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ABSTRACT

Recommender systems are powerful tools for information filtering

with the ever-growing amount of online data. Despite its success

and wide adoption in various web applications and personalized

products, many existing recommender systems still suffer from

multiple drawbacks such as large amount of unobserved feedback,

poor model convergence, etc. These drawbacks of existing work

are mainly due to the following two reasons: first, the widely used

negative sampling strategy, which treats the unlabeled entries as

negative samples, is invalid in real-world settings; second, all train-

ing samples are retrieved from the discrete observations, and the

underlying true distribution of the users and items is not learned.

In this paper, we address these issues by developing a novel

framework named PURE,which trains an unbiased positive-unlabeled

discriminator to distinguish the true relevant user-item pairs against

the ones that are non-relevant, and a generator that learns the un-

derlying user-item continuous distribution. For a comprehensive

comparison, we considered 14 popular baselines from 5 different cat-

egories of recommendation approaches. Extensive experiments on

two public real-world data sets demonstrate that PURE achieves the

best performance in terms of 8 ranking based evaluation metrics.
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1 INTRODUCTION

Recommender systems have been prevalent in recent decades

across multiple domains in e-Commerce [41], content streaming
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(YouTube) [6], and business service industries (Yelp) [37], due to

their success in filtering or retrieving relevant information from

user profiles and behaviors. Traditional collaborative filtering meth-

ods [11, 25] and matrix factorization methods [23, 28, 35] are the

most popular and effective methods of recommender systems for

many years. Lately, various embedding based methods such as deep

factorization machine [13] and neural collaborative filtering [15]

have been proposed and achieved a lot of successes. This leads to a

wide and in-depth study of the deep learning based recommender

systems [44]. Most of the existing methods take the following two

assumptions for granted, especially for implicit recommender sys-

tems: (1) The unobserved interactions between users and items (i.e.,

unlabeled user-item tuples) are often labeled as negative samples;

(2) The observed users, items, and their interactions are represent-

ing the true relevance distribution. However, these assumptions

are usually not valid for real-world recommender systems.

In the first assumption, it assumes that an item 𝑖 is more relevant

to a user 𝑢 than item 𝑗 if 𝑖 has interactions with 𝑢 while 𝑗 does

not. The assumption is not necessarily true in that, the missing of

interactions between item 𝑗 and user 𝑢 could be because of the lack

of the exposure between item 𝑗 and user 𝑢, rather than the uninter-

estingness of 𝑢 on 𝑗 . In other words, the unlabeled user-item tuple

can be either a positive or negative sample. Hence, simply using

the unlabeled tuples as negative samples in the training process can

inevitably degrade the model performance. In this paper, instead of

taking the unlabeled tuples as negative samples, we formulate the

recommender system into a Positive-Unlabeled (PU) learning [2]

framework, which is amachine learning approachwhere the learner

observes only positive data and unlabeled data.Existing works of

PU learning mainly focus on designing the PU learning adapted

objectives [30]. It has been theoretically analyzed in [21] that for

unbiased PU learning, the empirical risks on training data can be

negative if the training model is very flexible, which will result

in serious overfitting. Hence, even though flexible models such as

deep neural networks have been widely explored in recommender

systems, limited work has been done under the PU learning setting.

Secondly, in traditional recommender systems, the training sam-

ples are usually composed of the positive (labeled) samples and

a sampled set of negative samples from the unlabeled data. This

negative sampling process can be problematic in that, as we men-

tioned in PU learning, the samples from the unlabeled data may

not necessarily be the real negative ones, and this will distort the

learned data distribution in the modeling process. Generative mod-

els such as generative adversarial networks (GAN) [12] tried to

alleviate the issue of negative sampling by learning the underly-

ing data distribution from an implicit generative model instead of
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imposing any assumption on the existing data. In the framework

of GAN, a discriminator is introduced to distinguish the generated

samples of the generator from the real samples, while the generator

is optimized in such a way that its generated samples are hardly sep-

arable by the discriminator. Specifically, IRGAN [40] was proposed

to apply GAN on learning-to-rank applications where it employs

policy gradient based reinforcement learning to perform discrete

sampling of documents (items) for each query (user), in order to

select relevant items from a given pool. However, we argue that

this discrete sampling strategy may limit the expressiveness of the

generator due to the sparsity of data in recommendation, and the

model will not learn the underlying true distribution of the users

and items. Besides, IRGAN only performed sampling on items, and

used all users in the loss function, which makes IRGAN lack the

capability to learn the distribution of the users.

In order to address the aforementioned limitations of existing

works, we propose a novel approach called Positive-Unlabeled

REcommendation with generative adversarial network (PURE).

First of all, based on the analysis of [21], PURE adopts the positive
unlabeled risk minimizer to train an unbiased positive-unlabeled

discriminator. In particular, we theoretically prove that the estima-

tion error bound of PU Learning is tighter than that of positive-

negative (PN) learning when the number of unlabeled samples is

lower bounded, which can be easily satisfied due to the extreme

sparsity of the real-world data. In addition, in order to learn the true

distribution of users and items, continuous sampling on both users

and items in the embedding space is employed in the generator.

Specifically, a fake item (embedding) for a user is generated with

a random noise input. A fake user (embedding) can also be gen-

erated in a similar way. Furthermore, we theoretically prove that

the optimal generator is able to generate high-quality embeddings

from a learned user-item distribution that is very similar to the true

user-item relevance distribution. The main contributions of this

paper are summarized below:

• We propose a novel approach for recommender systems

called PURE under the GAN framework, which trains an un-

biased positive-unlabeled discriminator using PU learning.

• The generator of PURE performs continuous sampling on

both users and items in the embedding space in order to

learn the true relevance distribution of the users and items.

• We theoretically prove that an unlabeled sampling bound

of PURE exists and can be satisfied easily in real-world rec-

ommender systems. The optimalities upon convergence are

also provided for both the discriminator and the generator.

The rest of the paper is organized as follows. Section 2 is the

preliminary. Section 3 describes the proposed framework PURE, and

Section 4 presents the analyses of PURE from various perspectives.

The experimental results are illustrated in Section 5. In Section 6,

we briefly introduce the related work on recommender systems and

PU learning. In the end, we conclude the paper in Section 7.

2 PRELIMINARY

In this section, we first present the notation as well as the problem

definition for recommendation. Then, the preliminary work of

generalized matrix factorization (GMF) and generative adversarial

network (GAN) are briefly reviewed.

2.1 Problem Definition

In this paper, we study the implicit recommendation problem and

letU and I denote the sets of users and items. Given a user 𝑢, a list

of relevant items can be rated or viewed by 𝑢. From the perspective

of matrix representation, we define the user-item interaction matrix

as R ∈ {1, 0}𝑀×𝑁
, where 𝑀 and 𝑁 denote the number of users

and items, respectively. The entry R𝑢𝑖 = 1 if there is an observed

interaction between user 𝑢 and item 𝑖 . We further assume Ω to

be the index set of these observed entries, namely, (𝑢, 𝑖) ∈ Ω if

R𝑢𝑖 = 1. It should be noticed that R𝑢𝑖 = 0 does not necessarily

mean that user 𝑢 dislikes item 𝑖 . The unobserved entries could be

missing data with either positive labels (i.e., user and item are truly

relevant) or negative labels (i.e., user and item are non-relevant). In

real applications, each user can only rate and view a very limited

number of items. Therefore, without loss of generality, we assume

the truly relevant user-item tuples are very sparse in nature. Then,

the recommendation problem is usually formulated as follows:

Definition 1 (Recommendation Problem).

Given: A set of users U = {𝑢1, 𝑢2, ..., 𝑢𝑀 }, a set of items I =

{𝑖1, 𝑖2, ..., 𝑖𝑁 }, the observed user-item interaction matrix R.
Output: The estimated interaction scores of the unobserved items for
each user 𝑢 inU.

2.2 Generalized Matrix Factorization

Matrix Factorization (MF) is one of the most successful recom-

mendation approaches that realize the latent factor models by de-

composing the user-item matrix R into the product of two lower

dimensional matrices. The MF model usually maps both users and

items to a joint latent factor space with the dimensionality of 𝑑 .

