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Parallel Fractional Hot Deck Imputation and
Variance Estimation for Big Incomplete Data

Curing
Yicheng Yang, Jae-Kwang Kim, and In Ho Cho∗

Abstract—The fractional hot deck imputation (FHDI) is a general-purpose, assumption-free imputation method for handling
multivariate missing data by filling each missing item with multiple observed values without resorting to artificially created values. The
corresponding R package FHDI [1] holds generality and efficiency, but it is not adequate for tackling big incomplete data due to the
requirement of excessive memory and long running time. As a first step to tackle big incomplete data by leveraging FHDI, we
developed a new version of a parallel fractional hot deck imputation (named as P-FHDI) program suitable for curing large incomplete
data set. Results show a favorable speedup when P-FHDI is applied to big data sets with up to millions of instances or hundreds of
variables. This paper explains the detailed parallel algorithms of P-FHDI for large instances (big-n) and high-dimensionality (big-p) data
sets and confirms the favorable scalability. The proposed program inherits all the advantages of the serial FHDI and enables a parallel
variance estimation, which will benefit a broad audience in science and engineering.

Index Terms—Parallel fractional hot deck imputation, incomplete big data, multivariate missing data curing, parallel Jackknife variance
estimation.
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1 INTRODUCTION

INCOMPLETE data problem has been pandemic in nearly
all scientific and engineering domains. Inadequate

handling of missing data may lead to biased or incorrect
statistical inference and subsequent machine learning [2].
In the ”imputation” methods, the active research areas of
missing data-curing, two major questions arose and have
been answered for the past decades. These questions involve
”accuracy” and ”computational efficiency”: how to handle
missing values by minimizing the loss of accuracy? Is there
software for handling missing values?

There is a variety of spectrum of approaches regarding
the first question. A simple approach is available in the
literature such as removal of instances with missing values
[3] and pairwise deletion [4]. Yet, the report by the American
Psychological Association strongly discourages the use of
removal of missing values which seriously bias sample
statistics [5]. A relatively better simple strategy is to replace
the missing values by the conditional expected values
obtained from a probabilistic model of incomplete data,
which is subsequently fed into particular learning models
[6]. Recently, theoretical approaches such as model-based
method [7] or the use of an imputation theory received
great attention. Imputation theory is essential to replace
a missing value with statistically plausible values. In
terms of the number of plausible values for each missing
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item, there are two distinct branches: single imputation
and repeated imputation. Amongst many methods of the
”repeated imputation” paradigm, the multiple imputation
and fractional imputation have been widely used and
investigated in the literature. The multiple imputation
(MI) proposed by Rubin [8] retains the advantages of
single imputation but overcomes its downside by replacing
each missing item with several values representing the
distributions of the possible values. MI can handle
multivariate missing data using chained equations (MICE),
and the imputed values are generated from a set of
conditional densities, one for each variable with missing
values [9]. Many existing packages support MI and MICE
on different platforms, e.g., SOLAS, SAS, and S-Plus [10].
However, an inappropriate choice of model for MI may
be harmful to its performance. Furthermore, the so-called
”congeniality” and ”self-efficiency” conditions required for
the validity of MI can be quite restrictive in practice ( [11],
[12]).

Fractional hot deck imputation (FHDI), proposed by [13]
and extensively discussed by [14] and [15], is a relatively
new method to handle item non-response in survey
sampling, which creates several imputed values assigned
with fractional weights for each missing instance [16]. A
serial version R package FHDI was developed by some
of the authors of this study [1] to perform the fractional
hot deck imputation and also the fully efficient fractional
imputation (FEFI) [17]. FHDI can cure multivariate, general
incomplete data sets with irregular missing patterns without
resorting to distributional assumptions or expert statistical
models. It also offers variance estimation using the jackknife
replication method.

As we enter into the new era of big data [18], harnessing
the potential benefits of analyzing a large amount of
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data will positively influence science, engineering, and
humanity. However, curing the big incomplete data remains
a formidable challenge. To the best of our knowledge,
a powerful, general-purpose imputation software for big
incomplete data is beyond the reach of global researchers.
Recently, in some specific areas, parallel computing
techniques are gradually adopted for imputation. [19]
parallelized single-chain rules of the sampler as a first
attempt by using parallel Markov chain Monte Carlo
(MCMC) for Bayesian imputation on missing data. The
computational methodology of disk-based shared memory
leads to decent scalability. However, a negative aspect of this
approach is the need for highly customized, setting-specific,
and parallelized software. [20] developed the so-called
PaRallel Epigenomics Data Imputation with Cloud-based
Tensor Decomposition (PREDICTD) to impute missing
experiments for characterizing the epigenome in diverse cell
types. Because of the immensely large genome dimension,
it employs a parallel algorithm to distribute the tensor
across multiple cluster nodes. However, PREDICTED is
restricted to imputation for bio-informatics, and they did not
present strong parallel efficiency. Parallelized imputation
methods, particularly for untyped genotypes in genetic
studies, are investigated by [21]. They applied parallelism to
break the entire region into blocks and separately imputed
the sub-blocks if the chromosomal regions larger than
a size criterion. They showed that the efficacy of the
parallel imputation is significantly better than the whole-
region imputation. [22] introduced genotype imputation
using parallel processing tool ChunkChromosome, which
automatically splits each chromosome into overlapping
chunks allowing the imputation of chromosomes to be run
in multiple lower memory. However, this simple parallelism
decreases imputation accuracy at the chunk borders. [23]
used a GPU to accelerate parallel genotype imputation. The
GPU implementation can reach a ten times speedup for
a small sample and gradually increases with the size of
the data set. The method had a limitation of maximum
site number to impute due to an excessive memory
issue. All of these recent parallel imputations appear to
be restricted to applications in particular bio-informatics
domains. The Microsoft R Server 2016 had parallelized
many predictive models as well as statistical algorithms.
Still, the latest released server not yet implements any
paralleled imputation algorithm. The missing values are
simply omitted during computation.

Despite its generality and efficiency, the serial
version FHDI shows poor performance for curing ”big”
incomplete data due to the required excessive memory
and prohibitively long execution time. To transform the
FHDI into the big data-oriented imputation software, we
developed a first version of the parallel fractional hot deck
imputation (named as P-FHDI) program which inherits
all the advantages of serial FHDI and overcomes its
computational limitations by leveraging algorithm-oriented
parallel computing techniques. Since the algorithmic
foundation is the same as that of the serial FHDI, the first
version of FHDI is focusing on large data with big instances
(the so-called ”big-n” data) and that with many variables
(the so-called ”big-p” data) in Fig. 1 (a) and (b). Our program
implements a parallel fully efficient fractional imputation

(denoted as P-FEFI), but it is not recommended in practical
big data application since P-FEFI essentially uses all possible
donors for each missing value, which may be prohibitively
expensive for big data.

(a) big-n data (b) big-p data (c) ultra data

Fig. 1: Different types of datasets: (a) n� p; (b) n 6 p; (c) n
and p are both very large.

The significance of this study in the context of data
science and machine learning is noteworthy. Reliable
imputation may play an important role in potential data-
driven research. For example, the impacts of FHDI on
the subsequent machine learning have been investigated
by [2]; see Fig. 2. Their results show that FHDI has a
noticeable positive influence on improving the subsequent
machine learning and statistical prediction compared to a
simple naive method, which cures missing data using the
mean value of attributes. This prior investigation underpins
the significance of P-FHDI on big-data oriented machine
learning methods and statistical learning.

