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Abstract

Transfer learning refers to the transfer of knowl-
edge or information from a relevant source task to a
target task. However, most existing works assume
both tasks are sampled from a stationary task dis-
tribution, thereby leading to the sub-optimal per-
formance for dynamic tasks drawn from a non-
stationary task distribution in real scenarios. To
bridge this gap, in this paper, we study a more
realistic and challenging transfer learning setting
with dynamic tasks, i.e., source and target tasks
are continuously evolving over time. We theo-
retically show that the expected error on the dy-
namic target task can be tightly bounded in terms
of source knowledge and consecutive distribution
discrepancy across tasks. This result motivates us
to propose a generic meta-learning framework L2E
for modeling the knowledge transferability on dy-
namic tasks. It is centered around a task-guided
meta-learning problem with a group of meta-pairs
of tasks, based on which we are able to learn the
prior model initialization for fast adaptation on
the newest target task. L2E enjoys the following
properties: (1) effective knowledge transferability
across dynamic tasks; (2) fast adaptation to the new
target task; (3) mitigation of catastrophic forgetting
on historical target tasks; and (4) flexibility on in-
corporating any existing static transfer learning al-
gorithms. Extensive experiments on various image
data sets demonstrate the effectiveness of the pro-
posed L2E framework.

1 Introduction

Transfer learning [Pan and Yang, 2009] aims to leverage the
knowledge of a source task to improve the generalization per-
formance of a learning algorithm on a target task. The knowl-
edge transferability across tasks can be theoretically guaran-
teed under mild assumptions, even when no labeled train-
ing examples are available in any target task [Ben-David et
al., 2010; Ghifary et al., 2016; Acuna et al., 2021]. One
key assumption is that source and target tasks are sampled
from a stationary task distribution. The resulting relatedness
between tasks allows transferring knowledge from a source
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Figure 1: Illustration of transfer learning on dynamic tasks (best
viewed in color)

task with adequate labeled data to a target task with little
or no labeled data. However, the learning task might be
evolving over time [Mohri and Medina, 2012] in real sce-
narios. For example, the data distribution of clothes images
in Amazon is changing over the years due to the varying
fashion trend [He and McAuley, 2016], thus resulting in a
time-evolving image recognition task. Another example is
the IMDb’s film rating system where the rating scores of a
film change in different time periods due to the dynamic user
preference [Rafailidis and Nanopoulos, 2015], thus leading
to a time-evolving film recommendation task. Such applica-
tion scenarios would challenge the conventional static trans-
fer learning algorithms [Pan and Yang, 2009] due to the dy-
namic task relatedness.

Recent works [Hoffman et al., 2014; Liu et al., 2020;
Wang et al., 2020; Kumar et al., 2020] have studied contin-
uous transfer learning with a static source task and a time
evolving target task. They revealed that the prediction func-
tion on the newest target task can be learned by aggregat-
ing the knowledge from the labeled source data and historical
unlabeled target data. Nevertheless, in real scenarios, both
source and target tasks could be changing over time. In this
case, those works will lead to the sub-optimal solution due
to the under-explored source knowledge. To the best of our
knowledge, very little effort has been devoted to modeling the
knowledge transferability from a labeled dynamic source task
to an unlabeled dynamic target task.

To bridge this gap, in this paper, we study the dynamic
transfer learning problem with dynamic source and target
tasks sampled from a non-stationary task distribution. As



shown in Figure 1, conventional knowledge transfer problems
focus on either static tasks (e.g., multi-task learning [Sener
and Koltun, 2018], transfer learning [Pan and Yang, 2009]
and meta-learning [Finn et al., 2017]) or one dynamic task
(e.g., continual learning [Li and Hoiem, 2017]), whereas we
aim to transfer the knowledge from a dynamic source task
to a dynamic target task. More specifically, we focus on
the learning scenario where both source and target tasks al-
ways share the same class-label space (a.k.a. domain adap-
tation [Pan and Yang, 2009]) at any time stamp. We are
able to show that the generalization error bounds of dynamic
transfer learning can be derived under the following assump-
tions. First, the class labels of the source task are available at
any time stamp. Second, the source and target tasks are re-
lated at the initial time stamp. Third, the data distributions of
both source and target tasks are continuously changing over
time. The theoretical results indicate that the target error is
bounded in terms of flexible domain discrepancy measures
(e.g., H-divergence [Ben-David er al., 2010], discrepancy
distance [Mansour et al., 2009], f-divergence [Acuna et al.,
2021], etc.) across tasks and across time stamps. This moti-
vates us to propose a generic meta-learning framework L2E
for dynamic transfer learning. It reformulates the dynamic
source and target tasks into a set of meta-pairs of consecu-
tive tasks, and then learns the prior model initialization for
fast adaptation on the newest target task. The effectiveness of
L2E is empirically verified on various image data sets. The
main contributions of this paper are summarized as follows:

* We derive the error bounds for dynamic transfer learning
with time-evolving source and target tasks.

