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A B S T R A C T   

Death is an important part of an organism’s existence and also marks the end of life. On a cellular level, death 
involves the execution of complex processes, which can be classified into different types depending on their 
characteristics. Despite their “simple” lifestyle, fungi carry out highly specialized and sophisticated mechanisms 
to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of 
plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the 
occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal 
cell death. We also describe recent data on meiotic drive elements involved in “spore killing” and the molecular 
basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss 
how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to 
antifungal agents.   

1. Introduction 

1.1. The ‘regulated’ nature of fungal cell death 

The kingdom Fungi, which diverged from animals approximately 1 
billion years ago (Taylor and Berbee, 2006), boasts an astounding 
biodiversity encompassing an estimated 2–6 million species (Baldrian 
et al., 2021; Hawksworth and Lücking, 2017). Fungi include molds, 
mushrooms, yeasts, smuts, rusts, mildews, amongst many others, being 
also one of the components of the mutualistic structures known as li
chens (Willis, 2018). Fungi have been involved in many of the greatest 
events in our planet’s evolutionary history. For instance, arbuscular 
mycorrhizal fungi were instrumental in facilitating the colonization of 
land by plants approximately 500 million years ago (Remy et al., 1994). 
Fungi display lifestyles that are relatively simple in comparison with 
plants and metazoans. Yet, these remarkable microbes undergo all the 
basic cellular processes, including cell division, cell differentiation and 
cell death; the present review is dedicated to the occurrence of cell death 
in fungal organisms. 

Regulated cell death (RCD) with similarities to apoptosis was first 
described in a cell cycle cdc48 temperature-sensitive mutant in the 
budding yeast Saccharomyces cerevisiae, including exposure of phos
phatidylserine on the outer leaflet of the plasma membrane, DNA frag
mentation, and chromatin condensation (Madeo et al., 1997). This work 

promoted further investigations on RCD in fungi, particularly since most 
of the genes involved in mammalian apoptotic cell death appeared to 
lack homologs in S. cerevisiae (Fedorova et al., 2005; Madeo et al., 1997). 
More recently, it has been demonstrated that fungal cell death occurs 
during a number of developmental processes in fungi. For example, 
appressorium formation in Magnaporthe oryzae, which is necessary for 
plant infection, requires the occurrence of autophagy-related cell death 
(Veneault-Fourrey et al., 2006). During sexual development in Con
iochaeta tetrasperma, the number of sexual spores is reduced by RCD 
(Raju and Perkins, 2000), and in Aspergillus nidulans, cell death is asso
ciated with asexual sporulation (Thrane et al., 2004). In the mushroom- 
forming Agaricus bisporus, regulated cell death takes place during basi
dial differentiation (Umar and Van Griensven, 1997), analogous to 
organ sculpting during embryonic maturation in mammals (Suzanne 
and Steller, 2013). In unicellular fungi, RCD leads to the death of the 
whole organism (‘phenoptosis’ (Skulachev, 1999)), thus lacking a 
developmental significance. Nevertheless, the occurrence of RCD ap
pears to have played an instrumental role in the unicellular-to- 
multicellular transition (Durand et al., 2016; Kulkarni et al., 2019; 
Ratcliff et al., 2012). 

This article features recent data on cell death in the context of nonself 
recognition (allorecognition), one of the most remarkable demonstra
tions of fungal cell death and the most well characterized in terms of 
molecular mechanisms. Allorecognition in fungi, where cell fusion 
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between germinated asexual spores (germlings) or colonies that differ in 
allelic specificity at allorecognition loci rapidly triggers cell death (Glass 
and Dementhon, 2006; Gonçalves et al., 2020; Saupe, 2000). Although 
germling/hyphal fusion is common within a colony and between 
genetically identical germlings/hyphae (Fischer and Glass, 2019), suc
cessful heterokaryon formation between genetically different germ
lings/colonies is rare (Gonçalves and Glass, 2020; Muirhead et al., 
2002). These multilocus allorecognition systems include those that 
function prior to contact of hyphae or germlings (Heller et al., 2016), 
upon contact, but prior to cell wall dissolution (Gonçalves et al., 2019), 
and after contact and cell fusion (see reviews (Gonçalves et al., 2020; 
Gonçalves and Glass, 2020). Remarkably, some of the proteins that 
mediate allorecognition and trigger cell death in filamentous fungi share 
similarity to proteins associated with innate immunity in mammalian 
cells, and which we highlight in this review. 

2. Fungal cell death 

2.1. Apoptotic-like fungal RCD 

In animal cells, the first described RCD pathway was a caspase- 
dependent pathway termed apoptosis, which can be triggered by 
extrinsic or intrinsic cellular stimuli (Minina et al., 2017). The extrinsic 
pathway is activated when cells sense extracellular ligands via binding 
to cell surface death receptors, resulting in the formation of a death- 
inducing signaling complex (DISC) (Yang, 2015), which triggers 
cellular suicide. The intrinsic apoptotic pathway relies on the pore- 
forming BAX and BAK proteins from the BCL-2 family (Kale et al., 
2018). Activated BAX/BAK proteins oligomerize into the mitochondrial 
outer membrane (Salvador-Gallego et al., 2016), which disrupts its 
integrity and leads to release of cytochrome c, which triggers activation 
of pro-apoptotic caspases (Li and Yuan, 2008). Cellular alterations 
associated with apoptosis include nuclear and DNA fragmentation, 
chromatin condensation, cell shrinkage and alteration in the membrane, 
including the inappropriate presence of phosphatidylserine on the outer 
leaflet of the cell membrane. 

