 𝐿(·, ·) is the loss function such that 𝐿 : R×R→ R. The
distribution shift between the source and target domains can be

https://github.com/jwu4sml/I2Attack


measured by the domain discrepancy 𝑑 (·, ·), e.g.,H -divergence [1],

discrepancy distance [18], etc.

3.2 A Unified View of Domain Adaptation
Unsupervised domain adaptation [21] refers to the knowledge trans-

fer from the source domain with adequate labeled training data

to the target domain with no labeled training data. The following

theorem [1] argued that under the covariate shift assumption (i.e.,

𝑙Q (𝑥) = 𝑙P (𝑥) for any 𝑥 ∈ 𝑋 ), the target error is bounded by the

expected source error and marginal domain discrepancy between

source and target domains.

Theorem 3.1. LetH be the hypothesis space and 𝜖𝑠 (ℎ), 𝜖𝑡 (ℎ) be
the expected classification error of a hypothesis ℎ ∈ H on the source
and target domains, respectively. Then for any hypothesis ℎ ∈ H ,

𝜖𝑡 (ℎ) ≤ 𝜖𝑠 (ℎ) + 𝑑1 (Q𝑋 , P𝑋 )
+min

{
E𝑥∼Q𝑋

[��𝑙Q (𝑥) − 𝑙P (𝑥)��] ,E𝑥∼P𝑋 [��𝑙Q (𝑥) − 𝑙P (𝑥)��] }
where 𝜖𝑠 (ℎ) = E(𝑥,𝑦)∼𝑄 [𝐿(ℎ(𝑥), 𝑦)] and𝑑1 (Q𝑋 , P𝑋 ) is the variation
divergence between source and target domains2.

Remark. It is observed that the variation divergence 𝑑1 (Q𝑋 , P𝑋 )
has the following limitations [1, 18]: (1) it cannot be accurately es-
timated from finite samples; (2) it provides the relatively loose error
bound when considering all the measurable subsets in the feature
space. To address these problems, various domain discrepancy mea-
sures have been proposed, includingH -divergence [1, 7], discrepancy
distance [18], Maximum Mean Discrepancy (MMD) [16, 17], Wasser-
stein distance [26], covariances distance [27], Margin Disparity Dis-
crepancy (MDD) [33], etc.

Following Theorem 3.1, we provide a simple unified view of

unsupervised domain adaptation as follows.

min

𝜃,𝜙

1

𝑛𝑠

𝑛𝑠∑
𝑖=1

𝐿

(
ℎ𝜙

(
𝑓𝜃 (𝑥𝑠𝑖 )

)
, 𝑦𝑠𝑖

)
+ 𝑑 (Q𝑋 , P𝑋 ;𝜃 ) (1)

where 𝑓𝜃 (·) is the feature extractor function parameterized by 𝜃

and ℎ𝜙 (·) is the classifier function parameterized by 𝜙 , and 𝑑 (·, ·;𝜃 )
denotes a generic hypothesis-dependent domain discrepancy mea-

sured in the feature space. It aims to empirically minimize the upper

error bound in Theorem 3.1 associated with the classification er-

ror on the source domain and the marginal domain discrepancy

across domains, under the strong assumption that both domains

share the same labeling function. Many popular domain adaptation

algorithms could be fitted into the objective function in Eq. (1), e.g.,

CORAL [27, 28], DAN [16], DANN [7], MDD [33], etc.

3.3 Problem Definition
Formally, our problem setting could be defined as follows.

Definition 3.2. Given a source domain with labeled examples
{(𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑛𝑠

𝑖=1
and a target domain with unlabeled examples {𝑥𝑡

𝑗
}𝑛𝑡
𝑗=1

,
the indirect and invisible data poisoning attack aims to degrade
the overall classification performance of a domain adaptation algo-
rithm on the target domain, and meanwhile, it satisfies the following
three conditions: (i) imperceptible: poisoned inputs are perceptibly
indistinguishable from real inputs; (ii) indirect: only source domain
2𝑑1 (Q𝑋 , P𝑋 ) = 2 sup𝐵∈B |Q𝑋 [𝐵 ] − P𝑋 [𝐵 ] | where B is the set of measurable sub-

sets under Q𝑋 and P𝑋 .

Poison

Poison

Clean examples Clean + Poisoned examples
(Feature perturbation)

Poisoned decision boundary

Source:                                 Poisoned Source:                             Target:

(a) Feature perturbation

Clean examples Clean + Poisoned examples
(Label flipping)

Poisoned decision boundary

Source:                                 Poisoned Source:                             Target:

Poison

Poison

(b) Label flipping

Figure 2: Two examples of poisoning attacks on unsuper-
vised domain adaptation where the decision boundary of a
learning algorithm becomes much worse after perturbing
raw features or flipping class-labels on source examples

examples are manipulated; (iii) invisible: both source classification
error and marginal domain discrepancy will not increase.

As shown in Figure 2, we provide two motivating scenarios to

explain how existing unsupervised domain adaptation algorithms

could be attacked: (i) perturb the source examples only by adding

the adversarial noise to their raw feature (see Figure 3(a)); (ii) care-

fully flip the labels of some source examples (see Figure 3(b)). Notice

that both of them focus on manipulating the source examples only

(indirect attacks) while preserving the discrimination of source

examples and marginal domain discrepancy across domains (invis-
ible attacks). In this paper, we will focus on the first scenario on

adding the adversarial noise to raw inputs, and leave the analysis

of the second scenario regarding label flipping as our future work
3
.

4 A GENERIC FRAMEWORK
We have derived a unified view of unsupervised domain adaptation

(see Eq. (1)) based on domain adaptation theory [1]. The intuition

is that it would learn a common feature space such that source and

target distributions could be well matched and source examples are

class-separable in the feature space. However, the exact matching

of marginal data distribution across domains might lead to negative

transfer with undesirable performance on the target domain [35].

This motivates us to develop the data poisoning attacks on exist-

ing unsupervised domain adaptation algorithms by maliciously

manipulating the relatedness between source and target domains.

4.1 Overall Goal
The overall goal of our poisoning attacks is to inject the adversarial

noise into the source data in the training phase such that the over-

all prediction performance of most existing unsupervised domain

3
Note that label flipping is also powerful for generating poisoned source examples,

but much more challenging due to discrete representations of data class-labels.



adaptation algorithms [7, 16, 27, 33] on the target domain could

be largely deteriorated. Conventional poisoning attacks [2, 19] on

single-domain classification could be applied to degrade the domain

adaptation performance by enforcing the source examples to be

non-separable in the feature space. But in this case, the training

loss (e.g., source classification error) would significantly increase,

and thus such attacks can be easily noticed in the training phase.

To solve this problem, we develop the indirect and invisible

poisoning attacks such that both source classification error and

marginal domain discrepancy across domains would not increase

significantly duringmodel training. In our work, we assume that the

adversary has the full knowledge about the source training data and

the learning algorithm (e.g., model architecture, hyper-parameters,

etc.) for domain adaptation. The adversary might have either full or

no knowledge of unlabeled training data from the target domain
4
.