* We propose a generic meta-learning framework (L2E)
for transfer learning on dynamic tasks by minimizing the
error upper bounds with flexible divergence measures.

» Extensive experiments on public data sets confirm the
effectiveness of our proposed L2E framework.

The rest of the paper is organized as follows. We review
the related work in Section 2, followed by our problem set-
ting in Section 3. In Section 4, we derive the error bounds of
continuous transfer learning and then present the L2E frame-
work. The extensive experiments and discussion are provided
in Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

Transfer Learning: Transfer learning [Pan and Yang,
2009] improves the generalization performance of a learn-
ing algorithm under distribution shift. Most existing algo-
rithms [Zhang er al., 2019; Acuna et al., 2021; Wu and He,
2021] assume the relatedness of static source and target tasks
in order to guarantee the success of knowledge transfer. The
most related problem to our work is the meta-transfer learn-
ing [Sun ef al., 2019], which learns to adapt to a set of few
shot learning tasks sampled from a stationary task distribu-
tion. However, our work focuses on the non-stationary task
distribution where a sequence of meta-pairs of consecutive
tasks could be formulated for dynamic transfer learning.

Continual Learning: Continual learning aims to learn a
model on a new task using knowledge from experienced
tasks. Conventional continual learning algorithms [Li and

Hoiem, 2017] focused on mitigating the catastrophic for-
getting when learning the prediction function on one time-
evolving task. In contrast, continuous transfer learning [Hoff-
man et al., 2014; Bobu et al., 2018; Wu and He, 2020;
Liu et al., 2020; Wang ef al., 2020; Kumar et al., 2020] trans-
ferred the knowledge from a labeled static source task to an
unlabeled time-evolving target task. Our work would further
extend it to the transfer learning setting with dynamic source
and target tasks.

Meta-learning: Meta-learning [Finn et al., 2017; Fallah et
al., 2020], or learning to learn, leverages the knowledge from
a set of prior tasks for fast adaptation to unseen tasks. It as-
sumes that all the tasks follow a stationary task distribution.
More recently, it has been extended into the online learning
setting [Finn e al., 2019] where a sequence of tasks are sam-
pled from non-stationary task distributions. However, those
works focused on improving the prediction performance with
the accumulated data, whereas we aim to explore the knowl-
edge transferability between dynamic source and target tasks.

3 Problem Setting

Let & and )Y be the input feature space and output label
space respectively. We consider the dynamic transfer learn-
ing problem' with dynamic source task {Djs ;-Vzl and target

task {D%} 7, with time stamp j. In this case, we assume that
there are m; labeled training examples D3 = {(x};, yfj)}yiﬁ

in the j™ source task and no labeled training examples in the
target task. Let m§ be the number of unlabeled training ex-

amples D} = {x}; :rjl in the j" target task. Furthermore,
each task D7 (D;) is associated with a task-specific labeling
function f7 ( f;). Let H be the hypothesis class on X where
a hypothesis is a function o : X — Y. L(-,-) is the loss
function such that £ : ) x Y — R. The expected classifica-
tion error on the task D; (either source or target) is defined as
€j(h) = E(x,y)~p,; [L(M(x),y)] for any h € H, and its empir-
ical estimate is given by ¢;(h) = -2 Y1 L(h(xi;), ij)-

Formally, our dynamic transfer ]learning problem can be
defined as follows.

Definition 1. (Dynamic Transfer Learning) Given labeled
dynamic source tasks { D} }j\le and unlabeled dynamic target

tasks {D§ };V:I dynamic transfer learning aims to learn the
prediction function for the newest target task DY, 11 by lever-

aging the knowledge from historical source and target tasks.