Whether apoptosis occurs in fungi has been disputed (Hardwick 
et al., 2018), although caspase-like protein families named metacaspases 
(in plants, fungi, protozoans) have been identified (Uren et al., 2000). 
The first metacaspase assessed for cellular function in fungi was YCA1/ 
Mca1 in S. cerevisiae. When YCA1 was deleted, hydrogen peroxide 
treatment did not induce RCD, while overexpression increased RCD 
(Madeo et al., 2002). However, YCA1 also protected cells from RCD; 
over-expression of YCA1 prevented RCD in response to unfolded pro
teins and aggregates and increased yeast lifespan. This effect was only 
partially dependent on the catalytic center of Yca1 (Hill et al., 2014). In 
the basidiomycete Ustilago maydis, Mca1, which shows a 51% homology 
to S. cerevisiae YCA1, inhibited hydrogen peroxide-induced cell death in 
strains carrying an Mca1 deletion. However, a strain with N-terminally 
truncated Mca1 showed an increase of insoluble protein upon oxidative 
(H2O2) and heat stress treatment compared to the wild type, indicating 
the importance of the Mca1 both in the RCD and the removal of stress- 
induced protein aggregates (Mukherjee et al., 2017). 

In Magnaporthe oryzae, two predicted homologues of yeast YCA1, 
MoMca1 and MoMca2 were identified. While MoMca1 and MoMca2 
conferred a RCD response when over-expressed in S. cerevisiae, M. oryzae 
mutants carrying a deletion of both MoMca1 and MoMca2 showed an 
increased growth rate when challenged with oxidative stress, and which 
led to an accumulation of insoluble protein aggregates (Fernandez et al., 
2021). In Podospora anserina, deletion of PaMCA1 and PaMCA2 
increased the lifespan in aging race tube cultures, although growth rate 
was reduced. In senescent cultures, an increase of metacaspase- 
dependent protease activity was identified. These data suggested that 
RCD is induced by oxidative stress in senescent cultures and carried out 
after metacaspase activation (Hamann et al., 2007). When Penicillium 
chrysogenum was treated with S-ethyl ethanethiosulfinate (ALE), spores 

underwent morphological aspects associated with apoptosis, including 
propidium iodide uptake (showing loss of plasma membrane integrity) 
and Annexin V staining (showing the appearance of phosphatidylserine 
in the outer leaflet of the plasma membrane). Metacaspase activity could 
be detected upon treatment of mycelium with ALE, in a reactive oxygen 
species (ROS)-dependent manner, indicating the involvement of meta
caspases in the apoptotic process (Qi et al., 2019). 

In filamentous fungi, such as Neurospora crassa and P. anserina, the 
stability of heterokaryons is regulated by genetic differences at allor
ecognition (het) loci (Gonçalves et al., 2020, 2017; Saupe, 2000). If in
dividuals that differ in het allelic specificity undergo hyphal fusion, the 
fusion cell is rapidly compartmentalized by septal plugging and un
dergoes a rapid hyphal death, so called “heterokaryon incompatibility” 
(HI). In N. crassa, fusion between germinated asexual spores (germlings) 
often results in death of both cells (Daskalov et al., 2019; Gonçalves 
et al., 2020; Heller et al., 2018). Allorecognition systems, such as HI, 
provide protection to cells/colony by preventing genome exploitation, 
resource plundering, the spread of deleterious senescence plasmids and 
mycoviruses (Bastiaans et al., 2016; Debets and Griffiths, 1998; Laird 
et al., 2005). Similar to apoptotic processes, HI in N. crassa is associated 
with the production of ROS, propidium iodide uptake and Annexin V 
staining, suggesting that allorecognition activates an apoptotic-like 
process to trigger cell death (Hutchison et al., 2009; Marek et al., 
2003). However, N. crassa strains containing deletions of predicted 
metacaspase genes or a strain containing a deletion of a predicted 
apoptosis-inducing factor (AIF) were not affected for HI-mediated RCD. 
A transcription factor in the NDT80 (a p53-like) superfamily, vib-1, is 
required for HI-mediated cell death in N. crassa (Dementhon et al., 
2006) and shows genetic interactions with a kinase (IME-2) (Hutchison 
et al., 2012). In P. anserina HI is associated with autophagy, which is 
induced upon incompatible fusions (Pinan-Lucarré et al., 2003). How
ever, idi-7 mutants, which are blocked in autophagy, still undergo HI, 
suggesting that autophagy is not the death inducing mechanism 
(Dementhon et al., 2004). Although RCD triggered by ROS, stress or HI is 
associated with morphological characters associated with apoptosis in 
mammalian cells, whether it represents a bona fide exhibition of a fungal 
form of apoptosis is unclear at present. 

