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Restrictions on realizable unitary operations
imposed by symmetry and locality

Iman Marvian® &<

According to a fundamental result in quantum computing, any unitary transformation on a composite system can be generated
using so-called 2-local unitaries that act only on two subsystems. Beyond its importance in quantum computing, this result can
also be regarded as a statement about the dynamics of systems with local Hamiltonians: although locality puts various con-
straints on the short-term dynamics, it does not restrict the possible unitary evolutions that a composite system with a general
local Hamiltonian can experience after a sufficiently long time. Here we show that this universality does not remain valid in the
presence of conservation laws and global continuous symmetries such as U(1) and SU(2). In particular, we show that generic
symmetric unitaries cannot be implemented, even approximately, using local symmetric unitaries. Based on this no-go theo-
rem, we propose a method for experimentally probing the locality of interactions in nature. In the context of quantum thermo-
dynamics, our results mean that generic energy-conserving unitary transformations on a composite system cannot be realized
solely by combining local energy-conserving unitaries on the components. We show how this can be circumvented via catalysis.

erties of physical systems, and their interplay leads to diverse

emergent phenomena such as spontaneous symmetry break-
ing. They also put various constraints on both equilibrium and
dynamical properties of physical systems. For instance, symmetry
implies conservation laws, as highlighted by Noether’s theorem'?,
and locality of interactions implies finite speed of propagation
of information, as highlighted by the Lieb-Robinson bound’.
Nevertheless, in spite of the restrictions imposed by locality on the
short-term dynamics, it turns out that, after a sufficiently long time
and in the absence of symmetries, a composite system with a gen-
eral local (time-dependent) Hamiltonian can experience any arbi-
trary unitary time evolution. This is related to a fundamental result
in quantum computing: any unitary transformation on a composite
system can be generated by a sequence of 2-local unitary transfor-
mations, that is, those that couple, at most, two subsystems*-°.

Here we study this phenomenon in the presence of conservation
laws and global symmetries. In particular, we ask whether this uni-
versality remains valid in the presence of symmetries, or whether
locality puts additional constraints on the possible unitary evolu-
tions of a composite system. Clearly, if all the local unitaries obey
a certain symmetry, then the overall unitary evolution also obeys
the same symmetry. The question is whether all symmetric unitar-
ies on a composite system can be generated using local symmetric
unitaries on the system. Surprisingly, it turns out that the answer is
negative in the case of continuous symmetries such as SU(2) and
U(1). In fact, we show that generic symmetric unitaries cannot be
implemented, even approximately, using local symmetric unitaries.
Furthermore, the difference between the dimensions of the mani-
fold of all symmetric unitaries and the sub-manifold of unitaries
generated by k-local symmetric unitaries with a fixed k increases
constantly with the system size.

This result implies that, in the presence of locality, symmetries of
Hamiltonian impose extra constraints on the time evolution of the
system, which are not captured by Noether’s theorem. We show how
the violation of these constraints can be observed experimentally
and, in fact, can be used as a new method for probing the locality

Locality and symmetry are fundamental and ubiquitous prop-

of interactions in nature. These additional constraints can also have
interesting implications in the context of quantum chaos and ther-
malization of many-body systems’. We also explain how, in the case
of U(1) symmetry, the no-go theorem can be circumvented using
ancillary qubits and discuss the implications of these results in the
contexts of the resource theory of quantum thermodynamics®',
quantum reference frames'® and quantum circuit synthesis.

Preliminaries

Local symmetric quantum circuits. Consider an arbitrary com-
posite system formed from local subsystems or sites (for example,
qubits or spins). Here, we focus on systems with finite-dimensional
Hilbert spaces. An operator is called k-local if it acts non-trivially
on the Hilbert spaces of, at most, k sites. Consider a symmetry
described by a general group G. To simplify the following discus-
sion, unless otherwise stated, we assume that all sites in the system
have identical Hilbert spaces and carry the same unitary representa-
tion of group G (see Supplementary Note 1 for a more general case).
In particular, in a system with # sites, assume that each group ele-
ment g€ G is represented by the unitary U(g) =u(g)®". An operator
A acting on the total system is called G-invariant, or symmetric, if
it satisfies U(g)AU'(g) =A, for any group element g€ G. The set of
symmetric unitaries itself forms a group, denoted by

VO={v:VV =L [V,U(g)] =0,Vg € G}, (1)

where I is the identity operator.

As an example, consider a system with n qubits and the U(1)
symmetry corresponding to global rotations around the z axis.

. e VAL LW VAN
Then, an operator A is symmetric if (e7'%“)" A(e""*)" = A, for
0€[0,27), or, equivalently, if it commutes with Z;:IZ,-, where
X, Y, Z; denote Pauli operators on the qubit j tensor product with
the identity operators on the rest of the qubits. Depending on the
context, this symmetry can have different physical interpretations.
For instance, if each qubit has a Hamiltonian 2£7, then 5£ 37 Z;
=

is the total Hamiltonian of the system. Then, unitaries that satisfy
this symmetry are the energy-conserving unitaries.
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Fig. 1| LSQCs. A quantum circuit with 2-local unitaries. Here, each line
represents a subsystem, for example, a qubit, through time, and each

box represents a 2-local unitary transformation. An LSQC only contains
local unitaries that respect a certain symmetry. For instance, they are all
invariant under rotations around the z axis. Such circuits can model the
time evolution of systems with local symmetric Hamiltonians. Conversely,
any LSQC corresponds to the time evolution generated by a local
symmetric (time-dependent) Hamiltonian. Therefore, by studying LSQCs,
we can also characterize general features of time evolution under local
symmetric Hamiltonians.

