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Abstract
Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19, 
pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single 
object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be 
multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but 
the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some 
of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to 
be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the 
cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient. 
We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based 
approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that 
is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets 
into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and 
evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for 
our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and 
percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the 
same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health 
data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes 
of real-world unlabeled data whose accuracy or validity is unknown.
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Introduction

Large amounts of data records are being collected from 
various sources over time to analyze the immediate and 
long-term impacts of COVID-19 on human health. Exam-
ples include the analysis of the impacts [1], diagnosis [2], 
treatments [3], and pre-symptom detection [4] of COVID-19 
based on the available data collected from radiography, chest 
CT, chest X-ray, wearable devices, and COVID-19 tracking 
reports. Such data records are assumed to be accurate. How-
ever, the records may get corrupted in the non-trivial data 
collection and transformation processes. Anomalous data 
may lead to incorrect inferences and research findings. Thus, 
it is critical to automatically find inaccurate or anomalous 
data before doing any analysis and explain how the data is 
anomalous to the healthcare professionals.

This article is part of the topical collection “Artificial Intelligence 
for HealthCare” guest edited by Lydia Bouzar-Benlabiod, Stuart 
H. Rubin and Edwige Pissaloux.
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Existing anomaly detection techniques for COVID-
19 data (some based on machine learning) focus only on 
outbreak detection [5–8] in the COVID-19 tracking cases 
across the world. Machine learning approaches [9–11] have 
also been used for data quality assurance in other domains. 
Many of these techniques use supervised machine learn-
ing, which assumes the existence of labeled training data 
which in real-world is unavailable for new forms of out-
breaks such as COVID-19. Moreover, outlier detection using 
machine learning fails to explain how records are anomalous 
to the domain experts. Finally, most works [12–17] iden-
tifying anomalous records in a data set cannot be used on 
time-series data as anomalies may span multiple attributes 
and records in a sequence [18]. We aim to eliminate the 
above shortcomings by detecting anomalies in COVID-19 
time-series data without having access to labeled data and 
explaining the anomalies to domain experts in a compre-
hensible manner.

This approach, called IDEAL, builds upon our previous 
work on data quality assessment approach [19] that uses an 
LSTM-autoencoder [10] network to find anomalies in unsu-
pervised data. Anomalies are data records or subsequences 
of data records whose behaviors (i.e., attribute values or 
change in the values over time) are significantly different 
from the majority of records and subsequences in a time-
series data set [5]. IDEAL automatically (1) discovers dif-
ferent types of constraints from the sequence data, (2) marks 
subsequences and records that violate the constraints as sus-
picious, and (3) explains the violations. IDEAL automati-
cally generates three types of visualizations to explain the 
anomalies. The plot showing the suspiciousness score per 
attribute indicates which attributes make the subsequence 
anomalous. The second visualization uses decision trees to 
illustrate the violated constraints. The third plot compares 
a suspicious subsequence detected by IDEAL with normal 
subsequences belonging to the same data set. The approach 
incorporates feedback from domain experts to improve the 
accuracy of constraint discovery and anomaly detection. We 
proposed an autocorrelation-based reshaping technique that 
automatically adjusts the LSTM-autoencoder input window 
size based on how far the records are related to their past 
values. We evaluated the effectiveness of IDEAL using 
data sets from Yahoo servers [20], NASA Shuttle [21], and 
Colorado State University Energy Institute [22]. We dem-
onstrated that IDEAL could detect previously known and 
injected anomalies in these data sets.

The above mentioned work needs to be extended for 
COVID-19 time-series data. The Yahoo servers [20] and 
NASA Shuttle [21] data sets that we previously used contain 
time-series data associated with a single entity; COVID-
19 time-series data belongs to multiple entities (e.g., cases 
and deaths for states and counties, or lab test type and test 
name for different patients. Thus, in COVID-19 data there 

are multiple subsets of data each of which belongs to a single 
entity. Records in each subset are temporally dependent but 
they are unrelated to records in other subsets. Moreover, 
in each subset there are multiple grouping attributes (e.g., 
test type and test name) which requires the data to be pre-
processed to make the results correct. We extend IDEAL 
using a two-level reshaping approach to transform data into 
a shape that is suitable for analysis. This approach removes 
the restriction that all data records in a sequence data set 
must be temporally dependent and are describing behaviors 
of the same object over time. Instead, IDEAL supports data 
sets in which a subset of records are temporally related to 
each other but are unrelated to the records from other subsets 
in the same data set. For example, a health data store may 
contain medical records of multiple patients over time. The 
records of each patient are temporally dependent but inde-
pendent from those of other patients.

One naïve solution may be to directly split the data based 
on grouping attribute(s) and generate multiple temporally-
dependent subsequences. However, such a solution does not 
preserve associations among grouping attribute values. Con-
sequently, IDEAL uses a pivoting-based approach to split 
data into multiple independent subsequences in a manner 
that preserves the associations among grouping attribute 
values.

In addition, IDEAL also offers an explanation of the 
anomalous behavior. It provides a data visualization plot 
that explains the level of abnormality of anomalous sub-
sequences detected by the approach. This plot visualizes 
the data over time to help a domain expert understand the 
difference between the attribute values of a suspicious sub-
sequence with those of other subsequences in the data set. 
Such a plot draws attention to the anomalous subsequences; 
this is especially useful for large volumes of data where there 
is a lack of domain knowledge.

We conduct two types of studies to evaluate the anomaly 
detection effectiveness of IDEAL in the absence of domain 
knowledge. The first study validates the level of abnormality 
of an anomalous subsequence generated from a data source 
that is detected by IDEAL by comparing it with subse-
quences generated from other data sources that are reporting 
the same information. The data sources we use to conduct 
this study are COVID-19 tracking data collected from Johns 
Hopkins [23], New York Times [24], and COVID Track-
ing project [25] repositories. We demonstrate that IDEAL 
can detect anomalous subsequences which are indeed outli-
ers when compared with other data sets reporting the same 
information.

