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Abstract

Anomaly detection and explanation in big volumes of real-world medical data, such as those pertaining to COVID-19,
pose some challenges. First, we are dealing with time-series data. Typical time-series data describe behavior of a single
object over time. In medical data, we are dealing with time-series data belonging to multiple entities. Thus, there may be
multiple subsets of records such that records in each subset, which belong to a single entity are temporally dependent, but
the records in different subsets are unrelated. Moreover, the records in a subset contain different types of attributes, some
of which must be grouped in a particular manner to make the analysis meaningful. Anomaly detection techniques need to
be customized for time-series data belonging to multiple entities. Second, anomaly detection techniques fail to explain the
cause of outliers to the experts. This is critical for new diseases and pandemics where current knowledge is insufficient.
We propose to address these issues by extending our existing work called IDEAL, which is an LSTM-autoencoder based
approach for data quality testing of sequential records, and provides explanations of constraint violations in a manner that
is understandable to end-users. The extension (1) uses a novel two-level reshaping technique that splits COVID-19 data sets
into multiple temporally-dependent subsequences and (2) adds a data visualization plot to further explain the anomalies and
evaluate the level of abnormality of subsequences detected by IDEAL. We performed two systematic evaluation studies for
our anomalous subsequence detection. One study uses aggregate data, including the number of cases, deaths, recovered, and
percentage of hospitalization rate, collected from a COVID tracking project, New York Times, and Johns Hopkins for the
same time period. The other study uses COVID-19 patient medical records obtained from Anschutz Medical Center health
data warehouse. The results are promising and indicate that our techniques can be used to detect anomalies in large volumes
of real-world unlabeled data whose accuracy or validity is unknown.
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N . ‘ . ‘ Introduction
This article is part of the topical collection “Artificial Intelligence

for HealthCare” guest edited by Lydia Bouzar-Benlabiod, Stuart
H. Rubin and Edwige Pissaloux. Large amounts of data records are being collected from

various sources over time to analyze the immediate and
long-term impacts of COVID-19 on human health. Exam-
ples include the analysis of the impacts [1], diagnosis [2],
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Y reports. Such data records are assumed to be accurate. How-

ever, the records may get corrupted in the non-trivial data
collection and transformation processes. Anomalous data
may lead to incorrect inferences and research findings. Thus,
it is critical to automatically find inaccurate or anomalous
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Existing anomaly detection techniques for COVID-
19 data (some based on machine learning) focus only on
outbreak detection [5-8] in the COVID-19 tracking cases
across the world. Machine learning approaches [9—11] have
also been used for data quality assurance in other domains.
Many of these techniques use supervised machine learn-
ing, which assumes the existence of labeled training data
which in real-world is unavailable for new forms of out-
breaks such as COVID-19. Moreover, outlier detection using
machine learning fails to explain how records are anomalous
to the domain experts. Finally, most works [12-17] iden-
tifying anomalous records in a data set cannot be used on
time-series data as anomalies may span multiple attributes
and records in a sequence [18]. We aim to eliminate the
above shortcomings by detecting anomalies in COVID-19
time-series data without having access to labeled data and
explaining the anomalies to domain experts in a compre-
hensible manner.

This approach, called IDEAL, builds upon our previous
work on data quality assessment approach [19] that uses an
LSTM-autoencoder [10] network to find anomalies in unsu-
pervised data. Anomalies are data records or subsequences
of data records whose behaviors (i.e., attribute values or
change in the values over time) are significantly different
from the majority of records and subsequences in a time-
series data set [5]. IDEAL automatically (1) discovers dif-
ferent types of constraints from the sequence data, (2) marks
subsequences and records that violate the constraints as sus-
picious, and (3) explains the violations. IDEAL automati-
cally generates three types of visualizations to explain the
anomalies. The plot showing the suspiciousness score per
attribute indicates which attributes make the subsequence
anomalous. The second visualization uses decision trees to
illustrate the violated constraints. The third plot compares
a suspicious subsequence detected by IDEAL with normal
subsequences belonging to the same data set. The approach
incorporates feedback from domain experts to improve the
accuracy of constraint discovery and anomaly detection. We
proposed an autocorrelation-based reshaping technique that
automatically adjusts the LSTM-autoencoder input window
size based on how far the records are related to their past
values. We evaluated the effectiveness of IDEAL using
data sets from Yahoo servers [20], NASA Shuttle [21], and
Colorado State University Energy Institute [22]. We dem-
onstrated that IDEAL could detect previously known and
injected anomalies in these data sets.

The above mentioned work needs to be extended for
COVID-19 time-series data. The Yahoo servers [20] and
NASA Shuttle [21] data sets that we previously used contain
time-series data associated with a single entity; COVID-
19 time-series data belongs to multiple entities (e.g., cases
and deaths for states and counties, or lab test type and test
name for different patients. Thus, in COVID-19 data there
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are multiple subsets of data each of which belongs to a single
entity. Records in each subset are temporally dependent but
they are unrelated to records in other subsets. Moreover,
in each subset there are multiple grouping attributes (e.g.,
test type and test name) which requires the data to be pre-
processed to make the results correct. We extend IDEAL
using a two-level reshaping approach to transform data into
a shape that is suitable for analysis. This approach removes
the restriction that all data records in a sequence data set
must be temporally dependent and are describing behaviors
of the same object over time. Instead, IDEAL supports data
sets in which a subset of records are temporally related to
each other but are unrelated to the records from other subsets
in the same data set. For example, a health data store may
contain medical records of multiple patients over time. The
records of each patient are temporally dependent but inde-
pendent from those of other patients.

One naive solution may be to directly split the data based
on grouping attribute(s) and generate multiple temporally-
dependent subsequences. However, such a solution does not
preserve associations among grouping attribute values. Con-
sequently, IDEAL uses a pivoting-based approach to split
data into multiple independent subsequences in a manner
that preserves the associations among grouping attribute
values.