Accordingly, each user 𝑢 is associated with a latent vector 𝒆𝑢 ∈ R𝑑 ,
and each item 𝑖 is associated with a latent vector 𝒆𝑖 ∈ R𝑑 . To learn

these latent factor vectors, the objective is usually designed to

minimize the squared error on the observed user-item tuples:

min

{𝒆𝑢 ,𝒆𝑖 }

∑
(𝑢,𝑖) ∈Ω

(R𝑢𝑖 − 𝒆⊤𝑢 𝒆𝑖 )2 (1)

Despite its success in various applications, MF assumes user and

item latent features are equally important on each dimension, and

combines them with equal weights. However, [15] has pointed out

that MF can incur a large ranking error due to its naive assump-

tion. Therefore, they propose to use a GMF model to increase the

expressiveness of MF:

min

{𝒆𝑢 ,𝒆𝑖 }

∑
(𝑢,𝑖) ∈Ω∪Ω−

(
R𝑢𝑖 − {𝒆𝑢 ⊙ 𝒆𝑖 }⊤𝒓𝐷

)
2

(2)

where ⊙ is the element-wise product and Ω−
denotes the set of

negative samples, which are sampled from the unobserved user-

item interactions. 𝒓𝐷 is a learnable vector which builds the relation

mapping between user latent vector 𝒆𝑢 and item latent vector 𝒆𝑖 .

2.3 Generative Adversarial Network

GAN was initially introduced in [12] and it consists of two models,

i.e., discriminator 𝐷 and generator 𝐺 , that play a minimax game.

The discriminator 𝐷 aims to distinguish the real-world data and

the fake data from the generator 𝐺 . Meanwhile, the generator 𝐺



aims to generate fake data to confuse the discriminator 𝐷 as much

as possible. The objective of GAN is usually formatted as:

min

𝐺
max

𝐷
𝑉 (𝐷,𝐺) = E𝑝𝑑𝑎𝑡𝑎 (𝑥)

[
log𝐷 (𝑥)

]
+ E𝑝g (𝑥)

[
log(1 − 𝐷 (𝑥))

]
(3)

where 𝑝𝑑𝑎𝑡𝑎 (𝑥) and 𝑝𝑔 (𝑥) represent the distributions of real-world
data and generator 𝐺 ’s fake output data. The objective of GAN is

equivalent to minimizing the Jensen-Shannon Divergence between

𝑝𝑑𝑎𝑡𝑎 (𝑥) and 𝑝𝑔 (𝑥). Therefore, upon convergence, we expect 𝐺 to

generate high-quality fake data that are visually similar to the real

data. The problem in Eq. (3) is the conceptual formulation of GAN

that favors the theoretical analysis, however, in implementation,

we still need to include the objective function for loss calculation

and gradient back-propagation. Then, the objective becomes:

min

𝐺
max

𝐷
𝑉 (𝐷,𝐺) = E𝑝𝑑𝑎𝑡𝑎 (𝑥)

[
𝑓𝐷 (𝐷 (𝑥))

]
+ E𝑝g (𝑥)

[
𝑓𝐺 (𝐷 (𝑥))

]
(4)

where 𝑓𝐷 and 𝑓𝐺 are the loss functions for discriminator 𝐷 and

generator 𝐺 , respectively.

3 PROPOSED APPROACH

Similar to GAN, we first present the discriminator in PURE which

has the ability to take various types of training samples into con-

sideration under the PU learning setting. Then, we introduce the

generator which could generate the fake user and fake item embed-

dings that increases model expressiveness by covering the corners

of the feature space. The overview of the PURE is shown in Figure 1.

3.1 PU Classifications in Recommendation

In recommendation, we usually learn to map each user-item tuple

(𝑢, 𝑖) to a scalar value that can represent the relevance of 𝑖 to 𝑢. In

our framework, we design the discriminator 𝐷 (𝑢, 𝑖) to be able to

maps (𝑢, 𝑖) to the value of 𝑌 ∈ {0, 1}. The goal of the discrimina-

tive model is to distinguish between the truly relevant items and

non-relevant items for the given user. Intuitively, the discriminator

𝐷 (𝑢, 𝑖) is simply a binary classifier that outputs a probability rele-

vance score. This output score should be 1 when the item 𝑖 is truly

relevant to the user𝑢, and should be 0when𝑢 and 𝑖 are non-relevant.

Formally, we quantify the output score of the discriminator as:

𝐷 (𝑢, 𝑖) = 1

1 + exp

(
− 𝜙 (𝑢, 𝑖)

) (5)

where we let 𝜙 (𝑢, 𝑖) : N × N→ R be the decision function of the

discriminator 𝐷 (𝑢, 𝑖) and N is the set of natural numbers for user

and item indices. The specific instantiation of decision function

𝜙 (𝑢, 𝑖) can be versatile (e.g., matrix factorization [23], factorization

machine [33], neural networks [15], etc.).

We let 𝑝𝑑𝑎𝑡𝑎 (𝑢, 𝑖) be the underlying joint distribution of users

and items, and 𝜋𝑝 = 𝑝 (𝑌 = 1) be the positive class prior. Then, this
joint distribution can be rewritten as follows based on the law of

the total probability:

𝑝𝑑𝑎𝑡𝑎 (𝑢, 𝑖) = 𝜋𝑝𝑝𝑝 (𝑢, 𝑖) + (1 − 𝜋𝑝 )𝑝𝑛 (𝑢, 𝑖) (6)

Here, the positive user-item tuples are assumed to be drawn from

the positive marginal distribution 𝑝𝑝 (𝑢, 𝑖) = 𝑝𝑑𝑎𝑡𝑎 (𝑢, 𝑖 |𝑌 = 1),

and the negative tuples are drawn from the negative marginal

distribution 𝑝𝑛 (𝑥) = 𝑝𝑑𝑎𝑡𝑎 (𝑢, 𝑖 |𝑌 = 0).
To train the recommendation model, we let 𝐿(𝑦,𝑦) be the loss

function, where 𝑦 is the ground truth and 𝑦 is the prediction.

Then, the expected learning risk of the discriminator is 𝑅(𝐷) =

E𝑝𝑑𝑎𝑡𝑎 (𝑢,𝑖)
[
𝐿

(
𝐷 (𝑢, 𝑖), 𝑌

)]
. Thereby, a positive-negative (PN) risk

minimizer for 𝐷 can be learned as:

min

𝐷
𝑅(𝐷) = 𝜋𝑝𝑅

+
𝑝 (𝐷) + (1 − 𝜋𝑝 )𝑅−𝑛 (𝐷) (7)

where 𝑅+𝑝 (𝐷) = E𝑝𝑝 (𝑢,𝑖)
[
𝐿

(
𝐷 (𝑢, 𝑖), 1

)]
is the risk of the rele-

vant samples w.r.t. the positive labels (𝑌 = 1) and 𝑅−𝑛 (𝐷) =

E𝑝𝑛 (𝑢,𝑖)
[
𝐿

(
𝐷 (𝑢, 𝑖), 0

)]
is the risk of the non-relevant samples w.r.t.

the negative labels (𝑌 = 0). In practice, 𝑅+𝑝 (𝐷) can be approximated

empirically using the observed relevant user-item tuples, but 𝑅−𝑛 (𝐷)
is usually unknown. To estimate the learning risk, many existing

work simply assume the set of the unobserved user-item tuples

from the unlabeled distribution 𝑝𝑢 (𝑢, 𝑖) are non-relevant, and per-

form negative sampling by assigning these tuples with negative

labels.