The second study validates the level of abnormality of the 
suspicious subsequences by comparing the suspicious sub-
sequences detected by IDEAL against other subsequences 
generated from the same data set. Here the data sets cor-
respond to a homogeneous population, i.e., a phenotype of 
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people with the same values for personal (e.g., gender and 
age) and medical (e.g., diagnosis category, disease type, and 
medication type) attributes. We use COVID-19 medical data 
collected from the health data warehouse in Anschutz medi-
cal campus [26]. We demonstrate that IDEAL can detect 
abnormal subsequences from the data sets under test.

The contributions of this work are as follows:

• We propose a two-level reshaping technique to prepare 
data for training the LSTM-autoencoder model. Thus, 
the preprocessing step that we develop allows IDEAL to 
be used on different types of time-series data, possibly 
grouped by different attributes, and belonging to multiple 
entities.

• We propose a data visualization plot to explain the level 
of abnormality of the subsequences detected by IDEAL. 
This helps the domain experts quickly identify the anom-
alous portions of data in large data sets.

• We propose systematic validation techniques based on a 
comparison between suspicious and other subsequences 
to demonstrate the anomaly detection effectiveness of 
IDEAL. Such a method is useful when there is a lack of 
labeled data or where there is insufficient domain knowl-
edge.

The value of this work lies in automating the process of detect-
ing and explaining potential anomalies that allow clinicians 
who have domain knowledge but lack data science skills to 
evaluate the effect of the level of abnormality and the serious-
ness of an anomaly on the clinical research question they are 
seeking to answer from the COVID-19 data. Due to the large 
number of investigators who intend to use the COVID-19 data, 
the use of the approach could potentially benefit a wide range 
of clinical investigators. This work can also be used for other 
domains that are analyzing large volumes of unlabeled time-
series data that belong to multiple entities.

The rest of the paper is organized as follows. “Related 
work” describes the related work. “Approach” provides 
an overview of IDEAL. “Extension to data preparation” 
describes how we handle time-series data belonging to mul-
tiple independent objects. “Extension to anomaly interpreta-
tion” discusses anomaly interpretation in depth. “Evalua-
tion” presents the evaluation of our approach. “Conclusions” 
concludes the paper and outlines directions for future work. 
Appendix A explains the architecture of the LSTM-autoen-
coder network.

Related Work

The existing anomaly detection techniques in COVID-19 
data focus only on outbreak detection [5–8] in the COVID-
19 tracking cases across the world. Karadayi et al. [5] used 

a hybrid autoencoder network composed of a 3D convo-
lutional neural network (CNN) and an autocorrelation 
based network for outbreak detection from spatio-temporal 
COVID-19 data provided by the Italian Department of Civil 
Protection. Jombart et al. [6] used linear regression, gener-
alised linear models (GLMs), and Bayesian regression to 
detect sudden changes in potential COVID-19 cases in Eng-
land. However, there has been no focus on quality assurance 
of COVID-19 data used for various analysis.

Machine learning-based techniques used for outlier detec-
tion in non-sequence data, such as support vector machine 
(SVM) [12], local outlier factor (LOF) [13], isolation forest 
(IF) [14], and elliptic envelope (EE) [15] have been used to 
detect anomalous records from time series data [27]. Such 
approaches do not consider temporal dependencies between 
data records and can only detect trivial out-of-range outliers.

Techniques that detect anomalous records from time-
series data can be categorized as decomposition and mode-
ling techniques. Decomposition techniques, suitable only for 
univariate time series, break a time series into level, trend, 
seasonality, and noise components and monitor the noise 
components to capture the anomalous records [28, 29]. Mod-
eling techniques represent a time series as a linear/non-linear 
function that associates each current value to its past values, 
predict the value of a record at a specific time, and report as 
anomalies those records whose prediction error falls outside 
a threshold. Stochastic modeling techniques, such as Mov-
ing Average (MA) [30], Autoregressive Integrated Moving 
Average (ARIMA) [31], and Holt-Winters (HW) [32] use 
statistical measures to calculate the correlation between the 
data records. These techniques assume that the time series 
is linear and follows a known statistical distribution, which 
make them inapplicable to many practical problems [33]. 
Machine learning modeling techniques support non-linear 
modeling, with no assumption about the distribution of the 
data [33]. Examples are multi layer perceptrons (MLPs) 
[34], long short term memory (LSTM) [9], and hierarchical 
temporal memory (HTM) [11]. Some of these techniques 
can model multivariate time-series. However, they produce 
complex equations, which are not human interpretable.

Existing techniques for anomalous sequence detection 
split the data into multiple subsequences, typically based 
on a fixed-size window [35] or an exhaustive brute-force 
approach [36]. Clustering-based anomalous sequence detec-
tion techniques extract subsequence features, such as trend 
and seasonality, and group the subsequences based on the 
similarities between their features. An anomalous subse-
quence is detected as the one that is distantly positioned 
within a cluster or is positioned in the smallest cluster. 
These approaches only detect anomalous sequences with-
out determining the records and attributes that are the major 
causes of invalidity in each subsequence. Autoencoder-
based techniques (1) take subsequences as input, (2) use an 
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autoencoder network to reconstruct the subsequences, (3) 
assign invalidity scores based on the reconstruction errors 
to the subsequences, and (4) detect as anomalous those sub-
sequences whose scores are greater than a threshold. These 
techniques can learn complex non-linear associations among 
the attributes in the time series but are not able to model the 
temporal dependencies among the records in the input sub-
sequence. An LSTM-autoencoder extends an autoencoder 
for time series data, and captures long-term temporal asso-
ciations among data records in the form of complex equa-
tions that are not human interpretable. Our work aims to fill 
this gap by illustrating the cause of anomaly to the domain 
experts.