In addition, IDEAL also offers an explanation of the
anomalous behavior. It provides a data visualization plot
that explains the level of abnormality of anomalous sub-
sequences detected by the approach. This plot visualizes
the data over time to help a domain expert understand the
difference between the attribute values of a suspicious sub-
sequence with those of other subsequences in the data set.
Such a plot draws attention to the anomalous subsequences;
this is especially useful for large volumes of data where there
is a lack of domain knowledge.

We conduct two types of studies to evaluate the anomaly
detection effectiveness of IDEAL in the absence of domain
knowledge. The first study validates the level of abnormality
of an anomalous subsequence generated from a data source
that is detected by IDEAL by comparing it with subse-
quences generated from other data sources that are reporting
the same information. The data sources we use to conduct
this study are COVID-19 tracking data collected from Johns
Hopkins [23], New York Times [24], and COVID Track-
ing project [25] repositories. We demonstrate that IDEAL
can detect anomalous subsequences which are indeed outli-
ers when compared with other data sets reporting the same
information.

The second study validates the level of abnormality of the
suspicious subsequences by comparing the suspicious sub-
sequences detected by IDEAL against other subsequences
generated from the same data set. Here the data sets cor-
respond to a homogeneous population, i.e., a phenotype of
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people with the same values for personal (e.g., gender and
age) and medical (e.g., diagnosis category, disease type, and
medication type) attributes. We use COVID-19 medical data
collected from the health data warehouse in Anschutz medi-
cal campus [26]. We demonstrate that IDEAL can detect
abnormal subsequences from the data sets under test.

The contributions of this work are as follows:

e We propose a two-level reshaping technique to prepare
data for training the LSTM-autoencoder model. Thus,
the preprocessing step that we develop allows IDEAL to
be used on different types of time-series data, possibly
grouped by different attributes, and belonging to multiple
entities.

e We propose a data visualization plot to explain the level
of abnormality of the subsequences detected by IDEAL.
This helps the domain experts quickly identify the anom-
alous portions of data in large data sets.

e We propose systematic validation techniques based on a
comparison between suspicious and other subsequences
to demonstrate the anomaly detection effectiveness of
IDEAL. Such a method is useful when there is a lack of
labeled data or where there is insufficient domain knowl-
edge.

The value of this work lies in automating the process of detect-
ing and explaining potential anomalies that allow clinicians
who have domain knowledge but lack data science skills to
evaluate the effect of the level of abnormality and the serious-
ness of an anomaly on the clinical research question they are
seeking to answer from the COVID-19 data. Due to the large
number of investigators who intend to use the COVID-19 data,
the use of the approach could potentially benefit a wide range
of clinical investigators. This work can also be used for other
domains that are analyzing large volumes of unlabeled time-
series data that belong to multiple entities.

The rest of the paper is organized as follows. “Related
work” describes the related work. “Approach” provides
an overview of IDEAL. “Extension to data preparation”
describes how we handle time-series data belonging to mul-
tiple independent objects. “Extension to anomaly interpreta-
tion” discusses anomaly interpretation in depth. “Evalua-
tion” presents the evaluation of our approach. “Conclusions”
concludes the paper and outlines directions for future work.
Appendix A explains the architecture of the LSTM-autoen-
coder network.

Related Work

The existing anomaly detection techniques in COVID-19
data focus only on outbreak detection [5—8] in the COVID-
19 tracking cases across the world. Karadayi et al. [5] used

a hybrid autoencoder network composed of a 3D convo-
lutional neural network (CNN) and an autocorrelation
based network for outbreak detection from spatio-temporal
COVID-19 data provided by the Italian Department of Civil
Protection. Jombart et al. [6] used linear regression, gener-
alised linear models (GLMs), and Bayesian regression to
detect sudden changes in potential COVID-19 cases in Eng-
land. However, there has been no focus on quality assurance
of COVID-19 data used for various analysis.

Machine learning-based techniques used for outlier detec-
tion in non-sequence data, such as support vector machine
(SVM) [12], local outlier factor (LOF) [13], isolation forest
(IF) [14], and elliptic envelope (EE) [15] have been used to
detect anomalous records from time series data [27]. Such
approaches do not consider temporal dependencies between
data records and can only detect trivial out-of-range outliers.

Techniques that detect anomalous records from time-
series data can be categorized as decomposition and mode-
ling techniques. Decomposition techniques, suitable only for
univariate time series, break a time series into level, trend,
seasonality, and noise components and monitor the noise
components to capture the anomalous records [28, 29]. Mod-
eling techniques represent a time series as a linear/non-linear
function that associates each current value to its past values,
predict the value of a record at a specific time, and report as
anomalies those records whose prediction error falls outside
a threshold. Stochastic modeling techniques, such as Mov-
ing Average (MA) [30], Autoregressive Integrated Moving
Average (ARIMA) [31], and Holt-Winters (HW) [32] use
statistical measures to calculate the correlation between the
data records. These techniques assume that the time series
is linear and follows a known statistical distribution, which
make them inapplicable to many practical problems [33].
Machine learning modeling techniques support non-linear
modeling, with no assumption about the distribution of the
data [33]. Examples are multi layer perceptrons (MLPs)
[34], long short term memory (LSTM) [9], and hierarchical
temporal memory (HTM) [11]. Some of these techniques
can model multivariate time-series. However, they produce
complex equations, which are not human interpretable.

