PURE: Positive-Unlabeled Recommendation with Generative
Adversarial Network

Yao Zhou', Jianpeng Xu®, Jun Wu', Zeinab Taghavi®, Evren Korpeoglu®
Kannan Achan®, Jingrui He'
TUniversity of Illinois at Urbana Champaign, {yaozhou3, junwu3, jingrui}@illinois.edu;
SWalmart Labs, {jianpeng.xu, ZTaghavi, EKorpeoglu, kannan.achan}@walmart.com

ABSTRACT

Recommender systems are powerful tools for information filtering
with the ever-growing amount of online data. Despite its success
and wide adoption in various web applications and personalized
products, many existing recommender systems still suffer from
multiple drawbacks such as large amount of unobserved feedback,
poor model convergence, etc. These drawbacks of existing work
are mainly due to the following two reasons: first, the widely used
negative sampling strategy, which treats the unlabeled entries as
negative samples, is invalid in real-world settings; second, all train-
ing samples are retrieved from the discrete observations, and the
underlying true distribution of the users and items is not learned.
In this paper, we address these issues by developing a novel
framework named PURE, which trains an unbiased positive-unlabeled
discriminator to distinguish the true relevant user-item pairs against
the ones that are non-relevant, and a generator that learns the un-
derlying user-item continuous distribution. For a comprehensive
comparison, we considered 14 popular baselines from 5 different cat-
egories of recommendation approaches. Extensive experiments on
two public real-world data sets demonstrate that PURE achieves the
best performance in terms of 8 ranking based evaluation metrics.

CCS CONCEPTS
« Information systems — Recommender systems.

KEYWORDS

Recommender systems, Positive-unlabeled learning

ACM Reference Format:

Yao Zhou', Jianpeng Xu¥, Jun Wu', Zeinab Taghavi§, Evren Korpeog1u§, Kan-
nan Achan’®, Jingrui He'. 2021. PURE: Positive-Unlabeled Recommenda-
tion with Generative Adversarial Network. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °21),
August 14-18, 2021, Virtual Event, Singapore., 11 pages. https://doi.org/10.
1145/3447548.3467234

1 INTRODUCTION

Recommender systems have been prevalent in recent decades
across multiple domains in e-Commerce [41], content streaming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °21, August 14-18, 2021, Virtual Event, Singapore.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08...$15.00
https://doi.org/10.1145/3447548.3467234

(YouTube) [6], and business service industries (Yelp) [37], due to
their success in filtering or retrieving relevant information from
user profiles and behaviors. Traditional collaborative filtering meth-
ods [11, 25] and matrix factorization methods [23, 28, 35] are the
most popular and effective methods of recommender systems for
many years. Lately, various embedding based methods such as deep
factorization machine [13] and neural collaborative filtering [15]
have been proposed and achieved a lot of successes. This leads to a
wide and in-depth study of the deep learning based recommender
systems [44]. Most of the existing methods take the following two
assumptions for granted, especially for implicit recommender sys-
tems: (1) The unobserved interactions between users and items (i.e.,
unlabeled user-item tuples) are often labeled as negative samples;
(2) The observed users, items, and their interactions are represent-
ing the true relevance distribution. However, these assumptions
are usually not valid for real-world recommender systems.

In the first assumption, it assumes that an item i is more relevant
to a user u than item j if i has interactions with u while j does
not. The assumption is not necessarily true in that, the missing of
interactions between item j and user u could be because of the lack
of the exposure between item j and user u, rather than the uninter-
estingness of u on j. In other words, the unlabeled user-item tuple
can be either a positive or negative sample. Hence, simply using
the unlabeled tuples as negative samples in the training process can
inevitably degrade the model performance. In this paper, instead of
taking the unlabeled tuples as negative samples, we formulate the
recommender system into a Positive-Unlabeled (PU) learning [2]
framework, which is a machine learning approach where the learner
observes only positive data and unlabeled data.Existing works of
PU learning mainly focus on designing the PU learning adapted
objectives [30]. It has been theoretically analyzed in [21] that for
unbiased PU learning, the empirical risks on training data can be
negative if the training model is very flexible, which will result
in serious overfitting. Hence, even though flexible models such as
deep neural networks have been widely explored in recommender
systems, limited work has been done under the PU learning setting.

Secondly, in traditional recommender systems, the training sam-
ples are usually composed of the positive (labeled) samples and
a sampled set of negative samples from the unlabeled data. This
negative sampling process can be problematic in that, as we men-
tioned in PU learning, the samples from the unlabeled data may
not necessarily be the real negative ones, and this will distort the
learned data distribution in the modeling process. Generative mod-
els such as generative adversarial networks (GAN) [12] tried to
alleviate the issue of negative sampling by learning the underly-
ing data distribution from an implicit generative model instead of

https://doi.org/10.1145/3447548.3467234
https://doi.org/10.1145/3447548.3467234
https://doi.org/10.1145/3447548.3467234

imposing any assumption on the existing data. In the framework
of GAN, a discriminator is introduced to distinguish the generated
samples of the generator from the real samples, while the generator
is optimized in such a way that its generated samples are hardly sep-
arable by the discriminator. Specifically, IRGAN [40] was proposed
to apply GAN on learning-to-rank applications where it employs
policy gradient based reinforcement learning to perform discrete
sampling of documents (items) for each query (user), in order to
select relevant items from a given pool. However, we argue that
this discrete sampling strategy may limit the expressiveness of the
generator due to the sparsity of data in recommendation, and the
model will not learn the underlying true distribution of the users
and items. Besides, IRGAN only performed sampling on items, and
used all users in the loss function, which makes IRGAN lack the
capability to learn the distribution of the users.

In order to address the aforementioned limitations of existing
works, we propose a novel approach called Positive-Unlabeled
REcommendation with generative adversarial network (PURE).
First of all, based on the analysis of [21], PURE adopts the positive
unlabeled risk minimizer to train an unbiased positive-unlabeled
discriminator. In particular, we theoretically prove that the estima-
tion error bound of PU Learning is tighter than that of positive-
negative (PN) learning when the number of unlabeled samples is
lower bounded, which can be easily satisfied due to the extreme
sparsity of the real-world data. In addition, in order to learn the true
distribution of users and items, continuous sampling on both users
and items in the embedding space is employed in the generator.
Specifically, a fake item (embedding) for a user is generated with
a random noise input. A fake user (embedding) can also be gen-
erated in a similar way. Furthermore, we theoretically prove that
the optimal generator is able to generate high-quality embeddings
from a learned user-item distribution that is very similar to the true
user-item relevance distribution. The main contributions of this
paper are summarized below:

e We propose a novel approach for recommender systems
called PURE under the GAN framework, which trains an un-
biased positive-unlabeled discriminator using PU learning.

o The generator of PURE performs continuous sampling on
both users and items in the embedding space in order to
learn the true relevance distribution of the users and items.

e We theoretically prove that an unlabeled sampling bound
of PURE exists and can be satisfied easily in real-world rec-
ommender systems. The optimalities upon convergence are
also provided for both the discriminator and the generator.

The rest of the paper is organized as follows. Section 2 is the
preliminary. Section 3 describes the proposed framework PURE, and
Section 4 presents the analyses of PURE from various perspectives.
The experimental results are illustrated in Section 5. In Section 6,
we briefly introduce the related work on recommender systems and
PU learning. In the end, we conclude the paper in Section 7.

2 PRELIMINARY

In this section, we first present the notation as well as the problem
definition for recommendation. Then, the preliminary work of
generalized matrix factorization (GMF) and generative adversarial
network (GAN) are briefly reviewed.