Approach

Figure 1 shows an overview of our approach. The input is in 
the form of data records and the output consists of a report 
showing subsequences of suspicious records accompanied 
with an explanation of the violated constraints. There are 
five components, namely, data preparation, constraint dis-
covery, anomaly detection, anomaly interpretation, and 
anomaly inspection. These components form the basis of 
IDEAL [19] and are briefly described in the following para-
graphs. “Extension to data preparation” and “Evaluation” 
describe how the data preparation and anomaly interpreta-
tion components are extended in this paper.

Data preparation This component prepares the data by 
transforming raw data into a form suitable for analysis. We 
used the one-hot encoding [37] method for preprocessing 
categorical attributes and the normalization [38] method 
for numeric attributes. Moreover, we proposed a system-
atic reshaping approach that uses autocorrelation [39] of 
the time-series attributes to enable the LSTM-autoencoder 
network discover dependencies between highly correlated 
records. Note that, this step must be extended to handle 
COVID-19 data. The extensions are described in “Exten-
sion to data preparation”.

Constraint discovery IDEAL uses an LSTM-autoen-
coder, which is a sequence-to-sequence modeling technique 
[40] used to learn time series dependencies. An LSTM-
autoencoder can discover constraints involving long-term 

non-linear associations among multivariate time-series data 
records and attributes. The input and output to this network 
are fixed-size time series matrices. The network is composed 
of two hidden LSTM layers. The first LSTM layer functions 
as an encoder that investigates the dependencies from the 
input sequence and produces a complex hidden context. The 
second LSTM layer functions as a decoder that reconstructs 
the input sequence, based on the learned complex context 
and the previous output state. The difference between the 
original input and the reconstructed input is termed as the 
reconstruction error. Appendix A describes the architecture 
of the LSTM-autoencoder network.

The LSTM-autoencoder is an unsupervised technique 
that can potentially learn incorrect constraints from invalid 
data and generate false alarms. IDEAL uses an interactive 
learning approach that takes the expert’s feedback through 
the anomaly inspection component to retrain the LSTM-
Autoencoder model and improve its accuracy.

Anomaly detection This component detects suspicious 
subsequences and records that do not conform to the con-
straints represented by the trained model. Subsequence and 
records are assigned suspiciousness scores (s-scores), which 
are calculated based on the network reconstruction error and 
the record labels. The record label indicates the validity level 
of the record. If we start with an unlabeled data set, the 
labels of all records are 0. The record label changes as we 
incorporate domain expert feedback in the subsequent itera-
tions. Subsequences and records whose scores are greater 
than a threshold are flagged as suspicious. Using record 
labels in the definition of s-scores ensures that no valid 
subsequences or records are reported as suspicious in the 
retraining phase, thereby minimizing false alarms.

Anomaly interpretation This component helps a domain 
expert interpret each suspicious subsequence by generating 
visualization plots of two types, namely, s-score per attribute 
and decision tree. The trained LSTM-autoencoder model 
calculates the s-score per attribute. The higher the value 
of s-score, the more likely is the attribute to contribute to 
the invalidity of the subsequence. For each subsequence, 
IDEAL plots the s-score values for all the attributes in the 
subsequence. Moreover, IDEAL uses a decision tree [41] 
based technique called random forest [42] classifier to deter-
mine the constraints that are violated by each suspicious 

Fig. 1  IDEAL overview [19]
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subsequence. For each attribute of the subsequence, a set of 
time series features, such as Mean, Max, and Curvature are 
extracted using Tsfeatures [43] CRAN library. Next, deci-
sion trees are generated using these features. The decision 
trees represent a set of if-then-else decision rules, which 
describe the constraints that identify sequences as valid or 
invalid based on their feature values. Note that, our anomaly 
interpretation component is extended in “Evaluation”.

Anomaly inspection This component takes domain expert 
feedback through a web-based user interface that uses check 
boxes for the expert to flag as faulty the subsequences that 
are actually anomalous. The feedback is incorporated to 
label the training data records as faulty or valid. The accu-
racy of constraint discovery is improved by adding the 
record label with four possible values (1: faulty, 0.5: suspi-
cious, 0: unknown, and −1 : valid) as a new attribute to the 
training data set. This label is updated using domain expert 
feedback in every interaction. We redefine the reconstruction 
error of LSTM-autoencoder based on the labels to minimize 
false alarms. The network is trained to minimize both the 
difference between the time series and its reconstruction, 
and the difference between the record labels in a time series 
and the labels predicted by the network.

Extension to Data Preparation

Analyzing COVID-19 time series data requires that the data 
be converted to a form suitable for analysis. In COVID-19 
data, there are multiple subsets of data; records in each 
subset are temporally dependent but they are unrelated to 
records in other subsets. Such data must be prepared before 
being fed as input to sequential learning models, including 
the LSTM-based model used in this study, which assumes 
that all data records in an input sequence are temporally 
dependent and are describing behaviors of the same object 
over time.

A time series T is a sequence of d-dimensional records 
[44] described using the vector T = ⟨R0,… ,Rt−1⟩ , where 
Ri = (a0

i
,… , ad−1

i
) is a record at time i, for 0 ≤ i ≤ t − 1 and 

a
j

i
 is the jth attribute of the ith record. A time series can be 

univariate (d = 1) or multivariate (d > 1) [45]. A univariate 
time series has one time-dependent attribute. For example, a 
univariate time series can consist of daily COVID-19 cases 
recorded sequentially over 24-h increments. A multivariate 
time series is used to simultaneously capture the dynamic 
nature of multiple attributes. For example, a multivariate 
time series from a health data store can consist of multiple 
laboratory results of patients over time.

Reshaping is an essential data preparation step for 
sequential learning models [46, 47]. This method reshapes 
the data to base the model computations at a time step t on 

a specified number of previous time steps. The number of 
previous time steps is known as window size.