Nevertheless, this assumption can hardly be satisfied in real sce-

narios since such “negatively” sampled data will inevitably include

a certain number of positive samples. Naively assigning them with

negative labels, the training process of the recommender system is

usually unstable and often has poor convergence [34]. To this end,

PU learning [21, 30] can be used to tackle this problem with theoret-

ical guarantees by treating the unobserved user-item tuples directly

as unlabeled samples. Following [21], we also express the unlabeled

marginal distribution as (1 − 𝜋𝑝 )𝑝𝑛 (𝑢, 𝑖) = 𝑝𝑢 (𝑢, 𝑖) − 𝜋𝑝𝑝𝑝 (𝑢, 𝑖).
Then, 𝑅−𝑛 (𝐷) has the following equality:

(1 − 𝜋𝑝 )𝑅−𝑛 (𝐷) = 𝑅−𝑢 (𝐷) − 𝜋𝑝𝑅
−
𝑝 (𝐷) (8)

where 𝑅−𝑢 (𝐷) = E𝑝𝑢 (𝑢,𝑖)
[
𝐿

(
𝐷 (𝑢, 𝑖), 0

)]
is the risk of unlabeled sam-

ples w.r.t. the negative labels, and 𝑅−𝑝 (𝐷) = E𝑝𝑝 (𝑢,𝑖)
[
𝐿

(
𝐷 (𝑢, 𝑖), 0

)]
is the risk of positive samples w.r.t. the negative labels. Thus, the

final risk minimization problem can be rewritten as:

min

𝐷
𝑅(𝐷) = 𝜋𝑝𝑅

+
𝑝 (𝐷) − 𝜋𝑝𝑅

−
𝑝 (𝐷) + 𝑅−𝑢 (𝐷) (9)

By minimizing the objective of Eq. (9), the discriminator 𝐷 can

distinguish the relevance of user-item tuples by minimizing the

learning risks of 𝑝𝑝 (𝑢, 𝑖) and 𝑝𝑢 (𝑢, 𝑖). Note that due to the negative
property of the second term in Eq. (9), many existing work [14, 21]

may replace it with max{0,−𝜋𝑝𝑅−𝑝 (𝐷) + 𝑅−𝑢 (𝐷)} to guarantee a

non-negative risk. However, in recommendation, the positive class

prior 𝜋𝑝 is always very small which alleviates this issue, and we did

not observe such a negative risk phenomenon in our experiments

without adding the max operator.

3.2 Discriminative Model

With the well-defined risk minimization objective, now we demon-

strate how to empirically train the discriminator using the following

sets of training samples:

Positive samples from given observations. User 𝑢 and item 𝑖

are observed in the given data set and are truly relevant (R𝑢𝑖 = 1).



Figure 1: Overview of the proposed PURE framework

For these samples, the discriminator aims to maximize the following

objective:

𝑉 (𝐷)1 =
𝑛𝑝∑

(𝑢,𝑖) ∈Ω
𝜋𝑝 log𝐷 (𝑢, 𝑖) − 𝜋𝑝 log

(
1 − 𝐷 (𝑢, 𝑖)

)
(10)

where𝑛𝑝 = |R | is the number of observed positive tuples. To comply

with the PU learning objective in Eq. (9), the second term is the

empirical risk of positive samples w.r.t. negative labels. Intuitively,

we want to maximize (minimize) the 𝐷’s predictions on samples

with positive (negative) labels.

Unlabeled samples from unobserved interactions and the

generator. Given a user 𝑢, the discriminative model is designed to

assign lower scores to the items that have not be rated or viewed.

We decompose this part of the objective from both the unobserved

samples and generated user-item samples:

𝑉 (𝐷)2 =
𝑛𝑢∑

(𝑢,𝑖) ∈Ω−
log

(
1−𝐷 (𝑢, 𝑖)

)
+
[
log

(
1−𝐷 (𝑢, 𝑖 ′)

)
+log

(
1−𝐷 (𝑢 ′, 𝑖)

)]
(11)

where the fake user 𝑢 ′ ∼ 𝐺 (𝑧𝑢 ) and fake item 𝑖 ′ ∼ 𝐺 (𝑧𝑖 ) are gen-
erated from the user and item generators respectively, and 𝑛𝑢 is

the number of unlabeled tuples from unlabeled sampling. The ratio

between the unlabeled samples generated by the generator and

sampled from unobserved tuples could be a hyper-parameter to

tune. Here, we set their ratio to be 1 in the experiments, namely,

these two sources of unlabeled samples are equally important. How-

ever, further tuning of this ratio may lead to better performance,

and we leave it for future exploration.

3.3 Generative Model

The generative model aims to generate fake samples to fool the

discriminator as much as possible. Therefore, given a real sample

(𝑢, 𝑖), the generator 𝐺𝑖 (𝑧𝑖 ) is designed to generate a fake item 𝑖 ′

that is highly likely to be relevant to𝑢. This fake item can be virtual,

and do not even exist in I. Similarly, the generator 𝐺𝑢 (𝑧𝑢 ) will
generate a fake user 𝑢 ′ that is likely to be relevant to 𝑖 . In particular,

we design the noise input for user and item generators to be a

random Gaussian noise:

𝑧𝑖 , 𝑧𝑢 ∼ N(0, 𝛿𝑰 ) (12)

where the mean of noise input would be a zero vector 0 of the

same size as embedding dimension 𝑑 , and 𝑰 ∈ R𝑑×𝑑 is the identity

matrix whose magnitude is controlled by 𝛿 which represents the

underlying deviations of the generator’s noise input. Next, we apply

the multi-layer perceptron (MLP) to generate the fake item 𝑖 ′ and
user 𝑢 ′ as follows:

𝑖 ′ ∼ 𝐺𝑖 (𝑧𝑖 ) = ReLU
(
𝑊 2

𝑖 · ReLU
(
𝑊 1

𝑖 · 𝑧𝑖 + 𝑏1𝑖 )
)
+ 𝑏2𝑖

)
𝑢 ′ ∼ 𝐺𝑢 (𝑧𝑢 ) = ReLU

(
𝑊 2

𝑢 · ReLU
(
𝑊 1

𝑢 · 𝑧𝑢 + 𝑏1𝑢 )
)
+ 𝑏2𝑢

) (13)

where𝑊 1

𝑖
,𝑊 2

𝑖
and 𝑏1

𝑖
, 𝑏2

𝑖
are the learnable weights and biases for

the 1-st layer and the 2-nd layer of MLP in the item generator𝐺𝑖 (𝑧𝑖 ),
and we have similar definitions for the user generator 𝐺𝑢 (𝑧𝑢 ). In
the experiments, we observe that a two-layer MLP would be very

effective and computationally efficient. Then, putting everything

together, we have the overall objective of PURE as follows:

min

𝐺
max

𝐷
𝑉 (𝐷,𝐺) =

𝑛𝑝∑
(𝑢,𝑖) ∈Ω

𝜋𝑝 log𝐷 (𝑢, 𝑖) − 𝜋𝑝 log

(
1 − 𝐷 (𝑢, 𝑖)

)
+

𝑛𝑢∑
(𝑢,𝑖) ∈Ω−

log

(
1 − 𝐷 (𝑢, 𝑖)

)
+
[
log

(
1 − 𝐷

(
𝑢,𝐺𝑖 (𝑧𝑖 )

) )
+ log

(
1 − 𝐷

(
𝐺𝑢 (𝑧𝑢 ), 𝑖

) )]
(14)

The above objective can be optimized by performing a gradient-

based optimization method. We find that Adam [20] would be em-

pirically more stable and converge faster than other optimizers.

4 MODEL ANALYSIS

4.1 Instantiation of the Discriminator

For discriminator’s decision function 𝜙 (𝑢, 𝑖), we can define it in

various ways. In our experiment, we adopt the design of GMF (see

Eq. (2)) by assuming that user and item embeddings have the same

dimensionality:

𝐷 (𝑢, 𝑖) = 1

1 + exp(−{𝒆𝑢 ⊙ 𝒆𝑖 }⊤𝒓𝐷 )
(15)

In practice, we set the user embedding and item embedding to

have the same dimension. Nevertheless, it is rather straightforward

to extend it to a more general setting that users and items have

different embedding dimensions. Then, a more generalized form

for quantifying the output score of discriminator 𝐷 is:

𝐷 (𝑢, 𝑖) = 1

1 + exp(−𝒆⊤𝑢𝑀𝐷𝒆𝑖 )
(16)

where 𝒆𝑢 ∈ R𝑑𝑢 and 𝒆𝑖 ∈ R𝑑𝑖 are the latent embeddings of user 𝑢

with size𝑑𝑢 and item 𝑖 with size𝑑𝑖 , respectively.𝑀𝐷 ∈ R𝑑𝑢×𝑑𝑖 is the
learnable relation mapping matrix for user and item embeddings.