Besides, in order to enforce the adversarial attacks to be perceptibly

unnoticeable, it requires to produce the poisoned example 𝑥 with

respect to the input 𝑥 under a reasonable perturbation constraint

Ω(𝑥), i.e., 𝑥 ∈ Ω(𝑥). In this paper, we will consider the commonly

used constraint Ω(𝑥) := {𝑥 | | |𝑥 − 𝑥 | |∞ ≤ 𝜖} for a perturbation

magnitude 𝜖 in image classification [11].

4.2 I2Attack
In this paper, we propose a generic indirect and invisible poison-

ing attack framework named I2Attack on unsupervised domain

adaptation. For notation brevity, we denote 𝑋𝑠 = {𝑥𝑠
𝑖
}𝑛𝑠
𝑖=1

be the

raw source examples associated with class labels 𝑌𝑠 = {𝑦𝑠𝑖 }
𝑛𝑠
𝑖=1

, and

𝑋𝑠 = {𝑥𝑠
𝑖
}𝑛𝑠
𝑖=1

be the poisoned source examples (associated with

unchanged class labels 𝑌𝑠 = {𝑦𝑠
𝑖
}𝑛𝑠
𝑖=1

). The overall objective func-

tion could be mathematically formulated as the following bi-level

optimization problem:

max

𝑋̂𝑠

O(𝑋𝑠 , 𝑋𝑠 , 𝑌𝑠 ;𝜃∗, 𝜙∗)

s.t., 𝜃∗, 𝜙∗ = argmin

𝜃,𝜙
𝐿

(
ℎ𝜙

(
𝑓𝜃 (𝑋𝑠 )

)
, 𝑌𝑠

)
+ 𝑑

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
s.t., 𝑑 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) ≤ 𝛿1

s.t., 𝐿

(
ℎ𝜙∗

(
𝑓𝜃 ∗ (𝑋𝑠 )

)
, 𝑌𝑠

)
≤ 𝛿2

s.t., 𝑋𝑠 ∈ Ω(𝑋𝑠 ) (2)

where𝑑

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
is the domain discrepancy across domains

in the feature space learned by 𝑓𝜃 (·). O(·) is the attacking func-

tion (see Subsection 4.3) for learning the poisoned source examples.

Here 𝛿1 ≥ 0 constraints the marginal domain discrepancy between

poisoned source domain and clean source domain, and 𝛿2 ≥ 0 con-

straints the classification error on the poisoned source domain. In

this case, the adversary poisons the source data under the follow-

ing conditions: (i) the model parameters 𝜃 and 𝜙 are optimal with

respect to the poisoned source domain and raw target domain; (ii)

the last three constraints guarantee that the poisoning attacks are

perceptibly unnoticeable and algorithmically invisible.

If the discrepancy measure 𝑑 (·, ·) satisfies the triangle inequal-
ity property, it holds that 𝑑 (𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )) ≤ 𝑑 (𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑠 )) +
4
Note that when the adversary has no knowledge of target domain, it might require an

auxiliary target domain for generating the poisoned source data (see Subsection 5.2 for

model analysis and Subsection 6.3 for empirical evaluation of I2Attack framework).

𝑑 (𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )) ≤ 𝛿1 + 𝑑 (𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )). That is, the minimiza-

tion of 𝑑 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) on the source domain encourages the

poisoning attacks to preserve the marginal domain discrepancy

between source and target domains. Therefore, the constraints

𝑑 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) ≤ 𝛿1 and 𝐿(ℎ𝜙∗ (𝑓𝜃 ∗ (𝑋𝑠 )), 𝑌𝑠 ) ≤ 𝛿2 ensure that

the source classification error and domain discrepancy will not be

significantly affected, thus leading to the algorithmically invisible

adversarial attacks.

4.3 Attacking Function
It is observed that minimizing the marginal data distribution and

source classification error in unsupervised domain adaptation algo-

rithms could lead to negative transfer with undesirable predictive

performance on the target domain [35]. Moreover, the following

theorem shows that for any target domain, there exists a source do-

main satisfying that it is class-separable and has identical marginal

data distribution with the target domain over the input space X,
such that the target error of the optimal hypothesis ℎ ∈ H is large.

Theorem 4.1. Let 𝜖𝑠 and 𝜖𝑡 denote the expected source and target
classification error. Given any class-separable target domain P, there
exist at least one source domain Q and ℎ ∈ H satisfying 𝜖𝑠 (ℎ) = 0

and 𝑑 (Q𝑋 , P𝑋 ) = 0, such that the target classification error 𝜖𝑡 (ℎ) = 1.

Furthermore, the following corollary provides the insight into

designing the source domain for maximizing the target error while

minimizing the source error and marginal domain discrepancy.

Corollary 4.2. Let 𝜖𝑠 and 𝜖𝑡 denote the expected source and
target classification error. For any class-separable target domain P,
there exists a source domain Q and ℎ ∈ H such that 𝜖𝑠 (ℎ) = 0,
𝑑 (Q𝑋 , P𝑋 ) = 0 and 𝜖𝑡 (ℎ) = 1 if it satisfies one of the following
conditions: (i) Q𝑋𝑌 (𝑥,𝑦 = 𝑖) = P𝑋𝑌 (𝑥,𝑦 = 𝑗); (ii) Q𝑌 |𝑋 (𝑦 = 𝑖 |𝑥) =
P𝑌 |𝑋 (𝑦 = 𝑗 |𝑥); (iii) Q𝑋 |𝑌 (𝑥 |𝑦 = 𝑖) = P𝑋 |𝑌 (𝑥 |𝑦 = 𝑗), for any
(𝑥,𝑦) ∈ X × Y and 𝑖 ≠ 𝑗 .

Corollary 4.2 indicates that the malicious poisoned source do-

main can be learned by maximizing the label-informed domain dis-

crepancy [31], e.g., joint distribution overX×Y, feature-conditional
distribution over Y|X and class-conditional distribution over X|Y.
Therefore, we have three options to design the attacking function

O(𝑋𝑠 , 𝑋𝑠 , 𝑌𝑠 ;𝜃∗, 𝜙∗) in Eq. (2) as follows.

O(𝑋𝑠 , 𝑋𝑠 , 𝑌𝑠 ;𝜃∗, 𝜙∗) = 𝑑

(
𝑋𝑠 ◦ 𝑌𝑠 , 𝑋𝑠 ◦ 𝑌𝑠 ;𝜃∗, 𝜙∗

)
(3)

O(𝑋𝑠 , 𝑋𝑠 , 𝑌𝑠 ;𝜃∗, 𝜙∗) = 𝑑

(
𝑌𝑠 |𝑋𝑠 , 𝑌𝑠 |𝑋𝑠 ;𝜃∗, 𝜙∗

)
(4)

O(𝑋𝑠 , 𝑋𝑠 , 𝑌𝑠 ;𝜃∗, 𝜙∗) = 𝑑

(
𝑋𝑠 |𝑌𝑠 , 𝑋𝑠 |𝑌𝑠 ;𝜃∗, 𝜙∗

)
(5)

where ◦ is the combination of input feature and output class label

over X ×Y. Please note that the feature-conditional distribution
might not be tractable to be estimated explicitly from finite exam-

ples. Thus, in this paper, we focus on the attacking functions based

on joint distribution and class-conditional distribution. We will

instantiate the model-specific attacking functions in Section 5.