Existing reshaping techniques use a single-level win-
dowing approach, which assumes that all data records in 
a data set are temporally dependent and are describing 
behaviors of a single object over time. For example, all 
the traffic data in the Yahoo Benchmark data store [20] 
are records related to a single server. The NASA Shuttle 
data set [21] contains records of a single shuttle over time. 
However, real-world data sets including the ones used in 
this study typically contain records of multiple objects 
over time. For example, a COVID-19 tracking data set 
can store case records of multiple states over time in the 
US. A medical data set may contain clinical records for 
multiple patients over time. Each object (i.e., state in the 
COVID-19 data set and patient in the medical data set) 
has a unique id, which distinguishes the records concern-
ing that object from the other records in the data set. Sin-
gle-level reshaping techniques cannot be used to split the 
data records into multiple subsequences in such data sets. 
These techniques may generate subsequences with tempo-
rally unrelated records, which can result in generating false 
alarms. For example, Table 1 shows a portion of records 
(i.e., for Patient_ID = 1001 and Patient_ID = 1005) in a 
medical data set that stores patient weights over time.

Splitting this data set through single-level reshaping 
using window size equal to three with one record overlap 
results in two subsequences (Fig. 2), which contain unre-
lated records.

However, the correct windowing must only contain 
temporally-related records of a single object (Fig. 3). An 
anomaly detection technique may incorrectly detect subse-
quence 1 and 2 in Fig. 2 as anomalous (i.e., two false posi-
tives) because of the sudden changes in the Weight values. 
Figure 3 shows the correct reshaping for our example.

In this work, we propose a two-level reshaping tech-
nique to address the above-mentioned issue. This tech-
nique (A) groups the time-series data based on domain-
dependent grouping attributes, and (B) splits the data 
records in each group using our systematic autocorrela-
tion-based reshaping [19] approach.

Table 1  Patient weights sequence

Patient_ID Timestamp Weight

1001 6/1/2020 125.2
1001 7/1/2020 125.6
1005 7/1/2020 26.5
1001 8/1/2020 126.1
1005 8/1/2020 27
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Grouping Data Records

We split the data records into multiple temporally dependent 
groups. For this purpose, we (1) identify grouping attrib-
utes and their hierarchy, (2) concatenate the non-first-level 
grouping attributes into a new attribute, (3) pivot the new 
attribute into multiple temporal attributes, and (4) use the 
first-level grouping attribute to split the data records into 
multiple temporally-dependent subsequences.

1. Identify grouping attributes. A grouping attribute is 
a categorical column by which we can group the data 
set records into multiple temporally-dependent subse-
quences. A data set may have one or more grouping 
attributes, which are domain-dependent. Figure  4a 
shows an example of a medical data set of laboratory 
results for multiple patients over time. This data set 
contains three levels of grouping attributes to describe 
the data records. The first-level grouping attribute (i.e., 
Patient_ID) indicates the objects in a data set, each of 
which is represented by a unique Id. The second- to 
h-level grouping attributes indicate features about those 
objects. For example, in Fig. 4a, the second-level group-
ing attribute (i.e., Test_Type) represents the type of lab-
oratory test. Each patient can receive multiple types of 
test. The third-level grouping attribute (i.e., Test_Name) 
is the name of the laboratory test performed on the 
patients. Each Test_Type includes multiple Test_Name. 
We identify the domain-dependent grouping attributes 

with the help from domain experts. In the future, we will 
use statistical autocorrelation-based [48] techniques to 
automatically identify the grouping attributes and their 
hierarchy from an input data set.

2. Concatenate non-first-level grouping attributes. Our 
approach converts all the non-first-level grouping attrib-
utes into a single data set column to reduce the com-
plexity (i.e., dimensionality) of the problem. We call 
this new column the second-level grouping attribute. 
Figure 4b shows the new generated column from all the 
non-first-level grouping attributes.

  At this step, we can use the first- and second-level 
attributes to group the data into multiple temporally 
dependent subsequences. However, using the resulting 
subsequences generated by this approach, time-series 
analysis techniques will not preserve the associations 
among the values of second-level attribute if any. For 
example, if there are associations among “Blood-Sugar” 
and “Blood-Pressure” of a patient, grouping at this stage 
would not preserve this association. To address this 
issue, our approach uses another step for pivoting the 
second-level attribute into multiple temporal attributes 
based on the attribute values.

3. Pivot second-level grouping attribute. A pivoting query 
[49] converts all unique rows of an attribute into sep-
arate columns of their own, each of which contains a 
value specified as an input to the query. IDEAL pivots 
the second-level grouping attribute to generate multi-
ple temporal attributes. The objective is to preserve the 
associations among grouping attribute values. Pivoting 
results in a smaller number of records in comparison to 
the original data set.

  Figure 4c shows how the pivoting process works in 
the example data set. The second-level grouping attrib-
ute (i.e., a concatenation of Test_Type and Test_Name) 
is converted into five new attributes, each of which con-
tains the corresponding test result stored in the value 
attribute. If a patient has not received a specific test at a 
specific time, the value of that test is set to Null.

4. Group records by first-level grouping attribute. We 
use the first-level grouping attribute to categorize the 
data records in a sequence data set into multiple groups 
Gi, 1 ≤ i ≤ m , where m is the number of the distinct 
values of that attribute. Figure 4c shows the two groups 
of temporally-dependent records (i.e., G1 and G2 ) gener-
ated for the example data set.

Autocorrelation-Based Reshaping of Groups

For each group, IDEAL uses a systematic reshaping approach 
that we proposed in an earlier work [19] to split the data records 
in that group. This approach is based on the autocorrelation 
of the time series attributes to enable the LSTM-autoencoder 

Fig. 2  Incorrect reshaping of patient records into multiple subse-
quences

Fig. 3  Correct reshaping of patient records into multiple subse-
quences
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network discover dependencies between the records that are 
highly correlated. The input size is adjusted based on how 
far the records in a group are related to their past values. By 
feeding the LSTM-autoencoder network with highly correlated 
records, this reshaping approach prevents the network from 
incorrectly discovering associations among non-correlated 
records. For each group Gi , IDEAL uses the autocorrelation-
based approach to identify the window size wi for that group. 
Autocorrelation is defined as the correlation of sequence data 
records with the records in the previous time steps, called lags 
[39]. An Autocorrelation Function (ACF [48]) at lag k for an 
attribute identifies to what extend the attribute is correlated to 
its kth past value. IDEAL calculates ACF to identify the lags 

at which the attribute values are highly correlated to set the 
window size. As the LSTM-autoencoder window size must 
be similar for all the data records in a data set, IDEAL sets the 
final value of window size W to the smallest value of window 
sizes calculated for the groups (Eq. 1). Finally, our approach 
reshapes the data records in groups based on the value of W.

where m is the number of distinct values of the grouping 
attribute. Figure 4d shows how IDEAL splits the records in 
each group into multiple subsequences for W = 2.