Existing techniques for anomalous sequence detection
split the data into multiple subsequences, typically based
on a fixed-size window [35] or an exhaustive brute-force
approach [36]. Clustering-based anomalous sequence detec-
tion techniques extract subsequence features, such as trend
and seasonality, and group the subsequences based on the
similarities between their features. An anomalous subse-
quence is detected as the one that is distantly positioned
within a cluster or is positioned in the smallest cluster.
These approaches only detect anomalous sequences with-
out determining the records and attributes that are the major
causes of invalidity in each subsequence. Autoencoder-
based techniques (1) take subsequences as input, (2) use an
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autoencoder network to reconstruct the subsequences, (3)
assign invalidity scores based on the reconstruction errors
to the subsequences, and (4) detect as anomalous those sub-
sequences whose scores are greater than a threshold. These
techniques can learn complex non-linear associations among
the attributes in the time series but are not able to model the
temporal dependencies among the records in the input sub-
sequence. An LSTM-autoencoder extends an autoencoder
for time series data, and captures long-term temporal asso-
ciations among data records in the form of complex equa-
tions that are not human interpretable. Our work aims to fill
this gap by illustrating the cause of anomaly to the domain
experts.

Approach

Figure 1 shows an overview of our approach. The input is in
the form of data records and the output consists of a report
showing subsequences of suspicious records accompanied
with an explanation of the violated constraints. There are
five components, namely, data preparation, constraint dis-
covery, anomaly detection, anomaly interpretation, and
anomaly inspection. These components form the basis of
IDEAL [19] and are briefly described in the following para-
graphs. “Extension to data preparation” and “Evaluation”
describe how the data preparation and anomaly interpreta-
tion components are extended in this paper.

Data preparation This component prepares the data by
transforming raw data into a form suitable for analysis. We
used the one-hot encoding [37] method for preprocessing
categorical attributes and the normalization [38] method
for numeric attributes. Moreover, we proposed a system-
atic reshaping approach that uses autocorrelation [39] of
the time-series attributes to enable the LSTM-autoencoder
network discover dependencies between highly correlated
records. Note that, this step must be extended to handle
COVID-19 data. The extensions are described in “Exten-
sion to data preparation”.

Constraint discovery IDEAL uses an LSTM-autoen-
coder, which is a sequence-to-sequence modeling technique
[40] used to learn time series dependencies. An LSTM-
autoencoder can discover constraints involving long-term

d(k-1)

Data Constraint W) (k=1) (k)
Preparation Discovery z; = d( Z zZ; W)
=1
- .
Data R d
ata Records 2 ;r:g';:s:::: in the form of
o .@ o complex equations

non-linear associations among multivariate time-series data
records and attributes. The input and output to this network
are fixed-size time series matrices. The network is composed
of two hidden LSTM layers. The first LSTM layer functions
as an encoder that investigates the dependencies from the
input sequence and produces a complex hidden context. The
second LSTM layer functions as a decoder that reconstructs
the input sequence, based on the learned complex context
and the previous output state. The difference between the
original input and the reconstructed input is termed as the
reconstruction error. Appendix A describes the architecture
of the LSTM-autoencoder network.

The LSTM-autoencoder is an unsupervised technique
that can potentially learn incorrect constraints from invalid
data and generate false alarms. IDEAL uses an interactive
learning approach that takes the expert’s feedback through
the anomaly inspection component to retrain the LSTM-
Autoencoder model and improve its accuracy.

Anomaly detection This component detects suspicious
subsequences and records that do not conform to the con-
straints represented by the trained model. Subsequence and
records are assigned suspiciousness scores (s-scores), which
are calculated based on the network reconstruction error and
the record labels. The record label indicates the validity level
of the record. If we start with an unlabeled data set, the
labels of all records are 0. The record label changes as we
incorporate domain expert feedback in the subsequent itera-
tions. Subsequences and records whose scores are greater
than a threshold are flagged as suspicious. Using record
labels in the definition of s-scores ensures that no valid
subsequences or records are reported as suspicious in the
retraining phase, thereby minimizing false alarms.

Anomaly interpretation This component helps a domain
expert interpret each suspicious subsequence by generating
visualization plots of two types, namely, s-score per attribute
and decision tree. The trained LSTM-autoencoder model
calculates the s-score per attribute. The higher the value
of s-score, the more likely is the attribute to contribute to
the invalidity of the subsequence. For each subsequence,
IDEAL plots the s-score values for all the attributes in the
subsequence. Moreover, IDEAL uses a decision tree [41]
based technique called random forest [42] classifier to deter-
mine the constraints that are violated by each suspicious

Anomaly
Detection

Anomaly
Inspection

P Anomaly
P—H Interpretation

Qo

Suspicious — . Inspected

@ Sequences -— 7 Suspicious Sequences
N { Sequences

+
Explanation

Expert Feedback

Fig. 1 IDEAL overview [19]
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subsequence. For each attribute of the subsequence, a set of
time series features, such as Mean, Max, and Curvature are
extracted using Tsfeatures [43] CRAN library. Next, deci-
sion trees are generated using these features. The decision
trees represent a set of if-then-else decision rules, which
describe the constraints that identify sequences as valid or
invalid based on their feature values. Note that, our anomaly
interpretation component is extended in “Evaluation”.

Anomaly inspection This component takes domain expert
feedback through a web-based user interface that uses check
boxes for the expert to flag as faulty the subsequences that
are actually anomalous. The feedback is incorporated to
label the training data records as faulty or valid. The accu-
racy of constraint discovery is improved by adding the
record label with four possible values (1: faulty, 0.5: suspi-
cious, 0: unknown, and —1: valid) as a new attribute to the
training data set. This label is updated using domain expert
feedback in every interaction. We redefine the reconstruction
error of LSTM-autoencoder based on the labels to minimize
false alarms. The network is trained to minimize both the
difference between the time series and its reconstruction,
and the difference between the record labels in a time series
and the labels predicted by the network.

Extension to Data Preparation

Analyzing COVID-19 time series data requires that the data
be converted to a form suitable for analysis. In COVID-19
data, there are multiple subsets of data; records in each
subset are temporally dependent but they are unrelated to
records in other subsets. Such data must be prepared before
being fed as input to sequential learning models, including
the LSTM-based model used in this study, which assumes
that all data records in an input sequence are temporally
dependent and are describing behaviors of the same object
over time.