4.4 Discussion
We see that the proposed framework I2Attack has the following ad-

vantages in analyzing the adversarial vulnerability of unsupervised

domain adaptation algorithms. (1) Flexible: it is flexible to be in-
stantiated for attacking any discrepancy-based domain adaptation



Table 1: Summary of domain adaptation algorithms

Algorithm Feature extractor Classifier Discrepancy

CORAL [27] Linear mapping SVM Covariance

DAN [16] CNN MLP MK-MMD

DANN [7] CNN MLP H-divergence

MDD [33] CNN MLP Margin disparity

algorithm (see next section), especially when there are no available

labeled training examples in the target domain; (2) Unnoticeable:
the properties of indirect and invisible attacks would make it diffi-

cult to be noticed in the training phase, thus posing a significant

threat to public source domain data in real scenarios; (3) Inter-
pretable: the label-informed data distribution over eitherX×Y or

X|Y between source and target domains is maximized in I2Attack,
such that the existing domain adaptation algorithms [7, 16, 27, 33]

with matched marginal distributions over X across domains leads

to negative transfer [21] on the target domain without affecting the

training loss.

5 THE PROPOSED ALGORITHMS
In this section, we instantiate our framework I2Attack for attack-

ing the unsupervised domain adaptation algorithm, followed by

model analysis from various aspects.

5.1 Poisoning Attack Algorithms
As shown in Eq. (1), a typical domain adaptation algorithm aims

to minimize the source classification error and marginal domain

discrepancy. Specifically, most of the existing domain adaptation

algorithms can be divided into the following two categories: (i)

two-stage framework [27], which first learns a domain-invariant

feature space to minimize the marginal domain discrepancy over X
and then trains the classifier in the learned feature space; (ii) unified

framework [7, 16, 33] that minimizes both source classification error

and marginal domain discrepancy in an end-to-end manner. Table 1

summarizes how thoseworks fit into the objective function of Eq. (1)

with different feature extractors, classifiers and domain discrepancy

measures. Note that here we design the attacking function O(·)
by maximizing the joint domain discrepancy across domains over

X × Y, but it can be naturally substituted with class-conditional

domain discrepancy over X|Y.

5.1.1 I2Attack-CORAL. CORAL [27] states that domain discrep-

ancy could be measured by the second-order statistics (covariance

matrix) of source and target examples after feature normalization.

Thus it proposed to learn a linear transformation 𝐴 to align the

source and target distributions as follows.

min

𝐴

������𝐴𝑇𝐶𝑋
𝑠 𝐴 −𝐶𝑋

𝑡

������2
𝐹

where𝐶𝑋
𝑠 = 1

𝑛𝑠−1 (𝑋
𝑇
𝑠 𝑋𝑠− 1

𝑛𝑠
(1𝑇𝑋𝑠 )𝑇 (1𝑇𝑋𝑠 )) and𝐶𝑋

𝑡 = 1

𝑛𝑡−1 (𝑋
𝑇
𝑡 𝑋𝑡−

1

𝑛𝑡
(1𝑇𝑋𝑡 )𝑇 (1𝑇𝑋𝑡 )) are covariance matrices of source and target

domains over X, respectively, and 1 is a column vector with all ele-

ments equal to 1. In this case, the input example is a𝑚-dimensional

feature vector, i.e., 𝑋𝑠 ∈ R𝑛𝑠×𝑚, 𝑋𝑡 ∈ R𝑛𝑡×𝑚 . It only involves the

first stage of domain adaptation on distributionmatching. After that,

the classifier (e.g., SVM, kNN) can be trained using the transformed

source examples 𝑋𝑠𝐴.

Algorithm 1 Indirect Invisible Poisoning Attack (I2Attack)

Input: Source examples (𝑋𝑠 , 𝑌𝑠 ) and target examples 𝑋𝑡 , base

domain adaptation algorithm with discrepancy measure 𝑑 (·, ·),
perturbation magnitude 𝜖 .

Output: Poisoned source examples 𝑋𝑠 .

1: Initialize 𝑋𝑠 ∈ Ω(𝑋𝑠 ) and base model parameters 𝜃, 𝜙 .

2: while Stopping criterion is not satisfied do
3: for 𝑙 = 1, · · · , 𝐿 do
4: Update base model parameters 𝜃, 𝜙 using Eq. (9).

5: end for
6: Estimate meta-gradient ∇𝑚𝑒𝑡𝑎

𝑋̂𝑠

J (𝑋𝑠 ;𝜃∗, 𝜙∗) using Eq.(10).
7: Update poisoned source examples 𝑋𝑠 using Eq. (8).

8: end while
9: return Poisoned source examples 𝑋𝑠 .

Following Eq. (2), the data poisoning attack on CORAL can be

formulated as the following bi-level optimization problem:

max

| |𝑋̂𝑠−𝑋𝑠 | |∞≤𝜖

������𝐴𝑇∗𝐶𝑋𝑌
𝑠 𝐴∗ −𝐶𝑋𝑌

𝑠

������2
𝐹

s.t. 𝐴∗ = argmin

𝐴

������𝐴𝑇𝐶𝑋
𝑠 𝐴 −𝐶𝑋

𝑡

������2
𝐹
and

������𝐴𝑇∗𝐶𝑋
𝑠 𝐴∗ −𝐶𝑋

𝑠

������2
𝐹
≤ 𝛿1

where𝐶𝑋𝑌
𝑠 and𝐶𝑋𝑌

𝑠 are covariance matrices over joint distribution

of input feature and output label.

𝐶𝑋𝑌
𝑠 =

[𝑋𝑠 ◦ 𝑌𝑠 ]𝑇 [𝑋𝑠 ◦ 𝑌𝑠 ] − 1

𝑛𝑠

(
1𝑇 [𝑋𝑠 ◦ 𝑌𝑠 ]

)𝑇 (
1𝑇 [𝑋𝑠 ◦ 𝑌𝑠 ]

)
𝑛𝑠 − 1

where ◦ is the vector concatenation operator over feature vector

and label vector. It is shown [27] that the optimal transformation

𝐴∗ of inner minimization problem could be given by 𝐴∗ = (𝐶𝑋
𝑠 +

𝐼 )−1/2 (𝐶𝑋
𝑡 + 𝐼 )1/2. Therefore, it can be naturally transformed into a

single-level optimization problem: max
𝑋̂𝑠

����𝐴𝑇∗𝐶𝑋𝑌
𝑠 𝐴∗ −𝐶𝑋𝑌

𝑠

����2
𝐹
−

𝜇
����𝐴𝑇∗𝐶𝑋

𝑠 𝐴∗ −𝐶𝑋
𝑠

����2
𝐹
with box constraint | |𝑋𝑠 − 𝑋𝑠 | |∞ ≤ 𝜖 where 𝜇

is a constant hyper-parameter. This optimization problem can then

be solved by stochastic gradient descent (SGD) [11].