2.1 Problem Definition

In this paper, we study the implicit recommendation problem and
let U and I denote the sets of users and items. Given a user u, a list
of relevant items can be rated or viewed by u. From the perspective
of matrix representation, we define the user-item interaction matrix
as R € {1,0}M*N where M and N denote the number of users
and items, respectively. The entry Ry,; = 1 if there is an observed
interaction between user u and item i. We further assume Q to
be the index set of these observed entries, namely, (u,i) € Q if
Rui = 1. It should be noticed that R,; = 0 does not necessarily
mean that user u dislikes item i. The unobserved entries could be
missing data with either positive labels (i.e., user and item are truly
relevant) or negative labels (i.e., user and item are non-relevant). In
real applications, each user can only rate and view a very limited
number of items. Therefore, without loss of generality, we assume
the truly relevant user-item tuples are very sparse in nature. Then,
the recommendation problem is usually formulated as follows:

DEFINITION 1 (RECOMMENDATION PROBLEM).
Given: A set of users U = {uy,uy,...up}, a set of items I =
{i1, 12, ..., IN'}, the observed user-item interaction matrix R.
Output: The estimated interaction scores of the unobserved items for
each useru in U.

2.2 Generalized Matrix Factorization

Matrix Factorization (MF) is one of the most successful recom-
mendation approaches that realize the latent factor models by de-
composing the user-item matrix R into the product of two lower
dimensional matrices. The MF model usually maps both users and
items to a joint latent factor space with the dimensionality of d.
Accordingly, each user u is associated with a latent vector e;, € Rd,
and each item i is associated with a latent vector e; € R4, To learn
these latent factor vectors, the objective is usually designed to
minimize the squared error on the observed user-item tuples:

min 3 (Rui - e e)° (1)
lewei} (Feq

Despite its success in various applications, MF assumes user and
item latent features are equally important on each dimension, and
combines them with equal weights. However, [15] has pointed out
that MF can incur a large ranking error due to its naive assump-
tion. Therefore, they propose to use a GMF model to increase the
expressiveness of MF:

min E

2
(Rui - {ew @ i) Tr) @
lewei} (, yeaua-

where © is the element-wise product and Q~ denotes the set of
negative samples, which are sampled from the unobserved user-
item interactions. rp is a learnable vector which builds the relation
mapping between user latent vector e, and item latent vector e;.

2.3 Generative Adversarial Network

GAN was initially introduced in [12] and it consists of two models,
i.e., discriminator D and generator G, that play a minimax game.
The discriminator D aims to distinguish the real-world data and
the fake data from the generator G. Meanwhile, the generator G

aims to generate fake data to confuse the discriminator D as much
as possible. The objective of GAN is usually formatted as:

n}i;n max V(D,G) =Ep,,0(x) [logD(x)] +EBp (x) [log(l - D(x))]

®)
where pgg+4(x) and pg(x) represent the distributions of real-world
data and generator G’s fake output data. The objective of GAN is
equivalent to minimizing the Jensen-Shannon Divergence between
Pdata(x) and pg(x). Therefore, upon convergence, we expect G to
generate high-quality fake data that are visually similar to the real
data. The problem in Eq. (3) is the conceptual formulation of GAN
that favors the theoretical analysis, however, in implementation,
we still need to include the objective function for loss calculation
and gradient back-propagation. Then, the objective becomes:

minmax V(D,G) = By, (0 [/o (D] + By, [fo (D) |
4
where fp and fg are the loss functions for discriminator D and
generator G, respectively.

3 PROPOSED APPROACH

Similar to GAN, we first present the discriminator in PURE which
has the ability to take various types of training samples into con-
sideration under the PU learning setting. Then, we introduce the
generator which could generate the fake user and fake item embed-
dings that increases model expressiveness by covering the corners
of the feature space. The overview of the PURE is shown in Figure 1.

3.1 PU Classifications in Recommendation

In recommendation, we usually learn to map each user-item tuple
(u, i) to a scalar value that can represent the relevance of i to u. In
our framework, we design the discriminator D(u, i) to be able to
maps (u, i) to the value of Y € {0, 1}. The goal of the discrimina-
tive model is to distinguish between the truly relevant items and
non-relevant items for the given user. Intuitively, the discriminator
D(u, i) is simply a binary classifier that outputs a probability rele-
vance score. This output score should be 1 when the item i is truly
relevant to the user u, and should be 0 when u and i are non-relevant.
Formally, we quantify the output score of the discriminator as:

1
1+ eXp(- d(u, l))

where we let ¢(u,i) : N X N — R be the decision function of the
discriminator D(u, i) and N is the set of natural numbers for user
and item indices. The specific instantiation of decision function
¢ (u, i) can be versatile (e.g., matrix factorization [23], factorization
machine [33], neural networks [15], etc.).

We let pgarq(u, i) be the underlying joint distribution of users
and items, and 7, = p(Y = 1) be the positive class prior. Then, this
joint distribution can be rewritten as follows based on the law of
the total probability:

D(u,i) = (5)

Pdata(, i) = 7ppp (1) + (1 = 7p) pn (u, 1) (6)

Here, the positive user-item tuples are assumed to be drawn from
the positive marginal distribution py(u,i) = pgare(w.ilY = 1),

and the negative tuples are drawn from the negative marginal
distribution p, (x) = pgara(u, ilY = 0).

To train the recommendation model, we let L(7, y) be the loss
function, where y is the ground truth and ¢ is the prediction.
Then, the expected learning risk of the discriminator is R(D) =

Epyara(wi) [L(D(u, i), Y)] Thereby, a positive-negative (PN) risk

minimizer for D can be learned as:

mLi)nR(D) = ;rpR;(D) +(1-mp)R; (D) (7)

where R;,'(D) = Ep,,(u,i) [L(D(u, i), l)] is the risk of the rele-
vant samples w.r.t. the positive labels (Y = 1) and R, (D) =
By, (i) [L (D(u, i), 0)] is the risk of the non-relevant samples w.r.t.

the negative labels (Y = 0). In practice, R;; (D) can be approximated
empirically using the observed relevant user-item tuples, but R, (D)
is usually unknown. To estimate the learning risk, many existing
work simply assume the set of the unobserved user-item tuples
from the unlabeled distribution py, (u, i) are non-relevant, and per-
form negative sampling by assigning these tuples with negative
labels.

Nevertheless, this assumption can hardly be satisfied in real sce-
narios since such “negatively” sampled data will inevitably include
a certain number of positive samples. Naively assigning them with
negative labels, the training process of the recommender system is
usually unstable and often has poor convergence [34]. To this end,
PU learning [21, 30] can be used to tackle this problem with theoret-
ical guarantees by treating the unobserved user-item tuples directly
as unlabeled samples. Following [21], we also express the unlabeled
marginal distribution as (1 — 7p)pn (v, 1) = pyu(u,i) — 7ppp(u, i).
Then, R}, (D) has the following equality:

(1-mp)R, (D) = Ry (D) — mpR;, (D) (8)
where R, (D) = Ep, (u,i) [L (D(u, i), 0)] is the risk of unlabeled sam-

ples w.r.t. the negative labels, and R, (D) = Ep, (i) [L (D(u, i), 0)]
is the risk of positive samples w.r.t. the negative labels. Thus, the
final risk minimization problem can be rewritten as:

ngn R(D) = npR; (D) = mpR, (D) + R, (D) 9)

By minimizing the objective of Eq. (9), the discriminator D can
distinguish the relevance of user-item tuples by minimizing the
learning risks of p, (u, i) and py, (u, i). Note that due to the negative
property of the second term in Eq. (9), many existing work [14, 21]
may replace it with max{0, -7pR; (D) + R, (D)} to guarantee a
non-negative risk. However, in recommendation, the positive class
prior 7, is always very small which alleviates this issue, and we did
not observe such a negative risk phenomenon in our experiments
without adding the max operator.