Note that MF-based and GMF-based discriminators are both special

cases of Eq. (16) by setting 𝑑 = 𝑑𝑢 = 𝑑𝑖 and 𝑀𝐷 as an identity

matrix or a diagonal matrix.

4.2 Sampling Strategy

In PN learning, it is a common practice to treat the observed user-

item tuples as positive, and treat the rest as negative. However,

due to the sparsity of the positive tuples, we frequently sample

the negative tuples from a large number of unlabeled entries. One

popular sampling strategy is uniform negative sampling (UNS),

where the number of sampled “negative” tuples 𝑛𝑛 is proportional

to the number of positive tuples 𝑛𝑝 . Nevertheless, UNS may lead

to poor and unstable convergence [34] during training due to its

ill-conditioned assumption. To stabilize and improve the model



performance, other techniques have been developed to alleviate the

convergence issue, such as dynamic negative sampling (DNS) or

dynamic random negative sampling (DRNS) [40]. Their intuitions

are similar to the concept of one-class SVM [29], which wraps

a classification boundary around the positive samples and treats

the rest as negative. Both DNS and DRNS have been shown to be

faster in terms of model convergence [3, 34, 40] in the PN learning

setting. However, both of them need to call the learned model re-

peatedly which is extremely computational expensive especially for

large-scale data sets. In PURE, we adopt the efficient UNS sampling

strategy since unlabeled data have been explicitly modeled in our

PU learning objective.

4.3 Sampling Bound

Another key question is how to determine the number of unlabeled

samples 𝑛𝑢 . In PN learning, the selection of 𝑛𝑛 is usually empirical,

where 𝑛𝑛 = 𝐶𝑛𝑝 and 𝐶 is the negative sampling ratio. However, in

PU learning, with the utilization of estimation error bound [30], 𝑛𝑢
can be determined by 𝜋𝑝 and 𝑛𝑝 using the following theorem.

Theorem 1. [Unlabeled Sampling] The estimation error bound of
PU learning is tighter than that of PN learning if and only if:

𝑛𝑢 ≥
√
𝐶 𝑛𝑝(

1 −
(√
𝐶 + 1

)
𝜋𝑝

)
2

(17)

Intuitively, 𝑛𝑢 monotonically decreases with a decreasing 𝜋𝑝 ,

and a larger 𝐶 in PN learning will require a larger 𝑛𝑢 to guarantee

that PU learning outperforms PN learning. In practice, 𝜋𝑝 must be

much smaller than 0.5 because positive samples are very sparse in

recommendation. As a special case, we can set 𝐶 = 1 which means

the negative sampling in PN learning follows the 1 : 1 balanced

setting. Then, from 𝑛𝑢 ≥ 𝑛𝑝/(1− 2𝜋𝑝 )2, we easily know that when

𝜋𝑝 is small, e.g., less than 0.1, PU learning is expected to outperform

the corresponding PN learning with 𝑛𝑢 = 2𝑛𝑝 . When 𝜋𝑝 increases,

e.g., greater than 0.4, PU learning is difficult to beat PN learning

unless 𝑛𝑢 ≥ 25𝑛𝑝 . Namely, when 𝜋𝑝 is small (which is mostly the

case for recommendation problems), PU learning is a better and

computationally efficient option.

4.4 Optimality of Convergence

Up to now, it is still unclear whether the final convergence of

PURE would enjoy the desirable property of our initial motivation

of having a good generator to produce high-quality fake sample

embeddings. In this section, we provide theoretical proof to show

that the objective of PURE is equivalent to minimizing the KL-

divergence between the true user-item relevant distribution 𝑝𝑝 (𝑢, 𝑖)
and generated distribution 𝑝𝑔 (𝑢, 𝑖) of the generator plus unlabeled
distribution 𝑝𝑢 (𝑢, 𝑖).

First, following the analysis in [12], we show that the optimal

distribution of discriminator𝐷 would be a balance between 𝑝𝑝 (𝑢, 𝑖),
𝑝𝑢 (𝑢, 𝑖), and 𝑝𝑔 (𝑢, 𝑖).

Proposition 1. [Optimality of the discriminator] For a fixed
generator 𝐺 , the optimal discriminator 𝐷 is:

𝐷∗ (𝑢, 𝑖) =
𝜋𝑝𝑝𝑝 (𝑢, 𝑖)

𝑝𝑢 (𝑢, 𝑖) + 𝑝𝑔 (𝑢, 𝑖)

Algorithm 1 PURE

1: Input: Generators𝐺𝑢 ,𝐺𝑖 , discriminator 𝐷 , user-item interac-

tion matrix R, user set U, item set I, positive class prior 𝜋𝑝 .
2: Initialization: Assign 𝐺𝑢 ,𝐺𝑖 with random weights, assign 𝐷

with random weights or pre-trained weights, 𝑛𝑝 = |Ω |, 𝑛𝑢 =

ceil

(
𝑛𝑝

(1−2𝜋𝑝 )2
)

3: Repeat:

4: for discriminator-steps do:

5: Sample first 𝑛𝑝 tuples (𝑢, 𝑖) ∈ Ω with label 1

6: Sample another 𝑛𝑝 tuples (𝑢, 𝑖) ∈ Ω with label 0.

7: Sample 𝑛𝑢 tuples (𝑢, 𝑖) ∈ Ω−
with label 0.

8: Generate 𝑛𝑢 tuples (𝑢, 𝑖 ′) and (𝑢 ′, 𝑖) with label 0 using

Eq. (13).

9: Update the discriminator model 𝐷 by ascending its gradi-

ents in the objectives of Eq. (10), and Eq. (11).

10: end for

11: for generator-steps do:

12: Generate 𝑛𝑢 random noise 𝑧𝑢 , 𝑧𝑖 using Eq. (12).

13: Sample 𝑛𝑢 tuples (𝑢, 𝑖) ∈ Ω−
with label 1.

14: Replace (𝑢, 𝑖) with (𝑢, 𝑖 ′) and (𝑢 ′, 𝑖) using generator’s out-
put 𝐺𝑢 (𝑧𝑢 ) and 𝐺𝑖 (𝑧𝑖 ) by Eq. (13)

15: Update the generator model 𝐺𝑢 ,𝐺𝑖 by descending their

corresponding gradients in the objective of Eq. (11).

16: end for

17: Output: The trained 𝐺𝑢 ,𝐺𝑖 , and 𝐷

Next, with the optimal discriminator being fixed, we can substi-

tute 𝐷∗ (𝑢, 𝑖) into the final objective of PURE in Eq. (14). Then, we

can have the optimal generator as follows.

Proposition 2. [Optimality of the generator] With the discrim-
inator 𝐷 fixed, the optimization of the generator is equivalent to

minimizing: −2H
(
𝜋𝑝
2

)
+ 𝜋𝑝 · KL

(
𝑝𝑝 (𝑢, 𝑖)

������𝑝𝑢 (𝑢,𝑖)+𝑝g (𝑢,𝑖)
2

)
+ (2 −

𝜋𝑝 ) · KL
( (1−𝜋𝑝 )𝑝𝑛 (𝑢,𝑖)+𝑝g (𝑢,𝑖)

2−𝜋𝑝

������𝑝𝑢 (𝑢,𝑖)+𝑝g (𝑢,𝑖)
2

)
where H

(
𝜋𝑝
2

)
is the

entropy for a Bernoulli with success probability of
𝜋𝑝
2
.

Theorem 2. [Global optimum] The global minimum could be

achieved if and only if 𝑝𝑝 (𝑢, 𝑖) =
𝑝𝑢 (𝑢,𝑖)+𝑝g (𝑢,𝑖)

2
. At that point, the

objective value of the framework 𝑉 (𝐺,𝐷) converges to −2H
(
𝜋𝑝
2

)
,

and the value of 𝐷 (𝑢, 𝑖) reaches 𝜋𝑝
2
.

