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Locality and symmetry are fundamental and ubiquitous prop-
erties of physical systems, and their interplay leads to diverse 
emergent phenomena such as spontaneous symmetry break-

ing. They also put various constraints on both equilibrium and 
dynamical properties of physical systems. For instance, symmetry 
implies conservation laws, as highlighted by Noether’s theorem1,2, 
and locality of interactions implies finite speed of propagation 
of information, as highlighted by the Lieb–Robinson bound3. 
Nevertheless, in spite of the restrictions imposed by locality on the 
short-term dynamics, it turns out that, after a sufficiently long time 
and in the absence of symmetries, a composite system with a gen-
eral local (time-dependent) Hamiltonian can experience any arbi-
trary unitary time evolution. This is related to a fundamental result 
in quantum computing: any unitary transformation on a composite 
system can be generated by a sequence of 2-local unitary transfor-
mations, that is, those that couple, at most, two subsystems4–6.

Here we study this phenomenon in the presence of conservation 
laws and global symmetries. In particular, we ask whether this uni-
versality remains valid in the presence of symmetries, or whether 
locality puts additional constraints on the possible unitary evolu-
tions of a composite system. Clearly, if all the local unitaries obey 
a certain symmetry, then the overall unitary evolution also obeys 
the same symmetry. The question is whether all symmetric unitar-
ies on a composite system can be generated using local symmetric 
unitaries on the system. Surprisingly, it turns out that the answer is 
negative in the case of continuous symmetries such as SU(2) and 
U(1). In fact, we show that generic symmetric unitaries cannot be 
implemented, even approximately, using local symmetric unitaries. 
Furthermore, the difference between the dimensions of the mani-
fold of all symmetric unitaries and the sub-manifold of unitaries 
generated by k-local symmetric unitaries with a fixed k increases 
constantly with the system size.

This result implies that, in the presence of locality, symmetries of 
Hamiltonian impose extra constraints on the time evolution of the 
system, which are not captured by Noether’s theorem. We show how 
the violation of these constraints can be observed experimentally 
and, in fact, can be used as a new method for probing the locality 

of interactions in nature. These additional constraints can also have 
interesting implications in the context of quantum chaos and ther-
malization of many-body systems7. We also explain how, in the case 
of U(1) symmetry, the no-go theorem can be circumvented using 
ancillary qubits and discuss the implications of these results in the 
contexts of the resource theory of quantum thermodynamics8–15, 
quantum reference frames16 and quantum circuit synthesis.

Preliminaries
Local symmetric quantum circuits. Consider an arbitrary com-
posite system formed from local subsystems or sites (for example, 
qubits or spins). Here, we focus on systems with finite-dimensional 
Hilbert spaces. An operator is called k-local if it acts non-trivially 
on the Hilbert spaces of, at most, k sites. Consider a symmetry 
described by a general group G. To simplify the following discus-
sion, unless otherwise stated, we assume that all sites in the system 
have identical Hilbert spaces and carry the same unitary representa-
tion of group G (see Supplementary Note 1 for a more general case). 
In particular, in a system with n sites, assume that each group ele-
ment g ∈ G is represented by the unitary U(g) = u(g)⊗n. An operator 
A acting on the total system is called G-invariant, or symmetric, if 
it satisfies U(g)AU†(g) = A, for any group element g ∈ G. The set of 
symmetric unitaries itself forms a group, denoted by

VG ≡ {V : VV† = I, [V,U(g)] = 0, ∀g ∈ G} , (1)

where I is the identity operator.
As an example, consider a system with n qubits and the U(1) 

symmetry corresponding to global rotations around the z axis. 
Then, an operator A is symmetric if (e−iθZ)

⊗nA(eiθZ)⊗n
= A, for 

θ ∈ [0, 2π), or, equivalently, if it commutes with 
∑n

j=1 Zj, where 
Xj, Yj, Zj denote Pauli operators on the qubit j tensor product with 
the identity operators on the rest of the qubits. Depending on the 
context, this symmetry can have different physical interpretations. 
For instance, if each qubit has a Hamiltonian ΔE

2 Z, then ΔE
2
∑n

j=1 Zj 
is the total Hamiltonian of the system. Then, unitaries that satisfy 
this symmetry are the energy-conserving unitaries.
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We define VG
k  to be the set of all unitary transformations that can 

be implemented with local symmetric quantum circuits (LSQCs) 
with k-local unitaries (Fig. 1). More formally, VG

k  is the set of unitar-
ies V =

∏m
i=1 Vi, generated by composing symmetric k-local uni-

taries Vi: i = 1 ⋯ m, for a finite m. It can be easily seen that VG
k  is a 

subgroup of VG = V
G
n , the group of all symmetric unitaries. More 

generally, for k ≤ l ≤ n, we have VG
k ⊆ VG

l ⊆ VG. We are interested 
in characterizing each subgroup VG

k  and, in particular, in determin-
ing whether there exists k < n such that k-local symmetric unitaries 
become universal, that is, VG

k = V
G
n = V

G. As discussed above, in 
the absence of symmetries, that is, when G is the trivial group, this 
holds for k = 2. To study these questions, we use the Lie algebraic 
methods of quantum control theory17,18, which have also been previ-
ously used to study the universality of 2-local gates in the absence 
of symmetries4,5,19–24.

It is worth noting that, for composite systems with a given geom-
etry, one can consider the stronger constraint of geometric locality 
in the above definitions: the k-local symmetric unitaries should act 
on local neighbourhoods, for example, only on k nearest-neighbour 
sites. However, provided that the sites lie on a connected graph, for 
example, on a connected 1D chain, this additional constraint does 
not change the generated group VG

k  for k > 1. This is true because 
the swap unitary that exchanges the states of two nearest-neighbour 
sites is 2-local and respects the symmetry, for all symmetry groups. 
If the graph is connected, by combining these 2-local permutations 
on pairs of neighbouring sites, we can generate all permutations and 
hence change the order of sites arbitrarily. Therefore, any k-local 
symmetric unitary can be realized by a sequence of k-local symmet-
ric unitaries on k nearest-neighbour sites.