In dynamic transfer learning, we have the following mild
assumptions. (1) The class labels of the source task are
available at any time stamp. Specially, when the source
task is static, it is naturally degenerated into a typical con-
tinuous transfer learning problem [Hoffman et al., 2014;
Bobu et al., 2018; Wu and He, 2020; Liu et al., 2020]. More-
over, when the target task is also static, it would be a stan-

'In this paper, we assume that all the tasks share the same output
label space ) for simplicity. Besides, we use Dj to represent both
the time-specific task (i.e., source task at the 5" time stamp) and its
data distribution (i.e., probability distribution of the source task at
the j™ time stamp over X x ) for notation simplicity.



dard transfer learning problem [Pan and Yang, 2009]. (2) The
source and target tasks are related at the initial time stamp

= 1. That is, those tasks might not be related in the fol-
lowing time stamps j > 1, as their data distributions can
be evolving towards different patterns. (3) The data distribu-
tions of both source and target tasks are continuously chang-
ing over time.

4 The Proposed Framework

In this section, we first derive the error bounds for dynamic
transfer learning, and then propose a generic meta-learning
framework (L2E) for modeling the knowledge transferability
across dynamic tasks.

4.1 Error Bounds

Following [Ben-David et al., 2010], we consider a binary
classification problem with ) € {0, 1} for simplicity. Before
deriving the generalization error bound for a dynamic target
task, we first introduce some basic concepts below.
Definition 2. (L!-divergence [Ben-David et al., 2010]) The
Ll-divergence between two distributions D and D' over X is
defined as follows.

— Prp/[Q]] ey

d1(D, D) := 2 sup |Prp|Q]
QeQ

where Q is the set of measurable subsets under D and D’.
Definition 3. (u-admissibility) A loss function L(-,-) is p-
admissible if there exists p > 0 such that for all x € X,
Y,y € Y and h,h' € H, the following inequalities hold.

[L(W (x),y) — L(h(x),y)| < p|W (x) = h(x)]

[L(h(x),y") = L(Wx),y)| < ply' =yl

In the context of dynamic transfer learning, the following

theorem states that the expected target error of the newest tar-
get task can be bounded in terms of historical source and tar-
get knowledge.
Theorem 1. Assume that the loss function L(-,-) is p-
admissible and obeys the triangle inequality. Given a class
of functions Hy = {(x,y) — L(h(x),y) : h € H}, for any
0 > 0and h € H, with probability at least 1 — 6, the expected
error €l 41 for the newest target task DY, 11 Is bounded by

R N+2
i (h _2NZ h) + é(h ))+T(d+>\>
1
~ ﬁ IOgS
+R(Hz) + AR
whered=u~max{maxl<7<1v 1d1(D D), d, (D5, DY)
max1<J<Nd1(D Dﬁ_l } A = TR max{max1<J<N 1

+(D3,D541), Au(Df, DY), maxi << v A (D5, D§+1)}
and /< measures the difference of the labelzng functions
across task and across time stamps, ie., M\ (D$, DY) =

min{Epy [| 7 (x) — f1(x)[], Epy [| /7 (%) — fix)[]} R(He)
is a Rademacher complexity term (see Appendix for more
details) and m = Z;\Izl(mj + m}) is the total number of
training examples from source and historical target tasks.

This theorem reveals that the expected error on the newest
target task can be bounded in terms of (i) the empirical er-
rors of historical source and target tasks; (ii) the maximum

of the distribution discrepancy (e.g., L'-divergence) across
tasks and across time stamps; (iii) the maximum of the label-
ing difference across tasks and across time stamps; and (iv)
the average Rademacher complexity [Mansour et al., 2009] of
the class of functions H, = {(x,y) — L(h(x),y) : h € H}
over all the tasks.

However, it has been observed that (1) Ll—divergence can-
not be accurately estimated from finite samples of arbitrary
distributions [Ben-David er al., 2010]; and (2) the general-
ization error bound with L!-divergence is not very tight be-
cause L'-divergence involves all the measurable subsets over
X. Therefore, we would like to derive much tighter error
bounds with existing domain divergence measures over ei-
ther marginal feature space (e.g., H-divergence [Ben-David
et al., 2010], discrepancy distance [Mansour er al., 2009],
f-divergence [Acuna et al., 2021] and Maximum Mean Dis-
crepancy (MMD) [Gretton ef al., 2012]) or joint feature and
label space (e.g., C-divergence [Wu and He, 2020]). It is no-
table [Acuna et al., 2021] that the generic f-divergence sub-
sumes many popular divergences, including Margin Disparity
Discrepancy [Zhang et al., 20191, Jensen-Shannon (JS) diver-
gence, Pearson x? divergence, etc.