3.2 Discriminative Model

With the well-defined risk minimization objective, now we demon-
strate how to empirically train the discriminator using the following
sets of training samples:

Positive samples from given observations. User u and item i
are observed in the given data set and are truly relevant (Ry; = 1).

{77 Positive Random
8 7}‘ Samples noise 7
{77 Unlabeled)
L__) samples ®
° ° e v
S 88 a o 4
N el ® 1
gl 2071 3
! ? |2
e S e S Unlabeled | ® g
@ ? | P ? 3 Sampling | S
o i]
Ql21215172 Unlabeled Samples
© 7 (7

i
IR
2 0?2413 . Positive | (@
L Sampling " |4
Fuy i
i
P

Figure 1: Overview of the proposed PURE framework

ositive Sampies

For these samples, the discriminator aims to maximize the following
objective:

np
VD)= nplogD(u,i)—nplog(l—D(u,i)) (10)
(u,i)eQ

where ny, = |R| is the number of observed positive tuples. To comply
with the PU learning objective in Eq. (9), the second term is the
empirical risk of positive samples w.r.t. negative labels. Intuitively,
we want to maximize (minimize) the D’s predictions on samples
with positive (negative) labels.

Unlabeled samples from unobserved interactions and the
generator. Given a user u, the discriminative model is designed to
assign lower scores to the items that have not be rated or viewed.
We decompose this part of the objective from both the unobserved
samples and generated user-item samples:

V(D) = i log(l—D(u,i))+[log(1—D(u,i’))+log(1—D(u/,i))]
(u,i)eQ~
(11)

where the fake user u” ~ G(z,) and fake item i’ ~ G(z;) are gen-
erated from the user and item generators respectively, and ny, is
the number of unlabeled tuples from unlabeled sampling. The ratio
between the unlabeled samples generated by the generator and
sampled from unobserved tuples could be a hyper-parameter to
tune. Here, we set their ratio to be 1 in the experiments, namely,
these two sources of unlabeled samples are equally important. How-
ever, further tuning of this ratio may lead to better performance,
and we leave it for future exploration.

3.3 Generative Model

The generative model aims to generate fake samples to fool the
discriminator as much as possible. Therefore, given a real sample
(u, i), the generator G;(z;) is designed to generate a fake item i’
that is highly likely to be relevant to u. This fake item can be virtual,
and do not even exist in . Similarly, the generator G, (z,,) will
generate a fake user u’ that is likely to be relevant to i. In particular,
we design the noise input for user and item generators to be a
random Gaussian noise:

zi,zy ~ N(0,8I) (12)

where the mean of noise input would be a zero vector 0 of the
same size as embedding dimension d, and I € R js the identity
matrix whose magnitude is controlled by § which represents the

underlying deviations of the generator’s noise input. Next, we apply

the multi-layer perceptron (MLP) to generate the fake item i’ and
user u” as follows:

i" ~Gi(z;) = ReLU(WiZ . ReLU(Wil czi+ bg)) + bf)
(13)
U ~ Gulzy) = ReLu(Wu2 : ReLU(Wul 2+ b)) + b,%)

where Wil, Wi2 and bil, bi2 are the learnable weights and biases for
the 1-st layer and the 2-nd layer of MLP in the item generator G;(z;),
and we have similar definitions for the user generator G, (z). In
the experiments, we observe that a two-layer MLP would be very
effective and computationally efficient. Then, putting everything
together, we have the overall objective of PURE as follows:
p
minmax V(D,G) = Z nplogD(u, 1) — nplog(l - D(u, i))
¢ b (u,i)eQ

+ i Iog(l - D(u, i)) + [Iog(l - D(u, Gi(zi))) +log(1 - D(Gu(zu), 1))]

(u,i)eQ~
(14)
The above objective can be optimized by performing a gradient-
based optimization method. We find that Adam [20] would be em-
pirically more stable and converge faster than other optimizers.

4 MODEL ANALYSIS

4.1 Instantiation of the Discriminator
For discriminator’s decision function ¢(u, i), we can define it in
various ways. In our experiment, we adopt the design of GMF (see
Eq. (2)) by assuming that user and item embeddings have the same
dimensionality:

1
1+exp(—{e, ©e;}Trp)

D(u,i) = (15)
In practice, we set the user embedding and item embedding to
have the same dimension. Nevertheless, it is rather straightforward
to extend it to a more general setting that users and items have
different embedding dimensions. Then, a more generalized form
for quantifying the output score of discriminator D is:

1

D(u,i) = —————
(1) 1+ exp(—e, Mpe;)

(16)
where e, € RY% and e € R% are the latent embeddings of user u
with size d, and item i with size d;, respectively. Mp € R%Xdi js the
learnable relation mapping matrix for user and item embeddings.
Note that MF-based and GMF-based discriminators are both special
cases of Eq. (16) by setting d = dy, = d; and Mp as an identity
matrix or a diagonal matrix.

4.2 Sampling Strategy

In PN learning, it is a common practice to treat the observed user-
item tuples as positive, and treat the rest as negative. However,
due to the sparsity of the positive tuples, we frequently sample
the negative tuples from a large number of unlabeled entries. One
popular sampling strategy is uniform negative sampling (UNS),
where the number of sampled “negative” tuples n,, is proportional
to the number of positive tuples n,. Nevertheless, UNS may lead
to poor and unstable convergence [34] during training due to its
ill-conditioned assumption. To stabilize and improve the model

performance, other techniques have been developed to alleviate the
convergence issue, such as dynamic negative sampling (DNS) or
dynamic random negative sampling (DRNS) [40]. Their intuitions
are similar to the concept of one-class SVM [29], which wraps
a classification boundary around the positive samples and treats
the rest as negative. Both DNS and DRNS have been shown to be
faster in terms of model convergence [3, 34, 40] in the PN learning
setting. However, both of them need to call the learned model re-
peatedly which is extremely computational expensive especially for
large-scale data sets. In PURE, we adopt the efficient UNS sampling
strategy since unlabeled data have been explicitly modeled in our
PU learning objective.

4.3 Sampling Bound

Another key question is how to determine the number of unlabeled
samples ny,. In PN learning, the selection of ny, is usually empirical,
where n, = Cnp and C is the negative sampling ratio. However, in
PU learning, with the utilization of estimation error bound [30], ny,
can be determined by 7, and np, using the following theorem.

Theorem 1. [Unlabeled Sampling] The estimation error bound of
PU learning is tighter than that of PN learning if and only if:

‘/Enp
(1— (\/E+1)np)2

Intuitively, n, monotonically decreases with a decreasing 7,
and a larger C in PN learning will require a larger n,, to guarantee
that PU learning outperforms PN learning. In practice, 7, must be
much smaller than 0.5 because positive samples are very sparse in
recommendation. As a special case, we can set C = 1 which means
the negative sampling in PN learning follows the 1 : 1 balanced
setting. Then, from n,, > np /(1= 27rp)2, we easily know that when
7p is small, e.g., less than 0.1, PU learning is expected to outperform
the corresponding PN learning with n;, = 2n,. When 7, increases,
e.g., greater than 0.4, PU learning is difficult to beat PN learning
unless ny > 25n,. Namely, when 7 is small (which is mostly the
case for recommendation problems), PU learning is a better and
computationally efficient option.

(17)

ny =

4.4 Optimality of Convergence

Up to now, it is still unclear whether the final convergence of
PURE would enjoy the desirable property of our initial motivation
of having a good generator to produce high-quality fake sample
embeddings. In this section, we provide theoretical proof to show
that the objective of PURE is equivalent to minimizing the KL-
divergence between the true user-item relevant distribution py, (u, i)
and generated distribution pg(u, i) of the generator plus unlabeled
distribution py, (u, i).

