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ABSTRACT: A visible-light-induced Pd-catalyzed stereoselective A
synthesis of alkylated ester hydrazones has been developed. This Hil o
method operates via generation of a nucleophilic carbon-centered \lN o
radical from alkyl bromide, iodide, or redox-active ester, followed b AN + —— ==
its addition tkg’ hydrazone, and a subsequent desaturation bz A X H COH via Visible Light Alk
palladium. The majority of products have E configuration, which
are inaccessible by conventional condensation methods. In addition,
a sequential C,N-alkylation protocol has been developed: a reaction
between 1,3-dihalides and glyoxylate-derived hydrazone, delivering
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tetrahydropyridazines.

ydrazone is a highly versatile functional group within the

organic chemistry domain. It is most famous for use as a
precursor/intermediate in synthesis of various electron-rich
heterocycles, such as pyrazoles' and indoles,” as well as in
azaenolate reactions’ and carbene chemistry." Beyond
synthetic chemistry, hydrazones are used in bioconjugation,®
polymer,® and material” chemistry. A number of hydrazone-
containing molecules exhibit biological activity, which paves
the way for drug discovery.” Classically, hydrazones are
accessed via condensation reactions of carbonyls with
hydrazines.” Quite simple, this method is reliant on availability
of corresponding aldehyde or ketone and may not be a facile
route for diversification. Moreover, sometimes forcing
conditions (heat and acid) are required to achieve the desired
transformation, which may become troublesome in the
presence of certain sensitive functional groups. A direct C—
H functionalization of aldehyde-derived hydrazones appears as
an attractive alternative for rapid assembly of fully substituted
hydrazones, which could bypass these challenges. Primarily,
such functionalization can be achieved via radical chemistry of
hydrazones. Hydrazones have long been recognized as good
nucleophilic radical acceptors.'” On the basis of this property,
a number of reductive C—C bond-forming reactions have
emerged (Scheme la),'!" including asymmetric reactions,'”
ultimately leading to chiral amines. The oxidative version of
this transformation was recently realized in the form of
perfluorinated radical addition (Scheme 1b)."” Use of a copper
or photoredox catalyst or stoichiometric oxidant ensures
regeneration of the carbon—nitrogen double bond to restore
valuable hydrazone functionality. Alternatively, the C=N
double bond could be preserved via the radical addition/
elimination strategy used in closely related oxime-type
substrates;'* however, this route has not been realized for
hydrazones. As a result, at this point, there are only few non-
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fluorinated radical examples present in the literature,"> which
means that, even though oxidative C—H alkylation is possible,
it remains quite limited in the choice of radical precursors to
date. In addition, these reactions most often rely on use of
dialkyl-substituted hydrazones, which may prevent further
functionalization, such as employment in indole synthesis."> A
non-radical C—H alkylation/arylation pathway is also possible,
usually via pseudo-enolate-type reactions, but these examples
are scarce and limited to very specific systems.'® On the basis

Scheme 1. Radical Reactions of Hydrazones
a. Reductive C-C Bond Construction b. Oxidative C—H Alkylation
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Scheme 2. Scope of Hydrazone in the Alkylation Reaction”
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of the broad application of hydrazones within synthetic
chemistry'~* and beyond,”™® development of a more general
C—H alkylation protocol is warranted. Herein, we report a
mild visible-light-induced stereoselective Pd-catalyzed Heck-
type C—H alkylation of glyoxylate-derived hydrazones
proceeding via nucleophilic radical addition (Scheme 1c)."”
The reaction exhibits a remarkable stereoselectivity, yielding a
significantly less thermodynamically stable E isomer, allowing
for the exploration of previously inaccessible chemical space.

In last few years, the visible-light-induced photoexcited
chemistry of palladium has emerged as a powerful tool for
combining carbon-centered radical chemistry with innate
properties of palladium complexes.18 As a part of the field,
previously hard-to-realize intermolecular alkyl-Heck-type'”
transformations of styrenes and other activated alkenes™ and
oximes”' have been developed using an array of alkyl radical
precursors. Motivated by these findings, we were eager to
explore potential application of this approach to achieve a
critical C—H alkylation of hydrazones.

A set of conditions was identified for coupling hydrazone 1
with cyclohexyl bromide 2 (see the Supporting Information for
details). Suprisingly, the obtained product had an E
configuration, despite the fact that the Z isomer is significantly
more thermodynamically stable as a result of internal hydrogen
bonding.”” Importantly, in a typical condensation reaction, the
Z isomer is either a sole or a predominant product in most
cases.”” While it is possible to synthesize the E isomer via other
routes, typically, these involve reactions between organo-
lithium reagents and diazo compounds™ or silyl-enol ethers
with diazonium salts®® and, thus, have very low functional
group tolerance. This means that our method not only allows
for an unprecedented radical C—H alkylation of hydrazones
but also allows for the synthesis of stereoisomers, which are not
available otherwise.

