
Equality Constrained Linear Optimal Control With Factor Graphs

Shuo Yang1, Gerry Chen2, Yetong Zhang2, Howie Choset1, and Frank Dellaert2

Abstract— This paper presents a novel factor graph-based

approach to solve the discrete-time finite-horizon Linear

Quadratic Regulator problem subject to auxiliary linear equal-

ity constraints within and across time steps. We represent such

optimal control problems using constrained factor graphs and

optimize the factor graphs to obtain the optimal trajectory

and the feedback control policies using the variable elimination

algorithm with a modified Gram-Schmidt process. We prove

that our approach has the same order of computational com-

plexity as the state-of-the-art dynamic programming approach.

Furthermore, current dynamic programming approaches can

only handle equality constraints between variables at the same

time step, but ours can handle equality constraints among

any combination of variables at any time step while main-

taining linear complexity with respect to trajectory length.

Our approach can be used to efficiently generate trajectories

and feedback control policies to achieve periodic motion or

repetitive manipulation.

I. INTRODUCTION

The Equality Constrained Linear Quadratic Regulator
(EC-LQR) is an important extension [1], [2] of the Linear
Quadratic Regulator (LQR) [3]. The standard finite-horizon
discrete-time LQR problem contains (1) quadratic costs on
the state trajectory and the control input trajectory and (2)
system dynamics constraints which enforce that the current
state is determined by a linear function of the previous
state and control. In the EC-LQR, auxiliary constraints are
introduced to enforce additional linear equality relationships
on one or more state(s) and/or control(s).

In many important problems auxiliary constraints violate
the Markov assumption, yet such constraints are rarely
considered in existing EC-LQR approaches. We classify
auxiliary constraints in EC-LQR problems into two cat-
egories which we term local constraints and cross-time-
step constraints. A local constraint only contains a state
and/or control from the same time step. Examples of local
constraints include initial and terminal conditions on states,
contact constraints, and states along a predefined curve. In
contrast, a cross-time-step constraint involves multiple states
and controls at different time instances. Such non-Markovian
constraints are pervasive in many robotics applications. For
example, a legged robot’s leg configuration must return to the
same state after a period of time during a periodic gait [4].
In optimal allocation with resource constraints [5], the sum
of control inputs is constrained to be some constant. Our

1 Shuo Yang and Howie Choset are with the Robotics Institute and
Department of Mechanical Engineering, Carnegie Mellon University, Pitts-
burgh. Emails: {shuoyang, choset}@andrew.cmu.edu

2 Gerry Chen, Yetong Zhang, and Frank Dellaert are with the Institute for
Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta.
Emails: {gchen328, yzhang3333, fd27}@gatech.edu

x0 x1 x2

u0 u1

xT
0 Qxx0x0 xT

1 Qxx1x1 xT
2 Qxx2 x2

uT
0 Quu0u0 uT

1 Quu1u1

x1 = Fx0x0 +Fu0u0 x2 = Fx1x1 +Fu1u1

Gx0x0 +Gu0u0 +gl0 = 0 Gx1x1 +Gu1u1 +gl1 = 0 Gx2x2 +gl2 = 0

S0x0 +S2x2 + s = 0

Quadratic Objective Factor
Linear Constraint Factor

Fig. 1: The factor graph representation of an Equality Constrained Linear
Quadratic Regular (EC-LQR) problem. Circles with letters are states or
controls. Filled squares and circles represent objectives and constraints that
involve the state or controls to which they are connected. The red square
represents a cross-time-step constraint.

goal is to solve for both optimal trajectories and optimal
feedback control policies in EC-LQR problems with local
and cross-time-step constraints in linear time with respect to
the trajectory length, which no existing EC-LQR methods
can achieve.

Reformulating control problems as inference problems
[6]–[9] is a growing alternative to common trajectory op-
timization [10]–[12] and dynamic programming (DP) ap-
proaches for optimal control [1], [2], [13] . While trajectory
optimization focuses on open-loop trajectories rather than
feedback laws, and a method using DP to handle cross-time-
step constraints has yet to be proposed, control as inference
may offer the advantages of both. Factor graphs, in particular,
are a common tool for solving inference problems [14] and
have recently been applied to optimal control [15], [16].

In this paper we propose a novel formulation using factor
graphs [14] to efficiently solve the EC-LQR problem with
both local and cross-time-step constraints in linear time with
respect to trajectory length. We demonstrate how to represent
the EC-LQR problem as a factor graph (shown in Fig. 1),
and apply the variable elimination (VE) algorithm [17] on the
factor graph to solve for the optimal trajectories and optimal
feedback control policies. The flexibility of the factor graph
representation allows cross-time-step constraints with arbi-
trary numbers of variables to be seamlessly handled. As long
as the maximum time index difference of variables involved
in each constraint is bounded, the computational complexity
stays linear with trajectory length. The approach in this paper
matches the computational complexity of standard dynamic
programming techniques [2], but also has the added benefit
of handling cross-time-step constraints.