Corollary 1. Assume that the loss function L(-,-) is p-

admissible and symmetric (i.e., L(y1,y2) = L(y2,y1) for

Y1,Y2 € V), and obeys the triangle inequality. Then

(a) when using f-divergence [Acuna et al., 2021]?, denoted
by dy, the error bound of Theorem 1 holds with

J:max{ I_n<a13[<7 dg (D5, D5, 1), dg (D5, DY),

max df(D Dg+1)}

1<j<N
Y s Tyt
)\—max{lgglgaﬁ 1)\ «(D3,Dj44), (D1, DY),

max A, (D%, D)}

where A, (D3, Dt) = mingey € (h) + € ().

(b) when using C-divergence [Wu and He, 2020] (measur-
ing the distribution discrepancy over joint data distri-
bution on X x )), denoted by dc, the error bound of
Theorem 1 holds with

d = p-max { _max de(D;

s s +
1<G<N-1 Dj+1)de(D17D1),

max d D ,D
2 de i)}
A=0
The theoretical results above motivate us to develop a dy-
namic transfer learning framework by empirically minimiz-
ing the generalization error bounds with flexible domain dis-
crepancy measures (see the next subsection).

4.2 L1L2E Framework

Following the theoretical results [Ben-David er al., 2010], a
typical transfer learning paradigm on static source and target
tasks aims to minimize the static generalization error bound

*Note that we have similar error bounds when using other
marginal domain discrepancy measures (e.g., H-divergence [Ben-
David et al., 2010], discrepancy distance [Mansour et al., 2009], or
MMD [Gretton et al., 2012]), so we omit the details here (see Ap-
pendix for more illustration)
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Figure 2: Illustration of our proposed L2E framework (best viewed
in color). It consists of three phases: (i) reformulating the meta-pairs
of consecutive tasks; (ii) learning the prior model initialization; (iii)
fine-tuning on the new task.

involving empirical source classification error and domain
discrepancy across tasks as follows.

min J(0) = €.(0) +7 - d(D*, Dt 0) )

where 0 is the trainable parameters and -y is a trade-off pa-
rameter between the empirical source error and the domain

discrepancy. The second term d(D*, D*; §) aims to match the
data distribution of source and target tasks by learning the
domain-invariant latent representation for every input exam-
ple. Then the predictive function learned by the first term
€s(0) on the source task could be applied to the target task
directly. In this case, existing works [Ganin et al., 2016;
Acuna et al., 2021] have attempted to instantiate different do-
main discrepancy measures. Nevertheless, when the source
and target tasks are evolving over time, it might be sub-
optimal when directly transferring the labeled source task to
the newest unlabeled target task. That is because the success
of knowledge transfer cannot be guaranteed if the task relat-
edness becomes weaker over time [Rosenstein et al., 2005].

In this paper, we propose a generic meta-learning frame-
work L2E for transferring the knowledge from a dynamic
source task to a dynamic target task. It leverages the knowl-
edge from both historical source and target tasks to improve
the predictive performance on the newest target task. Follow-
ing our generalization error bounds in Corollary 1, we have
the following objective function for learning the predictive
function of D} " on the (N + 1) time stamp.

min J(6 Z (&(0) +&(0)) + - ((Z(Df,pg;e)
N-1 N )
+ 3 D5 D5 130) + Yo d(DL DL 10))
j=1 j=1
where d(-, -; 6) is the empirical distribution discrepancy esti-

mated from finite samples. It can be instantiated with any ex-
isting domain discrepancy measures discussed in Corollary 1.
We would like to point out that the error bound of Corol-
lary 1 is derived in terms of the maximum distribution dis-
crepancy across tasks and across time stamps. But there is no
prior knowledge regarding the time stamp with the maximum
distribution discrepancy. Therefore, in our framework, we

propose to minimize all the distribution discrepancies across
tasks and across time stamps.

However, the learned model on the newest target task
DY, 1 might have the issue of catastrophic forgetting such
that it performs badly on historical target tasks when updating
the new target task. To solve this problem, we would like to
learn optimal prior model initialization shared across all the
target tasks such that this model can be efficiently fine-tuned
on both new and historical target tasks with just a few up-
dates. Figure 2 illustrates our proposed L2E framework with
three crucial components: meta-pairs of tasks, meta-training,
and meta-testing.