Time evolution under local symmetric Hamiltonians. Next, we 
consider a slightly different formulation of this problem in terms 
of the notion of local symmetric Hamiltonians. A generic local 
Hamiltonian H(t) acts non-trivially on all subsystems in the system, 
but it has a decomposition as H(t) = ∑jhj(t), where each term hj(t) 
is k-local for a fixed k, which is often much smaller than the total 
number of subsystems in the system. The unitary evolution gener-
ated by this Hamiltonian is determined by the Schrödinger equation

dV(t)
dt = −iH(t)V(t) = −i [

∑

j
hj(t)]V(t) , (2)

with the initial condition V(0) = I. Suppose, in addition to the above 
locality constraint, that the Hamiltonian H(t) also respects the sym-
metry described by the group G, such that [U(g), H(t)] = 0, for all 
g ∈ G, and all t ≥ 0. Then, it can be shown that the family of unitar-
ies {V(t): t ≥ 0} generated by any such Hamiltonian belongs to VG

k , 
that is, the group of symmetric unitaries that can be implemented 
by k-local symmetric unitaries (Supplementary Note 1). Conversely, 
any unitary in this group is generated by a Hamiltonian H(t) sat-
isfying the above locality and symmetry constraints (any quan-
tum circuit can be thought of as the time evolution generated by 
a time-dependent local Hamiltonian). Therefore, by characterizing 
V
G
k  and studying its relation with the group of all symmetric unitar-

ies VG, we can also unveil possible constraints on the time evolution 
under local symmetric Hamiltonians, which are not captured by the 
standard conservation laws imposed by Noether’s theorem.

Main results
A no-go theorem: non-universality of local unitaries in the pres-
ence of symmetries. We show that, in the case of continuous sym-
metries such as U(1) and SU(2), most symmetric unitaries cannot 
be implemented, even approximately, using local symmetric unitar-
ies. First, as we prove in Supplementary Note 1, for any group G, 
the set of symmetric unitaries VG = V

G
n  and its subgroup VG

k  gen-
erated by k-local symmetric unitaries are both connected compact 
Lie groups and hence closed manifolds (Fig. 2). This means that, if 
a unitary V is not in VG

k , then there is a neighbourhood of symmet-
ric unitaries around V, none of which can be implemented using 
k-local symmetric unitaries. On the other hand, if V belongs to VG

k , 
then it can be implemented with a uniformly finite number of such 
unitaries that is upper bounded by a fixed number that is indepen-
dent of V (ref. 17).

Secondly, we prove that, for any finite or compact Lie group G, 
the difference between the dimensions of the manifolds associated 
to all symmetric unitaries VG = V

G
n  and its sub-manifold VG

k  is 
lower bounded by

dim (VG)− dim (VG
k ) ≥ |IrrepsG(n)| − |IrrepsG(k)| , (3)

where for any integer l, ∣IrrepsG(l)∣ is the number of inequivalent 
irreducible representations (irreps) of group G, appearing in the 
representation {u(g)⊗l: g ∈ G}, that is, in the action of symmetry on 
l subsystems. We conclude that, unless ∣IrrepsG(n)∣ = ∣IrrepsG(k)∣, 
there is a family of symmetric unitaries on n subsystems that can-
not be implemented with k-local symmetric unitaries. In the case of 
continuous symmetries such as U(1) and SU(2), ∣IrrepsG(n)∣ grows 
unboundedly with n. This means that there is no fixed integer k 
such that k-local symmetric unitaries become universal for all sys-
tem size n. This is in sharp contrast to the universality of 2-local 
unitaries in the absence of symmetries. In Methods, we provide a 
simple proof of the non-universality of local unitaries in the case 
of continuous symmetries using a technique called ‘charge vec-
tors’. In Supplementary Note 2, we prove equation (3) and present 
a more refined version of this inequality in the case of connected 
Lie groups, such as U(1) and SU(2), as well as an extension of the 
no-go theorem to the case where the subsystems can have differ-
ent representations of the symmetry. We also discuss more about 
the nature of the constraints imposed by locality that lead to the 
bound in equation (3). (Namely, we argue that certain elements of 
the centre of the Lie algebra of symmetric Hamiltonians cannot be 
generated using local symmetric Hamiltonians.)

Example: U(1) symmetry for systems of qubits. Recall the exam-
ple of the U(1) symmetry for a system of n qubits. In this case, the  

Fig. 1 | LSQCs. A quantum circuit with 2-local unitaries. Here, each line 
represents a subsystem, for example, a qubit, through time, and each 
box represents a 2-local unitary transformation. An LSQC only contains 
local unitaries that respect a certain symmetry. For instance, they are all 
invariant under rotations around the z axis. Such circuits can model the 
time evolution of systems with local symmetric Hamiltonians. Conversely, 
any LSQC corresponds to the time evolution generated by a local 
symmetric (time-dependent) Hamiltonian. Therefore, by studying LSQCs, 
we can also characterize general features of time evolution under local 
symmetric Hamiltonians.

Nature Physics | VOL 18 | March 2022 | 283–289 | www.nature.com/naturephysics284

http://www.nature.com/naturephysics


ArticlesNAtUre PHySIcS

representation of symmetry on n sites is (eiθZ)⊗n
= exp(iθ[nI− 2N]) 

for θ ∈ [0, 2π), where N = ∑j(I − Zj)/2 determines the total ‘charge’ 
(or, excitations) in the system. It follows that the irreps of U(1) can 
be labelled by distinct eigenvalues of N, which take integer values 
m = 0, ⋯ , n. Then, equation (3) implies that, for a system with n 
qubits, the difference between the dimensions of the manifold of 
all symmetric unitaries and those generated by k-local symmetric 
unitaries is, at least, n − k. Remarkably, it turns out that, in this case, 
this bound holds as equality. In Methods, we present a full char-
acterization of Hamiltonians that can be generated using k-local 
U(1)-invariant Hamiltonians. This result, for instance, implies that, 
even if one can implement all U(1)-invariant unitaries that act on 
n − 1 qubits, still the unitary exp(iϕZ⊗n) cannot be implemented 
for generic values of ϕ.