II. RELATED WORK

Trajectory optimization methods typically transcript a
problem into a Quadratic Programming (QP) [18] or Non-
Linear Programming (NLP) [10] problem which can be ef-
ficiently solved to obtain open-loop trajectories of nonlinear
systems. Local controllers can be used to track the open-loop
trajectories generated [12]. Designing local controllers that
obey equality constraints motivates EC-LQR problems.

For EC-LQR problems with just local constraints, DP-
based approaches can generate both the optimal trajectories
and feedback control policies. Solving standard LQR using
DP is well understood in control theory [3]. [12] tackles EC-
LQR with state-only local constraints by projecting system
dynamics onto the constraint manifold. [1] extends the DP
approach by using Karush-Kuhn-Tucker (KKT) conditions
[5] to absorb auxiliary constraints into the cost function, but
its computation time grows with the cube of the trajectory
length for certain auxiliary constraints. [2] solves the EC-
LQR with local constraints in linear complexity by adding a
new auxiliary constraint dubbed “constraint to go” at each
time step during DP steps.

Control as inference, in which a control problem is refor-
mulated and solved as an inference problem, has gained con-
siderable attention [6], [7]. Probabilistic Graphical Models
(PGMs), which are commonly used for inference, have been
applied to optimal control problems [8], [9] because they
describe dependencies among variables while maintaining
sparsity in the graphical representation. Therefore, PGMs
can solve for variable distributions efficiently by exploiting
sparsity [19]. The Markov assumption gives optimal control
problems a “chain” structure when represented as PGMs
allowing linear computational complexity with respect to
trajectory length [7], [8], [16], [20], but PGMs can also
exploit sparsity for more complex (non-chain) structures
which motivates using PGMs for cross-time-step constraints.

Factor graphs, a type of PGM, have been successfully
applied to robot perception and state estimation [14]. Prior
works have demonstrated that the variable elimination (VE)
algorithm [17] on factor graphs can efficiently factorize the
graphs’ equivalent matrix representations in order to infer the
posterior distributions of random variables. This procedure is
called factor graph optimization. Moreover, factor graphs can
encode constraints [21]. Other than estimation, factor graphs
can be used to do motion planning [15], [22]. Standard
LQRs with factor graphs are considered in [8], [16] without
auxiliary constraints.

III. PROBLEM AND METHOD

In this section we first formulate the standard LQR and
EC-LQR problems following the notation used in [2]. Then
we solve a standard LQR problem as a factor graph and
review relevant concepts related to factor graphs. Next, we
solve EC-LQR with local constraints using factor graphs and
compare our algorithm to the one proposed by [2], the most
recent DP-based approach. Finally, we show how our method
handles EC-LQR with cross-time-step constraints.

x0 x1 x2

u0 u1

xT
0 Qxx0x0 xT

1 Qxx1x1 xT
2 Qxx2x2

uT
0 Quu0u0 uT

1 Quu1u1

x1 = Fx0x0 +Fu0u0 x2 = Fx1x1 +Fu1u1

Quadratic Objective Factor
Linear Constraint Factor

Fig. 2: Factor graph of a standard LQR problem with trajectory length
T = 2.

A. Problem Formulation

For a robotic system with state xt 2 Rn and control input
ut 2Rm, we define a state trajectory as x= [x0,x1, . . . ,xT] and
control input trajectory as u = [u0,u1, . . . ,uT�1] where T is
the trajectory length. The optimal control input trajectory u

⇤

and its corresponding state trajectory x
⇤ are the solution to

the constrained linear least squares problem:

min
u

xT
T QxxT xT +

T�1

Â
t=0

(xT
t Qxxt xt +uT

t Quut ut) (1a)

s.t. xt+1 = Fxt xt +Fut ut (1b)
Gxt xt +Gut ut +glt = 0, t 2 C (1c)
GxT xT +glT = 0 (1d)

Â
i2Ckx

Sxkixi + Â
j2Cku

Suk ju j + sk = 0 (1e)

where QxxT , Qxxt , and Quut are positive definite matrices
defining the cost function; Fxt and Fut define the system
dynamics at time t; constraints (1c) and (1d) are local
auxiliary constraints; and constraint (1e) is a new formulation
for cross-time-step constraints. In (1c) and (1d), Gxt 2Rlt⇥n,
Gut 2 Rlt⇥m, and glt 2 Rlt form local constraints with con-
straint dimension lt ; C is the set of time steps where a local
constraint, such as initial state constraint, applies; and GxT
and glT form a local constraint with dimension lT on the
final step. In the cross-time-step constraint (1e), Sxki 2Rct⇥n,
Suk j 2Rct⇥m, and sk 2Rct form constraints on a set of states
xi and controls u j where k is the index of the cross-time-step
constraint. In this paper we focus on representing quadratic
cost in the factor graph, but linear terms in the cost function
can be incorporated too as shown in the next section.