A time series T is a sequence of d-dimensional records
[44] described using the vector T = (R, ..., R,_;), where
R, =(d?,...,a% ") is arecord at time i, for0 < i <7 — land
aﬁ is the jth attribute of the ith record. A time series can be
univariate (d = 1) or multivariate (d > 1) [45]. A univariate
time series has one time-dependent attribute. For example, a
univariate time series can consist of daily COVID-19 cases
recorded sequentially over 24-h increments. A multivariate
time series is used to simultaneously capture the dynamic
nature of multiple attributes. For example, a multivariate
time series from a health data store can consist of multiple
laboratory results of patients over time.

Reshaping is an essential data preparation step for
sequential learning models [46, 47]. This method reshapes
the data to base the model computations at a time step ¢ on

a specified number of previous time steps. The number of
previous time steps is known as window size.

Existing reshaping techniques use a single-level win-
dowing approach, which assumes that all data records in
a data set are temporally dependent and are describing
behaviors of a single object over time. For example, all
the traffic data in the Yahoo Benchmark data store [20]
are records related to a single server. The NASA Shuttle
data set [21] contains records of a single shuttle over time.
However, real-world data sets including the ones used in
this study typically contain records of multiple objects
over time. For example, a COVID-19 tracking data set
can store case records of multiple states over time in the
US. A medical data set may contain clinical records for
multiple patients over time. Each object (i.e., state in the
COVID-19 data set and patient in the medical data set)
has a unique id, which distinguishes the records concern-
ing that object from the other records in the data set. Sin-
gle-level reshaping techniques cannot be used to split the
data records into multiple subsequences in such data sets.
These techniques may generate subsequences with tempo-
rally unrelated records, which can result in generating false
alarms. For example, Table 1 shows a portion of records
(i.e., for Patient_ID = 1001 and Patient_ID = 1005) in a
medical data set that stores patient weights over time.

Splitting this data set through single-level reshaping
using window size equal to three with one record overlap
results in two subsequences (Fig. 2), which contain unre-
lated records.

However, the correct windowing must only contain
temporally-related records of a single object (Fig. 3). An
anomaly detection technique may incorrectly detect subse-
quence 1 and 2 in Fig. 2 as anomalous (i.e., two false posi-
tives) because of the sudden changes in the Weight values.
Figure 3 shows the correct reshaping for our example.

In this work, we propose a two-level reshaping tech-
nique to address the above-mentioned issue. This tech-
nique (A) groups the time-series data based on domain-
dependent grouping attributes, and (B) splits the data
records in each group using our systematic autocorrela-
tion-based reshaping [19] approach.

Table 1 Patient weights sequence

Patient_ID Timestamp Weight
1001 6/1/2020 125.2
1001 7/1/2020 125.6
1005 7/1/2020 26.5
1001 8/1/2020 126.1
1005 8/1/2020 27
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Subsequence 1

1001 6/1/2020 125.2

1001 7/1/2020 125.6

1005 7/1/2020 26.5
Subsequence 2

1005 7/1/2020 26.5

1001 8/1/2020 126.1

1005 8/1/2020 27

Fig.2 Incorrect reshaping of patient records into multiple subse-
quences

Subsequence 1

1001 6/1/2020 125.2

1001 7/1/2020 125.6

1001 8/1/2020 126.1
Subsequence 2

1005 7/1/2020 26.5

1005 8/1/2020 27

Fig.3 Correct reshaping of patient records into multiple subse-
quences

Grouping Data Records

We split the data records into multiple temporally dependent
groups. For this purpose, we (1) identify grouping attrib-
utes and their hierarchy, (2) concatenate the non-first-level
grouping attributes into a new attribute, (3) pivot the new
attribute into multiple temporal attributes, and (4) use the
first-level grouping attribute to split the data records into
multiple temporally-dependent subsequences.

1. Identify grouping attributes. A grouping attribute is
a categorical column by which we can group the data
set records into multiple temporally-dependent subse-
quences. A data set may have one or more grouping
attributes, which are domain-dependent. Figure 4a
shows an example of a medical data set of laboratory
results for multiple patients over time. This data set
contains three levels of grouping attributes to describe
the data records. The first-level grouping attribute (i.e.,
Patient_ID) indicates the objects in a data set, each of
which is represented by a unique Id. The second- to
h-level grouping attributes indicate features about those
objects. For example, in Fig. 4a, the second-level group-
ing attribute (i.e., Test_Type) represents the type of lab-
oratory test. Each patient can receive multiple types of
test. The third-level grouping attribute (i.e., Test_Name)
is the name of the laboratory test performed on the
patients. Each Test_Type includes multiple Test_Name.
We identify the domain-dependent grouping attributes
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with the help from domain experts. In the future, we will
use statistical autocorrelation-based [48] techniques to
automatically identify the grouping attributes and their
hierarchy from an input data set.

2. Concatenate non-first-level grouping attributes. Our
approach converts all the non-first-level grouping attrib-
utes into a single data set column to reduce the com-
plexity (i.e., dimensionality) of the problem. We call
this new column the second-level grouping attribute.
Figure 4b shows the new generated column from all the
non-first-level grouping attributes.

At this step, we can use the first- and second-level
attributes to group the data into multiple temporally
dependent subsequences. However, using the resulting
subsequences generated by this approach, time-series
analysis techniques will not preserve the associations
among the values of second-level attribute if any. For
example, if there are associations among “Blood-Sugar”
and “Blood-Pressure” of a patient, grouping at this stage
would not preserve this association. To address this
issue, our approach uses another step for pivoting the
second-level attribute into multiple temporal attributes
based on the attribute values.

3. Pivot second-level grouping attribute. A pivoting query
[49] converts all unique rows of an attribute into sep-
arate columns of their own, each of which contains a
value specified as an input to the query. IDEAL pivots
the second-level grouping attribute to generate multi-
ple temporal attributes. The objective is to preserve the
associations among grouping attribute values. Pivoting
results in a smaller number of records in comparison to
the original data set.