We define V{ to be the set of all unitary transformations that can
be implemented with local symmetric quantum circuits (LSQCs)
with k-local unitaries (Fig. 1). More formally, VkG is the set of unitar-
ies V=], Vi, generated by composing symmetric k-local uni-
taries V;:i=1-m, for a finite m. It can be easily seen that V{ is a
subgroup of V¢ = V¢, the group of all symmetric unitaries. More
generally, for k<I<n, we have VkG cyC VC. We are interested
in characterizing each subgroup V¢ and, in particular, in determin-
ing whether there exists k < # such that k-local symmetric unitaries
become universal, that is, V{ = V§ = V°. As discussed above, in
the absence of symmetries, that is, when G is the trivial group, this
holds for k=2. To study these questions, we use the Lie algebraic
methods of quantum control theory'”'%, which have also been previ-
ously used to study the universality of 2-local gates in the absence
of symmetries*>'*-*,

It is worth noting that, for composite systems with a given geom-
etry, one can consider the stronger constraint of geometric locality
in the above definitions: the k-local symmetric unitaries should act
on local neighbourhoods, for example, only on k nearest-neighbour
sites. However, provided that the sites lie on a connected graph, for
example, on a connected 1D chain, this additional constraint does
not change the generated group V{ for k> 1. This is true because
the swap unitary that exchanges the states of two nearest-neighbour
sites is 2-local and respects the symmetry, for all symmetry groups.
If the graph is connected, by combining these 2-local permutations
on pairs of neighbouring sites, we can generate all permutations and
hence change the order of sites arbitrarily. Therefore, any k-local
symmetric unitary can be realized by a sequence of k-local symmet-
ric unitaries on k nearest-neighbour sites.

Time evolution under local symmetric Hamiltonians. Next, we
consider a slightly different formulation of this problem in terms
of the notion of local symmetric Hamiltonians. A generic local
Hamiltonian H(f) acts non-trivially on all subsystems in the system,
but it has a decomposition as H(t) = Zjhj(t), where each term h(t)
is k-local for a fixed k, which is often much smaller than the total
number of subsystems in the system. The unitary evolution gener-
ated by this Hamiltonian is determined by the Schrédinger equation
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with the initial condition V(0) =1I. Suppose, in addition to the above
locality constraint, that the Hamiltonian H(#) also respects the sym-
metry described by the group G, such that [U(g), H(t)] =0, for all
g€G, and all £>0. Then, it can be shown that the family of unitar-
ies {V(#):¢>0} generated by any such Hamiltonian belongs to V¢,
that is, the group of symmetric unitaries that can be implemented
by k-local symmetric unitaries (Supplementary Note 1). Conversely,
any unitary in this group is generated by a Hamiltonian H(¢) sat-
isfying the above locality and symmetry constraints (any quan-
tum circuit can be thought of as the time evolution generated by
a time-dependent local Hamiltonian). Therefore, by characterizing
V¢ and studying its relation with the group of all symmetric unitar-
ies V7, we can also unveil possible constraints on the time evolution
under local symmetric Hamiltonians, which are not captured by the
standard conservation laws imposed by Noether’s theorem.

Main results

A no-go theorem: non-universality of local unitaries in the pres-
ence of symmetries. We show that, in the case of continuous sym-
metries such as U(1) and SU(2), most symmetric unitaries cannot
be implemented, even approximately, using local symmetric unitar-
ies. First, as we prove in Supplementary Note 1, for any group G,
the set of symmetric unitaries V¢ = 1)¢ and its subgroup V¢ gen-
erated by k-local symmetric unitaries are both connected compact
Lie groups and hence closed manifolds (Fig. 2). This means that, if
a unitary Vis not in V¢, then there is a neighbourhood of symmet-
ric unitaries around V, none of which can be implemented using
k-local symmetric unitaries. On the other hand, if V belongs to V¢,
then it can be implemented with a uniformly finite number of such
unitaries that is upper bounded by a fixed number that is indepen-
dent of V (ref. 7).

Secondly, we prove that, for any finite or compact Lie group G,
the difference between the dimensions of the manifolds associated
to all symmetric unitaries V% = V¢ and its sub-manifold Vf is
lower bounded by

dim (V) — dim (V) > |Irreps(n)| — [Trreps,(k)|,  (3)

where for any integer I, [Irrepsg(l)| is the number of inequivalent
irreducible representations (irreps) of group G, appearing in the
representation {u(g)®: g€ G}, that is, in the action of symmetry on
I subsystems. We conclude that, unless |Irrepsg(n)| = |Irrepsg(k)|,
there is a family of symmetric unitaries on n subsystems that can-
not be implemented with k-local symmetric unitaries. In the case of
continuous symmetries such as U(1) and SU(2), |Irreps,(n)| grows
unboundedly with n. This means that there is no fixed integer k
such that k-local symmetric unitaries become universal for all sys-
tem size n. This is in sharp contrast to the universality of 2-local
unitaries in the absence of symmetries. In Methods, we provide a
simple proof of the non-universality of local unitaries in the case
of continuous symmetries using a technique called ‘charge vec-
tors. In Supplementary Note 2, we prove equation (3) and present
a more refined version of this inequality in the case of connected
Lie groups, such as U(1) and SU(2), as well as an extension of the
no-go theorem to the case where the subsystems can have differ-
ent representations of the symmetry. We also discuss more about
the nature of the constraints imposed by locality that lead to the
bound in equation (3). (Namely, we argue that certain elements of
the centre of the Lie algebra of symmetric Hamiltonians cannot be
generated using local symmetric Hamiltonians.)