B. Standard LQR as a Factor Graph

We first demonstrate how to represent standard LQR,
Problem 1 with only constraint (1b), as the factor graph
shown in Fig. 2 and subsequently obtain the optimal tra-
jectory and optimal feedback control policy using VE.

Factor graphs can be interpreted as describing either a joint
probability distribution with conditional independencies or,
as we focus on in this paper, an equivalent least-squares prob-
lem derived from minimizing the negative log-likelihood. A
factor graph is a bipartite graph consisting of variables and
factors connected by edges, where a factor can be viewed
either as a joint probability density or least squares objective
over the variables it is connected to.

x0 x1 x2

u0 u1

!

x0 x1 x2

u0 u1

x⇤2(x1,u1) = argmin
x2

xT
2 QxxT x2

s.t. x2 = Fx1 x1 +Fu1 u1

!
x⇤2(u1,x1) = Fx1 x1 +Fu1 u1

f⇤x2
(u1,x1) = x⇤T2 QxxT x⇤2

Wx2 x2 u1 x1
I
•

�
Q1/2

xxT 0 0 0
I �Fu1 �Fx1 0

�
!

W 0x2 x2 u1 x1
•
I

�"I �Fu1 �Fx1 0

0 Q
1
2
xxT Fu1 Q

1
2
xxT Fx1 0

#

(a) Eliminate x2

x0 x1 x2

u0 u1

!
x0 x1 x2

u0 u1

u⇤1(x1) = argmin
u1

f⇤x2
(x1,u1)

+uT
1 Quu1 u1

!
u⇤1(x1) =�K1x1

f⇤u1
(x1) =(K1x1)

T Quu1 (K1x1)

+f⇤x2
(x1,�K1x1)

Wu1 u1 x1


I
I

�2

4Q
1
2
xxT Fu1 Q

1
2
xxT Fx1 0

Q
1
2
uu1 0 0

3

5!
W 0u1 u1 x1
R1
I

�
I K1 0

E1 0

�

(b) Eliminate u1

Fig. 3: Two variable eliminations for the LQR problem. Each sub-figure consists of three rows showing three equivalent representations: the factor
graph (top), constrained optimization (middle), and modified Gram-Schmidt process on [Ai|bi] (bottom). The arrows in the factor graphs show variable
dependencies. The thin horizontal arrows separate cases before and after elimination. Terms and symbols in the same color correspond to the color-coded
variable elimination steps in Section III-B. Note that the matrix factorization representation consists of the weight vector, Wi, next to the sub-matrix [Ai|bi].

x0 x1 x2

u0 u1

!

x0 x1 x2

u0 u1

x⇤2(x1,u1) = argmin
x2

xT
2 QxxT x2

s.t. Gx2 x2�gl2 = 0
x2�Fu1 u1�Fx1 x1 = 0

!
x⇤2(u1,x1) = Fx1 x1 +Fu1 u1

f⇤x2
(u1,x1) = ||Fx1 x1 +Fu1 u1||2QxxT

y⇤x2
(u1,x1) = Gx2 Fu1 u1 +Gx2 Fx1 x1�gl2 = 0

Wx2 x2 u1 x12

4
I
•
•

3

5

2

4Q
1
2
xxT 0

Gx2 gl2
I �Fu1 �Fx1 0

3

5!

W 0x2 x2 u1 x12

4
•
I
•

3

5

2

4
I �Fu1 �Fx1 0

0 Q
1
2
xxT Fu1 Q

1
2
xxT Fx1 0

0 Gx2 Fu1 Gx2 Fx1 gl2

3

5

(a) Eliminate x2

x0 x1 x2

u0 u1

!
x0 x1 x2

u0 u1

u⇤1(x1) = argmin
u1

f⇤x2
(x1,u1)+uT

1 Ru1

s.t. Gx2 Fu1 u1�Gx2 Fx1 x1�gl2 = 0
Gu1 u1�Gx1 x1�gl1 = 0

!
u⇤1(x1) =�K1x1 + k1

f⇤u1
(x1) = ||P

1
2

1 x1� p1||2

y⇤u1
(x1) = H1x1�h1 = 0

Wu1 u1 x1

2

64

I
•
I
•

3

75

2

6664

Q
1
2
xxT Fu1 Q

1
2
xxT Fx1 0

Gx2 Fu1 Gx2 Fx1 gl2

Q
1
2
uu1 0

Gu1 Gx1 gl1

3

7775
!