The proofs of the above four theoretical results can be found in

the Appendix. In Theorem 2, we know the proposed framework

will achieve equilibrium if and only of 𝑝𝑝 (𝑢, 𝑖) =
𝑝𝑢 (𝑢,𝑖)+𝑝g (𝑢,𝑖)

2
. In-

tuitively, upon convergence, linearly combining the optimal gener-

ator’s user-item distribution with the original unlabeled user-item

distribution of the given data, will be highly similar to the true

relevant user-item distribution. This justifies our motivation for

training a generator to produce highly relevant embeddings that

confuse the discriminator as much as possible.

4.5 Algorithm and Complexity

Based on the overall learning objective, we summarize the learn-

ing steps of PURE in Algorithm 1. Before training, the generator



and the discriminator are initialized either randomly or with pre-

trained weights. Then, during the training stage, we update these

two models respectively in an iterative manner. Specifically, we

first fix𝐺 and update the discriminator using the observed positive

tuples, the sampled unlabeled tuples
1
, and the generated user/item

embeddings. Next, we fix 𝐷 and update the generator. The afore-

mentioned iterative steps will continue until the model converges

or the max number of iterations is reached.

Regarding the complexity analysis of the model training, we

assume both user and item have equal latent embedding dimen-

sionality 𝑑 . Then, the space complexity is𝑂
(
(𝑀 +𝑁 + 1) ·𝑑

)
for the

discriminator and is𝑂
(
𝑘𝑑

)
for the generator, where 𝑘 is the number

of hidden units in generator’s MLP. The computational complexity

mainly involves the matrix multiplication operations. Then, the

computational complexity per epoch is𝑂
(
(2𝑛𝑝 +𝑛𝑢 ) · (𝑀 +𝑁 ) ·𝑑2

)
for the discriminator, and 𝑂

(
𝑛𝑢𝑘𝑑

2
)
for the generator.

5 EXPERIMENTAL RESULTS

In this section, we aim to answer the following research questions:

RQ1: Can the proposed PURE model outperform the state-of-the-

art recommendation methods?

RQ2: What is the parameter sensitivity for PURE in terms of

positive prior 𝜋𝑝 and the generator’s random noise input magnitude

𝛿? Does pre-train affect the ranking performance?

RQ3: How does the running time of PURE compare with other

baselines?

Dataset # Users # Items # Interactions Sparsity

Movielens 6,040 3,706 1,000,209 4.46%

Yelp 25,677 25,815 731,671 0.11%

Table 1: Statistics of the data sets

5.1 Experimental Settings

5.1.1 Data sets. We conduct the experiments on two publicly ac-

cessible data sets: Movielens
2
and Yelp

3
. For Yelp data set, due

to the sparsity of the ratings among the data, we adopt the pre-

processing step from [15] by keeping the users with more than 10

item interactions. To perform implicit recommendation, following

the experimental setting of [40], only the 4-star and 5-star ratings

in these data sets are treated as positive feedback, and the rest are

unknown feedback. In this way, the data is transformed into the

user-item interaction matrix R with each entry being either 0 or 1.

The details of these data sets are summarized in Table 1.

5.1.2 Evaluation Protocol. To evaluate the performance of all meth-

ods, we adopt the official 80%|20% random split and perform sam-

pled evaluation [15, 22, 24] to speed up the computation. In the

evaluation stage, only a smaller set of random items is used as the

candidates pool for ranking predictions. Due to the fact that Movie-

lens and Yelp have been pre-processed to only keep the users with

at least 20 or 10 relevant items, we adopt the random leave-ten-out

(for Movielens) and leave-five-out (for Yelp) strategy to split them

into the train set and the test set. Unlike the leave-one-out sampled

1
The negative sampling ratio for PN learning is set as𝐶 = 1 in the algorithm.

2
https://grouplens.org/datasets/movielens/

3
https://github.com/hexiangnan/sigir16-eals/tree/master/data

metric strategy being used in [15, 22] which has candidates pool

of size 100 and it may introduce bias into evaluation results. We

follow the suggestion of [24] and make the candidates pool with a

larger size of 500 items. This is a good trade-off pool size for the

sampled evaluation where both computation cost and true perfor-

mance consistency are well balanced. The eventual performance of

the predicted ranked list is evaluated by Precision (P@𝑘), Normal-

ized Discounted Cumulative Gain (NDCG@𝑘), where 𝑘 = {3, 5, 10},
Mean Average Precision (MAP), and Mean Reciprocal Rank (MRR).

Note that we have modified the evaluation protocols significantly

to couple with the sampled evaluation and actual needs (more than

one recommended items per user) in real applications, the results

are not directly comparable with previous ones [4, 15, 22, 40]. Nev-

ertheless, we have utilized a rich bundle of popular baselines and

all have been evaluated using the same evaluation protocols.

5.1.3 Baselines. We considered five categories of recommendation

methods for comparisons:

• Traditional collaborative filtering: ItemPop is a non-personalized

method that recommend the most popular items to each user.

SlopeOne [25] is also another item-based collaborative filtering

method;Co-clustering [11] identifies overlapping co-clusters of

users & items and infers relevance score using cluster statistics.

• Traditional matrix factorization: SVD [23] infers the user-item

interaction score as the sum of user bias, item bias, and the

product of user & item latent factors;NMF [28] is similar to SVD,

but the user and item factors are computed under a non-negative

constraints; PMF [35] infers the interaction score from user and

item probabilistic latent factors with Frobenius regularization.

• Neural collaborative filtering: BPR [34] learns the user and item

embeddings using user-specific pairwise preferences between

a pair of items; LambdaFM [42] learns the embeddings using

pairwise ranking loss along with lambda surrogate; GMF [15]

learns the embeddings using pointwise label information along

with relation mapping embedding.

• GAN based recommenders: GraphGAN [38] builds a discrimina-

tor to predict the connectivity of user & item, and a generator

to learn the joint discrete distribution; IRGAN [40] builds a dis-

criminator using matrix factorization, and a generator to extract

relevant items using policy gradient; CFGAN [4] uses a genera-

tor to generate the purchase vectors for users, and a discriminator

to differentiate the real purchase vectors and the fake ones.

• PU-learning based recommenders: PU-GMF [21] modifies the PN

learning objective of GMF with its PU learning version, and feed

the model with positive data and sampled unlabeled data; PURE

is our proposed model.

5.1.4 Reproducible settings. To guarantee a fair comparison be-

tween all baselines, we fix the embedding size 𝑑 as 8 and 16

for all models on Movielens and Yelp, respectively. Meanwhile,

the input allowed for all models would be the rating matrix R
only, no side information or additional features are supplied. All