Example: U(1) symmetry for systems of qubits. Recall the exam-
ple of the U(1) symmetry for a system of # qubits. In this case, the
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Fig. 2 | Schematic relation between group of all symmetric unitaries
(torus) and subgroup generated by LSQCs (blue curve). They are both
closed connected Lie groups and hence closed manifolds. Unitary evolution
under any local symmetric Hamiltonian is restricted to the sub-manifold
corresponding to LSQC. In other words, adding a perturbation to the
Hamiltonian can bring the evolution outside this sub-manifold, only if it

is non-local or symmetry breaking. In the example of U(1) symmetry, we
discuss a more explicit interpretation of this schematic figure.

representation of symmetry on n sites is (¢! )®n = exp(i@[nl — 2N])
for 6€[0,2x), where N= Zj(I —Z)/2 determines the total ‘charge’
(or, excitations) in the system. It follows that the irreps of U(1) can
be labelled by distinct eigenvalues of N, which take integer values
m=0,---,n. Then, equation (3) implies that, for a system with n
qubits, the difference between the dimensions of the manifold of
all symmetric unitaries and those generated by k-local symmetric
unitaries is, at least, n — k. Remarkably, it turns out that, in this case,
this bound holds as equality. In Methods, we present a full char-
acterization of Hamiltonians that can be generated using k-local
U(1)-invariant Hamiltonians. This result, for instance, implies that,
even if one can implement all U(1)-invariant unitaries that act on
n—1 qubits, still the unitary exp(ipZ®") cannot be implemented
for generic values of ¢.

It is useful to express the constraints imposed by the local-
ity of interactions in terms of experimentally observable quanti-
ties. Consider a general U(1)-invariant unitary V on n qubits.
For instance, V can be the unitary generated by U(1)-invariant
Hamiltonian H(t), from time t=0 to T under the Schrodinger
equation. Any such unitary has a decomposition as V=& _, Vi,
where V,, is the component of V in the charge sector m, that is, the
eigen-subspace of operator N= ) (I—Z)/2 with eigenvalue m. For
any integer /=0, ---, n, define the I-body phase ®,& (-, 7] of V as

o, = Xn: c;(m)Om

— e 3
b:wb) =1

(4)

Tr(H(t)Z") :mod 27,

where 6, =arg(det(V,,)) €(—n,x] is the phase of the determinant
of V,, a(m)=3"(=1)° (") (") is an integer coefficient,
and we use the convention that, for integers a and b, the binomial
coefficient () = 0 if b>a. In the second equality, the summation
is over all bit strings b=b,---b,€{0,1}" with Hamming weight
w(b) = Z}’:I bj equal to I, and we have defined > =7 - Zhn,
Note that this equality is satisfied for any U(1)-invariant Hamiltonian
H(t) that realizes unitary V. Usin% this equality, for instance, we can
see that, for unitary V = exp(i¢pZ’), all I-body phases vanish, except
for I=w(b), where @, =2"¢: mod 2z. In Supplementary Note 4 we
prove equation (4) and present coefficients ¢(m) for a system with

n=>5 qubits.
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The notion of I-body phases provides a useful characteriza-
tion of the constraints imposed by the locality of interactions.
In Supplementary Note 4, we show that: (i) For [>1, the [-body
phases {®} of a U(l)-invariant unitary time evolution can be
measured experimentally. On the other hand, the phases {6,} are
not physically observable, because they transform non-trivially
under the global phase transformation V—e*V. Similarly,
®,=3,0,=arg(det(V)) is not observable. (ii) If a unitary is real-
izable by k-local U(1)-invariant unitaries, then its I-body phases
are zero for [>k, which can be seen using the second equality in
equation (4). This, for instance, implies that, unless ¢ is an integer
multiple of 7/2"~, unitary exp(i¢)Z®) cannot be implemented using
k-local U(1)-invariant unitaries with k <w(b). (iii) Conversely, for
a general U(1)-invariant unitary V, if all I-body phases vanish for
I> k, then V is realizable using k-local U(1)-invariant unitaries, up
to a unitary in a fixed finite subgroup of U(1)-invariant unitaries.
Finally, it is worth mentioning that, from a geometrical point of view,
the transformation {6,,} — {®} in equation (4) describes a change of
the coordinate system on the (n+ 1)-torus corresponding to phases
0, =arg(det(V,,)), for charges m=0,---,n. For instance, when the
system evolves under the Hamiltonian H=yZ", its trajectory on
this torus is a helix described by the equation ®@(t) =—2"ytX 5,
where § denotes the Kronecker delta (Fig. 2).

In Sect. 2.6, we discuss an application of this framework for syn-
thesizing phase-insensitive quantum circuits. But first, we start with
a rather surprising implication of these ideas.

Application: probing the locality of interactions in nature. Our
no-go theorem leads us to a new method for experimentally prob-
ing the locality of interactions. According to this theorem, in the
presence of symmetries, interactions that couple more subsystems
can imprint certain observable effects on the time evolution of the
system that cannot be reproduced by those that act on fewer sub-
systems. Therefore, by probing these effects, we can directly obtain
information about the locality of the underlying interactions that
govern the process. This is analogous to the fact that, in the presence
of symmetries, we can detect a hypothetical symmetry-breaking
interaction, just by observing the violation of Noether’s conserva-
tion law for the input and output of the process, without knowing
the details of the underlying interactions. (In our case, the hypo-
thetical term is not symmetry breaking but rather couples multiple
subsystems together.)