5.1.2 I2Attack-DAN. DeepAdaptationNetwork [16] (DAN) learns
the domain-invariant feature representation in a reproducing ker-

nel Hilbert space where the mean embeddings of different domain

distributions are explicitly matched as follows.

min

𝜃,𝜙
𝐿

(
ℎ𝜙 (𝑓𝜃 (𝑋𝑠 )) , 𝑌𝑠

)
+ 𝑑𝑘

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
(6)

where𝑑𝑘 (·, ·) represents the empirical multi-kernel maximummean

discrepancy [12] (MK-MMD) between source and target domains

in the feature space learned by 𝑓𝜃 (·).
Following Eq. (2), we propose to learn the poisoned source ex-

amples with the following bi-level optimization problem:

max

𝑋̂𝑠

𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 , 𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 )

s.t., 𝜃∗, 𝜙∗ = argmin

𝜃,𝜙
𝐿

(
ℎ𝜙

(
𝑓𝜃 (𝑋𝑠 )

)
, 𝑌𝑠

)
+ 𝑑𝑘

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
s.t., 𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) ≤ 𝛿1

s.t., 𝐿

(
ℎ𝜙∗

(
𝑓𝜃 ∗ (𝑋𝑠 )

)
, 𝑌𝑠

)
≤ 𝛿2



s.t., 𝑋𝑠 ∈ Ω(𝑋𝑠 ) (7)

We tackle this bi-level optimization problem using model-agnostic

meta-learning (MAML) [6] that aims to find appropriate hyper-

parameter configurations (e.g., model initialization, learning rate

schedules, etc.) of neural networks. In this case, we can consider

the poisoned source examples 𝑋𝑠 as the hyper-parameters of a

domain adaptation algorithm and then optimize Eq. (7) using the

meta-gradient of attacking function with respect to 𝑋𝑠 as follows.

𝑋𝑠 ← ProjΩ (𝑋𝑠 )
(
𝑋𝑠 − 𝛼∇𝑚𝑒𝑡𝑎

𝑋̂𝑠

J (𝑋𝑠 ;𝜃∗, 𝜙∗)
)

(8)

where ProjΩ (𝑋𝑠 ) (·) projects the updated poisoned input ontoΩ(𝑋𝑠 )
in every iteration, and J (𝑋𝑠 ;𝜃∗, 𝜙∗) = 𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 , 𝑓𝜃 ∗ (𝑋𝑠 ) ◦
𝑌𝑠 ) − 𝜇 (𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) + 𝐿(ℎ𝜙∗ (𝑓𝜃 ∗ (𝑋𝑠 )), 𝑌𝑠 )) is the meta at-

tacking function. In particular, 𝜃∗, 𝜙∗ can be learned with vanilla

gradient descent as follows.

𝜃𝑙+1 = 𝜃𝑙 − 𝛽∇𝜃𝑙
(
𝐿(ℎ𝜙𝑙 (𝑓𝜃𝑙 (𝑋𝑠 )), 𝑌𝑠 ) + 𝑑𝑘 (𝑓𝜃𝑙 (𝑋𝑠 ), 𝑓𝜃𝑙 (𝑋𝑡 ))

)
𝜙𝑙+1 = 𝜙𝑙 − 𝛽∇𝜙𝑙 𝐿(ℎ𝜙𝑙 (𝑓𝜃𝑙 (𝑋𝑠 )), 𝑌𝑠 ) (9)

where 𝑙 is the iteration index. With 𝐿 updates of gradient descent on

𝜃 and 𝜙 , following the first-order approximation of meta-gradient

(FO-MAML) proposed in [6], we have

∇𝑚𝑒𝑡𝑎

𝑋̂𝑠

J (𝑋𝑠 ;𝜃∗, 𝜙∗) ≈ ∇𝑚𝑒𝑡𝑎

𝑋̂𝑠

J (𝑋𝑠 ;𝜃𝐿, 𝜙𝐿)

=∇𝑓 J (𝑋𝑠 ;𝜃𝐿, 𝜙𝐿) [∇𝑋̂𝑠
𝑓𝜃𝐿 (𝑋𝑠 ) + ∇𝜃𝐿 𝑓𝜃𝐿 (𝑋𝑠 )∇𝑋̂𝑠

𝜃𝐿]

+∇ℎJ (𝑋𝑠 ;𝜃𝐿, 𝜙𝐿) [∇𝑋̂𝑠
ℎ𝜙𝐿 (𝑓𝜃𝐿 (𝑋𝑠 )) + ∇𝜙𝐿ℎ𝜙𝐿 (𝑓𝜃𝐿 (𝑋𝑠 ))∇𝑋̂𝑠

𝜙𝐿]

≈∇𝑓 J (𝑋𝑠 ;𝜃𝐿, 𝜙𝐿)∇𝑋̂𝑠
𝑓𝜃𝐿 (𝑋𝑠 ) + ∇ℎJ (𝑋𝑠 ;𝜃𝐿, 𝜙𝐿)∇𝑋̂𝑠

ℎ𝜙𝐿 (𝑓𝜃𝐿 (𝑋𝑠 ))
(10)

Then the approximated meta-gradient ∇𝑚𝑒𝑡𝑎

𝑋̂𝑠

J (𝑋𝑠 ;𝜃∗, 𝜙∗) can be

used to update the poisoned input𝑋𝑠 in Eq. (8). The overall training

procedures are illustrated in Algorithm 1. The algorithm iteratively

updates the poisoned source examples and stops when the user-

defined stopping criterions are satisfied.

5.1.3 I2Attack-DANN. Inspired by Generative Adversarial Net-

work (GAN) [10, 36, 37, 39], Domain-Adversarial Neural Network [7]

(DANN) learns the domain-invariant latent feature space in an ad-

versarial manner where theH -divergence across domains and the

source classification error could be minimized in the feature space.

The overall objective function of DANN is given below.

min

𝜃,𝜙
𝐿

(
ℎ𝜙 (𝑓𝜃 (𝑋𝑠 )) , 𝑌𝑠

)
+ 𝑑H

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
(11)

where 𝑑H (·, ·) is theH -divergence between source and target do-

mains in the feature space learned by 𝑓𝜃 (·). Mathematically,

𝑑H
(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 ) = min

𝜃
max

𝐷
E𝑥𝑠∼𝑋𝑠

[
𝐷 (𝑓𝜃 (𝑥𝑠 ))

]
+E𝑥𝑡∼𝑋𝑡

[
1 − 𝐷 (𝑓𝜃 (𝑥𝑡 ))

] (12)

where 𝐷 (·) is a domain discriminator for identifying which domain

an example comes from.