models are validated on the performance of P@5. The learning

rate is searched from {1 × 10
−4, 1 × 10

−3, 1 × 10
−2}, the positive

class prior 𝜋𝑝 is searched from {1 × 10
−6, 1 × 10

−5, 1 × 10
−4, 1 ×

10
−3, 1× 10

−2, 1× 10
−1}, the generator’s input noise magnitude 𝛿 is



Movielens-1m P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@10 MAP MRR

ItemPop 0.2805 0.2400 0.1845 0.2961 0.2725 0.2883 0.2371 0.5038

SlopeOne[25] 0.3954 0.3736 0.3124 0.3887 0.3775 0.3453 0.2958 0.4981

Co-clustering[11] 0.4826 0.4612 0.4195 0.4533 0.4475 0.4283 0.3500 0.5105

SVD[23] 0.4187 0.3563 0.2621 0.4483 0.4107 0.4224 0.3546 0.6680

NMF[28] 0.5262 0.4916 0.4118 0.5238 0.5034 0.4603 0.4002 0.6279

PMF[35] 0.4108 0.3975 0.3633 0.3819 0.3817 0.3678 0.3182 0.4406

BPR[34] 0.6604 0.7379 0.8272 0.6339 0.6930 0.7710 0.3793 0.6714

LambdaFM[42] 0.6365 0.7116 0.8072 0.6070 0.6669 0.7493 0.9516 0.6488

GMF[15] 0.6546 0.7284 0.8156 0.6254 0.6798 0.7583 0.8354 0.6594

GraphGAN[38] 0.4731 0.5538 0.5209 0.4433 0.5072 0.5019 0.4198 0.4998

IRGAN[40] 0.2732 0.2326 0.1774 0.2885 0.2644 0.2779 0.2279 0.4926

CFGAN [4] 0.6209 0.6978 0.7983 0.5902 0.6517 0.7379 0.8114 0.6337

PU-GMF[15]+[21] 0.6639 0.7394 0.8268 0.6398 0.6963 0.7724 0.8639 0.6762

PURE (ours) 0.6824 0.7523 0.8351 0.6532 0.7094 0.7829 0.8703 0.6895

Table 2: Evaluation results of Movielens data set

Yelp P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@10 MAP MRR

ItemPop 0.1335 0.1124 0.0842 0.1489 0.1592 0.1976 0.1596 0.2858

SlopeOne[25] 0.2053 0.1917 0.1567 0.2008 0.1983 0.2122 0.1986 0.2869

Co-clustering[11] 0.2216 0.1929 0.1475 0.2397 0.2499 0.2937 0.2423 0.3913

SVD[23] 0.2635 0.2157 0.1527 0.2960 0.3083 0.3693 0.2981 0.4880

NMF[28] 0.3788 0.3474 0.2767 0.3754 0.3652 0.3820 0.3560 0.4781

PMF[35] 0.2772 0.2750 0.2478 0.2564 0.2631 0.2671 0.2573 0.3132

BPR[34] 0.4634 0.5423 0.6561 0.4345 0.4968 0.5918 0.5797 0.4910

LambdaFM[42] 0.3920 0.4653 0.5757 0.3659 0.4236 0.5149 0.8173 0.4242

GMF[15] 0.4416 0.5230 0.6426 0.4122 0.4764 0.5758 0.6556 0.4715

GraphGAN[38] – – – – – – – –

IRGAN[40] 0.1276 0.1081 0.0816 0.1424 0.1525 0.1901 0.1551 0.1735

CFGAN [4] 0.2309 0.2824 0.3699 0.2140 0.2541 0.3247 0.3260 0.2676

PU-GMF[15]+[21] 0.4866 0.5666 0.6800 0.4560 0.5196 0.6149 0.7857 0.5102

PURE (ours) 0.5038 0.5830 0.6935 0.4736 0.5365 0.6297 0.9206 0.5264

Table 3: Evaluation results of Yelp data set

searched on {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3}. Training is accel-
erated with pre-train, where we initialize PURE’s generator with

random weights and initialize the discriminator with PU-GMF’s

embedding weights.

5.2 Performance Comparison (RQ1)

From the evaluation results shown in Table 2 and Table 3, we ob-

serve that PURE achieves the best performance on most metrics.

The neural collaborative filtering methods and GAN-based methods

are usually very competitive overall. For the Movielens data set, as

we can see in Table 2, BPR, LambdaFM, PU-GMF, and CFGAN also

perform relatively well in terms of P@𝑘 and NDCG@𝑘 comparing

with other baselines. One interesting observation is that LambdaFM

has very high values on the MAP metric. That is because pairwise

learning is position-independent and pairwise-ordering at the bot-

tom of the ranking list would impact the learning loss as much

as the top pairs. Meanwhile, LambdaFM is particularly designed

for optimizing the overall ranking performance. We follow the set-

ting from the papers of BPR and IRGAN to tune the learning rate,

number of epochs, etc. We found that BPR is very sensitive to the

sample sequence in the training batches, and IRGAN’s performance

is largely impacted by its hyperparameters and pretraining. We

have performed a comprehensive model tuning in a reasonable

time period for all baselines and reported their best performance

for a fair comparison.

For the results of the Yelp data set, the best frameworks are PU-

GMF and PURE, followed by neural collaborative filtering methods

such as BPR, LambdaFM, and GMF. The GraphGAN method fails to

finish training on Yelp since it needs to compute the graph softmax

and generate a huge amount of neighbor vertices for each existing

vertex. The traditional collaborative filtering and MF-based meth-

ods do not have a satisfactory performance on Yelp. We also observe

that GAN-based methods could easily fail to converge even with

careful hyperparameter tuning. The reasons for their poor perfor-

mance are two-fold: First, these methods are taking the unobserved

data as negative samples without the negative sampling procedure,

resulting in an unbalanced training data problem, especially for

Yelp data set, which is much sparser than the other two data sets.

Second, they didn’t use continuous space sampling, and generating

with discrete sampling will end up with poor model expressive-

ness especially when dealing with large-scale sparse data set. As a

comparison, PU learning will help sample from both the observed

and unobserved entries and the generator will further learn the

data distribution and generate continuous user-item embeddings

to increase the model expressiveness. Similarly, the models with

pairwise loss (BPR and LambdaFM) also perform relatively well on

MAP due to their position-independent properties in the modeling.

5.3 Parameter Study (RQ2)

Regarding the hyper-parameters sensitivity in PURE, we show the

performance of P@5, NDCG@5, MAP, and MRR with respect to

the positive class prior 𝜋𝑝 and the magnitude of generator’s input

noise 𝛿 . We perform this parameter study on a smaller version

of Movielens data set that has 100k reviews, i.e., Movielens-100k,



With Pretrain Without Pretrain

P@5 NDCG@5 P@5 NDCG@5

Movielens 0.7523 0.7094 0.7101 0.6568

Yelp 0.5830 0.5365 0.5340 0.4864

Table 4: Performance of PURE with/without pre-training.

because of its small size so that we can well-tune all the competitive

baselines with a reasonable amount of effort. Note that we adopted

the full test set evaluation instead of sampled evaluation, however,

since Movielens-100k’s default train|test split assigns only half of

users from train into the test set, the final evaluation performance

is much lower than Movielens-1m with sampled evaluation.

First, we can see that PURE achieves the best performance with

carefully selected hyper-parameters. We observe in Figure 2 (In

Appendix) that PURE outperforms (on average 1.5%) all the competi-

tors when 𝜋𝑝 is set to 0.0001. Meanwhile, we see that PURE has a

performance guarantee if 𝜋𝑝 falls into the range of [0.00001, 0.001]
which means the underlying true density of the positive samples

is very sparse. Namely, each user would only show interest in a

very small number of items on average, which is reasonable in

real-world applications. Second, Figure 3 (In Appendix) shows that

PURE is not very sensitive to the conditional noise magnitude. Start-

ing from 𝛿 = 0.005 to 𝛿 = 0.1, we observe that PURE can almost

outperform every baseline in all metrics. It is because the genera-

tor could produce high-quality fake embeddings to help improve

the discriminating ability of the discriminator. We conjecture that

fine-tuning the structure of MLP layers could further improve the

expressiveness of the generator, which in turn improves the overall

performance. The exploration of the optimal model structure is left

for future work. Third, to demonstrate the utility of pre-training,

we compared the performance of two different versions for PURE -

with and without pre-training. For PURE without pre-training, we

initialize the embedding layers of the discriminator and the MLP

layers of the generator with random weights. For PURE with pre-

train, we first train a PU-GMFmodel, and then assign its embedding

weights to PURE’s discriminator, but the generator is still random

initialized. As shown in Table. 4, the relative improvements of uti-

lizing pre-training are roughly 1%, 4%, and 5% for Movielens-100k,

Movielens-1m, and Yelp, respectively. We empirically observe that

PURE with pre-training converges faster with less training epochs.

Both above observations justify the usefulness and efficiency of our

proposed pre-training method for initializing PURE.

5.4 Running Time (RQ3)

In Figure 4 (In Appendix), we compare the running time between

PURE and other baselines on Movielens-1m. The circle size rep-

resents the average performance (NDCG@5 in this case) of the

corresponding method and the x-axis records their running time in

log scale. As we can see, the traditional matrix factorization meth-

ods run very fast but with limited performance. PURE performs

the best but a little slower than PU-GMF due to the extra training

time of the generator. The pairwise loss based models, such as BPR

and LambdaFM, are comparable in terms of performance. CFGAN

performs well on this data set since it also performs continuous sam-

pling. IRGAN suffers the issue of high computational complexity

due to multiple reasons, e.g., dynamic negative sampling, softmax

operations, high generator, and discriminator epochs. GraphGAN

and SlopeOne need to loop over all users and items multiple times

and therefore, have the highest computational complexity.