The outline of the paper is structured as follows:
we briefly demonstrate the backbone theories of serial
FHDI that are segmented by (i) cell construction, (ii)
estimation of cell probability, (iii) imputation, and (iv)
variance estimation. After an instructive introduction to
the adopted parallel computing techniques, we explain key
parallel algorithms of P-FHDI. We validate and evaluate
the performance of the P-FHDI with the synthetic data
sets, and propose a cost model. Finally, we introduce an
updated approach embedded in P-FHDI, particularly for
imputing big-p data sets. And comprehensive examples in
the Appendix illustrate how to use the program easily with
simple and practical data.

2 KEY ALGORITHMS OF SERIAL FHDI

For a comprehensive description of FHDI and P-FHDI, we
provide a universal basic setup throughout. Suppose a finite
population U with p-dimensional continuous variables y =
{y1,y2, . . . ,yp}, and yil represents the ith instance of the lth

variable where i ∈ {1, 2, . . . , N} and l ∈ {1, 2, . . . , p}. Then
categorize the continuous variables y to discrete variables
z, so-called “imputation cells,” where z takes values within
categories {1, 2, · · · ,K} for each variable. Express yi,obs
and yi,mis to denote the observed and missing part of ith

row of y, respectively. Also, we can write zi,obs and zi,mis
as the observed and missing part of ith row of z.

Let A be the index set in the size of n selected from
the finite population U. Let AM denote a set of sample
indices with at least one missing values such that AM =
{i ∈ A;

∏p
l=1 δil = 0}, alternatively AR with full observed
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Fig. 2: The impact of data curing on the subsequent machine
learning methods [artificial neural networks (ANN) and
extremely randomly tree (ERT)] and statistical learning
[generalized additive model (GAM)]. The fractional hot
deck imputation uses the serial package FHDI and a
mean value-based naive data-curing method is used for
comparison.

values where AR = {i ∈ A;
∏p
l=1 δil = 1}, where δil is

a response indicator function that takes value of 1 if yil
observed, otherwise δil = 0. Let z be discrete values of the
continuous variables y ∈ Rn×p to form imputation cells.
It consists of missing patterns zM = {zi | i ∈ AM} and
observed patterns zR = {zi | i ∈ AR}. Let the index set
of unique missing pattern be ÃM = {i, j ∈ AM | ∀i 6=
j, zi 6= zj} of size ñM , alternatively ÃR = {i, j ∈ AR |
∀i 6= j, zi 6= zj} in size of ñR represents the index set of
unique observed patterns such that ñ = ñM + ñR is the size
of total unique patterns. Sequentially, z̃M ∈ NñM×p denotes
the unique missing pattern where z̃M = {zi | i ∈ ÃM}
and z̃R ∈ NñR×p denotes unique observed pattern where
z̃R = {zi | i ∈ ÃR}. Note that if yil is missing, the imputed
value y∗il will be selected from the same jth donor to fill in.

On the basis of generated imputation cells, we assume a
cell mean model such that:

y | (z = g) ∼ ii(µg,Σg), g ∈ {1, · · · , G}, (1)

where {1, · · · , G} is the total set of imputation cells, ∼ ii
denotes independently and identically distributed, µg is the
mean vector of y at cell g, and Σg is the variance-covariance
matrix of y in cell g. Then utilizing a finite mixture model
under missing at random (MAR) condition, the conditional
distribution of f(yi,mis | yi,obs) is approximated by

f(yi,mis | yi,obs) ∼=
∑G
g=1 p(zi = g | yi,obs)f(yi,mis | yi,obs, zi = g)

(2)
where p(zi = g | yi,obs) is the conditional cell

probability and f(yi,mis | yi,obs, zi = g) is the within-
cell conditional density of yi,mis given yi,obs derived
from (1). The FHDI consists of four subsections as (i)
Cell construction (ii) Estimation of cell probability (iii)
Imputation and (iv) Variance estimation. An illustration of
each subsection is presented as follows.

2.1 Cell construction
The pre-determination of the imputation cells had not been
discussed by Kim [15]. Im proposed an approach to generate
imputation cells z using the estimated sample quantiles in
[24].

Considering the estimated distribution function of yl:

F̂l(t) =

∑
i∈A δilwiI(yil ≤ t)∑

i∈A δilwi
(3)

where I is an indicator function taking the value of one if
true and zero if false and wi represents the sampling weight
of element i. For given a1, · · · , aG satisfying 0 < a1 < · · · <
aG, the estimated sampling quantile of yl for ak is defined
as:

q̂ak = min{t, F̂ (t) > ak}. (4)

Once given estimated sample quantiles q̂(ak), define zil = g
only if yil falls into the corresponding sample quantiles
range. Therefore yil will be categorized as the imputation
cell g if q̂ag−1 < yil < q̂ag .

We propose a new mathematical notation for the
iteration of operations to facilitate the description of FHDI
and P-FHDI. A new mathematical symbol ’

∑
’ denotes a

loop which repeats a sequence of the same operation S(x)
with discrete input augments within a fixed range. The
following is the simplest proposal of the loop symbol of
an operation S

b∑
i=a

S(xi) ≡
{
S(xa), S(xa+1), . . . , S(xb−1), S(xb)

}
(5)

where i = a, . . . , b. We have an extension of

∑b
i=a

∑d
j=c S(xij) =


S(xac) S(xa(c+1)) . . . S(xad)

S(x(a+1)c) (x(a+1)(c+1)) . . . S(x(a+1)d)
...

...
...

...
S(xbc) S(xb(c+1)) . . . S(xbd)


(6)

where integer indices i = a, . . . , b and j = c, . . . , d.
However, the initial discretization may not give at least

two donors for each recipient to capture the variability from
imputation. Identification of the unique observed patterns
z̃R and unique missing patterns z̃M is crucial for selection
of donors for each recipient. Sort missing patterns zM ∈
NnM×p such that zM = {zi | i ∈ AM ; ‖zi‖ 6 ‖zi+1‖}. Note
that ‖zi‖ takes the string format of zi which is comparable
by its numerical value. Thereby, the unique missing patterns
z̃M will be obtained by

z̃M =
nM∑
i=1

zMiI(‖zMi‖ < ‖zM(i+1)‖) (7)

where zMi ∈ zM . Similarly, sort observed patterns zR ∈
NnR×p such that zR = {zi | i ∈ AR; ‖zi‖ 6 ‖zi+1‖}. So we
have the unique observed patterns z̃R by

z̃R =
nR∑
i=1

zRiI(‖zRi‖ < ‖zR(i+1)‖) (8)

where zRi ∈ zR. Suppose Di ∈ NMi be the set recording
indices of donors of the ith recipient zi = {zi,obs, zi,mis}
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where Di = {j ∈ ÃR | zi,obs = zj,obs} in size of Mi. Mi

represents the number of donors of ith recipient. By z̃M and
z̃R, we determine the set of number of total donors of all
recipients M = {Mi | i ∈ ÃM} by using

M =
ñM∑
i=1


ñR∑
j=1

I(‖zi,obs‖ = ‖zj,obs‖)

 (9)

Note that ‖zi,obs‖ = ‖zj,obs‖ claims that each entity of
string ‖zi,obs‖ and string ‖zj,obs‖ should be identical,
respectively. Further, the actual index set of donors of all
recipients L = {Di | i ∈ ÃM}} can be written as

L =
ñM∑
i=1

ñR∑
j=1

jI(‖zi,obs‖ = ‖zj,obs‖) (10)

The minimum entity of M ∈ NñM is denoted by m. If
m > 2, the initial generation of imputation cells have at least
two donors as candidates for each recipient. Otherwise, we
apply a cell collapsing procedure to adjust the categories
of imputation cells to recursively produce more donors
and stop only if every recipient has at least two donors.
For instance, a dummy z has a recipient (NA, 1) and all
donors are listed in the left panel of Table 1 after initial data
categorization. However, the recipient has only one possible
donor (3, 1). Hence cell collapse occurs by merging the
original categories 1 and 2 of p2 as category 1 to complement
deficient donors. Now, (3, 1) and (2, 1) both serve as donors
for the recipient of (NA, 1).