First, following the analysis in [12], we show that the optimal
distribution of discriminator D would be a balance between pj, (u, i),
pu(u, i), and pg(u, i).

Proposition 1. [Optimality of the discriminator] For a fixed
generator G, the optimal discriminator D is:
7ppp (U, i)

D(w 1) = Pt 1) + g (i)

Algorithm 1 PURE

1: Input: Generators Gy, G;, discriminator D, user-item interac-
tion matrix R, user set U, item set I, positive class prior TTp.
2: Initialization: Assign G, G; with random weights, assign D
with random weights or pre-trained weights, np, = |Q[, ny, =
ceil(—(l_;frp)z)
: Repeat:
for discriminator-steps do:
Sample first ny, tuples (u, i) € Q with label 1
Sample another n,, tuples (, i) € Q with label 0.
Sample ny, tuples (u,i) € Q™ with label 0.
Generate ny, tuples (u,i’) and (v, i) with label 0 using
Eq. (13).
9: Update the discriminator model D by ascending its gradi-
ents in the objectives of Eq. (10), and Eq. (11).
10: end for
11: for generator-steps do:

® T > Do

12: Generate n, random noise zy, z; using Eq. (12).

13: Sample n,, tuples (u,i) € Q~ with label 1.

14: Replace (u, i) with (u,i”) and (u/, i) using generator’s out-
put Gy, (zy,) and G;(z;) by Eq. (13)

15: Update the generator model Gy, G; by descending their

corresponding gradients in the objective of Eq. (11).
16: end for
17: Output: The trained G, G;, and D

Next, with the optimal discriminator being fixed, we can substi-
tute D* (u, i) into the final objective of PURE in Eq. (14). Then, we
can have the optimal generator as follows.

Proposition 2. [Optimality of the generator] With the discrim-
inator D fixed, the optimization of the generator is equivalent to

minimizing: —2H (”Tp) + p - KL(pp(u, i) [w) +(2-
) -KL((A=7p) pr (1) +pg (1) Pu(u,i);rpg(u,i)) where H (”Tp) is the

2—-1p
entropy for a Bernoulli with success probability of%”.

Theorem 2. [Global optimum] The global minimum could be

achieved if and only if pp(u,i) = IM At that point, the

. . TT,
objective value of the framework V (G, D) converges to —2H (Tp),

. .
and the value of D(u, i) reaches <.

The proofs of the above four theoretical results can be found in
the Appendix. In Theorem 2, we know the proposed framework

will achieve equilibrium if and only of p, (u, i) = w In-

tuitively, upon convergence, linearly combining the optimal gener-
ator’s user-item distribution with the original unlabeled user-item
distribution of the given data, will be highly similar to the true
relevant user-item distribution. This justifies our motivation for
training a generator to produce highly relevant embeddings that
confuse the discriminator as much as possible.

4.5 Algorithm and Complexity

Based on the overall learning objective, we summarize the learn-
ing steps of PURE in Algorithm 1. Before training, the generator

and the discriminator are initialized either randomly or with pre-
trained weights. Then, during the training stage, we update these
two models respectively in an iterative manner. Specifically, we
first fix G and update the discriminator using the observed positive
tuples, the sampled unlabeled tuples!, and the generated user/item
embeddings. Next, we fix D and update the generator. The afore-
mentioned iterative steps will continue until the model converges
or the max number of iterations is reached.

Regarding the complexity analysis of the model training, we
assume both user and item have equal latent embedding dimen-
sionality d. Then, the space complexity is O((M + N +1) - d) for the
discriminator and is O (kd) for the generator, where k is the number
of hidden units in generator’s MLP. The computational complexity
mainly involves the matrix multiplication operations. Then, the
computational complexity per epoch is O((2np +ny) - (M +N) - d?)
for the discriminator, and O(n, kd?) for the generator.

5 EXPERIMENTAL RESULTS
In this section, we aim to answer the following research questions:

RQ1: Can the proposed PURE model outperform the state-of-the-
art recommendation methods?

RQ2: What is the parameter sensitivity for PURE in terms of
positive prior 7, and the generator’s random noise input magnitude
6? Does pre-train affect the ranking performance?

RQ3: How does the running time of PURE compare with other
baselines?

Dataset ‘ # Users ‘ # Items ‘ # Interactions ‘ Sparsity

6,040 ‘ 3,706 1,000,209 ‘ 4.46%

Movielens

Yelp 25,677 | 25,815 731,671 0.11%

Table 1: Statistics of the data sets

5.1 Experimental Settings

5.1.1 Data sets. We conduct the experiments on two publicly ac-
cessible data sets: Movielens? and Yelp>. For Yelp data set, due
to the sparsity of the ratings among the data, we adopt the pre-
processing step from [15] by keeping the users with more than 10
item interactions. To perform implicit recommendation, following
the experimental setting of [40], only the 4-star and 5-star ratings
in these data sets are treated as positive feedback, and the rest are
unknown feedback. In this way, the data is transformed into the
user-item interaction matrix R with each entry being either 0 or 1.
The details of these data sets are summarized in Table 1.

5.1.2 Evaluation Protocol. To evaluate the performance of all meth-
ods, we adopt the official 80%|20% random split and perform sam-
pled evaluation [15, 22, 24] to speed up the computation. In the
evaluation stage, only a smaller set of random items is used as the
candidates pool for ranking predictions. Due to the fact that Movie-
lens and Yelp have been pre-processed to only keep the users with
at least 20 or 10 relevant items, we adopt the random leave-ten-out
(for Movielens) and leave-five-out (for Yelp) strategy to split them
into the train set and the test set. Unlike the leave-one-out sampled

! The negative sampling ratio for PN learning is set as C = 1 in the algorithm.
Zhttps://grouplens.org/datasets/movielens/
3https://github.com/hexiangnan/sigir16-eals/tree/master/data

metric strategy being used in [15, 22] which has candidates pool
of size 100 and it may introduce bias into evaluation results. We
follow the suggestion of [24] and make the candidates pool with a
larger size of 500 items. This is a good trade-off pool size for the
sampled evaluation where both computation cost and true perfor-
mance consistency are well balanced. The eventual performance of
the predicted ranked list is evaluated by Precision (P@k), Normal-
ized Discounted Cumulative Gain (NDCG@k), where k = {3, 5, 10},
Mean Average Precision (MAP), and Mean Reciprocal Rank (MRR).
Note that we have modified the evaluation protocols significantly
to couple with the sampled evaluation and actual needs (more than
one recommended items per user) in real applications, the results
are not directly comparable with previous ones [4, 15, 22, 40]. Nev-
ertheless, we have utilized a rich bundle of popular baselines and
all have been evaluated using the same evaluation protocols.