Figure 4c shows how the pivoting process works in
the example data set. The second-level grouping attrib-
ute (i.e., a concatenation of Test_Type and Test_Name)
is converted into five new attributes, each of which con-
tains the corresponding test result stored in the value
attribute. If a patient has not received a specific test at a
specific time, the value of that test is set to Null.

4. Group records by first-level grouping attribute. We
use the first-level grouping attribute to categorize the
data records in a sequence data set into multiple groups
G;, 1 <£i < m, where m is the number of the distinct
values of that attribute. Figure 4c shows the two groups
of temporally-dependent records (i.e., G, and G,) gener-
ated for the example data set.

Autocorrelation-Based Reshaping of Groups

For each group, IDEAL uses a systematic reshaping approach
that we proposed in an earlier work [19] to split the data records
in that group. This approach is based on the autocorrelation
of the time series attributes to enable the LSTM-autoencoder
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1%t —level 2" —fevel 3 —level 15t —level 2M —level
id timestamp Patient_ID Test_Type [ Test_Name  Value id timestamp Patient_ID 2"d —|evel Grouping Attribute Value
1 19/9/2020 8 Blood ALBUMIN 4.5 1 19/9/2020 8 Blood-ALBUMIN 4.5
2 19/9/2020 8 Urinalysis pH 4.7 2 19/9/2020 8 Urinalysis-pH 4.7
3 19/9/2020 8 Urinalysis Glucose 0.5 3 19/9/2020 8 Urinalysis-Glucose 0.5
4 20/9/2020 8 Blood ALBUMIN 9.0 4 20/9/2020 8 Blood-ALBUMIN 9.0
5 21/9/2020 8 Blood ALBUMIN 10.0 5 21/9/2020 8 Blood-ALBUMIN 10.0
6 20/9/2020 9 Blood ANIOGAR 3.9 6 20/9/2020 9 Blood-ANIOGAR 3.9
7 21/9/2020 9 Blood ANIOGAR 4.0 7 21/9/2020 9 Blood-ANIOGAR 4.0
8 22/9/2020 9 Blood ANIOGAR 111 8 22/9/2020 9 Blood-ANIOGAR 111
9 22/9/2020 9 Blood ALBUMIN 5.6 9 22/9/2020 9 Blood-ALBUMIN 5.6
10 22/9/2020 9 Urinalysis Protein 11 10 22/9/2020 9 Urinalysis-Protein 11
11 23/9/2020 9 Urinalysis A Protein 9 11 23/9/2020 9 Urinalysis-Protein 9

(a) Original Dataset with Multiple Grouping Attributes (b) Dataset after Concatenating Non-first-level Grouping

Attributes
15t —level
id timestamp || Patient_ID Blood-ALBUMIN | Blood-ANIOGAR | Urinalysis-pH Urinalysis-Glucose Urinalysis-Protein
1 1 19/9/2020 8 4.5 Null 4.7 0.5 Null
Gl— 2 20/9/2020 8 9.0 Null Null Null Null
3 21/9/2020 8 10.0 Null Null Null Null
7 4 20/9/2020 9 Null 3.9 Null Null Null
5 21/9/2020 9 Null 4.0 Null Null Null
G, —
2 6 22/9/2020 9 5.6 111 Null Null 11
7 23/9/2020 9 Null Null Null Null 9
(c) Dataset after Pivoting Second-level Grouping Attribute
id timestamp Patient_ID Blood-ALBUMIN Blood-ANIOGAR | Urinalysis-pH Urinalysis-Glucose Urinalysis-Protein
L 1 19/9/2020 8 4.5 Null 4.7 0.5 Null 1
1Subsequence,
_.l 2 20/9/2020 8 9.0 Null Null Null Null 1
G, )
3 21/9/2020 8 10.0 Null Null Null Null
L 4 20/9/2020 9 Null 3.9 Null Null Null 1
1Subsequence,
Is 21/9/2020 9 Null 4.0 Null Null Null 1
G, =} et """ ——-——————-— £
2 6 22/9/2020 9 5.6 111 Null Null 11 1
i1ISubsequence,
7 23/9/2020 9 Null Null Null Null 9 1

(d) Dataset after Reshaping Using W = 2

Fig.4 Splitting a data set with multiple grouping attributes into multiple temporally-dependent subsequences

network discover dependencies between the records that are
highly correlated. The input size is adjusted based on how
far the records in a group are related to their past values. By
feeding the LSTM-autoencoder network with highly correlated
records, this reshaping approach prevents the network from
incorrectly discovering associations among non-correlated
records. For each group G,, IDEAL uses the autocorrelation-
based approach to identify the window size w; for that group.
Autocorrelation is defined as the correlation of sequence data
records with the records in the previous time steps, called lags
[39]. An Autocorrelation Function (ACF [48]) at lag k for an
attribute identifies to what extend the attribute is correlated to
its kth past value. IDEAL calculates ACF to identify the lags

at which the attribute values are highly correlated to set the
window size. As the LSTM-autoencoder window size must
be similar for all the data records in a data set, IDEAL sets the
final value of window size W to the smallest value of window
sizes calculated for the groups (Eq. 1). Finally, our approach
reshapes the data records in groups based on the value of W.

ey

where m is the number of distinct values of the grouping
attribute. Figure 4d shows how IDEAL splits the records in
each group into multiple subsequences for W = 2.

W =Min(w;), ] <i<m,
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A SPRINGER NATURE journal



279 Page8of17

SN Computer Science (2021) 2:279

Extension to Anomaly Interpretation

IDEAL uses an additional data visualization plot to explain
the level of abnormality of suspicious subsequences. This
plot visualizes attribute values for multiple groups (e.g.,
state in COVID-19 data set and patient in medical data
set) over time. The visualization plot uses color-coded dia-
grams for every group to help a domain expert compare
a suspicious subsequence with other subsequences from
other groups in the data set.