(1)W = Min(wi), 1 ≤ i ≤ m,

Fig. 4  Splitting a data set with multiple grouping attributes into multiple temporally-dependent subsequences
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Extension to Anomaly Interpretation

IDEAL uses an additional data visualization plot to explain 
the level of abnormality of suspicious subsequences. This 
plot visualizes attribute values for multiple groups (e.g., 
state in COVID-19 data set and patient in medical data 
set) over time. The visualization plot uses color-coded dia-
grams for every group to help a domain expert compare 
a suspicious subsequence with other subsequences from 
other groups in the data set.

For each suspicious subsequence, IDEAL uses s-score 
per attribute values [19] to select the attribute with the 
highest suspiciousness score. Next, IDEAL plots values 
of that attribute for all the groups (i.e., Gi, 1 ≤ i ≤ m ) over 
time. The attribute values of the suspicious subsequence 
are represented by red points. Figures 5 and 6 shows the 
visualization plots generated for a suspicious subsequence 
detected from the laboratory results in the Anschutz medi-
cal data. Figure 5 shows that e_TOTGLOB attribute (i.e., 
total serum globulin) is the major cause of invalidity (i.e., 
attribute with the highest s-score value) in this subse-
quence. The data visualization plot in Fig. 6 shows the 
values of the e_TOTGLOB attribute over time for this 
subsequence (in red) as well as other subsequences (in 
colors other than red) in the same data set. We can visually 
observe from this figure how the values of e_TOTGLOB 
for this patient deviate from those of the majority of the 
patients in the data set. As the value of this attribute is 

elevated in certain immunological diseases, this deviation 
can be caused by an immunological disease of the patient.

Evaluation

We evaluated the anomaly detection effectiveness of IDEAL 
using COVID-19 records from Johns Hopkins (JH) [23], 
New York Times (NT) [24], and Tracking project (T) [25] 
repositories. These publicly available data sets are updated 
daily and contain county- or state-level COVID-19 attrib-
utes. Wissel et al. [50] compared these data sets based on 
different factors, such as their data sources, collected attrib-
utes, region granularity, and frequency of updates. We used 
nine-month data from March 5th to November 11th, 2020 
to evaluate one execution of IDEAL, which is an execution 
without the feedback loop. Moreover, we used four health 
data sets from the University of Colorado Anschutz medical 
campus [26] to evaluate the anomaly detection effectiveness 
of IDEAL. We used records of COVID-19-positive patients 
to evaluate one execution of IDEAL.

Current knowledge about the COVID-19 data attributes, 
pattern of spread, and distribution is insufficient as this 
is an unprecedented pandemic. We used two evaluation 
approaches to validate the suspicious subsequences detected 
from the COVID-19 data in the domain knowledge absence; 
these are (1) comparing suspicious subsequences detected by 
IDEAL from one data source to those from other independ-
ent sources that are recording values of the same records and 
attributes and (2) comparing the suspicious subsequences 

Fig. 5  s-score per attribute plot for suspicious subsequence detected from Lab results from Anschutz Medical Campus

Fig. 6  Data visualization plot 
for e_TOTGLOB attribute
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detected by IDEAL from a homogeneous population with 
the other subsequences in that population.

Comparing Suspicious Subsequences from Different 
Sources (Johns Hopkins (JH), New York Times (NT), 
and Tracking Project (T))

The objective is to identify whether or not a suspicious 
subsequence is actually anomalous by comparing the suspi-
cious subsequence from a data source with its equivalent 
subsequences from other independent COVID-19 data 
repositories. Two subsequences are equivalent if they con-
tain records of same object (i.e., same grouping attribute 
value) and are observed during the same time period. For 
example, data records of the Alabama state collected from 
three sources of data during March to April 2020 form three 
equivalent subsequences. We formalized possible observa-
tions on equivalent subsequences to validate a suspicious 
subsequence based on whether (1) the same subsequence is 
detected by IDEAL as suspicious from all available sources 
of data or (2) the subsequence is detected as anomalous only 
in some of the available sources. We decided on whether 
or not each suspicious subsequence is actually anomalous 
based on a distance measure (i.e. mean square error (MSE)) 
between the attribute values of the suspicious subsequence 
detected from a source with those of equivalent subse-
quences collected from the other data sources.

For each suspicious subsequence si detected from the ith 
source in a set of sources D (where |D| = n ), we calculated 
the mean square error value between si and all its equivalent 
subsequences sj from the other sources ( 1 ≤ j ≤ n and j ≠ i ). 
sj can be either an undetected or a suspicious subsequence:

where Af

i
 attribute is the major cause of invalidity in si , Af

j
 is 

its equivalent attribute in sj , and w is the window size. The 
following four cases describe how we validated a suspicious 
subsequence si based on the MSE value. 