2.2. Necroptosis-like RCD 

Necroptosis is a process described in mammalian cells that is a pro
grammed form of necrosis (Newton and Manning, 2016). Necroptosis is 
triggered by cellular damage or infiltration by pathogens and is 
dependent on oligomerization and permeabilization of the plasma 
membrane by the MLKL protein (mixed lineage kinase domain-like) 
(Samson et al., 2020). Recently, it has shown that amyloid signaling in 
fungi has similarities to necroptosis (Saupe, 2020). In P. anserina, the 
het-s allorecognition locus encodes a prion named [Het-s], which func
tions in heterokaryon incompatibility (Saupe, 2011). In populations 
samples of P. anserina, two allelic variants of het-s occur, het-s and het-S. 
Both alleles encode proteins of the same length, 289 amino acids, but 
differ in the sequence of 13 amino acids. HET-S has two domains, a 
prion-forming domain, which forms a C- terminal β-solenoid structure 
(Ritter et al., 2005; Sen et al., 2007; Wasmer et al., 2008), and a N- 
terminal α-helical globular domain termed the HeLo domain (Saupe, 
2011). Remarkably, the HeLo domain shows homology with the N-ter
minal membrane targeting helical domain of MLKL (Saupe, 2020), the 
terminal effector domain in mammalian necroptosis. 

HET-s can exist as a soluble inactive monomer called [Het-s*] or as 
amyloid aggregate or prion [Het-s]. Prions are infectious proteins, and 
form protein polymers with a cross-β amyloid structure (Toyama and 
Weissman, 2011). het-s incompatibility and cell death occurs when a 
strain with a prion conformation of HET-s undergoes cell fusion with a 
het-S strain, although incompatibility does not occur upon cell fusion 
between a strain bearing the non-prion form of HET-s [Het-s*] and a het- 
S strain (Saupe, 2011). Cell death is triggered by the activation of HET-S 
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by HET-s or by the product of a gene linked to het-S, NWD2. NWD2 
encodes a STAND protein resembling Nod-like receptors (NLRs; see 
below), with an N-terminal motif bearing homology to the HET-S/s PFD 
with 21 amino acid repeats of the β-solenoid motif. A NACHT domain is 
present after the PFD in NWD2 and a C-terminal WD-repeat domain 
(Daskalov et al., 2012). NWD2 acts as an effector protein whereby the 
oligomerization of the N-terminal β-solenoid fold in HET-S triggers the 
cytotoxicity of the pore forming domain (Fig. 1A) (Daskalov et al., 2015, 
2012). This process exposes the N -terminal hydrophobic helix, whose 
change targets HET-S to the plasma membrane where it causes a loss of 
membrane integrity (Daskalov et al., 2015; Greenwald et al., 2010; 
Mathur et al., 2012; Saupe, 2011; Seuring et al., 2012). 

More recently, it was shown that death inducing HELLP protein, 
identified by a genome search of Chaetomium globosum, functions to 
induce death when heterologously expressed in P. anserina (Daskalov 
et al., 2016). HELLP has an N-terminal cell death-inducing domain 
which is HeLo-like (HELL) and a C-terminal amyloid prion motif termed 
PP. As with het-S, the gene adjacent to HELLP encodes an NLR-like 
protein, which also contains a PP domain. Similar to HET-S, the HeLo- 
like domain of HELLP is homologous to the pore-forming domain of 
MLKL, while the PP domain has similarity to the RIP1/RIP3 (RHIM) 
amyloid motif in mammalian cells that regulates necroptosis (Li et al., 
2012). HELLP, like Het-S, is activated by amyloid templating, with 
subsequent targeting to the membrane and cell-death induction (Das
kalov et al., 2016). 

2.3. Pyroptosis-like RCD 

Pyroptosis is an effector mechanism of the mammalian inflamma
some. The inflammasome is a cytosolic multiprotein complex assembled 
by members of the NOD-like receptor or protein pyrin and PYHIN pro
tein families in response to pathogens and endogenous danger signals 
(Von Moltke et al., 2013). The target of inflammasome activation is the 
cleavage of gasdermin, which is a family of pore-forming proteins that 
cause cell death (Bergsbaken et al., 2009; Broz et al., 2020; Shi et al., 
2017). The activation of gasdermin in mammalian cells occurs upon 
caspase cleavage of the lipophilic N-terminal domain (NTD) from the 
inhibitory C-terminal domain (CTD). The liberated N-terminal gasder
min fragment adheres to acidic membrane lipids, inducing oligomeri
zation and insertion into the plasma membrane to form pores (Liu et al., 
2016; Ruan et al., 2018). Insertion of the gasdermin NTD results in the 
release of immune cytokines from cells and triggers cell death (Ding 
et al., 2016; Liu et al., 2016; Sborgi et al., 2016). 

In N. crassa, the allorecognition locus rcd-1 (regulator of cell death) is 
a distant homolog of the N-terminal pore-forming domain of gasdermin 
(Daskalov et al., 2020b). Alleles at rcd-1 are highly polymorphic in 
population samples, with rcd-1 alleles falling into two haplogroups (rcd- 
1-1 or rcd-1-2). Cell fusion between germlings or hyphae harboring 
antagonistic rcd-1-1 and rcd-1-2 alleles is sufficient to trigger vacuoli
zation and death of the fusion cell (Fig. 1B) (Daskalov et al., 2019). 
Recombinant RCD-1 interacts in vitro with negatively charged phos
pholipids and liposomes with similar lipid specificity as gasdermin 
(Daskalov et al., 2020b) and forms oligomers of higher molecular weight 
with architectures similar to a honey comb, suggesting that the RCD-1 
could form membrane pores (Daskalov et al., 2020b). In N. crassa, 
RCD-1 targets the plasma membrane causing cell death (Fig. 1B) (Das
kalov et al., 2020b). Importantly, the co-expression of incompatible 
RCD-1-1 and RCD-1-2 proteins in human 293T kidney cells is sufficient 
to induce pyroptotic-like cell death. These data suggest that the function 
of RCD-1 and gasdermin have an ancient evolutionary origin, working in 
a similar manner to cause cell death (Daskalov et al., 2020b). Consistent 
with this hypothesis, gasdermin homologs have been recently identified 
in bacteria where they induce cell death via a conserved gasdermin-like 
pore-forming domain (Johnson et al., 2021). The bacterial gasdermins 
(bGSDMs) are believed to be involved in anti-phage defense with >50 
bacterial gasdermins forming a unique clade different from metazoan 

and fungal homologs (Johnson et al., 2021). Activation of the bacterial 
PFD is dependent upon caspase-like proteases, with the membrane- 
associated oligomerization of bGSDMs resulting in the disruption of 
membrane integrity (Johnson et al., 2021). 