TABLE 1: An illustrative example for cell collapsing with
initial categories of 3 for p1 and p2. Left: initial categorized
imputation cells. Right: final imputation cells after cell
collapsing.

p1 p2

3 1
2 2
1 3

p1 p2

3 1
2 1
1 2

2.2 Estimation of cell probability

To estimate conditional cell probability using modified EM
algorithm by weighting [25], we consider subgroups of
AM on basis of z into G groups, denoted by z1, . . . , zG
corresponding patterns {zg,obs, zg,mis}, {zg,mis, zg,obs}
and {zg,mis, zg,mis}. Therefore, we will have
AMg = {j ∈ AM ; zj,obs = zg,obs} with a size of nMg

and ARg = {j ∈ AR; zj,obs = zg,obs} in a size of nRg .
The size of all possible donors of zg,mis is Hg . If one
possible imputed value z∗(h)

g,mis is imputed for zg,mis, the the
estimated conditional cell probability is defined in E step:

π̂
(t)
h =

P̂ (t)(zi,obs = zg,obs, zi,mis = z
∗(h)
g,mis)∑Hg

h=1 P̂
(t)(zi,obs = zg,obs, zi,mis = z

∗(h)
g,mis)

(11)

where P̂ (t)(z
∗(h)
g,mis) is an estimated joint cell probability

of z∗(h)
g,mis computed from the full respondents at iteration

t. π̂(t)
h will be sorted regarding global index set A in the

ascending order. Then joint cell probability is updated in M
step using weighting:

P̂ (i+1)(zg,obs, z
∗(h)
g,mis) =

 n∑
i∈A

wi

−1
n∑
i∈A

wiπ̂
(t)
h

I(zi,obs = zg,obs),
(12)

where n is the size of sample A and wi is replicate weight.
I represents an indicator function that takes value of one if
zi,obs = zg,obs is true and zero otherwise. The EM algorithm
will terminate in case of convergence of P̂ (zg,obs, z

∗(h)
g,mis) or

reaching maximum iteration max defined by users. Note
that

∑Hg
h=1 πh = 1.

2.3 Imputation
It is necessary to determine fractional weight priorly. Let w∗ij
be the fractional weights of jth donor for the ith recipient
given by:

w∗ij = π̂
(t)
z∗i,mis|zi,obs

wjI{zi,obs = zj,obs, zi,mis = z∗j,mis}∑Mi

j=1 wjI{zi,obs = zj,obs, zi,mis = z∗j,mis}
(13)

where z∗j,mis is jth imputed value of Mi possible donors for
ith recipient. In addition, we can verify computation of w∗ij
by

Mi∑
j=1

w∗ij = 1 (14)

where Mi denotes number of donors for ith recipient. In
FEFI, all respondents are employed as donors for each
recipient and assigned the fractional weights. Once donors
and corresponding fractional weights determined, FEFI
estimator of Yl can be written as:

Ŷl,FEFI =
∑
i∈A

wi{δilyil + (1− δil)
∑
j∈A

w∗ij,FEFIyjl} (15)

and w∗ij,FEFI is the fractional weights of the jth donor for
the ith recipient as

w∗ij,FEFI =
G∑
g=1

aig

H∑
h=1

π̂h|g
wjδjajgh∑
l∈A wlδlalgh

(16)

where ajgh = 1 if (zj,obs, zj,mis) = (zg,obs, z
∗(h)
g,mis),

otherwise 0. wi is replicate weight. However, it requires too
much computation cost in practical with large input data.
Instead of using all the respondents, FHDI selects M donors
among all FEFI donors using a systematic probability
proportional to size (PPS) method to compensate for
recipient as followings:

(a) Sort all possible FEFI donors.

(b) Construct the interval of (Lj , LnRg ).

(b1) L1 = 0

(b2) for ∀ j ∈ [1 : nRg]
Lj+1 = Lj +M × w∗ij,FEFI ;
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(c) SelectM donors in terms of the constructed interval.

In step (a), we sort all possible FEFI donors in terms of
values of z by half-ascending and half-descending order.
In hope of computing nRg breakpoints within the interval,
Lj will be updated recursively regarding (b2). Let RNg be a
random number from a uniform distribution U(0, 1). Then
for i ∈ AMg , the M donors will be selected as:

L[j] ≤ RNg + i− 1

nMg
+ l − 1 ≤ L[j + 1]

where l ∈ [1 : M ]. In case of nRg 6 M , we take all possible
FEFI donors for the recipient.
Once selected M donors regarding probability proportional
to w∗ij , then FHDI estimator of yl is

Ŷl,FHDI =
∑
i∈A

wi{δilyil + (1− δil)
M∑
j=1

w∗ijy
∗(j)
il } (17)

where w∗ij = M−1, wi is replicate weight and y∗(j)il is the jth

imputed value of yil.
Afterward, we can prepare imputation results Ŷ = {y∗(j)il |
i ∈ {1, . . . , n}; l ∈ {1, . . . , p}; j ∈ {1, . . . ,Mi}} with
fractional weights w∗ij,FHDI as outputs. Let Á ∈ NnA be
index set of Ŷ where nA = nR +

∑nM
i=1Mi. And Á ∈ NnA

denotes the index set of sorted Á in the ascending order. We
can record the index mapping ψ ∈ NnA from Á to Á by

ψ =
nA∑
i=1

nA∑
j=1

jI(Ái = Áj) (18)

Eventually, imputation results Ŷ can be reorganized with
regard to the index mapping ψ easily as outputs.

2.4 Variance estimation
The Jackknife estimate of variance is considered for variance
estimation of the FHDI estimator. The Jackknife variance
estimator of Ŷl,FHDI is determined as following steps:
S1: Identification of the joint probability p̂(z∗) of unique
patterns z∗ = z̃R ∪ z̃M of size ñ by

p̂(z∗) =
ñ∑
j=1

p̂(z∗j ) =
ñ∑
j=1

 n∑
i∈A

wi

−1
n∑
i∈A

wiπ̂
∗

I(zi,obs = zg,obs),
(19)

where ñ = ñM + ñR, π̂∗ represent the conditional
probability in case of the convergence of modified EM
algorithm. Note that if the size of p̂(z∗j ) is 0, skip to the next
iteration.
S2: Delete unit k ∈ A, if k ∈ AM , then w∗ij will not be
updated.
S3: if k /∈ AM , then w∗ij for replicate k will be updated by
the function FW:

w
∗(k)
ij =


w∗ij − w∗ij,FEFI if j = r

w∗ij + (w∗ir,FEFI)
w∗ij,FEFI∑
j 6=r w

∗
ij,FEFI

if j 6= r

w∗ij if k ∈ AM
(20)

where i ∈ AR, r is the index of the closest donor to k.
However, measurement of closeness in terms of the scale of
the data is challenging. We employ Mahalanobis Distance
(denoted as DM ) to measure the distance from replicate k to
the other M donors by