As a simple example, consider a system of n qubits evolving
for a total time T under an unknown Hamiltonian H(¢) that pre-
serves ZJZJ To have a concrete example, one can assume that H(f)
models the interactions in a complex scattering process with n
particles, and that the states {|0), |1)} of each qubit corresponds
to an internal degree of freedom of a particle, for example, its elec-
tric charge, whose total value remains conserved in the process.
Suppose we want to characterize the locality of interactions that
govern this process. For instance, we start with the hypothesis that
H(t)=H,(t) +y(t)Z®", where H, only contains k-local terms with
k <n while yZ®" corresponds to a hypothetical n-body interaction,
for example, a correction to the Coulomb law. The goal is to test
the hypothesis that the n-body term yZ®" is non-zero, by probing
the output of this process for different input states. Note that, in
the absence of symmetries, unless there are further assumptions
about the form of H,, it is impossible to obtain information about
the strength of y. Indeed, the universality of 2-local unitaries means
that, even if y=0, the Hamiltonian H, with 2-local interactions can
generate any arbitrary unitary transformation. Therefore, by prob-
ing the outputs of this process for different inputs, we cannot distin-
guish the cases of y=0 and y#0.

While this is impossible in the absence of symmetries, our result
reveals that symmetries allow us to directly probe the locality of
interactions that govern a process, just by observing the inputs
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Fig. 3 | Scheme for local symmetric process tomography and
measurement of I-body phases. The no-go theorem found in this paper
has an immediate useful implication: it gives a new method for detecting
the locality of the underlying interactions that govern a charge-conserving
unitary process. Specifically, by measuring the I-body phase of the unitary,
as defined in equation (4), we can detect I-body interactions. This figure
presents a schematic experimental setup that fully characterizes an
unknown U(1)-invariant unitary and its I-body phases, using initial states,
single-qubit measurements and 2-local unitaries, which all respect the
symmetry. In this example, the red box corresponds to an unknown
three-qubit charge-conserving unitary V. The goal is to measure the
three-body phase @, € (- x, z]. Observing @, # 0 indicates the presence of
the three-body interaction Z®3. At the input of V, all the qubits are prepared
in unentangled symmetric states |z) with z=0, 1, except one of them, which
is entangled with an ancillary qubit, in the joint state (]01) + [10))/V/2.
This ancillary qubit plays the role of an internal quantum reference frame'™
and allows us to probe the relative phases between sectors with different
charges through an interference experiment. After the unknown unitary

V, we apply the single-qubit unitary exp(iaZ) on the ancillary qubit, then
interact it with one of the three qubits in the system via 2-local unitary
exp(i%R), where R=(XX+ YY)/2, and finally measure all qubits in the
{|0), |1) } basis. As we discuss further in Supplementary Note 5, using this
scheme we can fully characterize the unknown unitary V, up to a global
phase and, in particular, determine the three-body phase ®,.

and outputs of the process. This can be achieved systematically by
measuring the [-body phases of the unitary process for /> 1. For
instance, in the above example, by measuring the n-body phase
@, €(—n,x] of the unitary V that describes the overall process, we
obtain a lower bound on Ymax = tg% |7 (#)|, which determines the

maximum strength of the n-body interaction, namely

| ®n|
Ymax = M T’ (5)

where we have applied the second equality in equation (4).
Note that, according to the first equality in equation (4),
@, =" _(—1)"0m (mod2r).

How can we measure [-body phases of a unitary? More generally,
is it possible to characterize a U(1)-invariant unitary transforma-
tion and perform process tomography?, using only local symmetric
operations? We find that, despite our no-go theorem on realizable
unitaries, the answer is affirmative. A general U(1)-invariant uni-
tary can be fully characterized, up to a global phase, using symmet-
ric initial states, symmetric single-qubit measurements and 2-local
symmetric unitaries, provided that one can use a single ancillary
qubit that is initially entangled with one of the qubits in the sys-
tem. In particular, the scheme presented in Fig. 3 does not require
the preparation of superpositions of states with different charges,
which might be impractical due to the superselection rules (see
Supplementary Note 5 for further discussion).

Circumventing the no-go theorem with ancillary systems.
Interestingly, it turns out that, in the case of U(1) symmetry, our

no-go theorem can be circumvented, provided that one is allowed
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to interact with an ancillary qubit: for any n-qubit U(1)-invariant
unitary V, there exists (n+ 1)-qubit unitary V that can be imple-
mented using 2-local U(1)-invariant Hamiltonians XX+ YY and
local Z, and satisfies

V() @10),) = (V]w)) @ 0),, 6)

for all n-qubit states |y). This means that, while by applying local
symmetric unitaries the ancillary qubit becomes entangled with the
qubits in the system, at the end of the process it returns back to its
initial state |0), whereas the state of the system transforms as the
desired unitary V.

Figure 4 demonstrates a variant of this result that requires two
ancillary qubits. In this example, the goal is to implement the uni-
taries generated by the Hamiltonian Z®". Roughly speaking, in this
scheme, a charge is transported through a closed loop that starts
from an ancillary qubit, goes through the entire system and finally
returns back to the ancilla. As a result, the joint state obtains a phase
depending on the parity of the total charge in the system, which
corresponds to the observable Z®". The overall effect is equivalent
to applying the desired Hamiltonian Z®" on the system. Here, the
ancillary qubits can be interpreted as an internal quantum reference
frame'®, relative to which the phase shift generated by observable
Z®" is measured in a coherent fashion. As we further explain in
Supplementary Note 6, this process has also a nice interpretation
in the fermionic description of the system, obtained by applying the
Jordan-Wigner transform™—.