Genome mining of fungal genomes revealed that gasdermin homo
logs are common in the genomes of members of the Ascomycota phylum, 
but are variable in number (Daskalov et al., 2019). Interestingly, around 
80% of gasdermin homologs in the Ascomycota are in close proximity to 
genes encoding proteins with a putative protease domain (Clavé et al., 
2021), mostly belonging to the subtilisin-like serine proteases (Clavé 
et al., 2021). P. anserina, het-Q1 encodes a gasdermin protein (HET-Q1), 
whose cytotoxic activity is controlled by proteolytic cleavage by a 
subtilisin-like serine protease named HET-Q2 (Fig. 1C) (Clavé et al., 
2021). The regulation of the cytotoxic activity of the gasdermin homolog 
HET-Q1 by proteolytic activity indicates that some fungal gasdermins 
could be regulated through proteolytic cleavage, similar to mammalian 
gasdermins. Analysis of the architecture of the fungal gasdermin- 
associated proteases also show a similar domain architecture to NLR 
proteins (see below) (Clavé et al., 2021), with some protease domains 
fused to repeat domains including leucine-rich repeats, tetratricopeptide 
repeats and WD40 repeats, or NACHT domains, which are frequently 
involved in pathogen recognition and inflammasome function in innate 
immunity in mammals. 

2.4. Fungal NLR-like proteins and RCD 

The nucleotide-binding domain (NBD), leucine-rich 
repeat–containing proteins (NLRs) are intracellular proteins that play an 
important role in the innate immune response in plants and animals 
(Ting et al., 2008; Jones et al., 2016). NLRs function as a switch, that 
when activated can result in cellular death, such as pyroptosis in ani
mals, or the hypersensitive response in plants (Jones et al., 2016). NLRs 
have a unique architecture, with an N-terminal effector domain, a cen
tral domain NBD and a C-terminal domain composed of repeat structures 
such as LRR, WD, HEAT, ANK or TPR motifs. In NLRs there are two types 
of NBD domains: NACHT type present in animals and NB-ARC (nucle
otide-binding, APaf1, Resistance, CED4) found mostly in plants (Jones 
et al., 2016). NLRs are also members of the family of STAND proteins 
(signal transduction adenosine triphosphatase (ATPases) with numerous 
domains) (Danot et al., 2009; Leipe et al., 2004). 

An analysis of NLR-related proteins in 198 fungal genomes, primarily 
within the Pezizomycotina (filamentous ascomycete species) identified 
5616 NLR candidates. NLR-like proteins in fungi have a tripartite 
domain distribution with an NACHT or NB-ARC core domain, flanked 
with diverse N- and C-terminal domains (Fig. 2A) (Daskalov et al., 
2020a; Dyrka et al., 2014). The repeated domains in the C-terminal 
could be WD, ANK or TPR type and lack LRR motifs (Fig. 2A) (Dyrka 
et al., 2014; Soanes and Talbot, 2010). The N-terminal domain consists 
of diverse effector domains such as: PNP_UDP, HELO-LIKE, GOODBYE- 
LIKE, SESB-LIKE, HET, HELO, PATATIN, PFD, C2, PEPTIDASE_S8, 
RELA-SPOT or PKINASE (Fig. 2A) (Dyrka et al., 2014). The different 
combinations of the effector domains and the repeated domain together 
with the core domain show fungal NLR diversity in protein architecture 
(Fig. 2B). 