DM =
√

(y− µ)TS−1(y− µ) (21)

where y = {yi1, . . . , yip}T is the vector of the ith observation
of y, µ = {µ1, . . . , µp}T is the vector of mean values of p
variables, and S is covariance matrix. Hence, r is the index
of smallest value among DM .
S4: Considering updated fractional weight w∗(k)

ij , we can
compute the variance V̂ (Ŷl,FHDI) by

V̂ (Ŷl,FHDI) =
n∑
k=1

ck(Ŷ kl,FHDI − Ŷl,FHDI)2 (22)

Where ck denotes replicate factor associated with Ŷ kl,FHDI
or Ŷ kl,FEFI , which is kth replicate estimator of yl defined by

Ŷ kl,FHDI =
∑
i∈A

wki {δilyil + (1− δil)
M∑
j=1

w
∗(k)
ij y

∗(j)
il } (23)

where wki is the kth replicate of the imputation fractional
weight w∗ij . And y

∗(j)
il is the jth imputed value of yil. The

FHDI estimator is defined in Eq. (17). Similarly, we can
determine the V̂ (Ŷl,FEFI) using the same equations.

3 PARALLEL ALGORITHMS FOR FHDI

(a) (b)

Fig. 3: Two parallel schemes: (a) Internal parallelization
within the unbreakable implicit loop; (b) Typical divide and
conquer for embarrassingly parallelizable explicit loop.

Fig. 3 shows the two parallel schemes adopted for
this study. The two distinct schemes are needed since
the primary global loops for the majority of tasks are
”implicit”, and thus a direct divide and conquer scheme
is not applicable such that parallelization is focusing
on the separately parallelizable internal tasks without
breaking the implicit loop. In contrast, some embarrassingly
parallelizable tasks such as the jackknife variance estimation
are tackled by the typical divide and conquer scheme.
Suppose we have in total Q processors indexed by
{0, 1, 2, . . . , Q − 1}. The first processor indexed by 0
(called master processor) will collect works from all other
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processors (called slave processors) via communication by
the basic operations MPI Send and MPI Recv (denoted as
MPI SR in conjunction). The pieces of distributed work
will be assembled in the master processor by MPI Gather
(denoted as Ω). The Ωji (i 6= 0) represents that the master
processor gathers pieces of works distributed to all slave
processors ranking i to j. Generally, if the entire domain
Υ of a problem divided into disjoint domain Υq , no
memory overlapping is required and thus all work is done
concurrently by

Υ = ΩQ−1
q=1

 ∑
xi∈Υq

S(xi)

 (24)

where q ∈ [1, Q − 1]. Another challenge of parallel
computing is how a problem can be partitioned efficiently
to be tackled concurrently, and how we can manage
balanced computing. To this aim, we employ two work
distribution schemes in P-FHDI, i.e., uniform distribution
(denoted as UniformDistr) and cyclic distribution (denoted
as CyclicDistr). They compute the beginning (denoted as s)
and ending index (denoted as e) of distributed works on
processor q. Fig. 4 illustrates visually the contrast between
two work distribution schemes. These two schemes are
summarized in Algorithm 1 and 2.

Algorithm 1 Uniform job distribution

Input: number of total instance n, number of available
processors Q, index of current processor q,

Output: boundary indices s and e
1: N1 = floor( n

Q−1 )
2: N2 = n−N1(Q− 2)

3: s = (q − 1)N1

4: e = (q − 1)N1 +N2

The uniform distribution scheme in Algorithm 1
averages works in N1 pieces over slave processors and
squeezes the residuals to the last available processor as N2.
Then the boundary indices s and e of jobs in the current
processor q can be computed in lines 3 and 4, respectively.
Alternatively, the core of the cyclic distribution scheme in
Algorithm 2 is to assign the works to available processors Q
recursively.

Algorithm 2 Cyclic job distribution

Input: number of total instance n, number of available
processors Q, index of current processor q,
and split processor qs

Output: boundary indices s and e
1: N3 = floor( n

Q−1 )

2: N4 = (n−N3)qs
(Q−qs−1)

3: if q ≤ qs then
4: s = (q − 1)N3

5: e = qN3

6: end if
7: if q > qs then
8: s = qN3 + (q − qs − 1)N4

9: e = qN3 + (q − 1)N4

10: end if

Although it is easy to implement uniform distribution,
this uniform decomposition will lead to considerable work

imbalance when the problem domain Υ is severely irregular
[26]. See Fig. 4 (a) for an illustration; an irregular work
domain Υ causes heavy workload in slave processors 1 and
2 while slave processor 3 is almost idle. As a successful
remedy to this problem, cyclic distribution can effectively
balance the work domain among slave processors. Fig. 4
(b) shows such a balanced situation with all three slave
processors being busy. Depending upon the parallel tasks,
we adopt the best choice of parallel job distributions.

(a) Uniform distribution (b) Cyclic distribution

Fig. 4: Different methods distributing works to the slave
processors. A work domain Υ (represented by an irregular
area enclosed by dashed line) is handled by three slave
processors: Slave 1 (Green), Slave 2 (Yellow) and Slave 3
(Blue).

3.1 Parallel cell construction and estimation of cell
probability

The determination of initial imputations cells is
computationally cheap, i.e., Eqs. (3) and (4). However,
it may take considerably large iterations for the cell
collapsing process to guarantee at least two donors for each
recipient, i.e., Eqs. (7) to (10). The current algorithm of cell
collapsing is an implicit process which is non-parallelizable.
Considering the inevitable obstacle, we employ parallel
techniques within the iterations in Algorithm 3. In line 2
of Algorithm 3, we categorize input data y to categorical
data z using the estimated sample quantiles defined in
Eq. (4). Before proceeding to line 4 of Algorithm 3, the
function ZMAT is explained explicitly in Algorithm 4 to
identify the unique patterns z̃M and z̃R for the selection
of donors. In line 1 and 2 of Algorithm 4, we employ
cyclic distribution for job division and adjust boundary
accordingly. The function tunePoints has been frequently
used in the P-FHDI to adjust the border indices (s and e)
of works in each processor slightly to be adjusted indices
(sa and ea). The current parallel work distribution scheme
may lead to the boundary mismatch issue. For example, we
have a sample set {4, 2, 3, 3, 2, 4, 1} indexed by {1, . . . , 7}
and sorted as {1, 2, 2, 3, 3, 4, 4}. The index mapping of the
sorted sample set will be ψ = {7, 2, 5, 3, 4, 1, 6}. However,
the uniform distribution upon four processors in the left
panel of Table 2 will result in the incorrect mappings
ψ1 = {7, 2}, ψ2 = {2, 3}, and ψ3 = {3, 1, 6}. Whereas,
the job distribution after adjustment will guarantee the
identical indices assigned to the same processor shown in
the right panel of Table 2. Hence the updated mapping will
be ψ1 = {7, 2, 5}, ψ2 = {3, 4} and ψ3 = {1, 6}.
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TABLE 2: Left: Uniform job distribution. Right: uniform job
distribution after adjustments by function tunePoints with
slave processors 1, 2 and 3 (denoted as S1, S2 and S3).