Application: quantum thermodynamics with local interactions.
Our surprising no-go theorem also has interesting implications
in the context of quantum thermodynamics and, specifically, the
operational approach to thermodynamics, which is often called the
‘resource theory” of quantum thermodynamics®'®. A fundamental
assumption in this framework is that all energy-conserving unitar-
ies, that is, those commuting with the intrinsic Hamiltonian of the
system, are ‘free] that is, can be implemented with negligible ther-
modynamic cost. This is assumed even for composite systems with
arbitrarily large number of subsystems. However, our result implies
that general energy-conserving unitaries on a composite system can-
not be implemented by applying local energy-conserving unitaries
on the subsystems. In fact, even by composing energy-conserving
unitaries that act on n—1 subsystems, one still cannot gener-
ate all energy-conserving unitaries on n subsystems. Note that
energy-conserving unitaries are those that are invariant under the
time-translation symmetry {e " : t € R} generated by the intrin-
sic Hamiltonian Hy; a continuous symmetry, which is isomorphic to
the group U(1) in the case of periodic systems.

Therefore, this no-go theorem suggests that there might be
some hidden thermodynamic costs for implementing general
energy-conserving unitaries, using local energy-conserving uni-
taries and, in principle, this additional cost can increase with the
system size. The following theorem addresses this concern (see
Supplementary Note 7 for a more precise statement).

Theorem: consider a finite set of closed systems with the prop-
erty that, for each system, the gap between any consecutive pairs
of energy levels is AE. Then, any global energy-conserving unitary
transformation on these systems can be implemented by a finite
sequence of 2-local energy-conserving unitaries, provided that the
systems can interact with a single ancillary qubit with the energy
gap AE between its two levels.

To establish this result, we introduce a generalization of the
scheme introduced in the previous section for qubit systems with
U(1) symmetry. We conclude that the assumption of the resource
theory of quantum thermodynamics®'* that all energy-conserving
unitaries (and hence all thermal operations) are free, is consistent
with the locality of interactions, provided that one allows the use of
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Fig. 4 | Circumventing the no-go theorem with ancillary qubits. Our
no-go theorem implies that the family of unitaries generated by the
n-qubit Hamiltonian Z®" cannot be implemented using local U(1)-invariant
unitaries, even if they act on n—1 qubits. This figure presents a scheme
for circumventing this no-go result, using two ancillary qubits. This
scheme uses the interaction R=(XX+ YY)/2 between nearest-neighbour
qubits on a closed loop. The two ancillary qubits, denoted by a (red ball)
and b (blue ball) are initially prepared in states |1) and |O), respectively.
First, we show that it is possible to realize the Hamiltonian K=Z®"®R,,
without any direct interaction between the ancillary qubits. This only
requires coupling qubit a to qubit j=1in the chain, coupling between
nearest-neighbour qubits in the chain (green balls) and coupling between
qubit j=n and ancilla b. This Hamiltonian describes the process in which

a charge is transported through the chain from one ancillary qubit to the
other and obtains a phase depending on the parity of the total charge in
the system. As we explain in Supplementary Note 6, this has an intuitive
interpretation in the fermionic description of this system, obtained by
applying the Jordan-Wigner transform. After evolving the entire system
for a short time interval 8t under Hamiltonian K, we obtain the joint state
lw) 11)510), — i8tZEM ) [0),11), + O(8t2), where |y) is the initial state
of n qubits. Next, we directly couple a to b and close the loop, using the
2-local unitary exp(inRa,b/4) exp(inZy/4) that allows the charge to move
back and forth between the ancillary qubits, without going through the
chain. Finally, we measure one of the ancillary qubits in the {]0), |1) } basis.
This determines the final location of the charge initially located in qubit a.
The final state of n qubits is exp(i5tZ®") |y) + O(5t?), where the sign
depends on whether the final location of charge is qubit a or b. Therefore,
this process stochastically implements the Hamiltonian +2%". In principle,
by choosing an infinitesimal time step 8t and repeating this scheme many
times, we can implement the desired unitary exp(i¢Z®") for arbitrary angle
¢, with an error approaching zero and probability of success approaching
one. We show that a slightly more complicated version of this scheme can
be realized deterministically.

ancillary systems. In the context of quantum thermodynamics, such
systems can be interpreted as catalysts'>*. It is worth mentioning
that the assumption in this theorem on the energy gap AE between
consecutive levels can be relaxed, provided that one can use larger
catalysts with more energy levels.

Application: synthesizing noise-resilient quantum circuits.
Another motivation to study LSQCs comes from the field of quan-
tum computing and, specifically, the desire to design fault-tolerant
quantum circuits. In both prominent implementations of quantum
computers, namely superconducting and trapped-ion computers,
the instability of the master clock that determines the timing of the
control pulses is a major source of noise***'. Each qubit in these sys-
tems has a non-zero intrinsic Hamiltonian, which corresponds to
an energy difference between states |0) and |1). Hence, the state of a
qubit is constantly evolving in time. Ideally, using a stable clock, one
can keep track of this intrinsic time evolution. In other words, one
can assume that quantum computation is performed in a co-rotating
frame, where there is no energy difference between |0) and |1). In
practice, however, due to the instabilities of the clock, this intrinsic
time evolution of qubits causes error and destroys coherence between
states with different energies. For instance, if there is a random time
delay &t in applying the control pulses that implement a desired
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unitary transformation V, then the actual implemented unitary
in the co-rotating frame will be exp(i§tHo)V exp(—i8tHo), where
H,=—AE) 72 is the total intrinsic Hamiltonian of the qubits.
In principle, this effect can be suppressed by restricting the state
of qubits to an energy eigen-subspace, which is a decoherence-free
subspace”**?. However, this amounts to sacrificing a fraction
of physical qubits. Given the limited number of qubits available
in near-term quantum computers, it is crucial to explore other,
complementary techniques.