6 RELATEDWORK

6.1 Recommender Systems

Algorithms and frameworks regarding recommendation systems

have been widely studied in recent years due to their busi-

ness success to attract traffic or improve profit in different do-

mains [1, 7, 19, 27, 32, 36, 39, 47]. Collaborative filtering based

methods play an important role in recommender systems and gain

major attention [23] for recent decades. Within collaborative fil-

tering, latent factor or embedding based algorithms such as ma-

trix factorization [23], factorization machines [33] and their vari-

ants [28, 35, 42] have been successfully applied in recommender

systems. With the development of deep neural networks, deep

learning based recommender systems become a hot research topic

since they introduce non-linearity and increase model expressive-

ness [44]. Traditional matrix factorization based algorithms have

been transformed into their deep model versions, such as neural

collaborative filtering [15] and deep factorization machine [13].

In order to approach the true distribution of the user and items,

generative adversarial networks have been adopted for information

retrieval [18, 40], network mining [10, 38, 43, 46], and heteroge-

neous learning [45, 48, 49]. IRGAN [40] formulates a minimax game

where the generator learns the discrete relevance distribution of

users and items for synthesizing the indistinguishably fake user-

item tuples while the discriminator identifies whether one user-item

tuple is real or not. Following this idea, GraphGAN [38] learns the

underlying connection distribution over vertices in an adversarial

framework for graph representation learning. HeGAN [18] further

proposed the relation-aware generator and discriminator to en-

code the heterogeneous information network with multiple types

of vertices and edges. All these methods take the unlabeled user

and item interactions as negative samples, which is a non-valid

assumption for real-world applications. In this paper, we addressed

this problem by utilizing the GAN-based retrieval model and train

its discriminator under the PU learning framework.

6.2 Positive Unlabeled Learning

PU learning [14, 16, 21, 30] is a variant of the classical PN learning,

where the training data only consists of positive and unlabeled

samples. This learning setting fits with the applications that do not

require fully supervised data. The pioneering work [5, 26] of PU

learning was initialized two decades ago. and the state-of-the-art

PU learning approaches are mainly focused on unbiased PU risk

estimators. Starting from [9], which treats the unlabeled data as

a weighted mixture of positive and negative data and has an un-

biased estimator if positive and negative conditional densities are

disjoint, multiple variants [8, 21, 30] have been proposed. It has

been proven in [8] that an unbiased PU estimator can be learned if

the loss is symmetric. Later on, the analysis in [30] shows that the

unbiased estimator could be convex for loss functions that meet the

linear-odd condition. However, the aforementioned approaches are

not applicable to very flexible models, where the overall risk of the

estimator will become negative. [21] has shown that by imposing

a non-negative operator on the estimated empirical risk term of

the unlabeled data, the non-negative risk estimator will reduce



the overfitting phenomenon, which opens the door for adopting

deep neural networks into PU learning frameworks. PU learning

has not been extensively explored on recommender systems, even

inherently the recommendation problem fits the PU learning sce-

nario very well. Most related work includes PU learning for matrix

completion [17] and one-class collaborative filtering [31]. Our work

is different from these methods in that, PURE does not impose any

assumption on the distribution of users and items, and employs

the GAN framework to learn the real distribution of the user-item

interaction in a continuous embedding space.

7 CONCLUSION

In this paper, we proposed a novel recommendation framework

based on the generative adversarial network. Its discriminator is

trained using PU learning with an unbiased risk estimator, while

the generator learns the underlying continuous distribution of users

and items to generate high-quality fake embeddings of them. We

theoretically analyzed the performance of PURE from multiple

aspects, and performed extensive experiments to demonstrate its

effectiveness and efficiency for personalized ranking problems in

comparison with a rich set of strong baselines.
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Figure 2: Positive class prior 𝜋𝑝

Figure 3: Generator’s input noise magnitude 𝛿

A APPENDIX

In all the following proofs, we denote each user-item tuple (𝒖, 𝒊) in
recommendation as one data sample 𝒙 for simplicity.

A.1 Proof of Theorem 1

Theorem 1 states that the Estimation Error Bound of PU learning

is tighter than that of PN learning if and only if:

𝑛𝑢 ≥
√
𝐶 𝑛𝑝(

1 −
(√
𝐶 + 1

)
𝜋𝑝

)
2

Proof. The differences of PN learning and PU learning in terms

of the EER bounds in Lemma 1 reflect the differences w.r.t. their

risk minimizers. We define:

𝛼𝑝𝑢,𝑝𝑛 :=
𝜋𝑝/√𝑛𝑝 + 1/√𝑛𝑢
(1 − 𝜋𝑝 )/

√
𝑛𝑛

(18)

For simplicity, let’s denote 𝜌𝑝𝑢 := 𝑛𝑝/𝑛𝑢 and we know 𝜌𝑝𝑛 :=

𝑛𝑝/𝑛𝑛 = 1/𝐶 . Then, by setting 𝛼𝑝𝑢,𝑝𝑛 ≤ 1, we have:

𝜋𝑝 + √
𝜌𝑝𝑢 ≤ 1

√
𝐶
(1 − 𝜋𝑝 ) ⇔ 𝜌𝑝𝑢 ≤ 1

√
𝐶

(
1 − (

√
𝐶 + 1)𝜋𝑝

)
2

(19)

It is rather straightforward to get the conclusion in Eq. (A.1) by

solving the above inequality. □

Lemma 1. [Estimation Error Bound (EEB)] Let F be the function
class, and ˆ𝑓𝑝𝑛 and ˆ𝑓𝑝𝑢 be the empirical risk minimizer of 𝑅𝑝𝑛 (𝐷)
and 𝑅𝑝𝑢 (𝐷) for discriminator 𝐷 that belongs to PN learning and PU
learning, respectively. Then, the EEB of ˆ𝑓𝑝𝑢 is tighter than ˆ𝑓𝑝𝑛 with
probability at least 1 − 𝛿 when:

𝜋𝑝
√
𝑛𝑝

+ 1

√
𝑛𝑢

<
𝜋𝑛√
𝑛𝑛

(20)

if the loss 𝐿 is symmetric and Lipschitz continuous, and the
Rademacher complexity of F decays in 𝑂 (1/

√
𝑛) for data of size

𝑛 drawn from 𝑝𝑑𝑎𝑡𝑎 (𝑥), 𝑝𝑝 (𝑥), and 𝑝𝑛 (𝑥).

Proof can be referred to [30] for details. Based on the above

theorem, we know that PU learning is highly likely to outperform

PN learning when Eq. (20) and certain mild conditions [30] are

satisfied.

A.2 Proof of Proposition 1

Proposition 1 states that when the generator𝐺 is fixed, the optimal

discriminator 𝐷 is:

𝐷∗ (𝑥) =
𝜋𝑝𝑝𝑝 (𝑥)

𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)

Proof. We know that the underlying true data distribution is:

𝑝𝑑𝑎𝑡𝑎 (𝑥) = 𝜋𝑝𝑝𝑝 (𝑥) + (1 − 𝜋𝑝 )𝑝𝑛 (𝑥). Furthermore, we also denote

the generator’s output distribution as 𝑝𝑔 (𝑥). Then, the objective of
the discriminator 𝐷 is as follows for fixed 𝐺 :

max

𝐷
𝑉 (𝐷)

=𝜋𝑝

∫
𝑥

𝑝𝑝 (𝑥) log(𝐷 (𝑥))𝑑𝑥 − 𝜋𝑝

∫
𝑥

𝑝𝑝 (𝑥) log(1 − 𝐷 (𝑥))𝑑𝑥

+
∫
𝑥

𝑝𝑢 (𝑥) log(1 − 𝐷 (𝑥))𝑑𝑥 +
∫
𝑧

𝑝𝑧 (𝑧) log(1 − 𝐷 (𝐺 (𝑧)))𝑑𝑧

=

∫
𝑥

(
− 𝜋𝑝 · 𝑝𝑝 (𝑥) + 𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)