W 0u1 u1 x12

4
R1
•
I

3

5

2

4
I K1 k1
0 H1 h1

0 P
1
2

1 p1

3

5

(b) Eliminate u1

Fig. 4: Two elimination steps for EC-LQR with local constraints. This figure has the same layout as Figure 3.

We begin by showing how the probabilistic view of factor
graphs is equivalent to a least squares minimization [14]. We
construct factor graph to describe a joint probability distri-
bution of the variables X = [x;u]. For Gaussian distributions,
the probability distribution for a single objective or constraint
factor fk can be written in matrix form as

fk(Xk) µ exp
�
� 1

2kAkXk�bkk2
Sk

where exp is the exponential function and Xk contains the
variables connected to the factor. Ak and bk are a matrix and
a vector with problem-specific values, Sk is the covariance of
the probability distribution, and || · ||2S := (·)T S�1(·) denotes
the square of the Mahalanobis norm. Ak, bk, and Sk together
define the probability density of the factor.

The product of all factors is the posterior distribution of X
whose MAP estimate solves the least squares problem [14]:

XMAP = argmax
X

f(X) = argmin
X
� log(’

k
fk(Xk))

= argmin
X

Â
k
kAkXk�bkk2

Sk
= argmin

X
kAX�bk2

S (2)

where A and S contain Ak and Sk on the block diagonal
respectively and b stacks all bk vertically. In this formulation,
each factor fk corresponds to a block row in [A|b]. Defining
the weight matrix W := S�1, XMAP minimizes a weighted
least squares expression (AX�b)TW (AX�b).

The objective factors in Fig. 2 are fob jx(xt) µ
exp{� 1

2kQ
1/2
xxt xtk2} and fob ju(ut) µ exp{� 1

2kQ
1/2
uut utk2},

while the constraint factors are fdyn(xt+1,xt ,ut) µ
exp{� 1

2kxt+1 � Fxt xt � Fut utk2
Sc
} where the covariance

Sc = 0 creates infinite terms in W . When factor graphs have
factors with zero covariance, the least squares problem turns
into a constrained least squares problem which we can solve
using e.g. modified Gram-Schmidt [23]. If linear terms are
desired in the cost function in (1a) (e.g. track a non-zero
setpoint), we can always express the objective factor in a
Gaussian form as fob jx(xt) µ exp{� 1

2kQ
1/2
xxt (xt � xre f)k2},

where xre f is some tracking target.

The VE algorithm is a method to solve (2) while exploiting
the sparsity of A by solving for one variable at a time. For

a variable qi 2 X , we can identify its separator Si: the set
of other variables sharing factors with qi. Then we extract
sub-matrices Ai, Wi, and sub-vector bi from the rows of A,
W , and b such that [Ai|bi] contains all factors connected to
qi. We collect the rows in [Ai|bi] with finite weights to define
objective factor fi(qi,Si) and rows with infinite weights
to define constraint factor yi(qi,Si). Then we “eliminate”
variable qi following 3 steps1:
Step 1. Identify all the factors adjacent to qi to get [Ai|bi].

Split [Ai|bi] into fi(qi,Si) and yi(qi,Si).
Step 2. Solve the (constrained) least squares problem:

q ⇤i (Si) = argmin
qi

fi(qi,Si) s.t. yi(qi,Si) = 0

using modified Gram-Schmidt or other constrained
optimization methods [5, Ch.10]. q ⇤i (Si) denotes that
q ⇤i is a function of the variables in Si.

Step 3. Substitute qi q ⇤i by replacing the factors fi(qi,Si)
and yi(qi,Si) with f ⇤i (Si) := fi(q ⇤i ,Si) and y⇤i (Si) :=
yi(q ⇤i ,Si), respectively, in [A|b].

We follow an elimination order [19] to eliminate one
variable qi 2 X at a time. After all variables are eliminated,
the factor matrix A is effectively converted into an upper-
triangular matrix R allowing X to be solved by matrix
back-substitution. Therefore, one interpretation of the VE
algorithm is performing sparse QR factorization on A [14].

To apply VE to the LQR factor graph in Fig. 2, we
choose the ordering xN ,uN�1,xN�1, . . . ,x0 and execute Steps
1-3 to eliminate each variable. This order is chosen to
generate feedback policies where the controls are functions
of the present states. When eliminating a state xi for the
special case of LQR, the constrained least-squares problem in
Step 2 is trivially solved as x⇤i (ui�1,xi�1) = Fuui�1 +Fxxi�1.
Additionally, y⇤xi

will be empty since yxi(x
⇤
i ,ui�1,xi�1) is

satisfied for any choice of ui�1 and xi�1. Fig. 3a shows the
factor graphs, corresponding optimization problems, and sub-
matrices [Wi][Ai|bi] before and after eliminating x2.