Following Eq. (2), we propose to generate the poisoning attacks

with the following quad-level optimization problem:

max

𝑋̂𝑠

𝑑H (𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 , 𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 )

s.t., 𝜃∗, 𝜙∗, 𝐷∗ = argmin

𝜃,𝜙
𝐿

(
ℎ𝜙

(
𝑓𝜃 (𝑋𝑠 )

)
, 𝑌𝑠

)
+ 𝑑H

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
s.t., 𝑑H (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) ≤ 𝛿1

s.t., 𝐿

(
ℎ𝜙∗

(
𝑓𝜃 ∗ (𝑋𝑠 )

)
, 𝑌𝑠

)
≤ 𝛿2

s.t., 𝑋𝑠 ∈ Ω(𝑋𝑠 ) (13)

Solving such an optimization problem is challenging due to its high-

order combinatorial nature. It is observed thatH -divergence could

be upper bounded by maximum mean discrepancy [9]. Thus we

would like to derive an efficient approximation by substituting the

domain discrepancy 𝑑H (·, ·) of attacking function with MK-MMD

𝑑𝑘 (·, ·) as follows.
max

𝑋̂𝑠

𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 , 𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 )

s.t., 𝜃∗, 𝜙∗, 𝐷∗ = argmin

𝜃,𝜙
𝐿

(
ℎ𝜙

(
𝑓𝜃 (𝑋𝑠 )

)
, 𝑌𝑠

)
+ 𝑑H

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
s.t., 𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) ≤ 𝛿1

s.t., 𝐿

(
ℎ𝜙∗

(
𝑓𝜃 ∗ (𝑋𝑠 )

)
, 𝑌𝑠

)
≤ 𝛿2

s.t., 𝑋𝑠 ∈ Ω(𝑋𝑠 ) (14)

Specially, the inner parameters 𝜃∗, 𝜙∗, 𝐷∗ of DANN can be trained

using standard backpropagation with gradient reversal layer [7].

On top of this observation, the overall optimization problem of

Eq. (14) can then be efficiently solved via meta-learning [6] when

adopting vanilla gradient descent to update the inner parameters.

5.1.4 I2Attack-MDD. Margin Disparity Discrepancy [33] (MDD)

minimizes the empirical source classification error and the disparity

discrepancy across domains in the feature space using the following

objective function.

min

𝜃,𝜙
𝐿

(
ℎ𝜙 (𝑓𝜃 (𝑋𝑠 )) , 𝑌𝑠

)
+ 𝑑𝑀𝐷𝐷

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
(15)

where 𝑑𝑀𝐷𝐷 (·, ·) denotes the margin-aware disparity discrepancy

between source and target domains and can be empirically min-

imized using a minimax adversarial game in the feature space

learned by 𝑓𝜃 (·).
Similar to I2Attack-DANN, we design the attacking function

with non-adversarial domain discrepancy 𝑑𝑘 (·, ·) for efficiently gen-

erating the poisoning attacks on MDD algorithm as follows.

max

𝑋̂𝑠

𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 , 𝑓𝜃 ∗ (𝑋𝑠 ) ◦ 𝑌𝑠 )

s.t.,𝜃∗, 𝜙∗, 𝐷∗ = argmin

𝜃,𝜙
𝐿

(
ℎ𝜙

(
𝑓𝜃 (𝑋𝑠 )

)
, 𝑌𝑠

)
+ 𝑑𝑀𝐷𝐷

(
𝑓𝜃 (𝑋𝑠 ), 𝑓𝜃 (𝑋𝑡 )

)
s.t.,𝑑𝑘 (𝑓𝜃 ∗ (𝑋𝑠 ), 𝑓𝜃 ∗ (𝑋𝑠 )) ≤ 𝛿1

s.t.,𝐿

(
ℎ𝜙∗

(
𝑓𝜃 ∗ (𝑋𝑠 )

)
, 𝑌𝑠

)
≤ 𝛿2

s.t.,𝑋𝑠 ∈ Ω(𝑋𝑠 ) (16)

It can then be optimized with meta-gradient based updating method

derived in Subsection 5.1.2.

5.2 Model Analysis
Transferability andUniversalness of I2Attack: In the previous
subsection, we present several poisoning attack schemes for specific

unsupervised domain adaptation algorithms. It might lead to two



follow-up questions: (1) whether the poisoned source examples are

transferable across different domain adaptation algorithms given

source and target domains? (2) does there exist universal poisoning

attacks for multiple target domains?

For the first question, we argue that the poisoned source exam-

ples learned on one domain adaptation method (e.g., DAN [16]) can

be directly applied to attack other methods (e.g., DANN [7] and

MDD [33]). That is because the poisoning attacks maximize the

discrepancy of joint (or class-conditional) data distribution between

clean and poisoned source domains. Normally, the domain discrep-

ancy measures (e.g.,H -divergence [1], margin disparity [33]) will

monotonically change with respect to the relatedness across do-

mains. Thus, maximizing one domain discrepancy measure of a

domain adaptation approach implies the increase of another dis-

crepancy measure in a new domain adaptation approach. For the

second question, it might find the universal black-box poisoning

attacks when the adversary has no knowledge of the potential

target domain. In this case, it can simply find an auxiliary target

domain and then learn the poisoned examples using the source and

auxiliary target domains. Such attacks might work for any target

domain when it is related to the raw source domain because it

holds 𝑑 (𝑋𝑠 ◦𝑌𝑠 , 𝑋𝑡 ◦𝑌𝑡 ) ≥ 𝑑 (𝑋𝑠 ◦𝑌𝑠 , 𝑋𝑠 ◦𝑌𝑠 ) − 𝑑 (𝑋𝑠 ◦𝑌𝑠 , 𝑋𝑡 ◦𝑌𝑡 )
if discrepancy 𝑑 (·, ·) satisfies the triangle inequality property.

Convergence and Complexity of I2Attack:We first discuss the

convergence of optimization methods used in our I2Attack algo-

rithms. For two-stage domain adaptationmethods (i.e., CORAL [27]),

the poisoning attack algorithm I2Attack-CORAL can be opti-

mized with stochastic gradient descent (SGD), which converges

almost surely to a local minimum [8]. For deep domain adaptation

methods (i.e., DAN [16], DANN [7] and MDD [33]), we show that

our poisoning attack algorithms (i.e., I2Attack-DAN, I2Attack-
DANN and I2Attack-MDD) can be optimized via model-agnostic

meta-learning (MAML) [6]. Following the theoretical analysis [5]

of MAML and its first-order approximation (FO-MAML), it holds

that MAML finds an 𝜖 ′-first-order stationary point for any positive

𝜖 ′ > 0 after at most 𝑂 (1/𝜖 ′2) iterations. Furthermore, if the inner

learning rate 𝛽 used for updating the poisoned examples is small,

then the approximation error of FO-MAML induced by ignoring

the second-order term does not impact its convergence.

The computational complexity of I2Attack is presented as fol-

lows. For two-stage domain adaptation methods, the inputs of

source and target domains are𝑚-dimensional feature vectors, so

it has a computational complexity of 𝑂 (𝑛𝑠𝑚) per iteration using

stochastic gradient descent. On the other hand, the input of deep do-

main adaptation methods can be raw images. Then, the FO-MAML

based optimization has a computational complexity of𝑂 (𝑛𝑠𝑁𝑝𝑖𝑥𝑒𝑙 )
per iteration where 𝑁𝑝𝑖𝑥𝑒𝑙 is the average number of pixels per

image and 𝑛𝑠 is the number of source examples.