5.1.3 Baselines. We considered five categories of recommendation
methods for comparisons:

o Traditional collaborative filtering: ItemPop is a non-personalized
method that recommend the most popular items to each user.
SlopeOne [25] is also another item-based collaborative filtering
method; Co-clustering [11] identifies overlapping co-clusters of
users & items and infers relevance score using cluster statistics.
Traditional matrix factorization: SVD [23] infers the user-item
interaction score as the sum of user bias, item bias, and the
product of user & item latent factors; NMF [28] is similar to SVD,
but the user and item factors are computed under a non-negative
constraints; PMF [35] infers the interaction score from user and
item probabilistic latent factors with Frobenius regularization.
e Neural collaborative filtering: BPR [34] learns the user and item
embeddings using user-specific pairwise preferences between
a pair of items; LambdaFM [42] learns the embeddings using
pairwise ranking loss along with lambda surrogate; GMF [15]
learns the embeddings using pointwise label information along
with relation mapping embedding.
e GAN based recommenders: GraphGAN [38] builds a discrimina-
tor to predict the connectivity of user & item, and a generator
to learn the joint discrete distribution; IRGAN [40] builds a dis-
criminator using matrix factorization, and a generator to extract
relevant items using policy gradient; CFGAN [4] uses a genera-
tor to generate the purchase vectors for users, and a discriminator
to differentiate the real purchase vectors and the fake ones.
PU-learning based recommenders: PU-GMF [21] modifies the PN
learning objective of GMF with its PU learning version, and feed
the model with positive data and sampled unlabeled data; PURE
is our proposed model.

5.1.4 Reproducible settings. To guarantee a fair comparison be-
tween all baselines, we fix the embedding size d as 8 and 16
for all models on Movielens and Yelp, respectively. Meanwhile,
the input allowed for all models would be the rating matrix R
only, no side information or additional features are supplied. All
models are validated on the performance of P@5. The learning
rate is searched from {1 x 10741 x1073,1 x 10_2}, the positive
class prior 7p is searched from {1 x 107%,1x 107°,1 x 10741 x
1073,1x 1072, 1x 1071}, the generator’s input noise magnitude & is

Movielens-im | P@3 | P@5 | P@10 | NDCG@3 | NDCG@5 | NDCG@10 | MAP MRR
ItemPop 0.2805 0.2400 0.1845 0.2961 0.2725 0.2883 0.2371 0.5038
SlopeOne[25] 0.3954 0.3736 0.3124 0.3887 03775 0.3453 0.2958 0.4981
Co-clustering[11]| 0.4826 0.4612 0.4195 0.4533 04475 0.4283 0.3500 05105
SVD[23] 0.4187 0.3563 0.2621 0.4483 0.4107 0.4224 0.3546 0.6680
NMF([28] 0.5262 0.4916 0.4118 05238 0.5034 0.4603 0.4002 0.6279
PMF(35] 0.4108 03975 0.3633 0.3819 03817 0.3678 03182 0.4406
BPR([34] 0.6604 0.7379 0.8272 0.6339 0.6930 0.7710 03793 0.6714
LambdaFM[42] 0.6365 0.7116 0.8072 0.6070 0.6669 0.7493 0.9516 0.6488
GMEF[15] 0.6546 0.7284 0.8156 0.6254 0.6798 0.7583 0.8354 0.6594
GraphGAN([38] 0.4731 0.5538 0.5209 0.4433 0.5072 0.5019 0.4198 0.4998
IRGAN([40] 0.2732 0.2326 0.1774 0.2885 0.2644 0.2779 0.2279 0.4926
CFGAN [4] 0.6209 0.6978 0.7983 0.5902 0.6517 0.7379 0.8114 0.6337
PU-GMF[15]+[21]| 0.6639 0.7394 0.8268 0.6398 0.6963 0.7724 0.8639 0.6762
PURE (ours) 0.6824 0.7523 0.8351 0.6532 0.7094 0.7829 0.8703 0.6895
Table 2: Evaluation results of Movielens data set

Yelp | P@3 | P@5 | P@10 | NDCG@3 | NDCG@5 | NDCG@10 | MAP MRR
ItemPop 0.1335 0.1124 0.0842 0.1489 0.1592 0.1976 0.1596 0.2858
SlopeOne[25] 0.2053 0.1917 0.1567 0.2008 0.1983 0.2122 0.1986 0.2869
Co-clustering[11]| 0.2216 0.1929 0.1475 0.2397 0.2499 0.2937 0.2423 03913
SVD[23] 0.2635 0.2157 0.1527 0.2960 0.3083 0.3693 0.2981 0.4880
NMEF[28] 0.3788 0.3474 0.2767 0.3754 0.3652 0.3820 0.3560 04781
PMF(35] 0.2772 0.2750 0.2478 0.2564 0.2631 0.2671 0.2573 03132
BPR([34] 0.4634 0.5423 0.6561 0.4345 0.4968 0.5918 0.5797 0.4910
LambdaFM[42] 0.3920 0.4653 05757 0.3659 0.4236 05149 0.8173 0.4242
GMF(15] 0.4416 0.5230 0.6426 0.4122 04764 0.5758 0.6556 04715
GraphGAN[38] - - - - - - - -

IRGAN([40] 0.1276 0.1081 0.0816 0.1424 0.1525 0.1901 0.1551 0.1735
CFGAN [4] 0.2309 0.2824 0.3699 0.2140 0.2541 0.3247 0.3260 0.2676
PU-GMF[15]+[21]| 0.4866 0.5666 0.6800 0.4560 05196 0.6149 0.7857 05102
PURE (ours) 0.5038 0.5830 0.6935 0.4736 0.5365 0.6297 0.9206 0.5264

Table 3: Evaluation results of Yelp data set

searched on {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3}. Training is accel-
erated with pre-train, where we initialize PURE’s generator with
random weights and initialize the discriminator with PU-GMF’s
embedding weights.

5.2 Performance Comparison (RQ1)

From the evaluation results shown in Table 2 and Table 3, we ob-
serve that PURE achieves the best performance on most metrics.
The neural collaborative filtering methods and GAN-based methods
are usually very competitive overall. For the Movielens data set, as
we can see in Table 2, BPR, LambdaFM, PU-GMF, and CFGAN also
perform relatively well in terms of P@k and NDCG@k comparing
with other baselines. One interesting observation is that LambdaFM
has very high values on the MAP metric. That is because pairwise
learning is position-independent and pairwise-ordering at the bot-
tom of the ranking list would impact the learning loss as much
as the top pairs. Meanwhile, LambdaFM is particularly designed
for optimizing the overall ranking performance. We follow the set-
ting from the papers of BPR and IRGAN to tune the learning rate,
number of epochs, etc. We found that BPR is very sensitive to the
sample sequence in the training batches, and IRGAN’s performance
is largely impacted by its hyperparameters and pretraining. We
have performed a comprehensive model tuning in a reasonable
time period for all baselines and reported their best performance
for a fair comparison.

For the results of the Yelp data set, the best frameworks are PU-
GMF and PURE, followed by neural collaborative filtering methods

such as BPR, LambdaFM, and GMF. The GraphGAN method fails to
finish training on Yelp since it needs to compute the graph softmax
and generate a huge amount of neighbor vertices for each existing
vertex. The traditional collaborative filtering and MF-based meth-
ods do not have a satisfactory performance on Yelp. We also observe
that GAN-based methods could easily fail to converge even with
careful hyperparameter tuning. The reasons for their poor perfor-
mance are two-fold: First, these methods are taking the unobserved
data as negative samples without the negative sampling procedure,
resulting in an unbalanced training data problem, especially for
Yelp data set, which is much sparser than the other two data sets.
Second, they didn’t use continuous space sampling, and generating
with discrete sampling will end up with poor model expressive-
ness especially when dealing with large-scale sparse data set. As a
comparison, PU learning will help sample from both the observed
and unobserved entries and the generator will further learn the
data distribution and generate continuous user-item embeddings
to increase the model expressiveness. Similarly, the models with
pairwise loss (BPR and LambdaFM) also perform relatively well on
MAP due to their position-independent properties in the modeling.