The optimal feedback control policy emerges when elim-
inating a control ui. The combined constraint factor yui
is empty (since y⇤xi+1

is empty), so Step 2 reduces to an
unconstrained minimization problem. To solve it using QR
factorization, split the objective ||Ai[u;x]||22 = ||Riu+Tix||22+
||Eix||22 using the QR factorization Ai = Q


Ri Ti
0 Ei

�
noting that

Q is orthogonal and thus doesn’t change the norm. Then,
u⇤i (xi) = �Kixi where Ki := R�1

i Ti efficiently optimizes the
first term and f ⇤ui

(xi) = ||Eix||22 is the new factor on x. The
elimination is shown in Fig. 3b.

Furthermore, the cost to go (or “value function” [24]),
which commonly appears in DP-based LQR literature, is
visually evident in the (right) factor graph from Fig. 3b as
the sum of the two unary factors on x1:

cost to go1(x1) = xT
1 Qx1 + xT

1 E2
1 x1.

Continuing to eliminate the rest of the variables reveals the

1In the probabilistic form, steps 2 and 3 would come from factoring
fi(qi,Si)yi(qi,Si) µ p(qi|Si)p(Si). For Gaussian distributions, q ⇤i (Si) =
E[p(qi|Si)] and f⇤i (Si)y⇤i (Si) = p(Si).

general formula of the cost to go after applying block-QR
elimination to solve for Ki and Ei:

cost to goi(xi) = xT
i (Qxxt +FT

xt Vi+1Fxt �KT
i FT

ui
Vi+1Fxt)xi

where Vi+1 comes from f ⇤ui
(xi)+ xT

i Qxxt xi = xT
i Vixi.

C. EC-LQR with Local Constraints

The factor graph representation of EC-LQR with only
local constraints (1c) and (1d) in Problem 1 is the same
as the factor graph in Figure 1 but without the red square
marked “cross-time-step constraint”. We still use the same
elimination order: x2,u1,x1,u0,x0 to execute VE.

1) Eliminating a state: The process for eliminating a state
involves one more constraint when generating y⇤xi

(Sxi), but
solving for xi remains the same as in standard LQR case.
Figure 4a shows the process of eliminating x2.

2) Eliminating a control: The process for eliminating a
control is a constrained minimization with some constraints
on ui derived from y⇤xi+1

(ui,xi) and/or Gxixi+Guiui+gli = 0.
The elimination procedure is shown in Figure 4b. From the
result of eliminating u1 as shown on the right in Figure 4b,
we observe that

• the optimal control policy u⇤1(x1) =�K1x1+k1 falls out,
• f ⇤u1

(x1) = ||P1/2
1 x1 � p1||2 corresponds to the

cost to go(x1) = xT
1 V1x1 � v1x1 from [2] where

V1 = P1 +Qxx1 and v1 = 2pT
1 P1, and

• y⇤u1
= H1x1 � h1 = 0 corresponds to the

constraint to go(x1) = H1x1�h1 = 0 from [2]
We continue with VE to eliminate the remaining variables

similarly. After each ui is eliminated, we can obtain an
optimal control policy, constraint to go, and cost to go –
all of which being functions of xi. When the problem is
linear and all matrices are invertible or full column rank, the
optimal solution is unique. We will demonstrate our method
finding the unique optimal solution in Section IV.

D. Computational Complexity Analysis

Because Step 1 collects only the factors connected to the
variable we seek to eliminate, VE is very efficient and the
complexity of eliminating a single variable is independent
of the trajectory length. When eliminating one variable, we
factorize a matrix, Ai, whose rows consist of all the factors
connected to the variable and whose columns correspond to
the variable and its separator. Thus, the maximum dimension
of Ai in EC-LQR problem with just local constraints is
3n⇥(2n+m) when eliminating a state or (2n+m)⇥(n+m)
when eliminating a control. In the worst case, the QR
factorization on this matrix has complexity O(2(3n)(2n +
m)2) = O(24n3 + 24n2m+ 6nm2) when eliminating a state
or O(2(2n+m)2(n+m)) = O(8n3 +16n2m+10nm2 +2m3)
when eliminating a control. To obtain the solution from the
sparse QR factorization result of A, we apply back substitu-
tion whose computation complexity is O(n2 +m2), so the
overall computation complexity of solving the trajectory with
length T is O(T · (k1n3 +k2n2m+k3nm2 +k4m3)), which is
the same as the state of the art DP approach [2].

x0 x1 x2 x3 x4 x5 x6 x7

u0 u1 u2 u3 u4 u5 u6

(a) Factor graph

x1x0

u0

x2

u1

x3

u2

x4

u3

x5

u4

x6

u5

x7

u6

(b) The Bayes Net after Variable Elimination

Fig. 5: Example cross-time-step constraint in a factor graph. The bottom
figure is a Bayes net showing variable dependencies after VE.