Meta-pairs of tasks: With the assumption that the source
and target tasks are continuously evolving over time, the
framework of Eq. (3) is equivalent to sequentially optimiz-
ing with respect to the adjacent tasks using standard transfer
learning of Eq. (2) as follows.

N—-1

min J(0) = 3 (&12(0) +7

=1
+ (éi(9)+v~d( 1. D50)) )

+Z(Af +’y~d(D,D§+1§9))

Thus we would hke to simply split all the tasks into a set of
meta-pairs consisting of two consecutive tasks as shown in
Figure 2, and learn the prior model initialization with those
meta-pairs of tasks. Different from previous works [Hoff-
man et al., 2014; Liu et al., 2020] with only static source
task, we argue that the evolution pattern of the source task
can also help improve the performance of L2E on the newest
target task (see more empirical analysis in our experiments).
In Subsection 4.3, we provide more discussion about the con-
struction of meta-pairs of tasks.
Meta-training: Let ¢;(0) =
Co(0) = &(0) + v - (D}, Dy;
v - d(Ds D, 1;0). Then Eq. (4) has a simplified expres-
sion ming J(0) = Y20,y Ce(6), where ¢, denotes the ob-
jective function of standard transfer learning across tasks and
across time stamps. Moreover, it can be formulated as a meta-
learning problem [Finn et al., 2017]. That is, the optimal
model initialization is learned from historical source and tar-
get tasks such that it can be adapted to the newest target task
with a few updates. To be more specific, we randomly split
the training data from every historical source or target task
into one training set D§" and one validation set Dy Let ¢}"
(C}C"”) be the loss function of (; on the training (validation)
set. The model initialization 6%, can be learned as follows.

-d(Ds, DJH,&))

€ (0) + - d(D}, Dl 1;0),

0) and ¢_;(0) = &,,(0) +

N-1
0% eargmm Z CP (M (0))
k=1—-N ®)
My(0) < 60 — - V(i (6)
where M}, 0 — 0y is a mapping function which
learns the optimal task-specific parameter 8 from model ini-
tialization 6. Following the model-agnostic meta-learning



(MAML) [Finn et al., 20171, M (6) can be instantiated by
one or a few gradient descent updates. Here o > 0 is the
learning rate of the inner loop when training on a specific task.
In addition, the training examples of historical target tasks are
not labeled. Thus, we propose to sequentially learn the pre-
dictive function for every historical target task and generate
the pseudo-labels of unlabeled examples as follows.

j—2
Gy argmin 30 G (ML)
k=1—N (6)

ity < p (vt My (00))
where ij is the predicted pseudo-label of input example xgj

from the historical target task D; (3 =1,---,N). Notice that
the training examples with incorrect pseudo-labels might lead
to the accumulation of misclassification errors on the new tar-
get tasks over time. To mitigate this issue, we propose to se-
lect those examples with high prediction confidence. Specifi-
cally, we estimate the entropy of the predicted class probabil-
ity of target examples, and then choose the top p% with the
lowest entropy values. We empirically evaluate this sampling
strategy in the experiments.

Meta-testing: The optimal parameters 641 on the newest
target task DY ; could be obtained as follows.

Ons1 = My(Ox) Oy —a- Vg Cn (By) ()

where 63 is the optimized model initialization learned in the
meta-training phase.

The intuition of this meta-learning framework L2E can
be illustrated as follows. The evolution of dynamic source
and target tasks can be represented as a sequential knowl-
edge transfer process across time stamps. But from the
perspective of transfer learning [Pan and Yang, 2009], it
would be an asymmetric knowledge transfer process for ev-
ery time stamp, with the goal of maximizing the prediction
performance on the new task. That explains why continu-
ous knowledge transfer [Bobu et al., 2018; Liu et al., 2020;
Kumar et al., 2020] might have the issue of catastrophic for-
getting. However, the continuous evolution of source and
target tasks indicates that there might exist some common
knowledge transferred across all time stamps. For instance,
no matter how the fashion of clothes images changes over
time, it follows the basic designs (e.g., shape) for different
types of clothes. This common knowledge can be captured
by the prior model initialization in our meta-learning frame-
work. It then enables the fast adaptation on the newest target
task with only a few model updates.