6 EXPERIMENTS
6.1 Experimental Setup
Data Sets: We use the following domain adaptation benchmarks:

• Digits: We adopt three digital image data sets: MNIST, USPS

and SVHN with 70,000, 99,289 and 9,297 images of 10 categories

respectively, and report the domain adaptation results on MNIST

(M)→ USPS (U) and SVHN (S)→MNIST (M).

• Office-31: It has 4,652 images of 31 categories from three domains:

Amazon (A), Webcam (W) and DSLR (D).

• Office-Caltech10: It has 2,533 images of 10 categories from four

domains: Caltech (C), Amazon (A), Webcam (W), DSLR (D).

• Office-Home: It has 15,500 images of 65 categories from four

domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr)

and Real-World images (Rw).

• Image-CLEF: It has 2,400 images of 12 categories from four

domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I), Pascal

VOC2012 (P) and Bing (B).

• VisDA2017: It has over 200K images of 12 categories from two

domains: Synthetic (Syn) and Real.

Baselines:We compare our proposed I2Attack framework with

the following baselines: naïve RAttack that adding randomGaussian

noise to source examples, SAttack [20] that generates the poisoned

source examples bymaximizing the classification error; BFGSM [34]

that pre-trains a source model and then generates the adversarial

source examples via Fast Sign Gradient Method (FGSM) [11]. The

generated poisoned source examples are then used to evaluate the

adversarial vulnerability of domain adaptation algorithms.

6.2 Performance Comparison
Table 2 and Table 3 provide the results on evaluating the adver-

sarial vulnerability of unsupervised domain adaptation algorithms

under I2Attack. Specifically, we report the source classification ac-

curacy (S Acc), domain discrepancy (Disc) and target classification

accuracy (T Acc) to demonstrate how adversarial attacks affect the

domain adaptation methods. As shown in Table 1, we adopt the

covariance distance, multi-kernel maximummean discrepancy (MK-

MMD),H -divergence and margin-aware disparity discrepancy to

measure the domain discrepancy (Disc) between source and tar-

get domains on CORAL [27], DAN [16], DANN [7] and MDD [33],

respectively. It is observed that: (1) the target performance could

be significantly degraded (e.g., up to 90% degradation on Office-31)

with the poisoned source examples learned by I2Attack for all

domain adaptation methods; (2) the source classification accuracy

and domain discrepancy could be almost unchanged and even be-

come better (i.e., higher source accuracy or lower marginal domain

discrepancy) in some cases.

Figure 3 demonstrates the effectiveness of I2Attack on attack-

ing DAN and DANN, compared to baseline methods on Office-31

and Image-CLEF. More specifically, we observe that (1) naïve RAt-

tack with random Gaussian noise would not largely degrade the

domain adaptation performance; (2) the poisoned source examples

generated from SAttack and BFGSM deteriorate both source and

target classification performance, and thus are easily detected in

the model training phase; (3) compared to baselines, our proposed

I2Attack achieves much lower target accuracy by maximizing the

discrepancy of joint data distribution over X ×Y across domains.

6.3 Transferability and Universalness
We evaluate the transferability and universalness of I2Attack on

Office-31 and Image-CLEF. Table 4 shows the domain adaptation

results on DAN and DANN using the generated source examples

from different I2Attack algorithms. It shows that the generated

source examples by one attacking algorithm (e.g., I2Attack-MDD)

can be used to successfully attack any other domain adaptation



Table 2: Poisoning attack on CORAL [27] (‘−’: almost unchanged; ‘↑’: improved; ‘↓’: degraded). Note that small domain discrep-
ancy is more preferred for learning the domain-invariant representation in the feature space.

Office-Caltech10 Office-Home

C→A C→W C→D A→C A→W A→D Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw

CORAL (base model)

S Acc 0.858 0.836 0.799 0.921 0.900 0.880 0.904 0.902 0.896 0.921 0.919 0.916

Disc 21.16 31.43 40.43 21.27 33.16 42.43 24.28 23.34 14.47 24.32 18.83 18.92

T Acc 0.549 0.468 0.459 0.435 0.383 0.420 0.468 0.603 0.676 0.524 0.600 0.630

I2Attack-CORAL

S Acc 0.995↑ 0.996↑ 0.999↑ 0.997↑ 0.998↑ 1.000↑ 0.998↑ 0.998↑ 1.000↑ 1.000↑ 1.000↑ 1.000↑
Disc 20.72− 30.23− 38.55↑ 20.72− 31.71↑ 40.20↑ 21.61↑ 20.58↑ 14.57− 20.82↑ 17.25− 17.27−
T Acc 0.021↓ 0.031↓ 0.070↓ 0.126↓ 0.081↓ 0.121↓ 0.100↓ 0.099↓ 0.086↓ 0.138↓ 0.118↓ 0.167↓

Table 3: Poisoning attack of deep domain adaptation (‘−’: almost unchanged; ‘↑’: improved; ‘↓’: degraded)
Digits Office-31 Office-Home Image-CLEF VisDA2017

M→U S→M W→A W→D D→A Ar→Cl Pr→Rw B→I C→P P→B Syn→Real

DAN (base model)

S Acc 0.997 0.916 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.987

Disc 0.078 0.085 2.459 2.315 2.156 1.835 1.931 2.137 2.589 1.742 0.478

T Acc 0.861 0.724 0.654 0.994 0.656 0.498 0.750 0.848 0.750 0.588 0.584

I2Attack-DAN

S Acc 1.000− 1.000↑ 0.996− 0.998− 0.994− 0.998− 0.999− 1.000− 1.000− 1.000− 0.986−
Disc 0.079− 0.079↑ 2.304↑ 1.975↑ 2.152− 1.579↑ 1.684↑ 1.919↑ 1.939↑ 1.555↑ 0.437↑
T Acc 0.664↓ 0.495↓ 0.065↓ 0.062↓ 0.046↓ 0.293↓ 0.660↓ 0.113↓ 0.203↓ 0.252↓ 0.469↓

DANN (base model)

S Acc 0.997 0.911 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.983

Disc 0.567 0.520 0.646 0.642 0.609 0.506 0.500 0.602 0.758 0.733 0.742

T Acc 0.896 0.795 0.679 0.998 0.668 0.513 0.756 0.888 0.782 0.597 0.637

I2Attack-DANN

S Acc 1.000− 0.948↑ 0.996− 1.000− 0.998− 0.994 0.999− 1.000− 1.000− 0.998− 0.990−
Disc 0.569− 0.516− 0.588↑ 0.643− 0.550↑ 0.501− 0.500− 0.572↑ 0.695↑ 0.593↑ 0.688↑
T Acc 0.801↓ 0.510↓ 0.078↓ 0.046↓ 0.105↓ 0.378↓ 0.673↓ 0.083↓ 0.233↓ 0.142↓ 0.201↓

MDD (base model)