E. EC-LQR with Cross-time-step Constraints
The factor graph’s ability to add factors on any set of

variables allows us to add more general auxiliary constraints
and objectives than [2], such as cross-time-step constraints.
Note that cross-time-step objectives could also be handled the
same way if desired. The VE algorithm for solving EC-LQR
with cross-time-step constraints (or even objectives) remains
exactly the same as in Section III-C. For example, in Fig. 5,
the cross-time-step constraint is Sxnc+p+Sxnc + s = 0. When
eliminating xnc+p, its separator will contain xnc+p�1, unc+p�1
and xnc . After elimination of xnc+p, the new constraint to go
factor will be connected to not only xnc+p�1 and unc+p�1, but
also xnc . Subsequent elimination steps will generate similar
factors. As a result, after all variables are eliminated, the
final feedback controllers for control inputs between xnc+p
and xnc are functions of two states instead of just the current
state. Fig. 5b illustrates the result in the form of a Bayes Net
[14] where arrows represent the variable dependencies.

We further show our method maintains linear complexity
with the length of the trajectory. Notice in Fig. 5b that each
cross-time-step constraint spanning from time step ta to tb
adds additional dependencies of variables xk, uk (ta < k tb)
on variables associated with the cross-time-step constraint.
Therefore, as long as the maximum number of variables
associated with a cross-time-step constraint is bounded by
d, and the maximum number of cross-time-step constraints
spanning over any time step is bounded by q, the number of
variables involved in any elimination step (which contribute
to the k constants) is bounded by 3+ (d� 1)⇥ q thereby
bounding the complexity of each elimination operation.

IV. EXPERIMENTS

We run simulation experiments to demonstrate the capa-
bility of the proposed method2. We implement our method
using the Georgia Tech Smoothing And Mapping (GTSAM)
toolbox [25]. We compare our approach with three baseline
methods. Baseline method 1 is [1], Baseline method 2 is
[2], and Baseline method 3 is using Matlab’s quadprog
quadratic programming solver (which does not produce an

2Source code is available on Github

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Baseline Method 1
final cost = 11.01

constraint violation = 1.88e-06

x(1)
x(2)
x(3)

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Baseline Method 2
final cost = 11.01

constraint violation = 1.88e-06

x(1)
x(2)
x(3)

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Proposed Method
final cost = 11.01

constraint violation = 1.88e-06

x(1)
x(2)
x(3)

Fig. 6: Optimal trajectory, cost, and constraint violation comparison of
three methods for Problem 3. For each method we plot the three dimensions
of the state x. All methods produce the same result.

0 20 40 60 80 100

Trajectory Steps

-400

-300

-200

-100

0

E
le

m
e
n
t
V

a
lu

e

Baseline Method 2
Elements in optimal controller K and k

0 20 40 60 80 100

Trajectory Steps

-400

-300

-200

-100

0

E
le

m
e
n
t
V

a
lu

e

Proposed method
Elements in optimal controller K and k

Fig. 7: The plots of feedback control gain matrices from Baseline Method
2 and ours (we omit Baseline 1 because its result is identical to Baseline
2). Each curve represents one element in Kt or kt .

optimal control policy). We first present comparison experi-
ments for EC-LQR on random systems. We then show our
approach handling cross-time-step constraints on an example
system motivated by a single leg hopping robot.

A. Cost, Constraint Violation & Controller Comparison
The first experiment is to find the optimal trajectory for

a simple system with xi 2 R3 and ui 2 R3 that is subject to
state constraints. The EC-LQR problem is given by:

min
u

(xT�xN)
T QxxT (xT � xN)+

T�1

Â
t=0

(xT
t Qxxt xt +uT

t Quut ut)

s.t. xt+1 = Fxxt +Fuut , x0 = [0 0 0]T ,
xN = [3 2 1]T , xT/2 = [1 2 3]T (3a)

where dt = 0.01, Fx = I3⇥3+ I3⇥3 ·dt, Fu = I3⇥3 ·dt, T = 100,
Qxxt = 0.01 · I3⇥3, Quut = 0.001 · I3⇥3, and QxxT = 500 · I3⇥3.
In this case C = {0,T/2}.

Fig. 6 compares the optimal state trajectories using three
methods. Baseline 3 is omitted for space reasons, but all
three baselines and our method arrive at the exact same
solution, with 0 constraint violation and identical total cost,
as expected since the optimal solution is unique.