S1 S2 S3 S1 S2 S3
1 2 2 3 3 4 4 1 2 2 3 3 4 4

We identify z̃
(q)
M in each processor q in line 4 of Algorithm

4 by

z̃
(q)
M =

ea∑
i=sa

zMiI(‖zMi‖ < ‖zM(i+1)‖) (25)

where zMi ∈ zM . After master-slave communications in
line 6, we obtain z̃M by gathering operation in line 7.
Similarly, we have z̃

(q)
R in each processor in lines 10 to 12

by

z̃
(q)
R =

ea∑
i=sa

zRiI(‖zRi‖ < ‖zR(i+1))‖ (26)

where zRi ∈ zR. we assemble z̃R after communication in
lines 13 and 14 and broadcast to all slave processors in line
15.

Before proceeding to line 5 of Algorithm 3, the function
nDAU is explicitly demonstrated in Algorithm 5 to have the
minimum number of donors of recipients m. We distribute
ñM to each processor cyclically in line 1 of Algorithm 5. The
set of number of total donors for all recipients is obtained in
lines 3 by

M (q) =
e∑
i=s


ñR∑
j=1

I(‖zi,obs‖ = ‖zj,obs‖)

 (27)

Meantime, the actual indices of donors for all recipients will
be stored in line 4 by

L(q) =
e∑
i=s

ñR∑
j=1

jI(‖zi,obs‖ = ‖zj,obs‖) (28)

Then communication is processed between line 6 and line
8 to assemble M and L. Note that all processors require
results of cell construction to continue cell probability
estimation. Thus we broadcast results from the master
processors to slave processors in line 9.

After explicit explanation of function nDAU in line 4
of Algorithm 3, it will perform cell collapsing in case of
m < 2 in lines 5 to 7. The recursive iterations will terminate
if m > 2 in lines 8 and 9. Otherwise, the iterations will
continue to the max iteration (i.e., 2n).

Similarly, estimation of cell probability is an implicit
and iterative process, which does not support simple
parallelism. In line 1 of Algorithm 6, z̃M and z̃R have been
reproduced. The EM iterations start in line 2 till terminating
in case of convergence of p̂(zobs, z

∗
mis) in lines 7 to 9. Let

Aπ = {1, . . . ,HG} be local index set of π̂(t) in size of nπ .
We update w ∈ Nnπ and π̂(t) ∈ Rnπ in line 3 by Eq. (11),
where π̂(t) is

π̂(t) =
G∑
g=1

Hg∑
h=1

π̂
(t)
h (29)

Note that π̂(t) requires reorganization regarding the index
set Aπ = {Aπi ∈ Aπ | Aπ(i+1) > Aπi} in ascending order.

Algorithm 3 Parallel cell construction

Input: raw data y
Output: Categorical data z

1: for ∀ i in 0 : max iteration do
2: Categorize raw data y to categorical data z
3: Invoke function ZMAT(z)→ (z̃R, z̃M )
4: Invoke function nDAU(z̃R, z̃M )→ (M ,m,L)
5: if m < 2 then
6: Perform cell collapsing on z described in Table 1
7: end if
8: if m > 2 || i = max iteration then
9: break

10: end if
11: end for

Algorithm 4 Parallel function ZMAT

Input: Categorical z
Output: unique observed pattern z̃R and missing pattern

z̃M
1: CyclicDistr(nR)→ (s, e)
2: tunePoints(s, e)→ (sa, ea)
3: for ∀ i in sa : ea do
4: Record z̃(q)

M
5: end for
6: MPI SR(z̃(q)

M )

7: z̃M = ΩQ1 z̃(q)
M

8: CyclicDistr(nM )→ (s, e)

9: tunePoints(s, e)→ (sa, ea)
10: for ∀ i in s : e do
11: Record z̃(q)

R
12: end for
13: MPI SR(z̃(q)

R )

14: z̃R = ΩQ1 z̃(q)
R

15: MPI Bcast(z̃M ; z̃R)

Before proceeding to line 5 of Algorithm 6, we explain the
function Order in Algorithm 7 to generate index mapping ξ
of Aπ in lines 4 to 10 on each processor by

ξ(q) =
e∑
i=s

nπ∑
j=0

jI(A(q)
πi = Aπj) (30)

After communication in line 11, ξ will be produced in line
12. By leveraging ξ in line 5 of Algorithm 6, π̂t can be

queued for later computation of P̂
(i)

(zobs, z
∗
mis) in line 6

by

P̂
(i)

(zobs) =

 n∗∑
i∈A

wi

−1
n∗∑
i∈A

wiπ̂
(t)I(zi,obs = zg,obs).

(31)
where n∗ = nR + nM ×Mi representing size of augmented

imputed cells. In line 7, if difference of P̂
(i)

(zobs, z
∗
mis)

between iterations is lesser than a threshold ε (e.g., 10−6),
the EM algorithm will be terminated.

3.2 Parallel imputation

The parallel imputation is illustrated as below:
Imputation of P-FHDI aims at selecting M donors for

each recipient in z̃M in lines 1 to 6 of Algorithm 8. The FEFI
fractional weights for all possible donors assigned to each
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Algorithm 5 Parallel function nDAU

Input: Unique observed pattern z̃R and missing pattern
z̃M

Output: number set of donors M
1: CyclicDistr(nM )→ (s, e)
2: for ∀ i in s : e do
3: M (q).add(Mi)
4: L(q).add(Di)
5: end for

6: MPI SR(M (q); L(q))
7: M = ΩQ1 M

(q)

8: L = ΩQ1 L(q)

9: MPI Bcast(M ; L)

Algorithm 6 Parallel estimation of cell probability

Input: Categorized data z, sampling weight w
Output: cell probability p̂(zobs)

1: Memorize z̃R, z̃M
2: for i in 0 : max i do
3: Update w and π̂(t)

4: Order(Aπ)→ ξ
5: ξ → π̂(t)

6: Compute p̂(i)(zobs, z
∗
mis)

7: if p̂(i+1)(zobs, z
∗
mis) converged

then
8: Stop
9: end if

10: end for

recipient are computed in line 2. We employ PPS method to
randomly select M donors in lines 3 to 5 with w∗ij = {w∗ij |
i ∈ ÃM ; j ∈ {1, . . . ,Mi}}. Particularly, it sorts Á in half-
ascending and half-descending order in line 3. To prepare
the results of fractional imputed values Ŷ, we obtain the
index mappingψ of particularly sorted Á by Order function
in line 7

ψ = Ωp1

e∑
i=s

ζ∑
j=0

jI(Ái = Ãj) (32)

Note that the majority of computational cost occurs in line
7. Finally Ŷ has been enumerated in accordance with the
index mapping ψ in line 8.

3.3 Parallel variance estimation
The majority of expensive computation and excessive
memory issues happen in variance estimation because of
the Jackknife estimate method of FHDI. The parallelized
variance estimation is summarized in Algorithm 9.