For each suspicious subsequence, IDEAL uses s-score
per attribute values [19] to select the attribute with the
highest suspiciousness score. Next, IDEAL plots values
of that attribute for all the groups (i.e., G;, 1 <i < m) over
time. The attribute values of the suspicious subsequence
are represented by red points. Figures 5 and 6 shows the
visualization plots generated for a suspicious subsequence
detected from the laboratory results in the Anschutz medi-
cal data. Figure 5 shows that e_TOTGLOB attribute (i.e.,
total serum globulin) is the major cause of invalidity (i.e.,
attribute with the highest s-score value) in this subse-
quence. The data visualization plot in Fig. 6 shows the
values of the e_TOTGLOB attribute over time for this
subsequence (in red) as well as other subsequences (in
colors other than red) in the same data set. We can visually
observe from this figure how the values of e_TOTGLOB
for this patient deviate from those of the majority of the
patients in the data set. As the value of this attribute is

elevated in certain immunological diseases, this deviation
can be caused by an immunological disease of the patient.

Evaluation

We evaluated the anomaly detection effectiveness of IDEAL
using COVID-19 records from Johns Hopkins (JH) [23],
New York Times (NT) [24], and Tracking project (T) [25]
repositories. These publicly available data sets are updated
daily and contain county- or state-level COVID-19 attrib-
utes. Wissel et al. [50] compared these data sets based on
different factors, such as their data sources, collected attrib-
utes, region granularity, and frequency of updates. We used
nine-month data from March 5th to November 11th, 2020
to evaluate one execution of IDEAL, which is an execution
without the feedback loop. Moreover, we used four health
data sets from the University of Colorado Anschutz medical
campus [26] to evaluate the anomaly detection effectiveness
of IDEAL. We used records of COVID-19-positive patients
to evaluate one execution of IDEAL.

Current knowledge about the COVID-19 data attributes,
pattern of spread, and distribution is insufficient as this
is an unprecedented pandemic. We used two evaluation
approaches to validate the suspicious subsequences detected
from the COVID-19 data in the domain knowledge absence;
these are (1) comparing suspicious subsequences detected by
IDEAL from one data source to those from other independ-
ent sources that are recording values of the same records and
attributes and (2) comparing the suspicious subsequences
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Fig.5 s-score per attribute plot for suspicious subsequence detected from Lab results from Anschutz Medical Campus

Fig.6 Data visualization plot 64 ry
for e TOTGLOB attribute ; .“ ..o.....'
oS oo.
o o
(L) ®s °®
B41e* . g0 o0 pot00%00ge* ", 08 °
| o 0 20 .. = o%e® B
0‘3 u...T’.. o 0%:8 ece *
'y dirsanacan T N et S S Y.
\2 3V Q v A% 4\ V
o > o o> o o> o o> o> o>
o N &) AN ) ) Q &) AN o
v ‘n o \\g o\ 3 > o~ \\¢ P
$ > N \g N & & & & &
Date

SN Computer Science
A SPRINGER NATURE journal



SN Computer Science (2021) 2:279

Page90of17 279

detected by IDEAL from a homogeneous population with
the other subsequences in that population.

Comparing Suspicious Subsequences from Different
Sources (Johns Hopkins (JH), New York Times (NT),
and Tracking Project (T))

The objective is to identify whether or not a suspicious
subsequence is actually anomalous by comparing the suspi-
cious subsequence from a data source with its equivalent
subsequences from other independent COVID-19 data
repositories. Two subsequences are equivalent if they con-
tain records of same object (i.e., same grouping attribute
value) and are observed during the same time period. For
example, data records of the Alabama state collected from
three sources of data during March to April 2020 form three
equivalent subsequences. We formalized possible observa-
tions on equivalent subsequences to validate a suspicious
subsequence based on whether (1) the same subsequence is
detected by IDEAL as suspicious from all available sources
of data or (2) the subsequence is detected as anomalous only
in some of the available sources. We decided on whether
or not each suspicious subsequence is actually anomalous
based on a distance measure (i.e. mean square error (MSE))
between the attribute values of the suspicious subsequence
detected from a source with those of equivalent subse-
quences collected from the other data sources.

For each suspicious subsequence s; detected from the ith
source in a set of sources D (where |D| = n), we calculated
the mean square error value between s; and all its equivalent
subsequences s; from the other sources (1 <j < nand j # i).
s; can be either an undetected or a suspicious subsequence:

MSE(s;, 5;) = % Z(Normahzed(Af) - Normalized(A'jf.'))z,
k=1

@
where A{ attribute is the major cause of invalidity in s, A’; is
its equivalent attribute in 5, and w is the window size. The
following four cases describe how we validated a suspicious
subsequence s; based on the MSE value.

(A) If attribute values of equivalent subsequences to s,
collected from all other sources of data are close
to values of s;, then all of those subsequences are
either abnormal but valid, or anomalous detected
from the same source. An abnormal subsequence
can indicate signals of a COVID-19 outbreak [5]. If
Vjie{l,...,n}, MSE(;, sj) < Threshold, then s; and 8;
are either

— Abnormal but valid, or
— Anomalous collected from the same source

(B) If attribute values of equivalent subsequences to s, col-
lected from all other sources of data are far from values
of s, but close to one another, then s; is anomalous: If
Vi,ke {1,...,n}(, k #i), MSE(s,-,sj) > Thresholdand
MSE(sj, s5;) < Threshold, then s, is:

— Anomalous

(C) If attribute values of s; are close to a subset of equivalent sub-
sequences to s; but far from another subset of equivalent subse-
quences, then all subsequences in the smaller subset are anoma-
lous:Ifvj € Dy, ke D, (D, UD, =D, D, D, =@, |D,| < |D,]),
MSEC(s;, sj) < Threshold and MSE(s;, s,) > Threshold,
then:

— s;and s; are anomalous, and
— s is valid

(D) If attribute values of s; are close to a subset of equivalent
subsequences to s; but far from another subset of equiv-
alent subsequences and the two subsets are of the same
size, then all subsequences in both subsets are abnor-
mal and need more investigations by a domain expert:
If VjeD,, keD,(D,uD,=D, D,nDy =0, |D;| = |D,]).
MSE(s;, s;) < Threshold and MSEC(s;, s;) > Threshold,
then:

Sis S and s, are abnormal and need more investiga-
tion

We ran two experiments. Table 2 shows the attributes
from the COVID-19 data sets used for each experiment.
Figure 7 shows data visualization plots for suspicious sub-
sequences detected by IDEAL from data sets of the first
experiment. In this figure, each color represents data of a
state. There are 50 plots for the 50 states of the US. The red
plot represents the data of the suspicious subsequence. We
used Fig. 8 to validate the suspicious subsequences by com-
paring the attribute values of the suspicious subsequences
with those of their equivalent subsequences from the first
experiment data sets. These attributes are major causes of
invalidity in each suspicious subsequence. In this experi-
ment, the threshold T'is set at 0.03 based on our observations
of the values of MSE in these data sets.

Figure 7a: A suspicious subsequence s;; was detected
from JH in California data. An equivalent subsequence sy
was detected from T. The Confirmed attribute was the major
cause of invalidity in these subsequences. The data visu-
alization plot in Fig. 7a shows how the Confirmed attrib-
ute values of the suspicious subsequence from California
data in JH (red points) deviate from other subsequences
from other states in the same source (i.e., JH). The con-
straint violations reported by the decision trees for this
suspicious subsequence were over the Minimum and Mean
features of the subsequence. In Fig. 8a, MSE(syy, sp) < T,

SN Computer Science
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Table 2 Data sets

Experiment ID Data sets (sources) Attributes
1 State-level data from JH, NT, and T Confirmed Cases (i.e.,
JH.Confirmed, NT.cases,
T.positive) and Deaths
2 State-level data from JH and T Recovered and Hospitalization_Rate
Fig.7 Visualization plots
for suspicious subsequences — 800000 ®
detect'ed from data sets of g _..”.......Q..“:
experiment 1 g 600000
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(a) Values of Confirmed Attribute for US States over Time from

JH. The Red Plot is a Suspicious Subsequence sjp corresponding
to California Data

(b) Values of death Attribute for US States over Time from T. The Red Plot
is a Suspicious Subsequence s corresponding to New York Data
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(c) Values of cases Attribute for US States over Time from NT. The Red

Plot is a Suspicious Subsequence sy corresponding to Florida Data
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Fig.8 Actual attribute values in suspicious subsequences detected
from data sets of experiment 1

MSEC(syy, snt) < T, and MSE(st, syr) < T. This result indi-
cates that in California, the numbers of confirmed cases over
time reported by all three data sources for this suspicious
subsequence are close to each other. Based on the case A,
Sy Snt» and sy are either (1) abnormal but valid or (2) anom-
alous data that have been obtained from the same source.
Figure 7b: A suspicious subsequence sy was detected
from T in New York data. Equivalent subsequences sy and
snt were also detected from JH and NT. The Deaths attribute
was the major cause of invalidity in these subsequences.
The data visualization plot in Fig. 7b shows how the Deaths

attribute values of the suspicious subsequence from New
York data in T (red points) deviate from other subsequences
from other states in the same source (i.e., T). The constraint
violations reported by the decision trees for this suspicious
subsequence were over the Linearity (i.e., strength of linear-
ity, which is the sum of squared residuals of time-series from
a linear autoregression) and Burstiness (i.e., ratio between
the variance and the mean (Fano Factor) of time series)
features of the subsequence. In Fig. 8b, MSE(syy, s1) > T,
MSE(syt, S1) > T, and MSE(syy, syt) < T This result indi-
cates that the number of death cases in the New York state
collected by the data source T was considerably less than
that of the other two sources of data. Based on case B, sy is
anomalous and sy, sy are valid.

Figure 7c: A suspicious subsequence syp was detected
only from NT in Florida data. The Confirmed attribute was
the major cause of invalidity in this subsequence. The data
visualization plot in Fig. 7c shows how the Confirmed attrib-
ute values of the suspicious subsequence from Florida data
in NT (red points) deviate from other subsequences from
other states in the same source (i.e., NT). The constraint vio-
lations reported by the decision trees for this suspicious sub-
sequence were over the Mean and Curvature (i.e., strength of
curvature, which is the amount by which a time series curve
deviates from being a straight line and calculated based on
the coefficients of an orthogonal quadratic regression) fea-
tures of the subsequence. In this figure, MSE(syy, st) < T,
MSE(syy, syt) < T, and MSE(st, syr) < T. This result
indicates that in Florida, the numbers of confirmed cases
over time reported by all three data sources for this suspi-
cious subsequence are close to each other. Based on case A,
Sy, SnT» ST are either valid or anomalous collected from the
same source.

Figure 9 shows data visualization plots for suspicious
subsequences detected by IDEAL from data sets of the sec-
ond experiment. We used Fig. 10 to validate the suspicious
subsequences by observing the actual values of attributes
for the suspicious subsequences and their equivalent subse-
quences from the second experiment data sets. These attrib-
utes are major causes of invalidity in each suspicious subse-
quence. In this experiment threshold 7 is set at 0.0004 based
on our observations on the values of MSE in these data sets.