In filamentous fungi, some NLR-like genes are involved in allor
ecognition and RCD (Daskalov et al., 2019), including an NLR-like sig
nalosome in P. anserina involved in amyloid signaling (Saupe, 2020) (see 
above). In N. crassa, an NLR-like protein, PLP-1, composed of three 
domains, a patatin-like phospholipase domain, a central nucleotide- 
binding domain (NB-ARC type) and a C-terminal tetratricopeptide 
repeat domain (TPR), is involved in allorecognition and cell death in 
concert with SEC-9. plp-1 and sec-9 are closely linked loci, with highly 
polymorphic alleles that fall into four discrete haplogroups in N. crassa 
populations (Heller et al., 2018). Cell fusion between hyphae or germ
lings from different plp-1/sec-9 haplogroups triggers rapid cell death 
(Fig. 1D) (Heller et al., 2018). sec-9 encodes an essential SNARE protein 
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Fig. 1. Models of programmed cell death in 
fungi. A. Model of activation of HET-S cell death- 
inducing protein in Podospora anserina. The activa
tion of the HeLo toxic domain of HET-S can occur in 
two ways. Through the conformational change of 
[Het-s] PFD, which takes the form of β-solenoid 
structure, or through the effector NWD2, which also 
has a PFD that when activated induces its confor
mational change in the β-solenoid structure. The 
amyloid-like fold (from [Het-s] or NWD2) serves to 
refold the HET-S PFD into the amyloid fold, which 
produces the conformational change of HET-S HeLo 
domain exposing the N-terminal hydrophobic helix, 
targeting HET-S to the plasma membrane where it 
causes a loss of membrane integrity. It is not clear if 
the N-terminal HeLo domain oligomerizes at the 
plasma membrane (Modified from Daskalov et al., 
2012; Saupe, 2011). B. The incompatibility of 
allelic variants rcd-1-1 and rcd-1-2 in N. crassa 
causes vacuolization and cell death. RCD-1, which 
has homology to mammalian gasdermin, localizes 
at the plasma membrane, and in vitro RCD-1 forms 
oligomers and aggregates. It is unclear how oligo
merization and death are activated when RCD-1-1 
and RCD-1-2 are in the same cell. C. In P. anserina, 
het-Q1 and het-Q2 induce cell death. HET-Q1 is also 
a gasdermin homolog. The proposed activation 
mechanism of HET-Q1 involves proteolytic cleav
age of the presumable inhibitor domain by the HET- 
Q2 subtilisin-like serine protease. The presumption 
is that the death domain of HET-Q1 functions 
similar to RCD-1, oligomerizing at the plasma 
membrane, producing a membrane disruption and 
causing cell death. D. Model for allorecognition by 
plp-1/sec-9 of N. crassa. The model proposes that 
PLP-1 maintains an inactive conformation. 
Following cell fusion, an interaction between 
incompatible SEC-9 and PLP-1 proteins through the 
SEC-9 SNARE domain and the PLP-1 TPR domain 
results in a conformational change in PLP-1, 
exposing the NB-ARC domain and inducing oligo
merization. The N-terminal patatin-like phospholi
pase activity of PLP-1 is required for cell death 
(Modified from (Heller et al., 2018)).   
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and which is required for post-Golgi transport (Brennwald et al., 1994). 
Orthologs of plp-1 and sec-9 have similar domain structures in the plant 
pathogenic fungus Cryphonectria parasitica (vic-2 and vic-2a, respec
tively), and P. anserina (het-z1 and het-z2, respectively) are also involved 
in allorecognition and HI (Choi et al., 2012; Heller et al., 2018). 

Complex formation between incompatible proteins PLP-1 and SEC-9 
is indispensable to the induction of cell death (Fig. 1D) (Heller et al., 
2018), with cell death requiring the N-terminal patatin-like phospholi
pase and NB-ARC activity of PLP-1 (Heller et al., 2018). In the guardian 
model in plants, the NLRs behave like protective proteins called ‘guard’ 
and monitor the status of ‘guardee’ proteins. The primary function of the 
‘guardees’ is in defense signaling of pathogens, thus making them a 
target of pathogens. When virulence proteins from the pathogen alter 
the complex between the ‘guard’ and the ‘guardees’, it activates the NLR 
(‘guard’) (Jones et al., 2016). In the case of PLP-1 and SEC-9, the ‘guard 
model’ occurs differently, as an interaction between SEC-9 (‘guardee’) 
and PLP-1 (‘guard’), compatible proteins do not occur. However, the 
interaction between incompatible proteins SEC-9 and PLP-1 is predicted 
to affect the activity of the “guard and guardee complex”, thereby 
triggering HI (Heller et al., 2018). 

2.5. HET incompatibility (HET domain) and RCD 

The HET domain was the first domain identified that functions in HI 
in filamentous fungi (Smith et al., 2000). HET domain loci show high 
allelic diversity in comparison to genes in the rest of the fungal genome, 
consistent with their proposed role in allorecognition (Fedorova et al., 
2005; Zhao et al., 2015). A number of het loci that encode proteins 
containing a HET domain (Glass and Dementhon, 2006; Saupe, 2000; 
Zhang et al., 2014), have a protein domain architecture similar to NLR- 
like proteins in fungi (Dyrka et al., 2014). The HET domain has some 
similarities with Toll/interleukin-1 receptor domains found in plants 
and animal immune receptors (Dyrka et al., 2014). However, how the 
HET domain functions biochemically either as a signaling motif or a 
death-inducing factor is unknown. 

In N. crassa, with the exception of rcd-1 and sec-9/plp-1, all the 
molecularly characterized het loci encode proteins containing a HET 
domain. HI induced by genetic differences at het loci cause death of 
hyphal fusion cells, but do not function in germlings. The linked pin-c 
and het-c loci function in non-allelic HI, similar to sec-9/plp-1. Non- 
allelic interaction between alternative haplotypes of het-c and pin-c 
(partner for incompatibility with het-c) cause incompatibility (Kaneko 
et al., 2006). het-c encodes a plasma membrane protein while pin-c en
codes a HET-domain protein (Hall et al., 2010; Kaneko et al., 2006). In 
N. crassa, the tol locus encodes a protein that triggers HI and cell death 
when hyphae of opposite mating types (mat A and mat a) undergo so
matic cell fusion (Glass and Dementhon, 2006; Shiu and Glass, 1999). 
The het-6 locus consists of the linked het-6 and un-24 loci. het-6 encodes a 
HET domain protein, while un-24 encodes an essential ribonucleotide 
reductase; incompatibility is triggered by non-allelic interactions be
tween het-6 and un-24 (Lafontaine and Smith, 2012). P. anserina also has 
non-allelic incompatibility systems involving proteins with HET effector 
domains, including incompatibility interactions between het-c/het-d, 
het-c/het-e, and het-r/het-v (Chevanne et al., 2009; Glass and Dementhon, 
2006; Saupe, 2000). In addition to their N-terminal HET effector 
domain, these proteins have an architecture with a NACHT core domain 
and a C-terminal domain with a repeat domain WD40 (hypervariable) 
(Paoletti and Clavé, 2007; Smith et al., 2000) (Dyrka et al., 2014). 
Mutations in the HET domain of tol or pin-c in N. crassa, or het-e or het-r 
in P. anserina abolish HI, highlighting the importance on the HET 
domain in HI (Chevanne et al., 2009; Kaneko et al., 2006; Paoletti and 
Clavé, 2007; Shiu and Glass, 1999). 