Before proceeding to line 2 of Algorithm 9, a pre-
processing function Rep CellP is explicitly explained to
compute cell probability for unique patterns recursively. By
parallelizing ñ in line 1, we can determine p̂(q)(z∗) on each
processor q in line 3 by

p̂(q)(z∗) =
e∑
j=s

p̂(z∗j )

=
e∑
j=s


 n∑
i∈A

wi

−1
n∑
i∈A

wiπ̂
∗I(zi,obs = zg,obs)


(33)

where π̂∗ represents the conditional probabilities after
convergence. Note that π̂∗ in size of nπ have to be queued

Algorithm 7 Function Order

Input: index Aπ of size nπ
Output: index mapping ξ

1: UniformDistr(nπ)→ (s, e)
2: tunePoints(s, e)→ (sa, ea)
3: Sort(A(q)

π )→ A(q)
π

4: for i in sa : ea do
5: for j in 0 : nπ do
6: if A(q)

πi = Aπj then

7: Record j to ξ(q)

8: end if
9: end for

10: end for
11: MPI SR(ξ(q))
12: ξ = Ωp1ξ

(q)

Algorithm 8 Parallel imputation

Input: raw data y, categorized data z, number of donors
M , cell probability P̂ (zobs)

Output: imputed values Ŷ
1: for i in 0 : ñM do
2: Compute w∗ij
3: Sort(Á)
4: Construct the interval

(Lj , LnRg )

5: Select Mi donors
6: end for
7: Order(Á)→ ψ
8: Prepare Ŷ

according to the index mapping ξ defined in the Eq. (30)
in advance. Recall that Aπ is the index set of π̂∗ and
Aπ denotes the index set of sorted Aπ . Because of the
heavy computational cost of linear searching, we implement
binary search (denoted as BS) [27] to record the mapping ξ
of Aπ after sorting. Considering m (i.e., nπ/2) as a middle
index, Aπm denotes the middle element of Aπ . We set a left
index L to be 1 and a right index R to be nπ . If Aπm 6 Aπi
where i ∈ {1, 2, . . . , nπ}, set L to be m. Otherwise, we set
the R to be m. If Aπm = Aπi, m will be the output of the BS
function. Thus, we have the ξ(q) by

ξ(q) =
e∑
i=s

BS(Aπi) (34)

After communication in line 5, p̂(z∗) ∈ Rñ×ñR will be
assembled in line 6 and broadcast to all slave processors in
line 7. After demonstration of function Rep CellP in line 1 of
Algorithm 9, by leveraging the unifrom job distribution in
line 2, we can compute replicate estimator matrix ŶK,q

FHDI ∈
R(e−s)×p on processor q (Note superscript K is a simple
notation for distinction) in line 10 by

ŶK,q
FHDI =

e∑
k=s

Ŷ
k

FHDI =
e∑
k=s

 p∑
l=1

Ŷ kl,FHDI

 (35)

where Ŷ kl,FHDI is kth replicate estimator of yl. By
substituting Eq. (23), we have

ŶK,q
FHDI =

e∑
k=s

p∑
l=1

∑
i∈A

wki {δilyil + (1− δil)
M∑
j=1

w
∗(k)
ij y

∗(j)
il }


(36)

The function FW defined in Eq. (20) will update w∗(k)
ij if the

number of all deleted donors np > 0. After communication
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Algorithm 9 Parallel variance estimation

Input: raw data y, categorized data z, sampling weights
w, index set A, number of donors M , imputed
values Ŷ

Output: variance V̂ (ŶFHDI)
1: Rep CellP→ p̂(z∗)
2: UniformDistr(n)→ (s, e)
3: for ∀ k in s : e do
4: if p̂(z∗k) = 0 then
5: Skip
6: end if
7: if np > 0 then
8: FW(w

∗(k)
ij )→ w

∗(k)
ij

9: end if
10: Compute ŶK,q

FHDI
11: end for
12: MPI SR(Ŷ

K,q

FHDI )
13: Ŷ

K

FHDI = ΩQ1 (YK,qFHDI)
14: Compute Ŷ FHDI

15: Compute V̂ (Ŷ FHDI)

Algorithm 10 Function Rep CellP

Input: number of unique patterns ñ
Output: cell probability p̂(z∗)

1: CyclicDistr(ñ)→ (s, e)
2: for ∀ i in s : e do
3: Compute p̂(z∗i )
4: end for

5: MPI SR (p̂(q)(z∗))
6: p̂(z∗) = ΩQ1 p̂(q)(z∗)
7: MPI Bcast(p̂(z∗))

of ŶK,q
FHDI in line 12, ŶK

FHDI is assembled in line 13. Also,
the FHDI estimator Ŷ FHDI ∈ Rp is computed in line 14 by
substituting Eq. (17)

Ŷ FHDI =

p∑
l=1

Ŷl,FHDI

=

p∑
l=1

∑
i∈A

wi{δilyil + (1− δil)
M∑
j=1

w∗ijy
∗(j)
il }

(37)

Eventually, we determine V̂ (ŶFHDI) by

V̂ (Ŷ FHDI) =
n∑
k=1

ck(Ŷ
k

FHDI − Ŷ FHDI)
2 (38)

where ck = (n − 1)/n. Similarly, we can determine
V̂ (Ŷ FEFI) using the same algorithm.

4 VALIDATION

To validate the P-FHDI, it supposes to have the same
outputs with FHDI (e.g., standard errors) using identical
synthetic data. The platform used in the paper for all the
parallel computers is Condo 2017 of Iowa State University
in [28], consisting of 192 SuperMicro servers and expandable
to 324 servers. Each server has two 8-core Intel Haswell
processors, 128 GB of memory, and 2.5 TB local disk.
For a convenient description of the synthetic datasets, let
U(n, p, η) denotes a finite population with n instances and
p variables issued by η missing rate in percentage. Here,

we adopts the synthetic data yi = (yi1, yi2, yi3, yi4) where
i = 1, . . . , 1000 generated with 25% missing rate by

Y1 = 1 + e1,

Y2 = 2 + 0.5e1 + 0.866e2,

Y3 = Y1 + e3

Y4 = −1 + 0.5Y3 + e4

where e1, e2, e4 are randomly generated by normal
distribution, and e3 by gamma distribution. The
missingness is addressed by the Bernoulli distribution
as δi1 ∼ Ber(0.6), δi2 ∼ Ber(0.7), δi3 ∼ Ber(0.8), δi4 ∼
Ber(0.9) independently to each variable.

TABLE 3: Standard errors of naive, serial and parallel
estimators.

Estimator y1 y2 y3 y4

Naive 0.0419 0.0390 0.0490 0.0472
FEFI 0.0367 0.0378 0.0460 0.0457
FHDI 0.0383 0.0372 0.0451 0.0453
P-FEFI 0.0367 0.0378 0.0460 0.0457
P-FHDI 0.0384 0.0370 0.0449 0.0450

TABLE 4: Standard errors of naive and P-FHDI estimators
with datasets U(instances, variables, missing rate).

Data Method y1 y2 y3 y4

U(0.1M, 4, 0.25)
Naive 0.0029 0.0039 0.0047 0.0043

P-FHDI 0.0037 0.0034 0.0045 0.0045

U(0.5M, 4, 0.25)
Naive 0.0013 0.0018 0.0021 0.0019

P-FHDI 0.0017 0.0015 0.0020 0.0020

U(1M, 4, 0.25)
Naive 0.0009 0.0012 0.0015 0.0013

P-FHDI 0.0012 0.0011 0.0014 0.0014

On the basis of the data U(1000, 4, 0.25), we apply
the naive estimator, fractional imputation estimator, and
parallel fractional imputation estimator to be in contrast.
The naive estimator is a simple mean estimator computed
using only observed values. The results in Table 3 presents
that P-FEFI produces the same stand errors of y with
serial FEFI. The results generated by P-FHDI slightly differ
from the results of serial FHDI in a tolerable manner. The
random number generator for the selection of donors in
FHDI and P-FHDI is library-dependent, in which is the main
reason leading to the tiny residuals. Note that the stand
errors of P-FHDI decrease asymptotically as n increases
gradually in Table 4. As expected, both P-FHDI and P-FEFI
often outperform the naive method in terms of standard
errors. Some exceptions (e.g., y1 and y4 of Table 4) may be
attributed to the large missing rate and simple synthetic
model used in the study case. We provide the step-by-
step illustration of the use of P-FHDI in Appendix A. All
the developed codes are shared with GPL-2, and codes,
examples, and documents are available in [29]. Practical
example data sets are obtained from UCI machine learning
repository [30].