One approach for suppressing this type of noise is to minimize
the use of non-energy-conserving unitaries in the circuit. That is,
the circuit should be mostly formed from local energy-conserving
unitaries. This includes energy-conserving elementary gates, such
as single-qubit rotations around z, as well as energy-conserving
multi-qubit modules, which may contain non-energy-conserving
elementary gates. As long as the entire module can be executed in a
sufficiently short time during which the clock fluctuations are neg-
ligible, then the energy conservation of the module guarantees its
resilience against this type of noise. For example, while the standard
Mglmer-Serensen gate*’exp(i6XX) on trapped-ion quantum com-
puters is not energy conserving and hence is sensitive to these fluc-
tuations, when it is sandwiched between Hadamards on both qubits,
it transforms to exp(i0ZZ), which is energy conserving. Similarly,
by combining two Molmer-Serensen gates with single-qubit
phase gates, we obtain exp(if(XX + YY)), which is again energy
conserving.

The tools and ideas introduced in this paper provide a foun-
dation for the systematic synthesis of quantum circuits that
are resilient against this type of noise. To minimize the number
of non-energy-conserving unitaries, the first step is to deter-
mine which unitaries can be efficiently realized using local
energy-conserving modules. As an example, consider the family
of unitaries generated by the multi-qubit swap Hamiltonian: sup-
pose that a system with 27 qubits is partitioned into two subsys-
tems A and B, each with r qubits. Let S,; be the multi-qubit swap
operator that exchanges the states of A and B. The family of uni-
taries exp(i¢pSpp) for ¢ €[0,27) appears as a subroutine in vari-
ous quantum algorithms (see, for example, refs. **=”). It has also
found applications in the study of quantum reference frames and
quantum thermodynamics®**. The multi-qubit swap Hamiltonian
Sas is not only energy conserving but in fact respects the stronger
SU(2) symmetry, that is, [S,5 U®*] =0 for all single-qubit unitaries
U. Therefore, one may expect that this family of unitaries should be
realizable using a sequence of local SU(2)-invariant unitaries or, at
least, using local energy-conserving unitaries, which may break the
SU(2) symmetry. However, our results refute this conjecture: for
generic values of ¢, all the I-body phases of the unitary exp(i¢Sag)
are non-zero (for example, ®@,,=2"¢: mod 27), which means that
this unitary is not realizable using local energy-conserving unitar-
ies. On the other hand, if one is allowed to use a single ancillary
qubit, then this family is realizable using single-qubit rotations
around z together with unitaries exp(if(XX + YY)), which, as
discussed above, can be obtained from two Mglmer-Serensen
gates. Therefore, to implement a quantum algorithm that employs
this subroutine, this part of the circuit can be realized using only
energy-conserving modules. This makes the entire circuit more
resilient against clock fluctuations.

Discussion

Universality of local unitaries in the absence of symmetries is a pro-
found fact about composite quantum-mechanical systems, with vast
applications and implications in different areas of physics. Hence,
the failure of universality in the presence of symmetries can also
have interesting and unexpected implications in different areas.
Here, we saw an example of such surprising implications, namely
the possibility of probing the locality of interactions. We end with
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a brief discussion about other examples of applications of these
results and the related open questions:

Quantum reference frames and covariant codes. Symmetric
unitaries naturally appear in the study of quantum reference
frames'®. For instance, it is often assumed that, in the absence of a
Cartesian reference frame, it is still possible to perform any uni-
tary that respects the SO(3) symmetry group corresponding to
rotations in 3D space'®. The no-go theorem found in this paper
implies that, if one takes into account the locality of interactions,
then there can be further restrictions on the realizable unitaries.
It will be interesting to study possible implications of these addi-
tional constraints in the context of quantum reference frames.
As an example, ref.* shows that arbitrary symmetry-breaking
Hamiltonians on a system can be simulated by coupling the sys-
tem via rotationally invariant Hamiltonians to n>>1 spin-half
systems aligned in x and z directions. Therefore, in the limit of
large n, this quantum reference frame fully lifts the constraint
of symmetry. It is interesting to further study the efficiency and
complexity of such schemes when the Hamiltonians are restricted
to be local.

A similar question also arises in the context of covariant error
correction, which has recently attracted attention in the quantum
information community (see, for example, refs. “-**). Here, the
goal is to understand the limitations and capabilities of quantum
error-correcting codes that can be realized by symmetric opera-
tions. Then, again, it is crucial to understand whether those codes
can be realized via local symmetric unitaries.

Symmetry-protected complexity. Another interesting open ques-
tion in this area is to understand how the notion of circuit com-
plexity changes under the constraint of symmetry. Recall that the
circuit complexity of a unitary transformation or a state is the
minimum number of local gates needed to implement the unitary
or to prepare the state from a fixed (product) state®. For a symmet-
ric unitary or a symmetric state, we can define a modified notion
of complexity, which can be called symmetry-protected complex-
ity (SPC) and is defined as the minimum number of symmetric
local unitaries needed to implement a symmetric unitary or to
prepare a symmetric state. Certain aspects of this notion of com-
plexity have been studied in the context of symmetry-protected
topological phases***. In particular, it is known that, for certain
families of states, the SPC grow linearly with the number of sub-
systems, whereas the regular complexity remains constant. Given
the conjectured roles of complexity in the context of holography
and anti-de Sitter/conformal field theory correspondence’*, it is
interesting to further study the notion of SPC and compare it with
the regular complexity.