5.3 Parameter Study (RQ2)

Regarding the hyper-parameters sensitivity in PURE, we show the
performance of P@5, NDCG@5, MAP, and MRR with respect to
the positive class prior 7, and the magnitude of generator’s input
noise 8. We perform this parameter study on a smaller version
of Movielens data set that has 100k reviews, i.e., Movielens-100k,

| With Pretrain
| P@5 | NDCG@5 | P@5 | NDCG@5

0.7523 0.7094 0.7101 0.6568
0.5830 0.5365 0.5340 0.4864

‘ Without Pretrain

Movielens
Yelp

Table 4: Performance of PURE with/without pre-training.

because of its small size so that we can well-tune all the competitive
baselines with a reasonable amount of effort. Note that we adopted
the full test set evaluation instead of sampled evaluation, however,
since Movielens-100k’s default train|test split assigns only half of
users from train into the test set, the final evaluation performance
is much lower than Movielens-1m with sampled evaluation.

First, we can see that PURE achieves the best performance with
carefully selected hyper-parameters. We observe in Figure 2 (In
Appendix) that PURE outperforms (on average 1.5%) all the competi-
tors when 7p is set to 0.0001. Meanwhile, we see that PURE has a
performance guarantee if 7, falls into the range of [0.00001, 0.001]
which means the underlying true density of the positive samples
is very sparse. Namely, each user would only show interest in a
very small number of items on average, which is reasonable in
real-world applications. Second, Figure 3 (In Appendix) shows that
PURE is not very sensitive to the conditional noise magnitude. Start-
ing from § = 0.005 to § = 0.1, we observe that PURE can almost
outperform every baseline in all metrics. It is because the genera-
tor could produce high-quality fake embeddings to help improve
the discriminating ability of the discriminator. We conjecture that
fine-tuning the structure of MLP layers could further improve the
expressiveness of the generator, which in turn improves the overall
performance. The exploration of the optimal model structure is left
for future work. Third, to demonstrate the utility of pre-training,
we compared the performance of two different versions for PURE -
with and without pre-training. For PURE without pre-training, we
initialize the embedding layers of the discriminator and the MLP
layers of the generator with random weights. For PURE with pre-
train, we first train a PU-GMF model, and then assign its embedding
weights to PURE’s discriminator, but the generator is still random
initialized. As shown in Table. 4, the relative improvements of uti-
lizing pre-training are roughly 1%, 4%, and 5% for Movielens-100k,
Movielens-1m, and Yelp, respectively. We empirically observe that
PURE with pre-training converges faster with less training epochs.
Both above observations justify the usefulness and efficiency of our
proposed pre-training method for initializing PURE.

5.4 Running Time (RQ3)

In Figure 4 (In Appendix), we compare the running time between
PURE and other baselines on Movielens-1m. The circle size rep-
resents the average performance (NDCG@5 in this case) of the
corresponding method and the x-axis records their running time in
log scale. As we can see, the traditional matrix factorization meth-
ods run very fast but with limited performance. PURE performs
the best but a little slower than PU-GMF due to the extra training
time of the generator. The pairwise loss based models, such as BPR
and LambdaFM, are comparable in terms of performance. CFGAN
performs well on this data set since it also performs continuous sam-
pling. IRGAN suffers the issue of high computational complexity
due to multiple reasons, e.g., dynamic negative sampling, softmax
operations, high generator, and discriminator epochs. GraphGAN

and SlopeOne need to loop over all users and items multiple times
and therefore, have the highest computational complexity.

6 RELATED WORK
6.1 Recommender Systems

Algorithms and frameworks regarding recommendation systems
have been widely studied in recent years due to their busi-
ness success to attract traffic or improve profit in different do-
mains [1, 7, 19, 27, 32, 36, 39, 47]. Collaborative filtering based
methods play an important role in recommender systems and gain
major attention [23] for recent decades. Within collaborative fil-
tering, latent factor or embedding based algorithms such as ma-
trix factorization [23], factorization machines [33] and their vari-
ants [28, 35, 42] have been successfully applied in recommender
systems. With the development of deep neural networks, deep
learning based recommender systems become a hot research topic
since they introduce non-linearity and increase model expressive-
ness [44]. Traditional matrix factorization based algorithms have
been transformed into their deep model versions, such as neural
collaborative filtering [15] and deep factorization machine [13].
In order to approach the true distribution of the user and items,
generative adversarial networks have been adopted for information
retrieval [18, 40], network mining [10, 38, 43, 46], and heteroge-
neous learning [45, 48, 49]. IRGAN [40] formulates a minimax game
where the generator learns the discrete relevance distribution of
users and items for synthesizing the indistinguishably fake user-
item tuples while the discriminator identifies whether one user-item
tuple is real or not. Following this idea, GraphGAN [38] learns the
underlying connection distribution over vertices in an adversarial
framework for graph representation learning. HeGAN [18] further
proposed the relation-aware generator and discriminator to en-
code the heterogeneous information network with multiple types
of vertices and edges. All these methods take the unlabeled user
and item interactions as negative samples, which is a non-valid
assumption for real-world applications. In this paper, we addressed
this problem by utilizing the GAN-based retrieval model and train
its discriminator under the PU learning framework.

6.2 Positive Unlabeled Learning

PU learning [14, 16, 21, 30] is a variant of the classical PN learning,
where the training data only consists of positive and unlabeled
samples. This learning setting fits with the applications that do not
require fully supervised data. The pioneering work [5, 26] of PU
learning was initialized two decades ago. and the state-of-the-art
PU learning approaches are mainly focused on unbiased PU risk
estimators. Starting from [9], which treats the unlabeled data as
a weighted mixture of positive and negative data and has an un-
biased estimator if positive and negative conditional densities are
disjoint, multiple variants [8, 21, 30] have been proposed. It has
been proven in [8] that an unbiased PU estimator can be learned if
the loss is symmetric. Later on, the analysis in [30] shows that the
unbiased estimator could be convex for loss functions that meet the
linear-odd condition. However, the aforementioned approaches are
not applicable to very flexible models, where the overall risk of the
estimator will become negative. [21] has shown that by imposing
a non-negative operator on the estimated empirical risk term of
the unlabeled data, the non-negative risk estimator will reduce

the overfitting phenomenon, which opens the door for adopting
deep neural networks into PU learning frameworks. PU learning
has not been extensively explored on recommender systems, even
inherently the recommendation problem fits the PU learning sce-
nario very well. Most related work includes PU learning for matrix
completion [17] and one-class collaborative filtering [31]. Our work
is different from these methods in that, PURE does not impose any
assumption on the distribution of users and items, and employs
the GAN framework to learn the real distribution of the user-item
interaction in a continuous embedding space.

7 CONCLUSION

In this paper, we proposed a novel recommendation framework
based on the generative adversarial network. Its discriminator is
trained using PU learning with an unbiased risk estimator, while
the generator learns the underlying continuous distribution of users
and items to generate high-quality fake embeddings of them. We
theoretically analyzed the performance of PURE from multiple
aspects, and performed extensive experiments to demonstrate its
effectiveness and efficiency for personalized ranking problems in
comparison with a rich set of strong baselines.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation under
Award No. IIS-1947203 and IIS-2002540, and Agriculture and Food
Research Initiative (AFRI) grant no. 2020-67021-32799/project ac-
cession n0.1024178 from the USDA National Institute of Food and
Agriculture. The views and conclusions are those of the authors
and should not be interpreted as representing the official policies
of the funding agencies or the government.

REFERENCES

[1] Yikun Ban and Jingrui He. 2021. Local Clustering in Contextual Multi-Armed
Bandits. In WWW.

Jessa Bekker and Jesse Davis. 2018. Learning From Positive and Unlabeled Data:
A Survey. CoRR (2018). arXiv:1811.04820 http://arxiv.org/abs/1811.04820
Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In ICML. 89-96.

[4] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN:
A Generic Collaborative Filtering Framework based on Generative Adversarial
Networks. In CIKM. 137-146.