5 COST ANALYSIS AND SCALABILITY

It is crucial to perform computational complexity to the P-
FHDI algorithm. It will not only evaluate the performance
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of P-FHDI but also reveal the potential memory risks.
Note that when it comes to the Big O notation of function
g(x), we are usually talking about the worst-case scenario
leading to the upper time boundary O(g(x)) such that
g(x) < O(g(x)) as x −→ ∞. Considering a constant time
for a unit operation in the algorithm, we can estimate
time complexity by computing the number of elementary
operations. It is essential to define the elementary cost
involved in computation and communication. Let α be the
computational cost per unit, β be the transfer cost per unit of
communication and L be communication startup cost. Total
running time T (Q) with Q available processors is consist
of computational cost C and communication cost H, which
reads:

T (Q) ≈ α
′

Q
+ β

′
Q (39)

where α
′

= αψ1(n, p)O(n2) + αO(n3) and β′ =
βψ1(n, p)O(n). ψ1(n, p) is the terminational iterations in
cell construction, which guarantees at least two donors
for each recipient. Because of the implicit property of
cell construction and probability estimation, we can only
make an empirical approximation that ψ1(n, p) ∝ n ln (p).
In conjunction with the equation for T (Q), we have the
scalability of T (cpQ)

T (Q) by

T (Q)

T (cpQ)
= cp ×

α
′
+Q2β

′

α′ + c2pQ
2β′

(40)

where cp ∈ N+. Detailed derivations of Eqs. (39) and (40)
are presented in Appendix B. To evaluate the performance
of P-FHDI especially with a large number of instances
in practical, we perform parametric studies to investigate
the impacts of the number of instances n, the number
of variables p and the missing rate η on speedup and
running time. We generate the synthetic data sets in form
of Y i = (Yi1, . . . , Yip), i = 1, . . . , n using the same method
presented in Section 4, and the missingness is dynamically
issued by δp ∼ Ber(ηp). By fixing the other two parameters,
nine synthetic data sets will be generated by varying the
target parameters in Table 5.

TABLE 5: Data sets U(instances, variables, missing rate)
prepared for parametric studies.

Parameter Data set 1 Data set 2 Data set 3
n U(0.5M, 4, 0.25) U(0.8M, 4, 0.25) U(1M, 4, 0.25)

η U(1M, 4, 0.15) U(1M, 4, 0.25) U(1M, 4, 0.35)

p U(15K, 8, 0.15) U(15K, 12, 0.15) U(15K, 16, 0.15)

Note that P-FHDI is particularly powerful towards big
data with massive instances and high missing rates. The
parametric studies on the number of variables will be
discussed in Section 6. For a convenient description of
results, the cell construction, estimation of cell probability
and imputation are compressed as a single part named after
the imputation in this section. Overall, larger n increases
the running time of the imputation and variance estimation,
resulting in the increments of total running time from Fig.
5 to 7. But n is not likely to significantly affect the speedup
of imputation and variance estimation. The larger η affects
the running time of the imputation positively rather than

variance estimation, leading to slightly increments of total
running time from Fig. 8 to 10. And η apparently influences
the speedup of imputation only. In general, the number of
instances n is the dominating parameter positively affecting
speedup and running time. All of these parametric studies
have a good agreement with the cost model of speedup and
running time.

(a) Speedup (b) Running time

Fig. 5: Impact of the number of instances n on speed up
and running time of the entire P-FHDI (i.e., imputation and
variance estimation) with datasets U(n, 4, 0.25): 4 variables
and 25% missing rate by varying n.

(a) Speedup (b) Running time

Fig. 6: Impact of the number of instances n on speedup
and running time of the imputation only with datasets
U(n, 4, 0.25): 4 variables and 25% missing rate by varying
n.

(a) Speedup (b) Running time

Fig. 7: Impact of the number of instances n on speedup and
running time of the variance estimation only with datasets
U(n, 4, 0.25): 4 variables and 25% missing rate by varying
n.

6 VARIABLE REDUCTION FOR BIG-p DATA SET

The current algorithm of P-FHDI maybe not adequate for
imputing big-p data with too many variables (e.g., p > 100).
We performed parametric studies with increasing p and
results show weak speedups as shown in Fig. 11 (a). A
gradual increment of p significantly increases the total
running time, which may be attributed to the fact that many
variables can lead to exponentially increasing iterations
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(a) Speedup (b) Running time

Fig. 8: Impact of the missing rate η on speedup and running
time of the entire P-FHDI (i.e., imputation and variance
estimation) with datasets U(1M, 4, η): 1 million instances
and 4 variables by varying η.

(a) Speedup (b) Running time

Fig. 9: Impact of the missing rate η on speedup and running
time of the imputation only with datasets U(1M, 4, η): 1
million instances and 4 variables by varying η.

to guarantee at least two donors during the current cell
construction algorithm. This issue is theoretically related to
the so-called curse of high dimensionality. There is a huge
literature on the problem of variable selection. To name a
few, the least absolute shrinkage selection operator (LASSO)
in [31], ridge in [32], principle component analysis (PCA)
in [33] and smoothly clipped absolute deviation (SCAD)
method in [34]. The sure independence screening (SIS)
proposed in [35] is popular for ultrahigh variable reduction.
It filters out the variables that have weak correlations with
the response based on correlation learning. Consider a linear
regression model

Y = Xβ + e (41)

where Y = (y1, y2, . . . , yn)T is vector of responses, X =
(X1,X2, . . . ,Xp) is an n × p random design matrix with
independent and identically distributed (IID) elements.
β = (β1, β2, . . . , βp)

T is a vector of parameters and e =
(e1, e2, . . . , en)T is a IID random errors. Let M∗ = {1 6 i 6
p;βi 6= 0} be the true sparse model. The covariates Xi with
βi 6= 0 are so-called important variables, otherwise as noise
variables. SIS is consist of two steps:

(1) Screening Step: Choose a subset of v variables such
that v < p. For any given γ ∈ (0, 1), sort the
correlations in a descending order and define sub-
models
Mγ = {1 6 i 6 p; |ri| is among the top of

largest ones}
(42)

where ri = corr(Xi,Y ) is the sample correlation
between Xi and Y .

(2) Selection step: Using the covariates in Mγ , apply
a penalized regression method to obtain the best
model.