Analogue quantum simulation. Understanding the constraints
imposed by the locality of interactions is also crucial in the con-
text of analogue quantum simulation, which is one of the main
applications of near-term quantum technology. In this approach
to quantum simulation, the degrees of freedom and the dynamics
of the target system are directly mapped to those of the simu-
lator, which is a well-controlled quantum system with a tunable
Hamiltonian (see, for example, refs. “-°'). As we saw in this
work, in the presence of symmetries, the locality of the simulator
Hamiltonian severely restrict the set of realizable Hamiltonians.
It is interesting to further explore how these restrictions limit
the power of analogue quantum simulators in the presence of
symmetries, and, in particular, to investigate whether they can be
efficiently circumvented.

Proofs. All the results in the paper are rigorously proven in
Supplementary Notes 1-7.
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Methods

Preliminaries: the Lie algebra generated by local symmetric Hamiltonians.

We start with a quick review of a standard result in quantum control theory

(see Supplementary Note 1 for more details). Suppose that one can implement the
unitary time evolutions generated by Hamiltonians +A and +B for an arbitrary
amount of time ¢ > 0. That is, one can turn on and off these Hamiltonians at will.
Then, combining these time evolutions one can obtain unitaries

e—iB(c;ét)efiA(cléf) _ efi(clA+czB)52 + (’)(étz) (7a)

e—iAére—iBﬁteiAéteiBﬁt _ e—[A,B]Stz + (’)(5t3), (7b)

for arbitrary coefficients ¢y, ¢, € R, and for sufficiently small 8¢. This means

that, using Hamiltonians +A and +B, one can approximately simulate the time
evolutions generated by any Hamiltonian in the linear span of A and B as well as
the Hamiltonian i[A, B]. Furthermore, by repeating such combinations of unitaries,
one can obtain a larger class of unitaries. In fact, it can be proven that, using finite
sequences of unitaries generated by the Hamiltonians +A and +B, one obtains all
unitary transformations {e """ : t € R} generated by any Hermitian operator

H if, and only if, H belongs to the real Lie algebra generated by A and B, that is,
can be written as a linear combination of A, B and their (nested) commutators,
i[A, B], [[A, B], A], [[A, B], B, ..., with real coefficients. As we explain more

in Supplementary Note 1, this result means that, to characterize the group V¢
generated by k-local symmetric unitaries, it suffices to characterize the Lie algebra
generated by k-local symmetric skew-Hermitian operators. In particular, the
dimension of this Lie algebra, as a vector space over R, is equal to dim (V), the
dimension of the manifold associated to VkG , which is also equal to the number of
real parameters needed to specify a general element of V. Using this relation, we
establish an upper bound on dim (V7), which is discussed next.

Charge vectors. Next, we introduce the idea of ‘charge vectors, our main tool

for deriving constraints on the unitary evolutions generated by local symmetric
Hamiltonians. Recall that Irreps,(n) denotes the set of inequivalent irreps of
group G that appear in the representation {U(g) = u(g)®": g€ G} and |Irrepsy(n)| is
the number of these inequivalent irreps. Let I, be the projector to the subspace
corresponding to irrep u € Irreps(n), also known as the isotypic component of y.
For any operator A, define the charge vector of A as

= >

uelrreps (n)

Tr(I,A) 1) » (®)

where {|u) : u € Irreps;(n)} is a set of orthonormal vectors in an abstract vector
space with dimension |Irreps,(n)|. A general G-invariant Hamiltonian can have
any charge vector with real coefficients. In particular, for any set of real numbers
{h, € R : pu € Irreps;(n)}, the Hermitian operator ZMEIII‘CPSG(VO WH” is
G-invariant and has the charge vector Z# clrreps, (n) hy |u). In other words, under
the linear map A — |y, ), the image of the linear space of Hermitian G-invariant
operators has dimension |Irrepss(n)|.

On the other hand, it turns out that, if the unitary evolutions generated
by Hamiltonian H can be simulated by k-local G-invariant unitaries, that is,
if vt € R: e ™ € VE, then the charge of vector of H should satisfy certain
constraints. Let Sy be the set of charge vectors for all such Hamiltonians, that is,

Se={lyy) e ™ e Ve, vt e R}. )

We prove that Sy is a linear subspace (over the field R) with dimension

dim (Sk) < [Irrepsg(k)|, (10)
and the equality holds if G is a connected Lie group, such as U(1) and SU(2).
Therefore, if [Irreps;(k)| < |Irrepss(n)|, then dim (Si) < |Irreps;(n)|, which means
there are G-invariant Hamiltonians whose charge vectors do not belong to S,
which in turn implies they cannot be simulated using k-local symmetric unitaries.
For continuous groups, such as U(1), |Irreps,(n)| grows unboundedly with » and,
therefore, universality cannot be achieved with k-local symmetric unitaries with
a fixed k.

Below we present a simple argument that explains why the dimension of Sy
cannot grow unboundedly with the system size. The specific bound on dim (S)
in equation (10) is proven in Supplementary Note 2, using the Fourier transform
of charge vectors. Furthermore, in Supplementary Note 2, we discuss more about
charge vectors and their Lie-algebraic interpretation. Briefly, charge vector |y, )
of an operator A determines its component in the centre of the Lie algebra of
all G-invariant Hamiltonians, that is, the Lie algebra corresponding to the Lie
group VC. Then, the subspace Sy determines which part of the centre can be
generated by k-local G-invariant Hamiltonians. In particular, if dim (Sy) is less
than dim (S,) = |Irreps;(n)|, then local symmetric Hamiltonians cannot generate
certain elements of the centre, which means such Hamiltonians are not universal.
This results in the bound in equation (3).