[5] Francesco De Comité, Frangois Denis, Rémi Gilleron, and Fabien Letouzey. 1999.
Positive and Unlabeled Examples Help Learning. In ALT. 219-230.

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In RecSys. 191-198.

[7] Boxin Du, Lihui Liu, and Hanghang Tong. 2021. Sylvester Tensor Equation for
Multi-Way Association. In KDD. ACM.

[8] Marthinus Christoffel du Plessis, Gang Niu, and Masashi Sugiyama. 2014. Analysis
of Learning from Positive and Unlabeled Data. In NeurIPS. 703-711.

[9] Charles Elkan and Keith Noto. 2008. Learning classifiers from only positive and
unlabeled data. In KDD. 213-220.

[10] Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. 2020. A View-
Adversarial Framework for Multi-View Network Embedding. In CIKM.

Thomas George and Srujana Merugu. 2005. A Scalable Collaborative Filtering
Framework Based on Co-Clustering. In ICDM. 625-628.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NeurIPS. 2672-26380.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiugiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
IJCAIL 1725-1731.

[14] Tianyu Guo, Chang Xu, Jiajun Huang, Yunhe Wang, Boxin Shi, Chao Xu, and
Dacheng Tao. 2020. On Positive-Unlabeled Classification in GAN. In CVPR.
8382-8390.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173-182.

[2

=

3

[11

[12

=
&

(15

[16

[17

(18

[19

[20

[21

[22

[23

[24

[25

[26

[27

™
&

[29

[30

[31

(32]

(33]
[34

&
2

[36

[37

[38

[39

[40

[41

[42

[43]

[44

[45

=
&

[47

[48

[49

Ming Hou, Brahim Chaib-draa, Chao Li, and Qibin Zhao. 2018. Generative
Adversarial Positive-Unlabelled Learning. In IJCAL 2255-2261.

Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit S Dhillon. 2015. PU Learning
for Matrix Completion. In ICML. 2445-2453.

Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial Learning on Heteroge-
neous Information Networks. In KDD. 120-129.

Dietmar Jannach and Michael Jugovac. 2019. Measuring the Business Value of
Recommender Systems. ACM TMIS 10, 4 (2019).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

Ryuichi Kiryo, Gang Niu, Marthinus Christoffel du Plessis, and Masashi Sugiyama.
2017. Positive-Unlabeled Learning with Non-Negative Risk Estimator. In NeurIPS.
1675-1685.

Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. 426-434.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (2009), 30-37.
Walid Krichene and Steffen Rendle. 2020. On Sampled Metrics for Item Recom-
mendation. In KDD. 1748-1757.

Daniel Lemire and Anna Maclachlan. 2005. Slope One Predictors for Online
Rating-Based Collaborative Filtering. In SDM. 471-475.

Fabien Letouzey, Francois Denis, and Rémi Gilleron. 2000. Learning from Positive
and Unlabeled Examples. In ALT. 71-85.

Xu Liu, Jingrui He, Sam Duddy, and Liz O’Sullivan. 2019. Convolution-Consistent
Collective Matrix Completion. In CIKM. 2209-2212.

Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. 2014. An Efficient
Non-Negative Matrix-Factorization-Based Approach to Collaborative Filtering
for Recommender Systems. IEEE TII 10, 2 (2014), 1273-1284.

Larry M. Manevitz and Malik Yousef. 2001. One-Class SVMs for Document
Classification. Journal of Machine Learning Research 2 (2001), 139-154.

Gang Niu, Marthinus Christoffel du Plessis, Tomoya Sakai, Yao Ma, and Masashi
Sugiyama. 2016. Theoretical Comparisons of Positive-Unlabeled Learning against
Positive-Negative Learning. In NeurIPS. 1199-1207.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M. Lukose, Martin
Scholz, and Qiang Yang. [n.d.]. One-Class Collaborative Filtering. In ICDM.
Dae Hoon Park and Yi Chang. 2019. Adversarial Sampling and Training for
Semi-Supervised Information Retrieval. In WWW. 1443-1453.

Steffen Rendle. 2010. Factorization Machines. In ICDM. 995-1000.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAL
Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization.
In NeurIPS. 1257-1264.

Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang, Shuochao Yao, Shengzhong
Liu, Tianshi Wang, Chao Zhang, and Tarek F. Abdelzaher. 2020. paper2repo:
GitHub Repository Recommendation for Academic Papers. In WWW. 629-639.
Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. In KDD. 2309-2318.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph Representation
Learning With Generative Adversarial Nets. In AAAL 2508-2515.

Haonan Wang, Chang Zhou, Hongxia Yang, Carl Yang, and Jingrui He. 2021.
Controllable Gradient Item Retrieval. In WWW.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game for Unifying Generative
and Discriminative Information Retrieval Models. In SIGIR. 515-524.

Da Xu, Chuanwei Ruan, Jason Cho, Evren Korpeoglu, Sushant Kumar, and Kan-
nan Achan. 2020. Knowledge-Aware Complementary Product Representation
Learning. In WSDM. 681-689.

Fajie Yuan, Guibing Guo, Joemon M. Jose, Long Chen, Haitao Yu, and Weinan
Zhang. 2016. LambdaFM: Learning Optimal Ranking with Factorization Machines
Using Lambda Surrogates. In CIKM. 227-236.

Si Zhang, Hanghang Tong, Yinglong Xia, Liang Xiong, and Jiejun Xu. 2020.
NetTrans: Neural Cross-Network Transformation. In KDD. 986-996.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. Comput. Surveys 52, 1
(2019), 38.

Lecheng Zheng, Yu Cheng, Hongxia Yang, Nan Cao, and Jingrui He. 2021. Deep
Co-Attention Network for Multi-View Subspace Learning. CoRR abs/2102.07751
(2021).

Dawei Zhou, Lecheng Zheng, Jiejun Xu, and Jingrui He. 2019. Misc-GAN: A
Multi-scale Generative Model for Graphs. Frontiers Big Data 2 (2019), 3.

Yao Zhou, Fenglong Ma, Jing Gao, and Jingrui He. 2019. Optimizing the Wisdom
of the Crowd: Inference, Learning, and Teaching. In KDD. 3231-3232.

Yao Zhou, Lei Ying, and Jingrui He. 2017. MultiCz: an Optimization Framework
for Learning from Task and Worker Dual Heterogeneity. In SDM. 579-587.

Yao Zhou, Lei Ying, and Jingrui He. 2019. Multi-task Crowdsourcing via an
Optimization Framework. ACM TKDD 13, 3 (2019), 27:1-27:26.

http://arxiv.org/abs/1811.04820
http://arxiv.org/abs/1811.04820

042

0.265

041
040
0391 -
0.38
0.37
036
0.35
034

0.260

A (0255

0.250
0245
0.240
0235
0.230

—a— PURE
VD

-~ BPR

GMF

CFGAN

107" 107% 107 107 107
P@s

1070 100 10°*
NDCG@5

107% 107 107!

107% 1077 107¢% 1073

1ap

107 107t 107* 107% 107% 107 107

MRR

Figure 2: Positive class prior 7,

042
041
0.40
039
038
037
036
035

265
0.260
0.255
0250
0245
0.240
0.235

— 034

103 1072 10t

NDCG@S5

1230 Loy

1073 107t 1073 10!

Figure 3: Generator’s input noise magnitude

A APPENDIX

In all the following proofs, we denote each user-item tuple (u, i) in
recommendation as one data sample x for simplicity.