S Acc 0.997 0.901 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.969

Disc 1.373 1.496 1.374 1.493 1.028 1.735 1.697 1.501 1.214 1.341 1.123

T Acc 0.908 0.753 0.693 0.998 0.679 0.505 0.781 0.903 0.788 0.617 0.657

I2Attack-MDD

S Acc 1.000− 0.944 0.996− 0.991− 0.996− 0.993− 0.991− 1.000− 1.000− 1.000− 0.996↑
Disc 1.317↑ 1.453↑ 1.056↑ 1.473↑ 0.938↑ 1.603↑ 1.645↑ 1.449− 1.010↑ 1.339− 0.999↑
T Acc 0.789↓ 0.585↓ 0.050↓ 0.024↓ 0.137↓ 0.382↓ 0.679↓ 0.163↓ 0.170↓ 0.217↓ 0.301↓

Table 4: Transferability of I2Attack on Office-31 (W→D)

DAN DANN

S Acc Disc T Acc S Acc Disc T Acc

Clean 1.000 2.315 0.994 1.000 0.642 0.998

I2Attack-DAN 0.998 1.975 0.062 0.996 0.622 0.020

I2Attack-DANN 0.999 2.031 0.068 1.000 0.643 0.046

I2Attack-MDD 0.991 2.156 0.092 0.994 0.649 0.032

Table 5: Universalness of I2Attack on Image-CLEF

Clean I2Attack

S Acc Disc T Acc S Acc Disc T Acc

B→I 1.000 2.137 0.848 1.000 1.919 0.113

B→C 1.000 2.215 0.907 1.000 1.921 0.120

B→P 1.000 1.927 0.717 1.000 1.755 0.098

algorithm (e.g., DAN and DANN). This indicates that I2Attack
allows attacking the black-box domain adaptation algorithm with-

out knowledge of model configuration. Table 5 shows the attack

results of poisoned source examples on different target domains of

Image-CLEF where all poisoned examples are generated from DAN

on B→I and then applied to attack other target domains, i.e., C or

P. It can be seen that the generated poisoned examples on B can be

directly used to attack multiple downstream target domains. This

enables the black-box attacks without access to the target domain.

6.4 Parameter Study
We investigate the impact of perturbationmagnitude 𝜖 on I2Attack.
As shown in Figure 4(a), we report the results of I2Attack-DANN
on W→D of Office-31 with 𝜖 increasing from 0 to 0.10. It is shown

that the source classification accuracy and domain discrepancy

almost keep unchanged, but the target classification accuracy de-

creases significantly under larger perturbation magnitude 𝜖 .

Besides, we empirically evaluate the computational efficiency

of I2Attack on VisDA2017. In this case, we randomly sample 𝑛𝑠
examples from the source domain with 𝑛𝑠 increasing from 1000 to

7000. The running time (measured in seconds wall-clock time) per

iteration on this data set is reported in Figure 4(b). we observe that

the running time of our proposed I2Attack is linear with respect

to the number of source training examples 𝑛𝑠 , which is consistent

with our analysis in Subsection 5.2.

7 CONCLUSION
In this paper, we focus on analyzing the adversarial vulnerability

of unsupervised domain adaptation. We start by identifying three

properties: perceptibly unnoticeable, adversarially indirect and al-
gorithmically invisible, which provide insights into designing the

poisoning attacks for domain adaptation. Then we present a generic

framework I2Attack on attacking the existing domain adaptation
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algorithms. Extensive experiments demonstrate the effectiveness

and efficiency of our I2Attack framework.
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A APPENDIX
To better reproduce the experimental results, we provide additional

details about the algorithms.

A.1 Notation
The notation used in this paper is summarized in Table 6.

Table 6: Notation

Notation Definition

X,Y Input space and output space

Q, P Source and target domains

Q𝑋𝑌 , P𝑋𝑌 Data distributions on source and target domains

Q𝑋 , P𝑋 Marginal distributions on source and target domains

𝑙Q, 𝑙P Labeling functions on source and target domains

(𝑥𝑠 , 𝑦𝑠 ) ∼ Q Labeled source example

𝑥𝑡 ∼ P𝑋 Unlabeled target example

𝑛𝑠 Number of labeled source examples

𝑛𝑡 Number of unlabeled target examples

𝐿 ( ·, ·) Loss function

H Hypothesis class

𝑑 ( ·, ·) Domain discrepancy measure

A.2 Proof of Theorem 4.1
Theorem 4.1 states that let 𝜖𝑠 and 𝜖𝑡 denote the expected source and

target classification error. Given any class-separable target domain

P, there exist at least one source domain Q and ℎ ∈ H satisfying

𝜖𝑠 (ℎ) = 0 and 𝑑 (Q𝑋 , P𝑋 ) = 0, such that the target classification

error 𝜖𝑡 (ℎ) = 1.

Proof. We first consider the binary classification scenario with

𝑦 ∈ {−1, 1}. Given any target domain P and the loss function 𝐿(·, ·),
we can construct a source domain Q as follows. For any data point

(𝑥,𝑦) ∈ X × Y, we let the data distribution of source domain

be either Q𝑋𝑌 (𝑥,𝑦 = 1) = P𝑋𝑌 (𝑥,𝑦 = 1) or Q𝑋𝑌 (𝑥,𝑦 = 1) =
P𝑋𝑌 (𝑥,𝑦 = −1). Then, it is easy to show Q𝑋 = P𝑋 , so we have

𝑑 (Q𝑋 , P𝑋 ) = 0 for any domain discrepancy measure. Specifically,

we can flip the class-labels of target examples if they are correctly

classified. For example, if one point (𝑥,𝑦) ∈ X × Y from target do-

main satisfies ℎ∗ (𝑥) = 𝑦, we hold Q𝑋𝑌 (𝑥,𝑦 = 1) = P𝑋𝑌 (𝑥,𝑦 = −1),
otherwise, Q𝑋𝑌 (𝑥,𝑦 = 1) = P𝑋𝑌 (𝑥,𝑦 = 1). Then there exists

ℎ = −ℎ∗ ∈ H such that 𝜖𝑠 (ℎ) = 0. In this case, the target clas-

sification error 𝜖𝑡 (ℎ) = 1 − 𝜖𝑡 (ℎ∗). Furthermore, we can see that

𝜖𝑡 (ℎ) = 1 when 𝜖𝑡 (ℎ∗) = 0.