It is useful to express the constraints imposed by the local-
ity of interactions in terms of experimentally observable quanti-
ties. Consider a general U(1)-invariant unitary V on n qubits. 
For instance, V can be the unitary generated by U(1)-invariant 
Hamiltonian H(t), from time t = 0 to T under the Schrödinger 
equation. Any such unitary has a decomposition as V=

⊕n
m=0Vm, 

where Vm is the component of V in the charge sector m, that is, the 
eigen-subspace of operator N = ∑j(I − Zj)/2 with eigenvalue m. For 
any integer l = 0, ⋯ , n, define the l-body phase Φl ∈ ( − π, π] of V as

Φl ≡
n∑

m=0
cl(m)θm

= −
∫ T
0 dt

∑

b : w(b) = l
Tr(H(t)Zb) : mod 2π ,

(4)

where θm = arg(det(Vm)) ∈ (−π, π] is the phase of the determinant 
of Vm, cl(m) =

∑m
s=0 (−1)s

(m
s
) ( n−m

l−s
)
 is an integer coefficient, 

and we use the convention that, for integers a and b, the binomial 
coefficient 

( a
b
)
= 0 if b > a. In the second equality, the summation 

is over all bit strings b = b1 ⋯ bn ∈ {0, 1}n with Hamming weight 
w(b) ≡

∑n
j=1 bj equal to l, and we have defined Zb ≡ Zb1

1 · · ·Zbn
n . 

Note that this equality is satisfied for any U(1)-invariant Hamiltonian 
H(t) that realizes unitary V. Using this equality, for instance, we can 
see that, for unitary V = exp(iϕZb), all l-body phases vanish, except 
for l = w(b), where Φw(b) = 2nϕ: mod 2π. In Supplementary Note 4 we 
prove equation (4) and present coefficients cl(m) for a system with 
n = 5 qubits.

The notion of l-body phases provides a useful characteriza-
tion of the constraints imposed by the locality of interactions. 
In Supplementary Note 4, we show that: (i) For l ≥ 1, the l-body 
phases {Φl} of a U(1)-invariant unitary time evolution can be 
measured experimentally. On the other hand, the phases {θm} are 
not physically observable, because they transform non-trivially 
under the global phase transformation V → eiαV. Similarly, 
Φ0 = ∑mθm = arg(det(V)) is not observable. (ii) If a unitary is real-
izable by k-local U(1)-invariant unitaries, then its l-body phases 
are zero for l > k, which can be seen using the second equality in 
equation (4). This, for instance, implies that, unless ϕ is an integer 
multiple of π/2n−1, unitary exp(iϕZb) cannot be implemented using 
k-local U(1)-invariant unitaries with k < w(b). (iii) Conversely, for 
a general U(1)-invariant unitary V, if all l-body phases vanish for 
l > k, then V is realizable using k-local U(1)-invariant unitaries, up 
to a unitary in a fixed finite subgroup of U(1)-invariant unitaries. 
Finally, it is worth mentioning that, from a geometrical point of view, 
the transformation {θm} → {Φl} in equation (4) describes a change of 
the coordinate system on the (n + 1)-torus corresponding to phases 
θm = arg(det(Vm)), for charges m = 0, ⋯ , n. For instance, when the 
system evolves under the Hamiltonian H = γZb, its trajectory on 
this torus is a helix described by the equation Φl(t) = − 2nγt × δl,w(b), 
where δ denotes the Kronecker delta (Fig. 2).

In Sect. 2.6, we discuss an application of this framework for syn-
thesizing phase-insensitive quantum circuits. But first, we start with 
a rather surprising implication of these ideas.

Application: probing the locality of interactions in nature. Our 
no-go theorem leads us to a new method for experimentally prob-
ing the locality of interactions. According to this theorem, in the 
presence of symmetries, interactions that couple more subsystems 
can imprint certain observable effects on the time evolution of the 
system that cannot be reproduced by those that act on fewer sub-
systems. Therefore, by probing these effects, we can directly obtain 
information about the locality of the underlying interactions that 
govern the process. This is analogous to the fact that, in the presence 
of symmetries, we can detect a hypothetical symmetry-breaking 
interaction, just by observing the violation of Noether’s conserva-
tion law for the input and output of the process, without knowing 
the details of the underlying interactions. (In our case, the hypo-
thetical term is not symmetry breaking but rather couples multiple 
subsystems together.)

As a simple example, consider a system of n qubits evolving 
for a total time T under an unknown Hamiltonian H(t) that pre-
serves ∑jZj. To have a concrete example, one can assume that H(t) 
models the interactions in a complex scattering process with n 
particles, and that the states {|0⟩ , |1⟩} of each qubit corresponds 
to an internal degree of freedom of a particle, for example, its elec-
tric charge, whose total value remains conserved in the process. 
Suppose we want to characterize the locality of interactions that 
govern this process. For instance, we start with the hypothesis that 
H(t) = H0(t) + γ(t)Z⊗n, where H0 only contains k-local terms with 
k < n while γZ⊗n corresponds to a hypothetical n-body interaction, 
for example, a correction to the Coulomb law. The goal is to test 
the hypothesis that the n-body term γZ⊗n is non-zero, by probing 
the output of this process for different input states. Note that, in 
the absence of symmetries, unless there are further assumptions 
about the form of H0, it is impossible to obtain information about 
the strength of γ. Indeed, the universality of 2-local unitaries means 
that, even if γ = 0, the Hamiltonian H0 with 2-local interactions can 
generate any arbitrary unitary transformation. Therefore, by prob-
ing the outputs of this process for different inputs, we cannot distin-
guish the cases of γ = 0 and γ ≠ 0.