With the optimized conditions in hand, we began
investigation of the reaction scope by interrogating reactions
of various primary alkyl electrophiles with benchmark
hydrazone 1 (Scheme 2). Alkyl bromide (3a), iodide (3n),
and redox-active ester (3p) all have been found to be suitable
radical precursors. Functional groups, such as phenyl (3b),
terminal alkene (3c), ester (3d), ether (3e), and nitrile (3f),
were all tolerated under these reaction conditions. The
synthesis of bromoethanol derivative 3g, however, required a
protecting group. The slightly more electrophilic trimethylsilyl-
methylene radical has also engaged in the reaction with
hydrazone, although delivering a product with a slightly
diminished yield (30). Perhaps the most surprising results in
the investigation of primary electrophiles were reactions of
benzylic bromides (3h—3m). Engagement of benzylic electro-
philes in alkyl-Heck reactions via hybrid Pd radical chemistry
remains a challenge. Excitingly, under a slightly modified
procedure,”® we were able to achieve the desired trans-
formation with moderate efficiency. Even more surprising was
the fact that, out of all tested substrates, ortho-bromobenzyl
bromide has proven to be the best reactant, with bromide
functionality remaining untouched (3m). Moreover, secondary
alkyl substrates, including acyclic (3r) or cyclic compounds
with various ring sizes (3s—3v), could all be used via this
protocol. A direct comparison between cyclohexyl bromide,
iodide, and redox-active ester (3v) led to the conclusion that
alkyl bromides are the most effective substrates in general.
Hydrazones possessing various six-membered saturated hetero-
cycles (3w—3y and 3ab) could also be accessed. Furthermore,
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this transformation can be incorporated in a cascade reaction,
where the first radical 1,5-exo-trig cyclization is followed by the
addition to hydrazone, resulting in a bicyclic product (3z).
Excitingly, reactions leading to compounds 3x and 3z
proceeded with high degrees of diastereocontrol. Tertiary
substrates, as opposed to primary and secondary substrates,
with few exceptions (3af and 3aj), resulted in products with a
Z configuration. An increased steric repulsion as a result of a
1,3-allylic strain exhibited in a potential E isomer could be the
reason for the reversed stereochemistry in these cases.
Intriguingly, initial isolation of adamantyl-containing product
3ad revealed the presence of the corresponding diazene 3ad’.
Diazene isomerized into the product overnight in slightly
acidic non-neutralized CDCIl,.*® Next, the scope of hydrazones
was studied with emphasis placed on N-aryl hydrazones, en
route to substituted indoles. In general, different functional
groups on the aromatic ring did not influence the reaction
outcome greatly, except for the para-nitrile substituent, where a
Z stereoisomer 3am was obtained. It could be explained by an
increased acidity of the NH proton, making this hydrazine
susceptible to base-induced isomerization. Excitingly, alkyl-
substituted hydrazone 3aq could also be obtained in a
moderate yield via this protocol. Surprisingly, when benzyl-
substituted hydrazone was employed, a regioisomeric non-
ester-conjugated hydrazone product 3ar was obtained.
Importantly, because these reaction conditions lead to E
products, the nitrogen atom is preset for a potential
intramolecular Sy2 reaction if an appropriate electrophile is
present.”” Indeed, employment of simple 1,3-dibromopropane
under standard reaction conditions with an addition of another
equivalent of a base led to 1,4,5,6-tetrahydropyridazine (4a) in
a good yield (Scheme 3). Via this manner, several six-

Scheme 3. Scope of the Sequential C,N-Alkylation
Reaction®
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membered heterocycles were synthesized, including the
phenyl-substituted product (4c), (S)-epiclorohydrin derivative
(4e), 4,6- and S,6-spirocycles (4f and 4g), and difluoro-
containing product (4h).

The formation of the carbon-centered radical was validated
by reactions of (bromomethyl)cyclopropane under standard
reaction conditions, which led to a ring-opening product 3as in
a moderate yield (eq 1). Notably, when bis(bromomethyl)-
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cyclopropane 2¢ was employed, a seven-membered heterocycle
containing an endocyclic alkene 4i was obtained (eq 2).
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On the basis of the relevance of the reported light-induced
Heck reactions of olefins'®*°* and C—H alkylation of oximes,”'
together with the above-mentioned observations, the following
mechanism is proposed (Scheme 4). Initially, visible-light-
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Scheme 4. Proposed Reaction Mechanism
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induced alkyl Pd hybrid species A is produced, followed by the
favorable'” radical addition to the C=N bond of hydrazone.
The formed intermediate B could be either directly oxidized
into diazene D or recombined with Pd(I) to form Pd(II)
complex C, which, in turn, would undergo a f-hydride-type
elimination to deliver diazene D. Diazene intermediacy is
supported by its observation in the synthesis of adamantyl
derivative 3ad (vide supra) as well as obtaining the non-ester
conjugated regioisomer 3ar. The formation of the latter
presumes intermediacy of the proposed diazene intermediate,
which forms upon selective isomerization, driven by con-
jugation with the aromatic ring, as opposed to that with the
ester group. It must be noted, however, that, in cases of
primary and secondary alkyl radicals, the diazene intermediate
was not detected during the reaction progress. This may imply
that base-assisted isomerization of diazenes into products is
very facile. E selectivity of obtained products could be
explained by palladium-assisted isomerization, where Pd is
chelated by oxygen and nitrogen atoms, thus pushing the other
nitrogen away from the ester group. Alternatively, E hydrazone
may arise from fast kinetically favorable isomerization of

4179

diazene, which appears irreversible under basic conditions.
Otherwise, even in slightly acidic CDCl;, a rapid complete
isomerization of E products to Z products occurs at room
temperature.26

In conclusion, we developed a mild visible-light-induced Pd-
catalyzed Heck-type alkylation of glyoxylate-derived hydra-
zones proceeding via a hybrid Pd radical mechanism. The
major highlight of the presented work is an excellent
stereoselectivity, enabling synthesis of previously hard-to-
access E isomers of ester-containing hydrazones. Unique
stereoselectivity of the process was also used in a sequential
C,N-alkylation reaction toward one-pot construction of
tetrahydropyridazines. We hope that this work will spark
further interest in development of new C—H functionalization
of imine-type compounds.
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