To show our method can also handle state and control local
constraints, we replace the last state-only constraint (3a) to
be a constraint that contains both the state and the control as
xN/2+uN/2+[1 2 3]T = 0. We solve this problem to get the
optimal controllers ut = �Ktxt + kt . Kt and kt are identical
among Baseline 1, Baseline 2 and ours. Fig. 7 omits Baseline
1 for space reasons. Baseline 3 does not produce a controller.

B. Run Time Comparison
We focus on comparing our method and Baseline 2 since

Baseline 2 is the only baseline that has linear complexity and
generates a feedback policy. Both methods are implemented

https://github.com/paulyang1990/equality-constraint-LQR-compare

in C++ and tested on a computer with an Intel i7-8809G
3.10GHz CPU. We generate random problems with given
sizes and compare average run times over 10 trials. With
lt = m� 1 dimensional local constraints at every time step,
we first fix n = m = 3 and vary trajectory length T :

T 100 200 300 400 500 600
[2] (ms) 0.88 1.06 1.67 2.01 2.35 2.81

Ours (ms) 2.32 3.17 4.30 4.68 5.86 6.86
then we fix T = 100 and increase n and m together:

n,m 10 20 30 40 50 60
[2] (ms) 3.74 14.5 44.1 83.5 152.3 247.7

Ours (ms) 3.81 11.8 27.1 51.2 99.0 170.2

The experiments show that for both methods, run time
grows linearly with increasing trajectory length as expected.
Our method performs better for larger state and control
dimensions. We believe this behavior is attributable to QR
factorization being faster than SVD (used in Baseline 2),
which overcomes the graph overhead for large m.

C. Cross-time-step Constraints
To illustrate an example of how cross-time-step constraints

can be used to generate useful trajectories, we use a double
integrator system (xi = [position;velocity],u = acceleration)
with periodic “step placements”. Consider the x-coordinate
of a hopping robot’s foot which initially starts in contact with
the ground and makes contact with the ground again every
20 time steps. Each contact, it must advance forward by 0.6
units and match the ground velocity (which may be non-zero
e.g. on a moving walkway). The problem is given by:

min
u

xT
T QxxT xT +

T�1

Â
t=0

(xT
t Qxxt xn +uT

t Quut ut) (4a)

s.t. xt+1 =


1 dt
0 1

�
xt +


0
dt

�
ut , x0 = [0 0]T , (4b)

xnc+20� xnc =
⇥
0.6 0

⇤T
, nc= 0,20,40,60,80 (4c)

The cross-time-step constraints (4c) enforce that contacts
must occur at a fixed position relative to and with the same
velocities as the previous contacts p = 20 time steps prior.
These create constraint factors between two state variables
p = 20 time steps apart, as in Fig. 5 (p = 3 in Fig. 5).

Fig. 8 shows the solutions to Problem 4 using Baseline 2
[2], Baseline 3 (QP), and our method, as well as the results
when using the same controllers with a perturbed initial state
x0 = [0 1.8]T (i.e. walking on a moving walkway with
velocity 1.8). We omit Baseline 1 from the Figure for space
reasons since it performs identically to Baseline 2. We apply
some modifications to allow for comparison since Baselines
1 and 2 cannot natively handle cross-time-step constraints
and Baseline 3 cannot generate an optimal policy, but even
so, the adjusted baselines do not generate optimal trajectories
from perturbed initial state, as shown in Fig. 8 (bottom).
For Baseline 2, we convert the cross-time-step constraints
to same-time-step constraints xnc = [0.03nc 0]T for nc =
0,20, . . . resulting in incorrect constraints after perturbing
the initial state. An alternative would be to introduce 10
additional state dimensions (two for each cross-time-step

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
ci

ty

Baseline Method 3

Optimal trajectory
cost: 284.45 - constr: 1.84e-29

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
ci

ty

Baseline Method 2

Optimal trajectory
cost: 284.45 - constr: 6.16e-32

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
ci

ty

Proposed Method

Optimal trajectory
cost: 284.45 - constr: 1.05e-26

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
ci

ty

w/ Perturbed initial state
cost: 303.08 - constr: 3.89e+00

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
ci

ty

w/ Perturbed initial state
cost: 257.16 - constr: 6.48e+00

-1 0 1 2 3 4

Position

0

2

4

6

V
e

lo
ci

ty

w/ Perturbed initial state
cost: 55.55 - constr: 9.24e-31

Fig. 8: The state trajectories solving Problem 4 using Baseline method
2 (left), Baseline method 3 (middle), and our proposed method (right)
with control sequence/policies applied to the original problem (top) and
after perturbing the initial state (bottom). All methods generate the same
trajectory to the initial problem, but only ours gives a policy which generates
the optimal trajectory for the perturbed problem. “Cost” and “Constr” denote
the total objective cost and constraint violation, respectively.

constraint) analagous to Lagrange multipliers, but we argue
that such an approach is not sustainable for online operation
and many cross-time-step constraints. For Baseline 3, we re-
use the control sequence from Problem 4 for the perturbed
case. Our method’s control law produces a state trajectory
that is optimal and without constraint violation even with a
perturbed initial state an shown in Fig. 8 (bottom right).