While this is impossible in the absence of symmetries, our result 
reveals that symmetries allow us to directly probe the locality of 
interactions that govern a process, just by observing the inputs 

Fig. 2 | Schematic relation between group of all symmetric unitaries 
(torus) and subgroup generated by LSQCs (blue curve). They are both 
closed connected Lie groups and hence closed manifolds. Unitary evolution 
under any local symmetric Hamiltonian is restricted to the sub-manifold 
corresponding to LSQC. In other words, adding a perturbation to the 
Hamiltonian can bring the evolution outside this sub-manifold, only if it 
is non-local or symmetry breaking. In the example of U(1) symmetry, we 
discuss a more explicit interpretation of this schematic figure.
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and outputs of the process. This can be achieved systematically by 
measuring the l-body phases of the unitary process for l ≥ 1. For 
instance, in the above example, by measuring the n-body phase 
Φn ∈ (−π, π] of the unitary V that describes the overall process, we 
obtain a lower bound on γmax = max

t∈[0,T]
|γ(t)|, which determines the 

maximum strength of the n-body interaction, namely

γmax ≥
| Φn |

2n × T , (5)

where we have applied the second equality in equation (4). 
Note that, according to the first equality in equation (4), 
Φn =

∑n
m=0 (−1)mθm (mod 2π).

How can we measure l-body phases of a unitary? More generally, 
is it possible to characterize a U(1)-invariant unitary transforma-
tion and perform process tomography25, using only local symmetric 
operations? We find that, despite our no-go theorem on realizable 
unitaries, the answer is affirmative. A general U(1)-invariant uni-
tary can be fully characterized, up to a global phase, using symmet-
ric initial states, symmetric single-qubit measurements and 2-local 
symmetric unitaries, provided that one can use a single ancillary 
qubit that is initially entangled with one of the qubits in the sys-
tem. In particular, the scheme presented in Fig. 3 does not require 
the preparation of superpositions of states with different charges, 
which might be impractical due to the superselection rules (see 
Supplementary Note 5 for further discussion).

Circumventing the no-go theorem with ancillary systems. 
Interestingly, it turns out that, in the case of U(1) symmetry, our 
no-go theorem can be circumvented, provided that one is allowed 

to interact with an ancillary qubit: for any n-qubit U(1)-invariant 
unitary V, there exists (n + 1)-qubit unitary Ṽ  that can be imple-
mented using 2-local U(1)-invariant Hamiltonians XX + YY and 
local Z, and satisfies

Ṽ
(
|ψ⟩ ⊗ |0⟩a

)
= (V |ψ⟩)⊗ |0⟩a , (6)

for all n-qubit states |ψ⟩. This means that, while by applying local 
symmetric unitaries the ancillary qubit becomes entangled with the 
qubits in the system, at the end of the process it returns back to its 
initial state |0⟩, whereas the state of the system transforms as the 
desired unitary V.

Figure 4 demonstrates a variant of this result that requires two 
ancillary qubits. In this example, the goal is to implement the uni-
taries generated by the Hamiltonian Z⊗n. Roughly speaking, in this 
scheme, a charge is transported through a closed loop that starts 
from an ancillary qubit, goes through the entire system and finally 
returns back to the ancilla. As a result, the joint state obtains a phase 
depending on the parity of the total charge in the system, which 
corresponds to the observable Z⊗n. The overall effect is equivalent 
to applying the desired Hamiltonian Z⊗n on the system. Here, the 
ancillary qubits can be interpreted as an internal quantum reference 
frame16, relative to which the phase shift generated by observable 
Z⊗n is measured in a coherent fashion. As we further explain in 
Supplementary Note 6, this process has also a nice interpretation 
in the fermionic description of the system, obtained by applying the 
Jordan–Wigner transform26–28.

Application: quantum thermodynamics with local interactions. 
Our surprising no-go theorem also has interesting implications 
in the context of quantum thermodynamics and, specifically, the 
operational approach to thermodynamics, which is often called the 
‘resource theory’ of quantum thermodynamics8–15. A fundamental 
assumption in this framework is that all energy-conserving unitar-
ies, that is, those commuting with the intrinsic Hamiltonian of the 
system, are ‘free’, that is, can be implemented with negligible ther-
modynamic cost. This is assumed even for composite systems with 
arbitrarily large number of subsystems. However, our result implies 
that general energy-conserving unitaries on a composite system can-
not be implemented by applying local energy-conserving unitaries 
on the subsystems. In fact, even by composing energy-conserving 
unitaries that act on n − 1 subsystems, one still cannot gener-
ate all energy-conserving unitaries on n subsystems. Note that 
energy-conserving unitaries are those that are invariant under the 
time-translation symmetry {e−iH0t : t ∈ R} generated by the intrin-
sic Hamiltonian H0; a continuous symmetry, which is isomorphic to 
the group U(1) in the case of periodic systems.

Therefore, this no-go theorem suggests that there might be 
some hidden thermodynamic costs for implementing general 
energy-conserving unitaries, using local energy-conserving uni-
taries and, in principle, this additional cost can increase with the 
system size. The following theorem addresses this concern (see 
Supplementary Note 7 for a more precise statement).

Theorem: consider a finite set of closed systems with the prop-
erty that, for each system, the gap between any consecutive pairs 
of energy levels is ΔE. Then, any global energy-conserving unitary 
transformation on these systems can be implemented by a finite 
sequence of 2-local energy-conserving unitaries, provided that the 
systems can interact with a single ancillary qubit with the energy 
gap ΔE between its two levels.

To establish this result, we introduce a generalization of the 
scheme introduced in the previous section for qubit systems with 
U(1) symmetry. We conclude that the assumption of the resource 
theory of quantum thermodynamics8–14 that all energy-conserving 
unitaries (and hence all thermal operations) are free, is consistent 
with the locality of interactions, provided that one allows the use of 

∣z1〉 z ′1

z ′2

z ′3

b

∣z2〉

eiαZ
ei R

4
π

?