)
log(1 − 𝐷 (𝑥))𝑑𝑥

+ 𝜋𝑝

∫
𝑥

𝑝𝑝 (𝑥) log(𝐷 (𝑥))𝑑𝑥

=

∫
𝑥

(
(1 − 𝜋𝑝 ) · 𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)

)
log(1 − 𝐷 (𝑥))𝑑𝑥

+
∫
𝑥

𝜋𝑝 · 𝑝𝑝 (𝑥) log(𝐷 (𝑥))𝑑𝑥
(21)

Here, we assume that the unlabeled distribution can also be de-

composed as 𝑝𝑢 (𝑥) ≈ 𝜋𝑝𝑝𝑝 (𝑥) + (1 − 𝜋𝑝 )𝑝𝑝 (𝑥) approximately

since the sampled positive tuples are extremely sparse in the over-

all user-item population. Next, we know that for the problem of

max𝑦 𝑎 log(𝑦)+𝑏 log(1−𝑦), it achieves the optimal value [12] when



latent dim. 𝑑 batch size learning rate # epoch pos. prior 𝜋𝑝 noise mag. 𝛿

Movielens-100k 5 128 0.001 100 0.0001 0.01

Movielens-1m 8 128 0.001 100 0.00001 0.01

Yelp 16 512 0.001 200 0.000001 0.01

Table 5: Reproducible parameter setting

𝑦∗ = 𝑎
𝑎+𝑏 . Let 𝑎 = 𝜋𝑝 · 𝑝𝑝 (𝑥) and 𝑏 = (1 − 𝜋𝑝 ) · 𝑝𝑛 (𝑥) + ·𝑝𝑔 (𝑥),

𝐷∗ =
𝜋𝑝 · 𝑝𝑝 (𝑥)

𝜋𝑝 · 𝑝𝑝 (𝑥) + (1 − 𝜋𝑝 ) · 𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)
=

𝜋𝑝 · 𝑝𝑝 (𝑥)
𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)

□

A.3 Proof of Proposition 2

Theorem 2 states that when the discriminator 𝐷 fixed, the

optimization of the generator 𝐺 is equivalent to mini-

mize: −2𝐻
(
𝜋𝑝
2

)
+ 𝜋𝑝 · KL

(
𝑝𝑝 (𝑥)

������𝑝𝑢 (𝑥)+𝑝g (𝑥)
2

)
+ (2 − 𝜋𝑝 ) ·

KL

( (1−𝜋𝑝 )𝑝𝑛 (𝑥)+𝑝g (𝑥)
2−𝜋𝑝

������𝑝𝑢 (𝑥)+𝑝g (𝑥)
2

)
.

Proof. For fixed optimal discriminator, we substitute 𝐷∗
into

the objective of Eq. (21) and have the following objective:

min𝑉 (𝐺)

=𝜋𝑝

∫
𝑥

𝑝𝑝 (𝑥) log(𝐷 (𝑥))𝑑𝑥 − 𝜋𝑝

∫
𝑥

𝑝𝑝 (𝑥) log(1 − 𝐷 (𝑥))𝑑𝑥

+
∫
𝑥

𝑝𝑢 (𝑥) log(1 − 𝐷 (𝑥))𝑑𝑥 +
∫
𝑧

𝑝𝑧 (𝑧) log(1 − 𝐷 (𝐺 (𝑧)))𝑑𝑧

=

∫
𝑥

𝜋𝑝𝑝𝑝 (𝑥) log(𝐷 (𝑥))𝑑𝑥

+
∫
𝑥

(
(1 − 𝜋𝑝 )𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)

)
log(1 − 𝐷 (𝑥))𝑑𝑥

=

∫
𝑥

(
(1 − 𝜋𝑝 )𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)

)
log

(
1 −

𝜋𝑝𝑝𝑝 (𝑥)
𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)

)
𝑑𝑥

+
∫
𝑥

𝜋𝑝𝑝𝑝 (𝑥) log
(

𝜋𝑝𝑝𝑝 (𝑥)
𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)

)
𝑑𝑥

=

∫
𝑥

𝜋𝑝𝑝𝑝 (𝑥)
log

𝜋𝑝

2

+ log

©­«
𝑝𝑝 (𝑥)

𝑝𝑢 (𝑥)+𝑝g (𝑥)
2

ª®¬
 𝑑𝑥 + (2 − 𝜋𝑝 )·∫

𝑥

(1 − 𝜋𝑝 )𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)
2 − 𝜋𝑝

log
©­­«
(1−𝜋𝑝 )𝑝𝑛 (𝑥)+𝑝g (𝑥)

2−𝜋𝑝
𝑝𝑢 (𝑥)+𝑝g (𝑥)

2

ª®®¬ + log

2 − 𝜋𝑝

2

 𝑑𝑥
= − 2H

(𝜋𝑝
2

)
+ 𝜋𝑝 · KL

(
𝑝𝑝 (𝑥)

������𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)
2

)
+ (2 − 𝜋𝑝 ) · KL

( (1 − 𝜋𝑝 )𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)
2 − 𝜋𝑝

������𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)
2

)
□

A.4 Proof of Theorem 2

Theorem 2 states that the global minimum could be achieved if and

only if 𝑝𝑝 (𝑥) =
𝑝𝑢 (𝑥)+𝑝g (𝑥)

2
. At that point, the objective value of

the framework 𝑉 (𝐺, 𝐷) converges to −2H
(
𝜋𝑝
2

)
, and the value of

𝐷 (𝑥) reaches 𝜋𝑝
2
.

Figure 4: Running time of baselines on Movielens-1m

Proof. From Proposition 2, we can directly get the minimum of

the optimal generator as −2H( 𝜋𝑝
2
) if and only if these three distribu-

tions are identical: 𝑝𝑝 (𝑥) =
𝑝𝑢 (𝑥)+𝑝g (𝑥)

2
and

(1−𝜋𝑝 )𝑝𝑛 (𝑥)+𝑝g (𝑥)
2−𝜋𝑝 =

𝑝𝑢 (𝑥)+𝑝g (𝑥)
2

. By solving the second equality, we have the following

equality equivalences:

𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)
2

=
(1 − 𝜋𝑝 )𝑝𝑛 (𝑥) + 𝑝𝑔 (𝑥)

2 − 𝜋𝑝

(2 − 𝜋𝑝 )𝑝𝑢 (𝑥) + (2 − 𝜋𝑝 )𝑝𝑔 (𝑥) = (2 − 2𝜋𝑝 )𝑝𝑛 (𝑥) + 2𝑝𝑔 (𝑥)
(2 − 𝜋𝑝 )𝑝𝑢 (𝑥) − 𝜋𝑝𝑝𝑔 (𝑥) = (2 − 2𝜋𝑝 )𝑝𝑛 (𝑥)
(2 − 𝜋𝑝 )𝑝𝑢 (𝑥) − 𝜋𝑝𝑝𝑔 (𝑥) = 2𝑝𝑢 (𝑥) − 2𝜋𝑝𝑝𝑝 (𝑥)

𝑝𝑝 (𝑥) =
𝑝𝑢 (𝑥) + 𝑝𝑔 (𝑥)

2

(22)

Here, using the last formula in Eq. (22), we show that the two

equalities of Theorem 2 are exactly the same. Easily, if we substitute

either of them into the optimal𝐷∗
, we will always have𝐷∗ (𝑥) = 𝜋𝑝

2
.

□

A.5 Reproducible Setting

To recover the experimental results, below are the required repro-

ducible settings: For all three data sets, we trained the generator

from scratch with “lecun_uniform” random initialization on the

MLP layers. For discriminator, we initialize its user and item embed-

ding weights with a pre-trained PU-GMF weights. The model losses

for both discriminator and generator are binary cross entropy loss

and they are optimizer using Adam optimizer. The local epochs

for the discriminator and the generator are 1 and 10, respectively.

The MLP layer in generator has ReLU activation which has been

verified to perform better than other activation functions, such as

LeakyReLU, Sigmoid, Linear, etc. Other detailed hyperparameter

settings including user & item embedding dimension, training batch

size, learning rate, number of training epochs, positive class prior,

as well as the noise input magnitude for generators are summarized

in Table 5.
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