2.6. Meiotic drive elements and RCD 

Meiotic drive elements (MDs) are able to manipulate the meiotic 

Fig. 2. Domain architectures of fungal NLR-like proteins. A. The archi
tecture of the fungal NLR-like proteins is typically composed of three domains. 
An N-terminal domain has varied effector domains, the middle region is 
composed of either a NACHT or NB-ARC domain, and C-terminal domain is 
composed of repeat structures like WD, ANK, or TPR. B. Architecture of 
different allorecognition proteins identified in Neurospora crassa, Podospora 
anserina and Cryphonectria parasitica that have domains similar to those found 
in NLR-like proteins discussed in this review. These proteins are involved in 
allorecognition and cell death. In some proteins involved in allorecognition and 
RCD in N. crassa, the HET domain is conserved, but these proteins do not have 
the NLR architecture. 
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process in order to enhance their own transmission rate (Zimmering 
et al., 1970) and are present in a large number of eukaryotes (Núñez 
et al., 2018), including the S5 locus in rice (Yang et al., 2012) t-complex 
in mice (Lyon, 2003) and the segregation distorter gene complex (SD) in 
Drosophila melanogaster (Larracuente and Presgraves, 2012). In asco
mycete species, meiotic drive manifests itself as “spore killing” during 
meiosis (Turner and Perkins, 1991). When a strain with a meiotic drive 
element is crossed with a strain that lacks it, the meiotic products (as
cospores) that contain the drive element survive, while ascospores that 
do not have the drive element die. In Neurospora intermedia, two meiotic 
drive elements, Spore killer-2 (Sk-2) and Spore killer-3 (Sk-3) (Turner and 
Perkins, 1979), were identified in wild strains (Turner, 2001). Sk-2 and 
Sk-3 are associated with large chromosomal inversions (Campbell and 
Turner, 1987; Hammond et al., 2012; Harvey et al., 2014; Svedberg 
et al., 2018; Turner and Perkins, 1979) that have separate origins 
(Svedberg et al., 2018; Raju, 1979; Turner and Perkins, 1979). Sk-1 
spore killer element was identified in Neurospora sitophila and the gene 
responsible of the spore killing is Spk-1 (Svedberg et al., 2021). The 
introgression of these drive elements into N. crassa identified a gene that 
confers resistance to spore killing (rsk) (Hammond et al., 2012; Rhoades 
et al., 2019). The killer neutralization model proposes that rsk and spore 
killer are expressed in the ascus compartment and that ascospores that 
carry the resistant version of rsk (“the antidote”) neutralize the drive 
element (“poison”) and thrive, while those who do not bear the rsk are 
killed (Hammond et al., 2012). Recent studies identified a gene required 
for sk-2 spore killing termed rfk-1 (required for killing) (Rhoades et al., 
2019). An edited rfk-1 transcript is predicted to produce a protein of 130 
aa expressed in sexual tissues, while an unedited transcript produces a 
protein of 102 aa in vegetative tissues. These data suggest that the two 
proteins encoded by rfk-1 may have different roles in spore killing ac
tivity (Rhoades et al., 2019). 

Wild populations of P. anserina harbor multiple spore killers, making 
it an excellent model for investigating the interaction between different 
meiotic drive elements (Grognet et al., 2014; Hamann and Osiewacz, 
2004; Van Der Gaag et al., 2000). The P. anserina het-s gene is a spore 
killer and crosses between het-s as a female strain with het-S strain results 
in high percentage of aborted spores that contain the het-S variant 
(Dalstra et al., 2003). Additional spore killer types were identified and 
characterized from P. anserina population samples (Van Der Gaag et al., 
2000). The Spok (spore killing: Spok1, Spok2, Spok3 and Spok4) genes are 
a class of selfish genetic elements that constitutes autonomous drive 
systems (Grognet et al., 2014; Vogan et al., 2019). The Spok genes are 
poison-antidote meiotic drivers (Grognet et al., 2014), resembling the 
toxin-antitoxin (TA) system of bacteria. In this system, genetic elements 
encode toxins capable of interfering with the cell growth, while the 
cognate antitoxins neutralize the toxin (Harms et al., 2018). However, 
unlike the TA system, the Spok system synthesizes a protein with dual 
activity, functioning as toxin and antitoxin molecule. The predicted 
SPOK proteins have an N-terminal coiled-coil region, N-terminal domain 
of an unknown function, a nuclease domain, a cysteine cluster region, 
and a kinase domain. It is possible that the nuclease SPOK domain is 
required for the killer function, whereas the predicted kinase activity 
appears to be involved in resistance activity (Vogan et al., 2019). Spok-3 
and Spok-4 are associated in a large genomic region named ‘the Spok 
block’. It can carry either Spok3, Spok4, or both (Vogan et al., 2019). The 
Spok block can be present in four distinct locations within the genome of 
P. anserina (Vogan et al., 2019); recent data suggests the Spok block has 
variable positions because it is capable of transposition (Vogan et al., 
2021). 