∣10〉 + ∣01〉
2√

Fig. 3 | Scheme for local symmetric process tomography and 
measurement of l-body phases. The no-go theorem found in this paper 
has an immediate useful implication: it gives a new method for detecting 
the locality of the underlying interactions that govern a charge-conserving 
unitary process. Specifically, by measuring the l-body phase of the unitary, 
as defined in equation (4), we can detect l-body interactions. This figure 
presents a schematic experimental setup that fully characterizes an 
unknown U(1)-invariant unitary and its l-body phases, using initial states, 
single-qubit measurements and 2-local unitaries, which all respect the 
symmetry. In this example, the red box corresponds to an unknown 
three-qubit charge-conserving unitary V. The goal is to measure the 
three-body phase Φ3 ∈ ( − π, π]. Observing Φ3 ≠ 0 indicates the presence of 
the three-body interaction Z⊗3. At the input of V, all the qubits are prepared 
in unentangled symmetric states |z⟩ with z = 0, 1, except one of them, which 
is entangled with an ancillary qubit, in the joint state (|01⟩+ |10⟩)/

√
2. 

This ancillary qubit plays the role of an internal quantum reference frame16 
and allows us to probe the relative phases between sectors with different 
charges through an interference experiment. After the unknown unitary 
V, we apply the single-qubit unitary exp(iαZ) on the ancillary qubit, then 
interact it with one of the three qubits in the system via 2-local unitary 
exp(i πR

4 ), where R = (XX + YY)/2, and finally measure all qubits in the 
{|0⟩ , |1⟩} basis. As we discuss further in Supplementary Note 5, using this 
scheme we can fully characterize the unknown unitary V, up to a global 
phase and, in particular, determine the three-body phase Φ3.
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ancillary systems. In the context of quantum thermodynamics, such 
systems can be interpreted as catalysts15,29. It is worth mentioning 
that the assumption in this theorem on the energy gap ΔE between 
consecutive levels can be relaxed, provided that one can use larger 
catalysts with more energy levels.

Application: synthesizing noise-resilient quantum circuits. 
Another motivation to study LSQCs comes from the field of quan-
tum computing and, specifically, the desire to design fault-tolerant 
quantum circuits. In both prominent implementations of quantum 
computers, namely superconducting and trapped-ion computers, 
the instability of the master clock that determines the timing of the 
control pulses is a major source of noise30,31. Each qubit in these sys-
tems has a non-zero intrinsic Hamiltonian, which corresponds to 
an energy difference between states |0⟩ and |1⟩. Hence, the state of a 
qubit is constantly evolving in time. Ideally, using a stable clock, one 
can keep track of this intrinsic time evolution. In other words, one 
can assume that quantum computation is performed in a co-rotating 
frame, where there is no energy difference between |0⟩ and |1⟩. In 
practice, however, due to the instabilities of the clock, this intrinsic 
time evolution of qubits causes error and destroys coherence between 
states with different energies. For instance, if there is a random time 
delay δt in applying the control pulses that implement a desired 

unitary transformation V, then the actual implemented unitary 
in the co-rotating frame will be exp(iδtH0)V exp(−iδtH0), where 
H0 = − ΔE∑jZj/2 is the total intrinsic Hamiltonian of the qubits. 
In principle, this effect can be suppressed by restricting the state 
of qubits to an energy eigen-subspace, which is a decoherence-free 
subspace23,24,32. However, this amounts to sacrificing a fraction 
of physical qubits. Given the limited number of qubits available  
in near-term quantum computers, it is crucial to explore other,  
complementary techniques.

One approach for suppressing this type of noise is to minimize 
the use of non-energy-conserving unitaries in the circuit. That is, 
the circuit should be mostly formed from local energy-conserving 
unitaries. This includes energy-conserving elementary gates, such 
as single-qubit rotations around z, as well as energy-conserving 
multi-qubit modules, which may contain non-energy-conserving 
elementary gates. As long as the entire module can be executed in a 
sufficiently short time during which the clock fluctuations are neg-
ligible, then the energy conservation of the module guarantees its 
resilience against this type of noise. For example, while the standard 
Mølmer–Sørensen gate33exp(iθXX) on trapped-ion quantum com-
puters is not energy conserving and hence is sensitive to these fluc-
tuations, when it is sandwiched between Hadamards on both qubits, 
it transforms to exp(iθZZ), which is energy conserving. Similarly, 
by combining two Mølmer–Sørensen gates with single-qubit 
phase gates, we obtain exp(iθ(XX+ YY)), which is again energy 
conserving.

The tools and ideas introduced in this paper provide a foun-
dation for the systematic synthesis of quantum circuits that 
are resilient against this type of noise. To minimize the number 
of non-energy-conserving unitaries, the first step is to deter-
mine which unitaries can be efficiently realized using local 
energy-conserving modules. As an example, consider the family 
of unitaries generated by the multi-qubit swap Hamiltonian: sup-
pose that a system with 2r qubits is partitioned into two subsys-
tems A and B, each with r qubits. Let SAB be the multi-qubit swap 
operator that exchanges the states of A and B. The family of uni-
taries exp(iϕSAB) for ϕ ∈ [0, 2π) appears as a subroutine in vari-
ous quantum algorithms (see, for example, refs. 34–37). It has also 
found applications in the study of quantum reference frames and 
quantum thermodynamics35,38. The multi-qubit swap Hamiltonian 
SAB is not only energy conserving but in fact respects the stronger 
SU(2) symmetry, that is, [SAB, U⊗2r] = 0 for all single-qubit unitaries 
U. Therefore, one may expect that this family of unitaries should be 
realizable using a sequence of local SU(2)-invariant unitaries or, at 
least, using local energy-conserving unitaries, which may break the 
SU(2) symmetry. However, our results refute this conjecture: for 
generic values of ϕ, all the l-body phases of the unitary exp(iϕSAB) 
are non-zero (for example, Φ2r = 2rϕ: mod 2π), which means that 
this unitary is not realizable using local energy-conserving unitar-
ies. On the other hand, if one is allowed to use a single ancillary 
qubit, then this family is realizable using single-qubit rotations 
around z together with unitaries exp(iθ(XX+ YY)), which, as 
discussed above, can be obtained from two Mølmer–Sørensen 
gates. Therefore, to implement a quantum algorithm that employs 
this subroutine, this part of the circuit can be realized using only 
energy-conserving modules. This makes the entire circuit more 
resilient against clock fluctuations.