4.3 Discussion

In this work, we assume that the source and target tasks are
continuously evolving over time. In other words, the data
distribution of the source or target task is similar at the adja-
cent time stamps. This naturally motivates us to design the
meta-pairs of tasks using adjacent tasks. However, it is pos-
sible that there exist other related tasks at the non-adjacent
time stamps. One extreme case is that when the evolution of
task distribution is negligible, it will be close to the transfer
learning scenarios with multiple sources [Zhao er al., 2018;
Wen er al., 2020]. In this case, any two historical tasks can

be considered as the meta-pair of tasks in our L2E frame-
work. By combining with the existing task transferability
measures [Tran et al., 2019], L2E can better identify meta-
pairs of related tasks even when we have no prior knowledge
regarding the evolution of task distribution. We would like to
leave this to our future work.

Note that compared with continuous transfer learning al-
gorithms [Bobu ef al., 2018; Wang et al., 2020; Liu et al.,
2020], our proposed L2E framework has the following ben-
efits. (1) It leverages the evolution knowledge from both
historical source and target tasks. (2) It could be efficiently
adapted to the newest target task with just a few updates. (3) It
mitigates the catastrophic forgetting on historical target tasks
by learning the prior model initialization shared across meta-
pairs of tasks (that is, it could preserve the predictive perfor-
mance on historical tasks by fine-tuning on those tasks with
a few updates). (4) It is flexible to incorporate any existing
static transfer learning algorithms [Pan and Yang, 2009] by
instantiating ¢(-) of Eq. (5) accordingly.

S5 Experiments

5.1 Experiment Setup

Data Sets: We used three publicly available image data
sets: Office-31 (with 3 tasks: Amazon, Webcam and DSLR),
Image-CLEF (with 4 tasks: B, C, I and P) and Caltran. For
Office-31 and Image-CLEF, there are 5 time stamps in the
source task and 6 time stamp in the target task (see Appendix
for more details). Caltran contains the real-time images cap-
tured by a camera at an intersection for two weeks.

Baseline Methods: The comparison baselines are given be-
low: (1) static adaptation methods: SourceOnly that trains
only on the source task, DANN [Ganin et al., 2016], and
MDD [Zhang et al., 2019]; (2) multi-source adaptation meth-
ods: MDAN [Zhao et al., 2018], M3SDA [Peng et al., 20191,
and DARN [Wen er al., 2020]; (3) continuous adaptation
methods: CUA [Bobu et al., 2018], TransLATE [Wu and
He, 20201, GST [Kumar et al., 2020], and our L2E with JS-
divergence. In this case, we merge all the labeled source data
into a large one, and then transfer its knowledge to the newest
target task for static adaptation methods. For fair comparison,
all the multi-source and continuous adaptation methods used
both historical source and target data for knowledge transfer,
and the target selection strategy for choosing high-quality tar-
get examples with pseudo-labels.

Configuration: We adopted the ResNet-18 [He et al., 2016]
pretrained on ImageNet as the base network for feature ex-
traction, and set v = 0.1 and p = 80 for all the experiments?.

5.2 Results

Figure 3 shows the results of domain discrepancy via MMD,

including (i) the evolution of source task, i.e., d(DJS., Dj 1)
(ii) the evolution of target task, i.e., J(Dg-, Dgt Jr1), and (iii)

the evolution of task relatedness, i.e., J(D;} D;) It indicates
that in both Office-31 and Image-CLEF, the source and tar-
get tasks are changing smoothly, whereas the relatedness be-
tween source and target tasks is decreasing over time. Ta-
ble 1, Table 2 and Figure 4 provide the transfer learning re-

sults on the dynamic tasks where the classification accuracies

*https://github.com/jwudsml/L2E
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Figure 3: Task evolution on Office-31 (Webcam — DSLR) and

Image-CLEF (B — P) where “Source™ d(Dj,Dj;1), “Source-
Target™: cZ(’Dj, D%), and “Target”: cZ(’D;, Diyy)

Amazon — Webcam Webcam — DSLR
Acc H-Acc Acc H-Acc

SourceOnly 0.168+0023 0.355+0.021 | 0.77640020 0.88040.026

Method

DANN 0.317+0.028 0.450+0.038 | 0.837+0.009 0.905+0.011
MDD 0.31940010 0.447+0007 | 0.85240024 0.909+0012
MDAN 0.49510027 0.574+10011 | 0.878 10003 0.91610010
M3SDA 0.487 10031 0.56810032 | 0.813 10045 0.858+10.030
DARN 0.45040018 0.49410.033 | 0.69210035 0.74210.027
CUA 0.48110005 0.5800.000 | 0.847 10030 0.88710.036