2.7. Antifungal drugs and cell death 

While fungal cell death can occur during development or ecological 
interactions (see previous sections), it may also be induced by exposure 
to chemical compounds. In this context, antifungal drugs that induce cell 
death can serve as useful tools to mitigate the consequences of fungal 

infections of plants and animals, including humans. Some fungal species 
pose serious challenges as shown by the animal pathogens Batracho
chytrium dendrobatidis and Pseudogymnoascus destructans, which have 
been driving populations of amphibians (Scheele et al., 2019) and bats 
(Hoyt et al., 2021), respectively, to the brink of extinction. In the case of 
plants, a large number of fungal pathogens represent a major threat to 
agricultural productivity, global food security and stability of forest 
ecosystems (Fisher et al., 2020, 2018, 2012). While human fungal in
fections have been largely underappreciated and neglected, recent es
timates indicate that fungal infections afflict more than 1 billion people 
globally and approximately 1.5 million people succumb to fungal dis
eases every year (Bongomin et al., 2017; Brown et al., 2012; Pendleton 
and Pearce, 2015). A restricted number of therapeutic drugs against 
fungal infections of animals and plants are available. These drugs often 
involve the induction of fungal cell death (Gonçalves et al., 2017; Kul
karni et al., 2019), but the efficacy of these compounds varies greatly 
(Berman and Krysan, 2020; Brauer et al., 2019; Fisher et al., 2018; Nett 
and Andes, 2016; Ostrosky-Zeichner et al., 2010). The development of 
resistance to antifungal drugs has been demonstrated for all licensed 
systemic antifungals (Fisher et al., 2018), while long term exposure to 
fungicides and concomitant cellular adaptation is associated with ge
netic instability and aneuploidy, target modification (due to conforma
tional changes or overexpression), overexpression of efflux pump genes, 
detoxification by metabolic enzymes, or hot spot amino acid sub
stitutions (Berman and Krysan, 2020; Fisher et al., 2018; Robbins et al., 
2017). The evolution of drug-adapted lineages is exacerbated by long 
periods of prophylactic treatment, excessive usage of over-the-counter 
medications and incomplete treatment courses in humans (Fisher 
et al., 2018), monoculture and genetically uniform practices in agri
culture (Fisher et al., 2018), and incorrect waste disposal by antimi
crobial drug-manufacturing facilities (Larsson, 2014). The dramatic 
situations observed for Candida auris (Casadevall et al., 2019; Lockhart 
et al., 2017) and, more recently, a dermatophytosis outbreak caused by a 
new clonal population of Trichophyton (Singh et al., 2019), which both 
display resistance to all major classes of antifungal compounds, un
derlines the urgent need to understand the molecular basis of antifungal 
drug resistance and to develop of new antifungal therapies. Thus, the 
modulation of the pathways underlying fungal RCD is a prominent topic 
of research in the context of antifungal compound development. 

Pathways that regulate antifungal drug resistance and cell death may 
be closely intertwined. An example of such a crosstalk has been 
demonstrated in N. crassa using the bacterial alkaloid and protein kinase 
C inhibitor staurosporine as a cell death inducer. Staurosporine has been 
shown to significantly reduce tolerance to fluconazole in clinical isolates 
of C. albicans, hence improving the antifungal outcome of this azole drug 
(Rosenberg et al., 2018). Upon treatment with staurosporine, N. crassa 
cells react by dynamically modifying the levels of cytosolic calcium 
(Gonçalves et al., 2014a) and producing ROS (Gonçalves et al., 2015a) 
in a phospholipase C signaling-dependent manner, resulting in a rapid 
cell death (Gonçalves et al., 2014a). Staurosporine-induced cell death 
shows a mitochondrial involvement, particularly at the level of the 
mitochondrial complex I of the electron transport chain (Gonçalves 
et al., 2015a), and is linked to an unbalanced lipid organization at the 
plasma membrane (Santos et al., 2018). The cell death response to 
staurosporine is regulated by the Zn2Cys6 transcription factor CZT-1 
(Cell death-activated Zinc cluster Transcription factor) and the 
absence of czt-1 results in hypersensitivity to the drug (Gonçalves et al., 
2014b). The increased susceptibility of Δczt-1 cells to staurosporine may 
be attributed to their inability to upregulate abc-3, encoding an ATP- 
binding cassette (ABC)-transporter whose expression is highly induced 
by staurosporine (Fernandes et al., 2011; Gonçalves et al., 2014b). CZT- 
1 also regulates genes involved in the detoxification of ROS and cell 
death, such as cat-1 (encoding Catalase-1) and amid-2 (Apoptosis- 
inducing factor-homologous mitochondrion-associated inducer of 
death-2) (Fig. 3) (Gonçalves et al., 2014b). The expression of czt-1 is also 
increased upon exposure to hydrogen peroxide, phytosphingosine, 
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amphotericin B (Gonçalves et al., 2014b), menadione (Zhu et al., 2013) 
and 1-(piperidin-1-yl)-4-propoxy-9H-thioxanthen-9-one (Gonçalves 
et al., 2015b), suggesting that CZT-1 may play a broader role in anti
fungal drug resistance/tolerance. 