Discussion
Universality of local unitaries in the absence of symmetries is a pro-
found fact about composite quantum-mechanical systems, with vast 
applications and implications in different areas of physics. Hence, 
the failure of universality in the presence of symmetries can also 
have interesting and unexpected implications in different areas. 
Here, we saw an example of such surprising implications, namely 
the possibility of probing the locality of interactions. We end with 

XX + YY1 n

ba

∣1〉 ∣0〉

Fig. 4 | Circumventing the no-go theorem with ancillary qubits. Our 
no-go theorem implies that the family of unitaries generated by the 
n-qubit Hamiltonian Z⊗n cannot be implemented using local U(1)-invariant 
unitaries, even if they act on n − 1 qubits. This figure presents a scheme 
for circumventing this no-go result, using two ancillary qubits. This 
scheme uses the interaction R = (XX + YY)/2 between nearest-neighbour 
qubits on a closed loop. The two ancillary qubits, denoted by a (red ball) 
and b (blue ball) are initially prepared in states |1⟩ and |0⟩, respectively. 
First, we show that it is possible to realize the Hamiltonian K = Z⊗n ⊗ Ra,b 
without any direct interaction between the ancillary qubits. This only 
requires coupling qubit a to qubit j = 1 in the chain, coupling between 
nearest-neighbour qubits in the chain (green balls) and coupling between 
qubit j = n and ancilla b. This Hamiltonian describes the process in which 
a charge is transported through the chain from one ancillary qubit to the 
other and obtains a phase depending on the parity of the total charge in 
the system. As we explain in Supplementary Note 6, this has an intuitive 
interpretation in the fermionic description of this system, obtained by 
applying the Jordan–Wigner transform. After evolving the entire system 
for a short time interval δt under Hamiltonian K, we obtain the joint state 
|ψ⟩ |1⟩a|0⟩b − iδtZ⊗n |ψ⟩ |0⟩a|1⟩b +O(δt2), where |ψ⟩ is the initial state 
of n qubits. Next, we directly couple a to b and close the loop, using the 
2-local unitary exp(iπRa,b/4) exp(iπZb/4) that allows the charge to move 
back and forth between the ancillary qubits, without going through the 
chain. Finally, we measure one of the ancillary qubits in the {|0⟩ , |1⟩} basis. 
This determines the final location of the charge initially located in qubit a. 
The final state of n qubits is exp(±iδtZ⊗n) |ψ⟩+O(δt2), where the sign 
depends on whether the final location of charge is qubit a or b. Therefore, 
this process stochastically implements the Hamiltonian ±Z⊗n. In principle, 
by choosing an infinitesimal time step δt and repeating this scheme many 
times, we can implement the desired unitary exp(iϕZ⊗n) for arbitrary angle 
ϕ, with an error approaching zero and probability of success approaching 
one. We show that a slightly more complicated version of this scheme can 
be realized deterministically.
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a brief discussion about other examples of applications of these 
results and the related open questions:

Quantum reference frames and covariant codes. Symmetric 
unitaries naturally appear in the study of quantum reference 
frames16. For instance, it is often assumed that, in the absence of a 
Cartesian reference frame, it is still possible to perform any uni-
tary that respects the SO(3) symmetry group corresponding to 
rotations in 3D space16. The no-go theorem found in this paper 
implies that, if one takes into account the locality of interactions, 
then there can be further restrictions on the realizable unitaries. 
It will be interesting to study possible implications of these addi-
tional constraints in the context of quantum reference frames. 
As an example, ref. 39 shows that arbitrary symmetry-breaking 
Hamiltonians on a system can be simulated by coupling the sys-
tem via rotationally invariant Hamiltonians to n ≫ 1 spin-half 
systems aligned in x and z directions. Therefore, in the limit of 
large n, this quantum reference frame fully lifts the constraint 
of symmetry. It is interesting to further study the efficiency and 
complexity of such schemes when the Hamiltonians are restricted 
to be local.

A similar question also arises in the context of covariant error 
correction, which has recently attracted attention in the quantum 
information community (see, for example, refs. 40–42). Here, the 
goal is to understand the limitations and capabilities of quantum 
error-correcting codes that can be realized by symmetric opera-
tions. Then, again, it is crucial to understand whether those codes 
can be realized via local symmetric unitaries.

Symmetry-protected complexity. Another interesting open ques-
tion in this area is to understand how the notion of circuit com-
plexity changes under the constraint of symmetry. Recall that the 
circuit complexity of a unitary transformation or a state is the 
minimum number of local gates needed to implement the unitary 
or to prepare the state from a fixed (product) state43. For a symmet-
ric unitary or a symmetric state, we can define a modified notion 
of complexity, which can be called symmetry-protected complex-
ity (SPC) and is defined as the minimum number of symmetric 
local unitaries needed to implement a symmetric unitary or to 
prepare a symmetric state. Certain aspects of this notion of com-
plexity have been studied in the context of symmetry-protected 
topological phases44,45. In particular, it is known that, for certain 
families of states, the SPC grow linearly with the number of sub-
systems, whereas the regular complexity remains constant. Given 
the conjectured roles of complexity in the context of holography 
and anti-de Sitter/conformal field theory correspondence46–48, it is 
interesting to further study the notion of SPC and compare it with 
the regular complexity.

Analogue quantum simulation. Understanding the constraints 
imposed by the locality of interactions is also crucial in the con-
text of analogue quantum simulation, which is one of the main 
applications of near-term quantum technology. In this approach 
to quantum simulation, the degrees of freedom and the dynamics 
of the target system are directly mapped to those of the simu-
lator, which is a well-controlled quantum system with a tunable 
Hamiltonian (see, for example, refs. 49–51). As we saw in this 
work, in the presence of symmetries, the locality of the simulator 
Hamiltonian severely restrict the set of realizable Hamiltonians. 
It is interesting to further explore how these restrictions limit  
the power of analogue quantum simulators in the presence of 
symmetries, and, in particular, to investigate whether they can be 
efficiently circumvented.