(a) Speedup (b) Running time

Fig. 10: Impact of the missing rate η on speedup and
running time of the variance estimation only with datasets
U(1M, 4, η): 1 million instances and 4 variables by varying
η

By sure screening property, we know that all important
variables survive after applying a variable screen procedure
with probability tending to 1 by

P (M∗ ⊂Mγ)→ 1 (43)

as n → ∞ for some given γ. Inspired by the screening
step of SIS, we introduce a variable reduction method with
multivariate responses embedded into P-FHDI algorithm
(so-called big-p algorithm). By assumption of a cell mean
model, an instance {zi | i ∈ AR} serves as a donor of
{zj | j ∈ AM} unless all observed variables of zj is
identical to corresponding variables in zi. It will be difficult
to guarantee at least two donors for a recipient if p is large.
We apply a correlation-based screening step like SIS to filter
out those variables that have weak correlations with the
response variables (i.e., missing variables). Sequentially, an
instance {zi | i ∈ AR} serves as a donor of {zj | j ∈ AM} if
the selected variables of zj is identical to the corresponding
variables in zi. Suppose we select v variables for a recipient
such that v < p. Let X = {X1, . . . ,Xq} be always observed
and Y = {Y 1, . . . ,Y w} be subject to missingness such that
p = q + w. Consider rk = (r1, r2, . . . , rq) be a vector of
sample correlations of Xi, i = {1, . . . , q}, given Y k. The
proposed big-p algorithm consists of four steps:

(1) Compute correlation vectors rk where k ∈
{1, . . . , w} and sort in descending order.

(2) Define sub-covariate set Mk for imputing Yk, k ∈
{1, . . . , w} such that

Mk = {1 6 i 6 p; |ri| is among the top of
largest v,where ri ∈ rk}.

(44)

(3) We are implicitly assuming that

P (Y 1, . . . ,Y w |X1, . . . ,Xq) = P (Y 1, . . . ,Y w |X∗)
(45)

where X∗ is the covariates corresponding to M =
∩wk=1Mk.

(4) If number of selected covariates in M equals v, then
stop. Otherwise, repeat step (2) and (3) by setting
v = v + 1 until we obtain v selected variables.

By iterations of these steps for each recipient, we can
obtain the selected variables for all recipients. Following
sure screening property, the probability of the true model
among the built model is assumed to be

P (M∗ ⊂M)→ 1 (46)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

as n→∞.
Particularly, the temporary storage of p̂(z∗) ∈ ñ× ñR in

line 1 of Algorithm 9 most likely needs excessive memory
for big-p data. The maximum value of ñ can be 4p if
given three categories, resulting in ñ → n as p increases.
Hence, we jointly embed the function Rep CellP into
the L-Replication process of variance estimation to avoid
excessive storage of p̂(z∗). As a result of the implementation
of the big-p algorithm in Fig. 11 (b), the weak speedups
have been enhanced to the linear speedups. Note that the
adoption of uniform job distribution results in the jagged
speedup curves.

(a) Speedup (b) Speedup

Fig. 11: The impact of the number of variables p on speedups
using (a) big-n algorithm and (b) big-p algorithm with
datasets U(15000, p, 0.15): 15000 instances with 15% missing
rate by varying p. Note that we adopt 4, 5, and 6 selected
variables for U(15000, 12, 0.15), U(15000, 16, 0.15), and
U(15000, 100, 0.15), respectively in (b).

The parametric studies of the number of selected
variables on the ratio of the means in Fig. 12 (a) shows
that the adoption of reduced variables won’t affect the
ratio of means significantly. Let Ug be subsets of the finite
population with a size of Ng , where g = 1, . . . , G. From the
Eq. (C.4) in the Appendix C, the ratio of the means is given
as

E(YN ) + E
(∑Gv

g=1

∑
i∈Ug (R−1

g δi − 1)(yi − µg)
)

E(YN )
→ 1 (47)

as v → p where Rg = NRg/Ng , and Gv is the number
of imputation groups using selected variables. The choice
of reduced variables will slightly differ Gv , leading to
additional bias in the second term of numerator. That is,
the slight fluctuation in Fig. 12 (a) is explained. In future
work, a theoretical number of v for a desired level of bias
will be addressed.

Now consider the behaviors of variance using big-p
algorithm. LetW be

W =
M∑
j 6=r

(
w∗ij,FEFI∑
j 6=r w

∗
ij,FEFI

y
∗(j)
i )− y∗(r)i (48)

where r is the index of closest donor to k and w∗ij,FEFI is
defined in Eq. (16). Considering the update of w∗(k)

ij in Eq.
(20), the ratios of V̂ (ŶFHDI) using v selected variables to
that using all observed variables is presented in Eq. (C.10)
in Appendix C as∑n

k=1

(∑
i∈AM wiw

∗
ir,FEFIWv

)2

∑n
k=1

(∑
i∈AM wiw∗ir,FEFIWp

)2 > 1 (49)

where Wv and Wp are built upon v selected variables and
all observed variables, respectively. The ratio will approach
1 if v → p. It is proved that ŶFHDI has additional variance
due to the donor selection procedure in [15]. The prototype
of big-p algorithm is to utilize only reduced variables for
each recipient to select donors, resulting in higher variance.
The W measures how far y∗(r)i is away from the mean of
other donors. Hence, a higher variance of selected donors
will significantly affect Wv , as a result of the increment of
the numerator of Eq. (49). On the contrary, the adoption
of all variables minimizes the variance in selecting donors,
leading to Wp in denominator minimized. Therefore, the
model M built upon a lesser number of selected variables
will have higher variance as shown in Fig. 12 (b). And there
will be a theoretical choice of v that can reasonably minimize
the ratio defined in Eq. (49), which will be addressed in
future work.

(a) The ratios of the mean (b) The ratios of the Jackknife
variances

Fig. 12: The ratios of mean and Jackknife variance estimator
of the practical data set U(19735, 26, 0.15) using different
number of selected variables

7 FUTURE RESEARCH

In the future work, a theoretical choice of the number
of selected variables v in the big-p algorithm which
minimizes the Jackknife estimate of variance and stabilizes
the mean will be addressed. Also, the present big-p
algorithm of P-FHDI is not adequate for the categorical
variables. The categorical variables violate assumptions for
computing correlation, of which all variables should be
continuous. One set of possible solutions to find associations
between categorical variables rely on distance metrics. Other
possible proposals span various statistical metrics (e.g., chi-
squared statistics). The marginal association measurement
proposed in [36] other than correlation learning will also
be a good candidate criterion to filter out unimportant
categorical variables. Departing from the current program,
the next theoretical and computational advancements shall
be focusing on the ultra data sets and high-dimensional
categorical data.

8 CONCLUSION

As we enter into the new era of big data, it is of
paramount importance to establish the big data-oriented
imputation paradigm. By inheriting the strengths of the
general-purpose, assumption-free serial fractional hot deck
imputation program FHDI, this paper developed and
shared the first version of the parallel fractional hot deck
imputation program, named as P-FHDI. We document the
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full details regarding the algorithm-oriented parallelisms,
computational implementations, and various examples of
P-FHDI to benefit a broad audience in the science and
engineering domain. The developed P-FHDI is suitable to
tackle large-instance (so-called big-n) and large-variable
(so-called big-p) missing data with irregular, complex
missing patterns. The validations and analytical cost models
confirm that P-FHDI exhibits fairly good scalability for big
incomplete data set regardless of various missing rates.
This program P-FHDI will help to impute incomplete
data, enable parallel variance estimation, and ultimately
improve the subsequent statistical inference and machine
learning with the cured big data sets. The next version
of P-FHDI will focus on ultra data sets with both large
instances and many variables, which will call for specialized
theoretical and computational advancements. Toward the
future extension, this first version of P-FHDI will serve as
a concrete foundation.
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