(A) If attribute values of equivalent subsequences to si 
collected from all other sources of data are close 
to values of si , then all of those subsequences are 
either abnormal but valid, or anomalous detected 
from the same source. An abnormal subsequence 
can indicate signals of a COVID-19 outbreak [5]. If 
∀j ∈ {1,… , n},MSE(si, sj) ≤ Threshold , then si and sj 
are either

– Abnormal but valid, or
– Anomalous collected from the same source

(2)

MSE(si, sj) =
1

w

w∑

k=1

(Normalized(A
f

i
) − Normalized(A

f

j
))2,

(B) If attribute values of equivalent subsequences to si col-
lected from all other sources of data are far from values 
of si but close to one another, then si is anomalous: If 
∀j, k ∈ {1,… , n} ( j, k ≠ i),MSE(si, sj) > Threshold and 
MSE(sj, sk) ≤ Threshold , then si is:

– Anomalous
(C) If attribute values of si are close to a subset of equivalent sub-

sequences to si but far from another subset of equivalent subse-
quences, then all subsequences in the smaller subset are anoma-
lous: If ∀j ∈ D1, k ∈ D2 (D1 ∪ D2 = D, D1 ∩ D2 = ∅, |D1| < |D2|),
MSE(si, sj) ≤ Threshold and MSE(si, sk) > Threshold , 
then:

– si and sj are anomalous, and
– sk is valid

(D) If attribute values of si are close to a subset of equivalent 
subsequences to si but far from another subset of equiv-
alent subsequences and the two subsets are of the same 
size, then all subsequences in both subsets are abnor-
mal and need more investigations by a domain expert: 
I f  ∀j ∈ D1, k ∈ D2 (D1 ∪ D2 = D, D1 ∩ D2 = ∅, |D1| = |D2|),
MSE(si, sj) ≤ Threshold and MSE(si, sk) > Threshold , 
then:

– si , sj , and sk are abnormal and need more investiga-
tion

We ran two experiments. Table 2 shows the attributes 
from the COVID-19 data sets used for each experiment. 
Figure 7 shows data visualization plots for suspicious sub-
sequences detected by IDEAL from data sets of the first 
experiment. In this figure, each color represents data of a 
state. There are 50 plots for the 50 states of the US. The red 
plot represents the data of the suspicious subsequence. We 
used Fig. 8 to validate the suspicious subsequences by com-
paring the attribute values of the suspicious subsequences 
with those of their equivalent subsequences from the first 
experiment data sets. These attributes are major causes of 
invalidity in each suspicious subsequence. In this experi-
ment, the threshold T is set at 0.03 based on our observations 
of the values of MSE in these data sets.

Figure 7a: A suspicious subsequence sJH was detected 
from JH in California data. An equivalent subsequence sT 
was detected from T. The Confirmed attribute was the major 
cause of invalidity in these subsequences. The data visu-
alization plot in Fig. 7a shows how the Confirmed attrib-
ute values of the suspicious subsequence from California 
data in JH (red points) deviate from other subsequences 
from other states in the same source (i.e., JH). The con-
straint violations reported by the decision trees for this 
suspicious subsequence were over the Minimum and Mean 
features of the subsequence. In Fig. 8a, MSE(sJH, sT) < T  , 
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Table 2  Data sets Experiment ID Data sets (sources) Attributes

1 State-level data from JH, NT, and T Confirmed Cases (i.e., 
JH.Confirmed, NT.cases, 
T.positive) and Deaths

2 State-level data from JH and T Recovered and Hospitalization_Rate

Fig. 7  Visualization plots 
for suspicious subsequences 
detected from data sets of 
experiment 1
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MSE(sJH, sNT) < T  , and MSE(sT, sNT) < T  . This result indi-
cates that in California, the numbers of confirmed cases over 
time reported by all three data sources for this suspicious 
subsequence are close to each other. Based on the case A, 
sJH , sNT , and sT are either (1) abnormal but valid or (2) anom-
alous data that have been obtained from the same source.

Figure 7b: A suspicious subsequence sT was detected 
from T in New York data. Equivalent subsequences sJH and 
sNT were also detected from JH and NT. The Deaths attribute 
was the major cause of invalidity in these subsequences. 
The data visualization plot in Fig. 7b shows how the Deaths 

attribute values of the suspicious subsequence from New 
York data in T (red points) deviate from other subsequences 
from other states in the same source (i.e., T). The constraint 
violations reported by the decision trees for this suspicious 
subsequence were over the Linearity (i.e., strength of linear-
ity, which is the sum of squared residuals of time-series from 
a linear autoregression) and Burstiness (i.e., ratio between 
the variance and the mean (Fano Factor) of time series) 
features of the subsequence. In Fig. 8b, MSE(sJH, sT) > T  , 
MSE(sNT, sT) > T  , and MSE(sJH, sNT) < T  . This result indi-
cates that the number of death cases in the New York state 
collected by the data source T was considerably less than 
that of the other two sources of data. Based on case B, sT is 
anomalous and sJH, sNT are valid.

Figure 7c: A suspicious subsequence sNT was detected 
only from NT in Florida data. The Confirmed attribute was 
the major cause of invalidity in this subsequence. The data 
visualization plot in Fig. 7c shows how the Confirmed attrib-
ute values of the suspicious subsequence from Florida data 
in NT (red points) deviate from other subsequences from 
other states in the same source (i.e., NT). The constraint vio-
lations reported by the decision trees for this suspicious sub-
sequence were over the Mean and Curvature (i.e., strength of 
curvature, which is the amount by which a time series curve 
deviates from being a straight line and calculated based on 
the coefficients of an orthogonal quadratic regression) fea-
tures of the subsequence. In this figure, MSE(sJH, sT) < T  , 
MSE(sJH, sNT) < T  , and MSE(sT, sNT) < T  . This result 
indicates that in Florida, the numbers of confirmed cases 
over time reported by all three data sources for this suspi-
cious subsequence are close to each other. Based on case A, 
sJH, sNT, sT are either valid or anomalous collected from the 
same source.

Figure 9 shows data visualization plots for suspicious 
subsequences detected by IDEAL from data sets of the sec-
ond experiment. We used Fig. 10 to validate the suspicious 
subsequences by observing the actual values of attributes 
for the suspicious subsequences and their equivalent subse-
quences from the second experiment data sets. These attrib-
utes are major causes of invalidity in each suspicious subse-
quence. In this experiment threshold T is set at 0.0004 based 
on our observations on the values of MSE in these data sets.