Proofs. All the results in the paper are rigorously proven in 
Supplementary Notes 1–7.
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Methods
Preliminaries: the Lie algebra generated by local symmetric Hamiltonians.  
We start with a quick review of a standard result in quantum control theory  
(see Supplementary Note 1 for more details). Suppose that one can implement the 
unitary time evolutions generated by Hamiltonians ±A and ±B for an arbitrary 
amount of time t ≥ 0. That is, one can turn on and off these Hamiltonians at will. 
Then, combining these time evolutions one can obtain unitaries

e−iB(c2δt)e−iA(c1δt)
= e−i(c1A+c2B)δt + O(δt2) (7a)

e−iAδte−iBδteiAδteiBδt = e−[A,B]δt2
+ O(δt3) , (7b)

for arbitrary coefficients c1, c2 ∈ R, and for sufficiently small δt. This means 
that, using Hamiltonians ±A and ±B, one can approximately simulate the time 
evolutions generated by any Hamiltonian in the linear span of A and B as well as 
the Hamiltonian i[A, B]. Furthermore, by repeating such combinations of unitaries, 
one can obtain a larger class of unitaries. In fact, it can be proven that, using finite 
sequences of unitaries generated by the Hamiltonians ±A and ±B, one obtains all 
unitary transformations {e−iHt : t ∈ R} generated by any Hermitian operator 
H if, and only if, H belongs to the real Lie algebra generated by A and B, that is, 
can be written as a linear combination of A, B and their (nested) commutators, 
i[A, B], [[A, B], A], [[A, B], B], . . . , with real coefficients. As we explain more 
in Supplementary Note 1, this result means that, to characterize the group VG

k  
generated by k-local symmetric unitaries, it suffices to characterize the Lie algebra 
generated by k-local symmetric skew-Hermitian operators. In particular, the 
dimension of this Lie algebra, as a vector space over R, is equal to dim (VG

k ), the 
dimension of the manifold associated to VG

k , which is also equal to the number of 
real parameters needed to specify a general element of VG

k . Using this relation, we 
establish an upper bound on dim (VG

k ), which is discussed next.

Charge vectors. Next, we introduce the idea of ‘charge vectors’, our main tool 
for deriving constraints on the unitary evolutions generated by local symmetric 
Hamiltonians. Recall that IrrepsG(n) denotes the set of inequivalent irreps of 
group G that appear in the representation {U(g) = u(g)⊗n: g ∈ G} and ∣IrrepsG(n)∣ is 
the number of these inequivalent irreps. Let Πμ be the projector to the subspace 
corresponding to irrep μ ∈ IrrepsG(n), also known as the isotypic component of μ. 
For any operator A, define the charge vector of A as

|χA⟩ ≡

∑

μ∈IrrepsG(n)
Tr(ΠμA) |μ⟩ , (8)

where {|μ⟩ : μ ∈ IrrepsG(n)} is a set of orthonormal vectors in an abstract vector 
space with dimension ∣IrrepsG(n)∣. A general G-invariant Hamiltonian can have 
any charge vector with real coefficients. In particular, for any set of real numbers 
{hμ ∈ R : μ ∈ IrrepsG(n)}, the Hermitian operator 

∑
μ∈IrrepsG(n)

hμ
Tr(Πμ)

Πμ is 
G-invariant and has the charge vector 

∑
μ∈IrrepsG(n)hμ |μ⟩. In other words, under 

the linear map A → |χA⟩, the image of the linear space of Hermitian G-invariant 
operators has dimension ∣IrrepsG(n)∣.

On the other hand, it turns out that, if the unitary evolutions generated 
by Hamiltonian H can be simulated by k-local G-invariant unitaries, that is, 
if ∀t ∈ R : e−iHt

∈ V
G
k , then the charge of vector of H should satisfy certain 

constraints. Let Sk be the set of charge vectors for all such Hamiltonians, that is,

Sk ≡ {|χH⟩ : e−iHt
∈ V

G
k , ∀t ∈ R} . (9)

We prove that Sk is a linear subspace (over the field R) with dimension

dim (Sk) ≤ |IrrepsG(k)| , (10)

and the equality holds if G is a connected Lie group, such as U(1) and SU(2). 
Therefore, if ∣IrrepsG(k)∣ < ∣IrrepsG(n)∣, then dim (Sk) < |IrrepsG(n)|, which means 
there are G-invariant Hamiltonians whose charge vectors do not belong to Sk, 
which in turn implies they cannot be simulated using k-local symmetric unitaries. 
For continuous groups, such as U(1), ∣IrrepsG(n)∣ grows unboundedly with n and, 
therefore, universality cannot be achieved with k-local symmetric unitaries with  
a fixed k.

Below we present a simple argument that explains why the dimension of Sk 
cannot grow unboundedly with the system size. The specific bound on dim (Sk) 
in equation (10) is proven in Supplementary Note 2, using the Fourier transform 
of charge vectors. Furthermore, in Supplementary Note 2, we discuss more about 
charge vectors and their Lie-algebraic interpretation. Briefly, charge vector |χA⟩ 
of an operator A determines its component in the centre of the Lie algebra of 
all G-invariant Hamiltonians, that is, the Lie algebra corresponding to the Lie 
group VG. Then, the subspace Sk determines which part of the centre can be 
generated by k-local G-invariant Hamiltonians. In particular, if dim (Sk) is less 
than dim (Sn) = |IrrepsG(n)|, then local symmetric Hamiltonians cannot generate 
certain elements of the centre, which means such Hamiltonians are not universal. 
This results in the bound in equation (3).