V. FUTURE WORK

Just as LQR is a building block for Differential Dy-
namic Programming (DDP) [13], [26], linear factor graphs
could also be a building block for more general nonlinear
optimal control problems. In this direction, the following
practical developments should be investigated: incorporating
inequality constraints e.g. using barrier or penalty functions
[27]; extending to nonlinear systems using nonlinear factor
graphs [14]; addressing over-constrained “constraints” in
VE via prioritization of constraints; leveraging incremental
solving using Bayes Trees [28] to do efficient replanning;
and combining estimation and optimal control into the same
factor graph to better close the perception-control loop.

VI. CONCLUSIONS

In this paper, we proposed solving equality constrained
linear quadratic regular problems using factor graphs. We
showed that factor graphs can represent linear quadratic opti-
mal control problems with auxiliary constraints by capturing
the relationships amongst variables in the form of factors.
Variable elimination, an algorithm that exploits matrix spar-
sity to optimize factor graphs, is used to efficiently solve
for the optimal trajectory and feedback control policy. We
demonstrated that our approach can handle more general
constraints than traditional DP approaches while also match-
ing or exceeding state-of-the-art performance with traditional
constraints. We believe our method has great potential to be
used in a number of complex robotics systems which require
solving more general constrained optimal control problems.

REFERENCES

[1] A. Sideris and L. A. Rodriguez, “A Riccati approach for constrained
linear quadratic optimal control,” International Journal of Control,
vol. 84, no. 2, pp. 370–380, 2011.

[2] F. Laine and C. Tomlin, “Efficient computation of feedback control
for equality-constrained LQR,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 6748–6754.

[3] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[4] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive
control approach,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 577–584.

[5] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[6] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

[7] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th annual international conference on
machine learning, 2009, pp. 1049–1056.

[8] J. Watson, H. Abdulsamad, and J. Peters, “Stochastic optimal control
as approximate input inference,” in Conference on Robot Learning,
2020, pp. 697–716.

[9] H. J. Kappen, V. Gómez, and M. Opper, “Optimal control as a
graphical model inference problem,” 2009.

[10] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
2017.

[11] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2014, pp.
295–302.

[12] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 1366–1373.

[13] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.”

[14] F. Dellaert, M. Kaess et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139,
2017.

[15] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning
as probabilistic inference using gaussian processes and factor graphs.”
in Robotics: Science and Systems, vol. 12, 2016, p. 4.

[16] G. Chen and Y. Zhang, “LQR control using factor graphs,” https:
//gtsam.org/2019/11/07/lqr-control.html, accessed: 2020-09-13.

[17] J. R. Blair and B. Peyton, “An introduction to chordal graphs
and clique trees,” in Graph theory and sparse matrix computation.
Springer, 1993, pp. 1–29.

[18] A. Barclay, P. E. Gill, and J. B. Rosen, “SQP methods and their
application to numerical optimal control,” in Variational calculus,
optimal control and applications. Springer, 1998, pp. 207–222.

[19] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[20] K. J. Astrom, Introduction to stochastic control theory. Elsevier,
1971.

[21] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully dis-
tributed slam using constrained factor graphs,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 3025–3030.

[22] D.-N. Ta, M. Kobilarov, and F. Dellaert, “A factor graph approach to
estimation and model predictive control on unmanned aerial vehicles,”
in 2014 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, 2014, pp. 181–188.

[23] M. Gulliksson, “On the modified Gram-Schmidt algorithm for
weighted and constrained linear least squares problems,” BIT Numer-
ical Mathematics, vol. 35, no. 4, pp. 453–468, 1995.

[24] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[25] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[26] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” in Control and Dynamic
Systems. Elsevier, 1973, vol. 10, pp. 179–254.

[27] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” arXiv preprint arXiv:1905.06144,
2019.

[28] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 216–235, 2012.

https://gtsam.org/2019/11/07/lqr-control.html
https://gtsam.org/2019/11/07/lqr-control.html

	Introduction
	Related Work
	Problem And Method
	Problem Formulation
	Standard LQR as a Factor Graph
	EC-LQR with Local Constraints
	Eliminating a state
	Eliminating a control

	Computational Complexity Analysis
	EC-LQR with Cross-time-step Constraints

	Experiments
	Cost, Constraint Violation & Controller Comparison
	Run Time Comparison
	Cross-time-step Constraints

	Future Work
	Conclusions
	References