3. Conclusions 

In fungi, cell death is of vital importance to carry out different pro
cesses such as sexual development, cell differentiation, ecological in
teractions such as allorecognition, invasion, and colonization of the host 
cell. Death can also occur in response to toxic agents. However, there are 
still many open questions about how all these different mechanisms of 
RCD are controlled and executed, namely the molecular machinery 
involved in each process, and the commonalities and differences 
amongst the various cell death-inducing mechanisms. In this regard, 
although there are notable differences between the different types of 
RCD, it appears that the destabilization of the plasma membrane is a 
common mechanism; this is exemplified by the formation of pores at the 
plasma membrane (see the necroptosis and pyroptosis sections above) or 
by an imbalance in the homeostasis of the lipid composition of the 
plasma membrane (see the staurosporine example above; in addition, 
azole drugs induce cell death by targeting the biosynthesis of ergosterol 
and disrupting the integrity of the plasma membrane (Nett and Andes, 
2016)). These effects ultimately result in fungal cell death. Moreover, 
some fungal cell death processes activated by allorecognition have 
effector molecules that have architectures similar to those implicated in 
innate immunity in plants and animals. 

The different types of RCD in fungi seem to be well defined, although 
the true occurrence of apoptotic death in fungi remains controversial. 
Although there is data that could support mechanisms very similar to 
apoptosis in fungi, these are still not conclusive. On the other hand, the 
existence of necroptosis and pyroptosis in fungi seems to be now well 
documented. These pathways share the molecular effectors and the 
functional mechanistic bases similar to those found in mammals. For 
example, the regulated arrangement of HET-S by amyloid signaling 

exposes an N-terminal domain homologous to the effector domain of 
necroptosis in mammals, or the activation of gasdermins through pro
teolytic cleavage triggering pyroptosis. Death also appears through MDs, 
whose evolution drove them to use remarkable methods of transmission, 
giving them an advantage over viable meiotic products that do not 
inherit the selfish alleles producing their death. MDs could therefore be 
developed into a powerful molecular tool to be exploited in the future. 

Future research on RCD in fungi is important for defining molecular 
mechanisms to approach arising resistance and tolerance to antifungal 
drugs used in agriculture and clinical settings. In particular, the rela
tionship between death induced by treatment with drugs, various mu
tations, developmental aspects (asexual/sexual development and spore 
killer), infectious agents and allorecognition are still unclear. Could 
different molecular mechanisms that induce RCD be used interchange
ably depending on the selective environment that a particular species 
finds itself? In aging colonies of S. cerevisiae, cell death is induced by 
oxidative stress that can be ameliorated by ammonia (Váchová and 
Palková, 2005). How might a particular lifestyle of a fungus (unicellular, 
dimorphic or strictly hyphal) affect the selection of particular RCD 
pathways? The relationship of the various cell death mechanisms dis
cussed in this review and rules dictating their evolution and selection are 
still unclear, making this area fertile ground for future investigations. 
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protease regulates apoptosis in yeast. Mol. Cell 9 (4), 911–917. https://doi.org/ 
10.1016/S1097-2765(02)00501-4. 

Marek, S.M., Wu, J., Louise Glass, N., Gilchrist, D.G., Bostock, R.M., 2003. Nuclear DNA 
degradation during heterokaryon incompatibility in Neurospora crassa. Fungal 
Genet. Biol. 40 (2), 126–137. https://doi.org/10.1016/S1087-1845(03)00086-0. 

Mathur, V., Seuring, C., Riek, R., Saupe, S.J., Liebman, S.W., 2012. Localization of HET-S 
to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]–HET-S 
toxicity. Mol. Cell. Biol. 32 (1), 139–153. 

Minina, E.A., Coll, N.S., Tuominen, H., Bozhkov, P.V., 2017. Metacaspases versus 
caspases in development and cell fate regulation. Cell Death Differ. 24 (8), 
1314–1325. https://doi.org/10.1038/cdd.2017.18. 

Muirhead, C.A., Glass, N.L., Slatkin, M., 2002. Multilocus self-recognition systems in 
fungi as a cause of trans-species polymorphism. Genetics 161, 633–641. https://doi. 
org/10.1093/genetics/161.2.633. 

Mukherjee, D., Gupta, S., Saran, N., Datta, R., Ghosh, A., 2017. Induction of apoptosis- 
like cell death and clearance of stress-induced intracellular protein aggregates: dual 
roles for Ustilago maydis metacaspase Mca1. Mol. Microbiol. 106 (5), 815–831. 

Nett, J.E., Andes, D.R., 2016. Antifungal Agents: Spectrum of activity, pharmacology, 
and clinical indications. Infect. Dis. Clin. North Am. 30 (1), 51–83. https://doi.org/ 
10.1016/j.idc.2015.10.012. 

Newton, K., Manning, G., 2016. Necroptosis and Inflammation. Annu. Rev. Biochem. 85 
(1), 743–763. https://doi.org/10.1146/annurev-biochem-060815-014830. 
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C., Flechas, S.V., Foster, C.N., Frías-Álvarez, P., Garner, T.W.J., Gratwicke, B., 
Guayasamin, J.M., Hirschfeld, M., Kolby, J.E., Kosch, T.A., La Marca, E., 
Lindenmayer, D.B., Lips, K.R., Longo, A.V., Maneyro, R., McDonald, C.A., 
Mendelson, J., Palacios-Rodriguez, P., Parra-Olea, G., Richards-Zawacki, C.L., 
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