Figure 9a: A suspicious subsequence sJH was detected 
only from JH in Kentucky data. The Hospitalization_Rate 
attribute was the major cause of invalidity in this subse-
quence. The data visualization plot in Fig. 9a shows how 
the Hospitalization_Rate attribute values of the suspicious 
subsequence (red points) from Kentucky data in JH devi-
ate from other subsequences from other states in the same 
source (i.e., JH). The constraint violations reported by the 
decision trees for this suspicious subsequence were over 
the Mean, Maximum, and Vchange (i.e., maximum differ-
ence in variance between consecutive blocks in time series) 

Fig. 8  Actual attribute values in suspicious subsequences detected 
from data sets of experiment 1
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features of the subsequence. In Fig. 10a, MSE(sJH, sT) > T  . 
This result indicates that the hospitalization rates reported 
by the two sources of data for the Kentucky state were con-
siderably distinct. Based on case D, sJH and sT are abnormal 
subsequences that need more investigation.

Figure 9b: A suspicious subsequence sT was detected only 
from T in Ohio data. The Hospitalization_Rate attribute was 
the major cause of invalidity in this subsequence. The data 

visualization plot in Fig. 9b shows how the Hospitaliza-
tion_Rate attribute values of the suspicious subsequence 
from Ohio data in T (red points) deviate from other subse-
quences from other states in the same source. The constraint 
violations reported by the decision trees for this suspicious 
subsequence were over the Mean, Curvature (i.e., strength of 
curvature, which is the amount by which a time series curve 
deviates from being a straight line and calculated based on 

Fig. 9  Actual attribute values 
in suspicious subsequences 
detected from data sets of 
experiment 2
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the coefficients of an orthogonal quadratic regression), and 
Highlowmu (i.e., ratio between the means of data that is 
below and upper the global mean of time series) features of 
the subsequence. In Fig. 10b, MSE(sJH, sT) > T  . This result 
indicates that the hospitalization rates reported by the two 
sources of data for the Ohio state were considerably distinct. 
Based on case D, sJH and sT are abnormal subsequences that 
need more investigation.

Figure 9c: A suspicious subsequence sT was detected 
only from T in Oregon data. The Hospitalization_Rate 
attribute was the major cause of invalidity in this subse-
quence. The data visualization plot in Fig. 9c shows how the 

Hospitalization_Rate attribute values of the suspicious sub-
sequence from Oregon data in T (red points) deviate from 
other subsequences from other states in the same source. 
The constraint violations reported by the decision trees for 
this suspicious subsequence were over the Variance and 
Burstiness (i.e., ratio between the variance and the mean 
(Fano Factor) of time series) features of the subsequence. 
In Fig. 10c, MSE(sJH, sT) > T  . This result indicates that the 
hospitalization rates reported by the two sources of data for 
the Oregon state were considerably distinct. Based on case 
D, sJH and sT are abnormal subsequences that need more 
investigation.

Comparing Suspicious Subsequences 
from a Homogeneous Population

The data of the patients of a homogeneous population should 
relatively look similar. We used this idea as a relative goal 
to evaluate the COVID-19 data in the absence of a domain 
expert. For this purpose, we extracted data of four homo-
geneous populations from Anschutz medical data store 
(Table 3). These data sets are results of joins of multiple 
tables (i.e., Patient, Diagnosis, and Lab) in the Anschutz 
health data warehouse. We fed each population data as 
an input data set to the IDEAL tool to detect suspicious 
subsequences.

We validated the suspicious subsequences by visually 
observing the data visualization plots generated by IDEAL; 
we identified as actually abnormal (true positive) those 
suspicious subsequences of patients whose attribute values 
changing pattern over time are considerably different (i.e., 
visually observable) from other patients in their population. 
We identified as normal (false positive) those suspicious 
subsequences of patients whose attribute values changing 
pattern over time are not different (i.e., not visually observ-
able) from other patients in their population.

Figure 11 shows a visualization plot generated by IDEAL 
for a suspicious subsequence detected by IDEAL from data 
set ID = 1. In this example, the e_Meancorpusc3 attribute 
is the major cause of suspiciousness of the subsequence. 
We can visually observe that the suspicious subsequence 
represented by red data points shows a considerable differ-
ence with other subsequences of the same population (i.e., 
COVID-positive with diabetes). As a result, this subse-
quence is a true positive. The constraint violations reported 
by the decision trees for this suspicious subsequence were 
over the Mean and Variance features of the subsequence.

Figure  12 shows a visualization plot generated by 
IDEAL for a suspicious subsequence detected by IDEAL 
from data set ID=3. In this example, the Phart attribute 
is the major cause of suspiciousness of the subsequence. 
We cannot visually observe a considerable difference 
between the suspicious subsequence represented by red 

Fig. 10  Actual attribute values in suspicious subsequences detected 
from data sets of experiment 2
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data points and other subsequences of the same popula-
tion (i.e., COVID-positive with hypertension). As a result, 
this subsequence is a false positive. The constraint vio-
lations reported by the decision trees for this suspicious 
subsequence were over the Maximum, Curvature (i.e., 
strength of curvature, which is the amount by which a 
time series curve deviates from being a straight line and 
calculated based on the coefficients of an orthogonal quad-
ratic regression), and Linearity (i.e., strength of linearity, 
which is the sum of squared residuals of time series from 
a linear autoregression) features of the subsequence.

Table 4 shows number of true positives (TP), number 
of false positives (FP), Precision =

TP

(TP+FP)
 and total time 

(TT) it took to run the automated steps of IDEAL against 
each data set under test. As the data is unlabeled, we can-
not calculate the recall metric, which is based on the num-
ber of false negatives. The number of true positives and 
false positives are calculated based on our observation on 
the data visualization plots. It took between 58 and 108 s 
to run IDEAL against the data sets. IDEAL could detect 

between 1 and 4 abnormal subsequences in these data sets. 
The precision was between 75 and 100%.