TransLATE 0.500i0,013 0.584j:o,020 0.862:{:0,021 O~9OO:{:04018
GST 0.43510014 0.448.10002 | 0.83910.018 0.79610.008

L2E (ours) ‘ 0.51919016 0.58110014 ‘ 0.893 9007 0.951_¢.001

Table 1: Transfer learning accuracy on Office-31

I—-C B—P
Acc H-Acc Acc H-Acc

SOuI‘CCOIﬂy 0.256i0,013 0.506:‘:0,013 0.241:{:()‘004 O~432:I:04010

Method

DANN 0.361+0.002 0.577+0.008 | 0.270+£0000 0.426+0.003
MDD 0.41040011 0.61510011 | 0.28210031 0.424 10015
MDAN 0.620i0_034 0.772i0.001 0.368i0.051 0.508i0_023
M3SDA 0.55940028 0.74310.008 | 0.3864+0023 0.52410.024
DARN 0.55310025 0.763+0017 | 0.3904+0020 0.517 10,014

TransLATE 0.637i0_012 0.764i()‘()04 0~402i0030 0.548i()‘0()9
GST 0.39240013 0.539+0.030 | 0.32040013 0.306-+0.018

L2E (ours) ‘ 0.659 19020 0.804_9.008 ‘ 0.43510.036 0.57310.021

Table 2: Transfer learning accuracy on Image-CLEF
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Figure 4: Transfer learning accuracy on Caltran

on the newest target task (Acc) and all the historical target
tasks (H-Acc) are reported. We run all the experiments five
times and report the mean and standard deviation of classi-
fication accuracies (the best results are indicated in bold). It
can be observed that: (1) compared to static methods, the

Method | Acc H-Acc

L2E w/o source evolution | 0.375+0044  0.565+0.018
L2E w merged source 0.348+0070  0.51240.004
L2E w/o historical target | 0.205+0014 0.45940.016
L2E w all pairs 0.38740031  0.569+0.010
L2E 0.43510036  0.57310.021

Table 3: Ablation study on Image-CLEF (B — P)

: : ls:cp F {

Js-divergence MMD
Domain discrepancy measures

Figure 5: Impact of domain dis-
crepancy measures

C-divergence 20% 40% 60% 80% 100%
Number of selected target samples

Figure 6: Impact of sampling se-
lection strategy

multi-source and continuous adaptation methods can achieve
much better classification performance by leveraging the his-
torical knowledge; (2) our proposed framework L2E outper-
forms state-of-the-art baselines in both the newest target task
and all the historical target tasks. This confirms that L2E mit-
igates the issue of catastrophic forgetting on historical tasks
when learning the new task.

5.3 Case Studies

Table 3 reports the results of several variants on Image-CLEF
(B — P): (i) L2E w/o source evolution: using only source
data at the initial time stamp; (ii) L2E w merged source:
merging all source data into a large one; (iii) L2E w/o his-
torical target: transferring the dynamic source tasks to the
newest target task directly without historical target knowl-
edge. It is observed that the evolution knowledge from his-
torical source and target tasks could indeed improve the per-
formance of L2E in dynamic transfer learning. Besides, we
also consider to generate the meta-pairs from any two histor-
ical tasks (indicated in “L2E w all pairs” in Table 3). It could
not outperform L2E with only the meta-pairs from consec-
utive tasks. One explanation is that it might generate the
unrelated meta-pairs of tasks. Figure 5 shows the results
of L2E instantiated with JS-divergence [Ganin et al., 2016;
Acuna et al., 2021], MMD [Long et al., 2015] and C-
divergence [Wu and He, 2020] on Image-CLEF (B — P). It
indicates that our L2E framework is flexible to incorporate
any domain discrepancy measures. Figure 6 shows the impact
of sampling selection ratio p% on L2E where the classifica-
tion accuracies on the newest target task (Acc) are reported
on Image-CLEF. It confirms that selecting the historical target
examples with high confidence positively affects the perfor-
mance of L2E. Thus we choose p = 80 for our experiments.

6 Conclusion

In this paper, we study the transfer learning problem with dy-
namic source and target tasks. We show the error bounds of
dynamic transfer learning on the newest target task in terms
of historical source and target task knowledge. Then we pro-
pose a generic meta-learning framework L2E by minimizing
the error upper bounds. Empirical results demonstrate the ef-
fectiveness of the proposed L2E framework.
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