Then we can use the similar way to construct the source do-

main for multi-classification scenario as follows. For any data point

(𝑥,𝑦) ∈ X × Y, we let the data distribution of source domain be

either Q𝑋𝑌 (𝑥,𝑦 = 𝑖) = P𝑋𝑌 (𝑥,𝑦 = 𝑗) where 𝑖 and 𝑗 represents the

𝑖th and 𝑗 th classes respectively. Suppose the optimal target hypoth-

esis ℎ∗ can partition the space X × Y into 𝐶 sub-regions where

𝐶 is number of classes. In this case, we can simply set the class

label of examples in each sub-region as one of classes such that

Q𝑋𝑌 (𝑥,𝑦 = 𝑖) = P𝑋𝑌 (𝑥,𝑦 = 𝑗) (𝑖 ≠ 𝑗). □

Table 7: Poisoning attack of deep domain adaptation bymax-
imizing class-conditional domain discrepancy

Office-31 Image-CLEF

W→A W→D B→I C→P

DAN (base model)

S Acc 1.000 1.000 1.000 1.000

Disc 2.459 2.315 2.137 2.589

T Acc 0.654 0.994 0.848 0.750

I2Attack-DAN

S Acc 0.994 0.998 1.000 1.000

Disc 2.109 1.950 1.774 2.194

T Acc 0.403 0.568 0.468 0.593

DANN (base model)

S Acc 1.000 1.000 1.000 1.000

Disc 0.646 0.642 0.602 0.758

T Acc 0.679 0.998 0.888 0.782

I2Attack-DANN

S Acc 0.998 0.998 1.000 1.000

Disc 0.605 0.638 0.606 0.714

T Acc 0.401 0.588 0.663 0.570

MDD (base model)

S Acc 1.000 1.000 1.000 1.000

Disc 1.374 1.493 1.501 1.214

T Acc 0.693 0.998 0.903 0.788

I2Attack-MDD

S Acc 0.994 0.996 1.000 1.000

Disc 1.357 1.462 1.400 1.119

T Acc 0.257 0.677 0.777 0.693

A.3 Proof of Corollary 4.2
Corollary 4.2 states that let 𝜖𝑠 and 𝜖𝑡 denote the expected source and

target classification error. For any class-separable target domain

P, there exists a source domain Q and ℎ ∈ H such that 𝜖𝑠 (ℎ) = 0,

𝑑 (Q𝑋 , P𝑋 ) = 0 and 𝜖𝑡 (ℎ) = 1 if it satisfies one of the following

conditions: (i) Q𝑋𝑌 (𝑥,𝑦 = 𝑖) = P𝑋𝑌 (𝑥,𝑦 = 𝑗); (ii) Q𝑌 |𝑋 (𝑦 = 𝑖 |𝑥) =
P𝑌 |𝑋 (𝑦 = 𝑗 |𝑥); (iii) Q𝑋 |𝑌 (𝑥 |𝑦 = 𝑖) = P𝑋 |𝑌 (𝑥 |𝑦 = 𝑗) if Q𝑌 (𝑦 = 𝑖) =
P𝑌 (𝑦 = 𝑗), for any (𝑥,𝑦) ∈ X × Y and 𝑖 ≠ 𝑗 .

Proof. As proven in Theorem 4.1, Q𝑋𝑌 (𝑥,𝑦 = 𝑖) = P𝑋𝑌 (𝑥,𝑦 =

𝑗) could lead to the negative transfer with 𝜖𝑠 (ℎ) = 0, 𝑑 (Q𝑋 , P𝑋 ) = 0

and 𝜖𝑡 (ℎ) = 1.When𝑑 (Q𝑋 , P𝑋 ) = 0 orQ𝑋 = P𝑋 , it holdsQ𝑌 |𝑋 (𝑦 =

𝑖 |𝑥) = P𝑌 |𝑋 (𝑦 = 𝑗 |𝑥) using the Bayes’ theorem. Similarly, ifQ𝑌 (𝑦 =

𝑖) = P𝑌 (𝑦 = 𝑗), it holds Q𝑋 |𝑌 (𝑥 |𝑦 = 𝑖) = P𝑋 |𝑌 (𝑥 |𝑦 = 𝑗). Therefore,
these conditions are equivalent on designing the source domain

satisfying 𝜖𝑠 (ℎ) = 0, 𝑑 (Q𝑋 , P𝑋 ) = 0 and 𝜖𝑡 (ℎ) = 1. □

A.4 Experiments
All the experiments are performed on a Windows machine with

four 3.80GHz Intel Cores, 64GB RAM and two NVIDIA Quadro RTX

5000 GPUs.

A.4.1 Data Sets. The data sets used in our experiments are publicly

available as follows.

• Digits: We adopt three digital image data sets: MNIST
5
, USPS

6

and SVHN
7
with 70,000, 99,289 and 9,297 images of 10 categories

respectively, and report the domain adaptation results on MNIST

(M)→ USPS (U) and SVHN (S)→MNIST (M).

5
http://yann.lecun.com/exdb/mnist/

6
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

7
http://ufldl.stanford.edu/housenumbers/

http://yann.lecun.com/exdb/mnist/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://ufldl.stanford.edu/housenumbers/
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Figure 5: Illustration of clean and poisoned source examples
on W→D of Office-31

• Office-31
8
: It has 4,652 images of 31 categories from three do-

mains: Amazon (A), Webcam (W) and DSLR (D).

• Office-Caltech10
8
: It has 2,533 images of 10 categories from four

domains: Caltech (C), Amazon (A), Webcam (W), DSLR (D).

• Office-Home
9
: It has 15,500 images of 65 categories from four

domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr)

and Real-World images (Rw).

• Image-CLEF
10
: It has 2,400 images of 12 categories from four

domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I), Pascal

VOC2012 (P) and Bing (B).

• VisDA2017
11
: It has over 200K images of 12 categories from two

domains: Synthetic (Syn) and Real.

A.4.2 Model Configuration. For I2Attack-CORAL, we use vanilla
gradient descent for optimization with learning rate 1𝑒 − 5. For

I2Attack-DAN, I2Attack-DANN and I2Attack-MDD (see Algo-

rithm 1), we adopt stochastic gradient descent with mini-batch of

72 for inner updates with 𝐿 = 1, 𝛽 = 0.001, 𝛼 = 0.01 and 𝜖 = 0.1. The

overall iterations are 25 in our experiments. Besides, for DAN [16],

DANN [7] andMDD [33], we adopted the ResNet-50 [13] pretrained

on ImageNet for feature extraction with an added 256-dimension

bottleneck layer between the res5c and fc layers. It is then opti-

mized using stochastic gradient descent with mini-batch of size

32. The learning rate 𝜂𝑝 is adjusted as: 𝜂𝑝 =
𝜂0

(1+𝜔𝑝)𝜏 , where 𝑝

is an epoch-dependent scalar linearly varying from 0 to 1, and

𝜂0 = 0.01, 𝜔 = 10, 𝜏 = 0.75.

A.4.3 Additional Results. The additional experimental results are

provided below.

Attacking function based on class-conditional distribution:
Table 7 shows the poisoning attack results of I2Attack with the

attacking function on maximizing the class-conditional domain

discrepancy. It can be seen that the target classification performance

could be degraded without worsening the source classification error

and marginal domain discrepancy.

Visualization: Figure 5 visualizes the source examples before and

after the attack on W→D of Office-31. It can be seen that the poi-

soned source images are perceptibly indistinguishable from the raw

clean images.

8
https://people.eecs.berkeley.edu/~jhoffman/domainadapt/

9
http://hemanthdv.org/OfficeHome-Dataset/

10
https://www.imageclef.org/2014/adaptation

11
http://ai.bu.edu/visda-2017/

https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
http://hemanthdv.org/OfficeHome-Dataset/
https://www.imageclef.org/2014/adaptation
http://ai.bu.edu/visda-2017/
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