Conclusions

We extended our previous data quality test approach to 
address the problem of anomaly detection in data pertain-
ing to COVID-19. We (1) proposed a two-level reshaping 
technique for data preparation, (2) added a data visuali-
zation plot for anomaly explanation, and (3) evaluated 
the approach against different COVID-19 data sets in the 
domain knowledge absence. We ran two experiments to 
validate the suspicious subsequences detected by IDEAL 
from Johns Hopkins, New York Times, and COVID-19 
tracking project. We compared the attribute values of the 
suspicious subsequence detected from a source with those 
collected from other sources of data. IDEAL could find an 
anomalous subsequence in COVID-19 Tracking data set in 
the number of deaths in the New York state. IDEAL could 
find three abnormal subsequences in the three sources, 
which need more investigation by domain experts.

We also evaluated the anomaly detection effectiveness 
of IDEAL using four health data sets from Anschutz medi-
cal campus. We compared a suspicious supsequence with 
other subsequences in a homogeneous population. IDEAL 
could detect ten abnormal subsequences in these data sets.

In the future, we will evaluate the approach using other 
types of COVID-19 time series data. We plan to extend 
IDEAL to find anomalies in streaming COVID-19 data.

Fig. 11  Data visualization plot for a suspicious subsequence from COVID-positives with diabetes

Fig. 12  Data visualization plot for a suspicious subsequence from COVID-positives with hypertension

Table 3  Health data sets

Data set ID Data set name #records #attributes

1 COVID-positive with diabetes 770 103
2 COVID-positive females over 60 1174 103
3 COVID-positive with hyperten-

sion
1270 103

4 COVID-positive males over 60 1839 103
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Appendices

An LSTM-Autoencoder

A Long Short Term Network (LSTM) [9] is a Recurrent 
Neural Network (RNN) [51] that contains loops in its struc-
ture to allow information to persist and make network learn 
sequential dependencies among data records [9]. An RNN 
can be represented as multiple copies of a neural network, 
each passing a value to its successor. The original RNNs 
can only learn short-term dependencies among data records 
using the recurrent feedback connections [45]. LSTMs 
extend RNNs using specialized gates and memory cells in 
their neuron structure to learn long-term dependencies. The 
computational units (neurons) of an LSTM are called mem-
ory cells. An LSTM has the ability to remove or add infor-
mation to the memory cell state using gates. The gates are 
defined as weighted functions that govern information flow 
in the memory cells. The gates are composed of a sigmoid 
layer and a point-wise operation to optionally let information 
through. The sigmoid layer outputs a number between zero 
(to let nothing through) and one (to let everything through). 
There are three types of gates, namely, forget, input, and 
output.

– Forget gate Decides what information to discard from the 
memory cell. Equation 3 shows the mathematical repre-
sentation of the forget gate. 

 where Wf  is the connection weight between the inputs 
( ht−1 and xt ) and the sigmoid layer; bf  is the bias term and 
! is the sigmoid activation function. In this gate, ft = 1 
means that completely keep the information and ft = 0 
means that completely get rid of the information.

– Input gate Decides which values to be used from the net-
work input to update the memory state. Equation 4 shows 
the mathematical representation of the input gate. 

(3)ft = !(Wf .[ht−1, xt] + bf ),

(4)Ct = ft ∗ Ct−1 + it ∗ C̃t,

 where Ct is the new memory cell state and Ct−1 is the old 
cell state, which is multiplied by ft to forget the informa-
tion decided by the forget gate; C̃t is the new candidate 
value for the memory state, which is scaled by it as how 
much the gate decides to update the state value.

– Output gate Decides what to output based on the input 
and the memory state. Equation 5 shows the mathemati-
cal representation of the output gate. This gate pushes the 
cell state values between −1 and 1 by using a hyperbolic 
tangent function and multiplies it by the output of its 
sigmoid layer to decide which parts of the input and the 
cell state to output. 

An autoencoder is an unsupervised deep neural network that 
discovers constraints in the unlabeled input data. An autoen-
coder is composed of an encoder and a decoder. The encoder 
compresses the data from the input layer into a short rep-
resentation, which is a non-linear combination of the input 
elements. The decoder decompresses this representation into 
a new representation that closely matches the original data. 
The network is trained to minimize the reconstruction error 
(RE), which is the average squared distance between the 
original data and its reconstruction [52].

An LSTM-autoencoder [44] is an extension of an autoen-
coder for time-series data using an encoder-decoder LSTM 
architecture. An LSTM-autoencoder can capture the tempo-
ral dependencies among the input records by using LSTM 
networks as the layers of the autoencoder network.

Figure 13 shows the LSTM-autoencoder architecture. The 
input and output are fixed-size time series matrices. 
Xi,j = [x0

i,j
,… , xd−1

i,j
] is the jth record with d attributes, Ti is 

the ith time series that contains w records, and w is the win-
dow size. The network output has the same dimensionality 
as the network input. The network is composed of two hid-
den layers that are LSTMs with d′ units. The first LSTM 
layer functions as an encoder that investigates the dependen-
cies from the input sequence and produces a complex hidden 
context (i.e., d′ encoded time series features, where the value 
of d′ depends on the underlying encoding used by the 
autoencoder). The second LSTM layer functions as a 
decoder that produces the output sequence, based on the 
learned complex context and the previous output state. The 
TimeDistributed layer is used to process the output from the 
LSTM hidden layer. This layer is a dense (fully-connected) 
wrapper layer that makes the network return a sequence with 
shape (d ∗ w) . The reconstruction error for this network is 
defined as follows [52]:

(5)ot = !(Wo ⋅ [ht−1, xt] + bo)

ht = ot ∗ tan h(Ct)

Table 4  Results for health data sets

Data set ID TP FP Precision TT (s)

1 4 1 0.80 58
2 3 1 0.75 76
3 2 0 1.00 64
4 1 0 1.00 108
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where Ti and T ′
i
 are the ith network input and output and m 

is the total number of subsequences.
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