Next, we explain why dim (Sk) cannot grow unboundedly with n. To 
determine Sk, we use the fact that, if e−iHt

∈ V
G
k  for all t ∈ R, then H 

should be in the Lie algebra generated by k-local G-invariant operators, 
that is, H =

∑
jcjAj +

∑
j1 ,j2 cj1 ,j2 i[Aj1 , Aj2 ] + · · ·, where Aj are Hermitian 

k-local G-invariant operators and coefficients cj, cj1 ,j2 , · · · are real numbers. 
It can be shown that the commutators appearing in this expansion do not 
contribute in the charge vector of H, that is, |χH⟩ =

∑
jcj

∣∣∣χj

〉
, where ∣∣∣χj

〉
≡

∑
μ∈IrrepsG(n)Tr(ΠμAj) |μ⟩ is the charge vector of Aj. To see this, note 

that, for any irrep μ ∈ IrrepsG(n), Tr([Aj1 , Aj2 ]Πμ) = Tr(Aj1 [Aj2 , Πμ]) = 0, where 
the first equality follows from the cyclic property of trace and the second equality 
follows from the assumption that Aj2 is G invariant and therefore commutes with 
Πμ. It follows that the commutator [Aj1 , Aj2 ] and other nested commutators do not 
contribute in |χH⟩. This implies that Sk is spanned by the charge vectors of k-local 
G-invariant Hermitian operators, that is, Sk is equal to

Span
R

{
|χA⟩ : A = A†, A is k -local , [A, U(g)] = 0 : ∀g ∈ G

}
. (11)

Next, note that, for any k-local operator A, by applying a properly chosen 
permutation operator S which changes the order of sites, we can obtain an operator 
in the form SAS† = Ã ⊗ Irest with the property that Ã acts on a fixed set of k sites 
(for example, the first k sites according to a certain ordering) and Irest is the identity 
operator on the remaining n − k sites. Since charge vectors remain invariant under 
permutations, operators A and SAS† = Ã ⊗ Irest have the same charge vectors. It 
follows that the subspace in equation (11) is equal to the set of the charge vectors of 
G-invariant Hermitian operators that act non-trivially only on a fixed set of k sites 
(for example, the first k sites). Therefore, as the number of total sites n increases, 
dim (Sk) remains bounded by a number independent of n. In other words, even 
though, using k-local G-invariant unitaries, we can simulate Hamiltonians that 
are not k-local, they can only have charge vectors which are allowed for k-local 
G-invariant Hamiltonians. This explains why the upper bound on dim (Sk) in 
equation (10) does not depend on the system size.

Example: SU(2) symmetry with spin-s systems. In the case of SU(2) symmetry, 
consider n spin-s systems, each with the Hilbert space of dimension 2s + 1. Recall 
that irreps of SU(2) can be labelled by the eigenvalues of the squared angular 
momentum operator J2 = J2x + J2y + J2z. The eigenvalues have the form of j(j + 1), 
where j is half-integer and takes values j = 1/2, 3/2, ⋯ , ns if s is not integer and n is 
odd, and values j = 0, 1, ⋯ , ns, otherwise. In both cases, the total number of distinct 
irreps is ∣IrrepsSU(2)(n)∣ = ⌊ns⌋ + 1. Because SU(2) is a connected group, the bound 
in equation (10) holds as equality, that is, dim (Sk) = ⌊ks⌋ + 1. Furthermore, 
equation (3) implies that the difference between the dimensions of the manifolds 
of all SU(2)-invariant unitaries and those realizable by k-local SU(2)-invariant 
unitaries is lower bounded by

dim (V
SU(2)
n ) − dim (V

SU(2)
k ) ≥ ⌊ns⌋ − ⌊ks⌋ . (12)

For integer spin s, this means that, for any k < n, there are (k + 1)-local unitaries 
that cannot be realized using k-local unitaries. Similarly, for non-integer s, there are 
(k + 2)-local unitaries that cannot be realized using k-local unitaries.

Full characterization of realizable U(1)-invariant Hamiltonians for qubits. In 
Supplementary Note 3, we study the example of U(1) symmetry for qubit systems. 
Interestingly, it turns out that, in this example, the constraints imposed by the 
charge vectors fully characterize the set of realizable Hamiltonians. The theorem 
below states these conditions.

For a system with n qubits, define Hermitian operators Cl: l = 0, ⋯ , n as

Cl ≡
∑

b : w(b) = l
Zb

=

n∑

m=0
cl(m) Πm , (13)

where the first summation is over all bit strings b = b1 ⋯ bn ∈ {0, 1}n with Hamming 
weight w(b) ≡

∑n
j=1 bj equal to l, and Zb = Zb1

1 · · · Zbn
n . In the second term,  

Πm is the projector to the eigen-subspace of N =
∑n

j=1(I − Zj)/2 with eigenvalue m, 
and

cl(m) =

m∑

s=0
(−1)s

(
m

s

)(
n − m

l − s

)
, (14)

is the eigenvalue of Cl in this subspace (recall that the binomial coefficient 
( a
b
)
= 0 

for b > a. See Supplementary Note 3 for derivation of equation (14)). We prove

Theorem. For any U(1)-invariant Hamiltonian H on n qubits, the family of 
unitaries {e−itH : t ∈ R} can be implemented using k-local U(1)-invariant 
unitaries for k ≥ 2, if and only if

Tr(HCl) = 0 : l = k + 1, · · · , n . (15)

Note that, using equation (13), these conditions can be rewritten in terms of 
the charge vector |χH⟩ =

∑n
m=0 Tr(HΠm) |m⟩ of Hamiltonian H, where {|m⟩} is 

a basis for an abstract (n + 1)-dimensional vector space.
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Equations (15) impose exactly n − k independent constrains on the set of 
realizable Hamiltonians. Hence, the difference between the dimension of realizable 
U(1)-invariant Hamiltonians and all U(1)-invariant Hamiltonians is exactly n − k, 
which means that, in this case, the general bound in equation (3) holds as equality. 
This theorem is proven in Supplementary Note 3.
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