A.1 Proof of Theorem 1
Theorem 1 states that the Estimation Error Bound of PU learning

is tighter than that of PN learning if and only if:

‘/Enp
(1— (\/E+1)7rp)2

ny >

Proor. The differences of PN learning and PU learning in terms

of the EER bounds in Lemma 1 reflect the differences w.r.t. their
risk minimizers. We define:

7p/\Tp + 1\

a = 18
P =) (s)
For simplicity, let’s denote ppy := np/ny and we know pp, =

np/ny = 1/C. Then, by setting apy pn < 1, we have:

Ty + \Ppu < %(1 —p) © ppu < %(1 - (VC+ 1)”p)2 (19)

It is rather straightforward to get the conclusion in Eq. (A.1) by
solving the above inequality. O

Lemma 1. [Estimation Error Bound (EEB)] Let F be the function
class, and fpn and ﬁ,u be the empirical risk minimizer of Ii’p,, (D)
and Rpy (D) for discriminator D that belongs to PN learning and PU
learning, respectively. Then, the EEB ofﬁ,u is tighter than ﬁm with
probability at least 1 — § when:

1
Vnu
if the loss L is symmetric and Lipschitz continuous, and the
Rademacher complexity of F decays in O(1/+/n) for data of size
n drawn from paarqa(X), pp(x), and pp(x).

Tn

<

(20)
Nn

Proof can be referred to [30] for details. Based on the above
theorem, we know that PU learning is highly likely to outperform
PN learning when Eq. (20) and certain mild conditions [30] are
satisfied.

A.2 Proof of Proposition 1
Proposition 1 states that when the generator G is fixed, the optimal
discriminator D is:
T x
D*(x) = pPp (%)
Pu(x) + pg(x)
Proor. We know that the underlying true data distribution is:
Pdata(x) = TpPp (x)+(- ﬂp)pn (x). Furthermore, we also denote

the generator’s output distribution as py(x). Then, the objective of
the discriminator D is as follows for fixed G:

max V(D)
=ﬁpépp(x)log(D(x))dx—ﬂ'p/xpp(x)log(l—D(x))dx
+ [puttog(t = Dax+ [pe(a)loglt - D(Gla)dz
= [(=0 pp o)+ pute) .50 01 = D)
+15 [() og(D()dx
= [(=) pat) £y logt1 - D

+/np - pp(x) log(D(x))dx
(21)

Here, we assume that the unlabeled distribution can also be de-
composed as py(x) = mppp(x) + (1 — 7mp)pp(x) approximately
since the sampled positive tuples are extremely sparse in the over-
all user-item population. Next, we know that for the problem of
maxy alog(y)+blog(1-y), it achieves the optimal value [12] when

=~

‘ latent dim. d ‘ batch size ‘ learning rate ‘ # epoch ‘ pos. prior 7, ‘ noise mag. §

Movielens-100k 5 128 0.001 100 0.0001 0.01
Movielens-1m 8 128 0.001 100 0.00001 0.01
Yelp 16 512 0.001 200 0.000001 0.01
Table 5: Reproducible parameter setting
y' = ﬁ.Letaznp-pp(x) and b = (1-7p) - pn(x) +-pg(x), _ I
o
% _ Tp * Pp (x) _ Tp " Pp (x) e - LambdaFm
Tp - Pp(x) + (1 =7p) - pn(x) + pg(x) pu(x) +pg(x) g
] g NME GradphGAN
8 L
g o]
A.3 Proof of Proposition 2 a svn
Theorem 2 states that when the discriminator D fixed, the
optimization of the generator G is equivalent to mini- teggor Cocigglenng Rl gpne

mize: —2H (”T”) +mp - KL(pp(x) Pu(x);rpg(x))

KL ((l—np>121n(x)+pg(x) pu(x);rpg(x>)

+ (2 - m) -

-7

Proor. For fixed optimal discriminator, we substitute D* into
the objective of Eq. (21) and have the following objective:

min V(G)
=1, /x pp(x) log(D(x))dx — 7, /x pp(x) log(1 - D(x))dx

+/xpu(X) log(l—D(X))dX+/zpz(Z) log(1 - D(G(z)))dz
_ /x 7y pp (x) log(D(x))dx

+/x ((1 — 1) pn(x) +pg(x)) log(1 - D(x))dx

i ﬁppp(x)
_/x ((1 —np)pn(x)+Pg(x))1°g(l - m)

7ppp(x)
+ [C Tppp(x) log (P—u) + Py) dx

_ ™ oy P2)
_/xnppp(x) log 5 +log(pu(x);rpg(x) dx + (2 - mp)

log

1
2- 1, puip |8
2

(1=71p) pn () +pg (x)
/(1—7rp)pn(x)+pg(x) £ -7, £ 2-mp
dx
X

2
(1= 7p)pn(x) +Pg(x)‘
2 —”P

=-2H (%p) +7p - KL (Pp(x)| pu(x) +Pg(x))

R pul) 1)

2

A4 Proof of Theorem 2

Theorem 2 states that the global minimum could be achieved if and
Ol’lly lpr (X) — Pu (x)‘z"Pg(x)
the framework V (G, D) converges to —2H (”—Zp) and the value of

T,
D(x) reaches <.

. At that point, the objective value of

Running time (log scale)
Figure 4: Running time of baselines on Movielens-1m

Proor. From Proposition 2, we can directly get the minimum of
the optimal generator as —2H(”T”) if and only if these three distribu-

Pu(x)‘z"Pg(x) and (1_71'p)127z£;;)+17g(x) —

tions are identical: p, (x) =
IM. By solving the second equality, we have the following

equality equivalences:

Pu(x) +Pg(x) _ (1- ”p)Pn(x) +Pg(x)

2 2-mp
(2 = 7mp)pulx) + (2 = 7p) pg(x) = (2 = 27p) pn(x) + 2pg(x)
(2 = mp)pu(x) — mppg(x) = (2 = 27mp) pn(x) (22)
(2 = mp)pu(x) = mppg(x) = 2py(x) — 27ppp(x)
oty = P2

Here, using the last formula in Eq. (22), we show that the two
equalities of Theorem 2 are exactly the same. Easily, if we substitute
either of them into the optimal D*, we will always have D*(x) = ”TP.

o

A.5 Reproducible Setting

To recover the experimental results, below are the required repro-
ducible settings: For all three data sets, we trained the generator
from scratch with “lecun_uniform” random initialization on the
MLP layers. For discriminator, we initialize its user and item embed-
ding weights with a pre-trained PU-GMF weights. The model losses
for both discriminator and generator are binary cross entropy loss
and they are optimizer using Adam optimizer. The local epochs
for the discriminator and the generator are 1 and 10, respectively.
The MLP layer in generator has ReLU activation which has been
verified to perform better than other activation functions, such as
LeakyReLU, Sigmoid, Linear, etc. Other detailed hyperparameter
settings including user & item embedding dimension, training batch
size, learning rate, number of training epochs, positive class prior,
as well as the noise input magnitude for generators are summarized
in Table 5.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Generalized Matrix Factorization
	2.3 Generative Adversarial Network

	3 Proposed Approach
	3.1 PU Classifications in Recommendation
	3.2 Discriminative Model
	3.3 Generative Model

	4 Model Analysis
	4.1 Instantiation of the Discriminator
	4.2 Sampling Strategy
	4.3 Sampling Bound
	4.4 Optimality of Convergence
	4.5 Algorithm and Complexity

	5 Experimental Results
	5.1 Experimental Settings
	5.2 Performance Comparison (RQ1)
	5.3 Parameter Study (RQ2)
	5.4 Running Time (RQ3)

	6 Related Work
	6.1 Recommender Systems
	6.2 Positive Unlabeled Learning

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 1
	A.3 Proof of Proposition 2
	A.4 Proof of Theorem 2
	A.5 Reproducible Setting