Next, we explain why dim (S ) cannot grow unboundedly with n. To
determine Sy, we use the fact that, if e 7 € V{ forall t € R, then H
should be in the Lie algebra generated by k-local G-invariant operators,
thatis, H = > .GA; + ZMZ G, 1[Aj,> Aj,] + - - -, where A; are Hermitian
k-local G-invariant operators and coefficients ¢, ¢;j, ;,, - - - are real numbers.
It can be shown that the commutators appearing in this expansion do not

contribute in the charge vector of H, that is, | yy) = > iCi ’ )(j>, where
‘;(j> = Zuelrreps (ny Tr(IL,A;) | ) is the charge vector of A;. To see this, note

G
that, for any irrep u € Irrepsq(n), Tr([A;,, A, ]T1,) = Tr(4; [A;,, I1,]) = 0, where
the first equality follows from the cyclic property of trace and the second equality
follows from the assumption that Aj, is G invariant and therefore commutes with
I1,. It follows that the commutator [A; , A;,] and other nested commutators do not
contribute in | y;). This implies that Sy is spanned by the charge vectors of k-local
G-invariant Hermitian operators, that is, Sy is equal to

Span,, {\;m A= A", Aisk-local, [A, U(g)] = 0 : Vg € G} .oan

Next, note that, for any k-local operator A, by applying a properly chosen
permutation operator S which changes the order of sites, we can obtain an operator
in the form SAS" = A ® Iyt with the property that A acts on a fixed set of k sites
(for example, the first k sites according to a certain ordering) and I, is the identity
operator on the remaining n — k sites. Since charge vectors remain invariant under
permutations, operators A and SAS" = A ® Ipegt have the same charge vectors. It
follows that the subspace in equation (11) is equal to the set of the charge vectors of
G-invariant Hermitian operators that act non-trivially only on a fixed set of k sites
(for example, the first k sites). Therefore, as the number of total sites 7 increases,
dim (Sy) remains bounded by a number independent of #. In other words, even
though, using k-local G-invariant unitaries, we can simulate Hamiltonians that

are not k-local, they can only have charge vectors which are allowed for k-local
G-invariant Hamiltonians. This explains why the upper bound on dim (Sy) in
equation (10) does not depend on the system size.

Example: SU(2) symmetry with spin-s systems. In the case of SU(2) symmetry,
consider 7 spin-s systems, each with the Hilbert space of dimension 2s+ 1. Recall
that irreps of SU(2) can be labelled by the eigenvalues of the squared angular
momentum operator P = ]fc + ]5 + ]ﬁ. The eigenvalues have the form of j(j+ 1),
where j is half-integer and takes values j=1/2,3/2,---, ns if s is not integer and n is
odd, and values j=0,1, -+, ns, otherwise. In both cases, the total number of distinct
irreps is |Irrepsgy,(n)| = [ns] + 1. Because SU(2) is a connected group, the bound
in equation (10) holds as equality, that is, dim (Sx) = |ks] + 1. Furthermore,
equation (3) implies that the difference between the dimensions of the manifolds
of all SU(2)-invariant unitaries and those realizable by k-local SU(2)-invariant
unitaries is lower bounded by

dim (VU@ — dim (VU@ > |ns] — |ks). 12)
For integer spin s, this means that, for any k <, there are (k+ 1)-local unitaries
that cannot be realized using k-local unitaries. Similarly, for non-integer s, there are

(k+2)-local unitaries that cannot be realized using k-local unitaries.

Full characterization of realizable U(1)-invariant Hamiltonians for qubits. In
Supplementary Note 3, we study the example of U(1) symmetry for qubit systems.
Interestingly, it turns out that, in this example, the constraints imposed by the
charge vectors fully characterize the set of realizable Hamiltonians. The theorem
below states these conditions.

For a system with n qubits, define Hermitian operators C: /=0, ---,n as

C = Z

b:wb) =1

where the first summation is over all bit strings b=", --- b, € {0, 1}" with Hamming
weight w(b) = ij‘zl bj equal to [, and zb = le" - - Zbr. In the second term,
I1,, is the projector to the eigen-subspace of N = E]": (I = Z;)/2 with eigenvalue m,

and
m m n—m
c1<m>:2<71>‘< >< )
—o s I—s

is the eigenvalue of C, in this subspace (recall that the binomial coefficient () = 0
for b> a. See Supplementary Note 3 for derivation of equation (14)). We prove

n

zb = Zc,(m) .,

m=0

(13)

(14)

Theorem. For any U(1)-invariant Hamiltonian H on n qubits, the family of
unitaries {e """ : t € R} can be implemented using k-local U(1)-invariant
unitaries for k> 2, if and only if

Tr(HC) =0 :l=k+1,---,n. (15)
Note that, using equation (13), these conditions can be rewritten in terms of
the charge vector |y,;) = >0 _ Tr(HIl,) |m) of Hamiltonian H, where {|m)} is

a basis for an abstract (n+ 1)-dimensional vector space.
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Equations (15) impose exactly n — k independent constrains on the set of Author contributions
realizable Hamiltonians. Hence, the difference between the dimension of realizable [ M. was the sole contributor to all aspects of this work.
U(1)-invariant Hamiltonians and all U(1)-invariant Hamiltonians is exactly n —k,
which means that, in this case, the general bound in equation (3) holds as equality.

This theorem is proven in Supplementary Note 3.
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