Figure 9a: A suspicious subsequence s;; was detected
only from JH in Kentucky data. The Hospitalization_Rate
attribute was the major cause of invalidity in this subse-
quence. The data visualization plot in Fig. 9a shows how
the Hospitalization_Rate attribute values of the suspicious
subsequence (red points) from Kentucky data in JH devi-
ate from other subsequences from other states in the same
source (i.e., JH). The constraint violations reported by the
decision trees for this suspicious subsequence were over
the Mean, Maximum, and Vchange (i.e., maximum differ-
ence in variance between consecutive blocks in time series)
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Fig.9 Actual attribute values
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The Red Plot is a Suspicious Subsequence s ;g corresponding to Kentucky Data

a0l ®
=1
©
m|
c 307 ®
0
‘6 20 1 ..
= ° 09°°%000000%
[V} Co 0000009
'é_ 10 4 ee © 0008000800000000 0098
3 O_ . OAanf A~
I o{see

o o ) o o ) o o

\% 4% v 4% % %

N J S J S N N S

¢ & & PSS
g g s & N N N &
Date

(b) Values of Hospitalization_Rate Attribute for US States over Time from
T. The Red Plot is a Suspicious Subsequence st corresponding to Ohio Data

g 8

o
L
[1]
o«
‘:l
2 ° °
B0 000 %c00ee
8% 09*8%00000%e %000
= ° °
£ 10 o
o L ] ° (4 °o0e0,
2 ° $000e00, o
T
— © o o o

o o 5 &

) S N S S S S

"?\'v e"'\w @0 4‘\» '\?’\’b e”’\’y 0\’\' @\'\o '\',‘\Iv o& 'G\N
\ \ N N \ A ) 2 & @ &
& Na N N N § <
Date

(c) Values of Hospitalization_Rate Attribute for US States over Time from
T. The Red Plot is a Suspicious Subsequence st corresponding to Oregon

Data

features of the subsequence. In Fig. 10a, MSE(syy, st) > T.
This result indicates that the hospitalization rates reported
by the two sources of data for the Kentucky state were con-
siderably distinct. Based on case D, sy; and s are abnormal
subsequences that need more investigation.

Figure 9b: A suspicious subsequence s was detected only
from T in Ohio data. The Hospitalization_Rate attribute was
the major cause of invalidity in this subsequence. The data
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visualization plot in Fig. 9b shows how the Hospitaliza-
tion_Rate attribute values of the suspicious subsequence
from Ohio data in T (red points) deviate from other subse-
quences from other states in the same source. The constraint
violations reported by the decision trees for this suspicious
subsequence were over the Mean, Curvature (i.e., strength of
curvature, which is the amount by which a time series curve
deviates from being a straight line and calculated based on
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Fig. 10 Actual attribute values in suspicious subsequences detected
from data sets of experiment 2

the coefficients of an orthogonal quadratic regression), and
Highlowmu (i.e., ratio between the means of data that is
below and upper the global mean of time series) features of
the subsequence. In Fig. 10b, MSE(syy;, sy) > T'. This result
indicates that the hospitalization rates reported by the two
sources of data for the Ohio state were considerably distinct.
Based on case D, sy and s are abnormal subsequences that
need more investigation.

Figure 9c: A suspicious subsequence s; was detected
only from T in Oregon data. The Hospitalization_Rate
attribute was the major cause of invalidity in this subse-
quence. The data visualization plot in Fig. 9c shows how the

Hospitalization_Rate attribute values of the suspicious sub-
sequence from Oregon data in T (red points) deviate from
other subsequences from other states in the same source.
The constraint violations reported by the decision trees for
this suspicious subsequence were over the Variance and
Burstiness (i.e., ratio between the variance and the mean
(Fano Factor) of time series) features of the subsequence.
In Fig. 10c, MSE(syy, st) > T'. This result indicates that the
hospitalization rates reported by the two sources of data for
the Oregon state were considerably distinct. Based on case
D, sy and s1 are abnormal subsequences that need more
investigation.

Comparing Suspicious Subsequences
from a Homogeneous Population

The data of the patients of a homogeneous population should
relatively look similar. We used this idea as a relative goal
to evaluate the COVID-19 data in the absence of a domain
expert. For this purpose, we extracted data of four homo-
geneous populations from Anschutz medical data store
(Table 3). These data sets are results of joins of multiple
tables (i.e., Patient, Diagnosis, and Lab) in the Anschutz
health data warehouse. We fed each population data as
an input data set to the IDEAL tool to detect suspicious
subsequences.

We validated the suspicious subsequences by visually
observing the data visualization plots generated by IDEAL,;
we identified as actually abnormal (true positive) those
suspicious subsequences of patients whose attribute values
changing pattern over time are considerably different (i.e.,
visually observable) from other patients in their population.
We identified as normal (false positive) those suspicious
subsequences of patients whose attribute values changing
pattern over time are not different (i.e., not visually observ-
able) from other patients in their population.

Figure 11 shows a visualization plot generated by IDEAL
for a suspicious subsequence detected by IDEAL from data
set ID = 1. In this example, the e_Meancorpusc3 attribute
is the major cause of suspiciousness of the subsequence.
We can visually observe that the suspicious subsequence
represented by red data points shows a considerable differ-
ence with other subsequences of the same population (i.e.,
COVID-positive with diabetes). As a result, this subse-
quence is a true positive. The constraint violations reported
by the decision trees for this suspicious subsequence were
over the Mean and Variance features of the subsequence.

Figure 12 shows a visualization plot generated by
IDEAL for a suspicious subsequence detected by IDEAL
from data set ID=3. In this example, the Phart attribute
is the major cause of suspiciousness of the subsequence.
We cannot visually observe a considerable difference
between the suspicious subsequence represented by red
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Table 3 Health data sets

Data set ID Data set name #records #attributes
COVID-positive with diabetes 770 103
COVID-positive females over 60 1174 103

3 COVID-positive with hyperten- 1270 103

sion
4 COVID-positive males over 60 1839 103

data points and other subsequences of the same popula-
tion (i.e., COVID-positive with hypertension). As a result,
this subsequence is a false positive. The constraint vio-
lations reported by the decision trees for this suspicious
subsequence were over the Maximum, Curvature (i.e.,
strength of curvature, which is the amount by which a
time series curve deviates from being a straight line and
calculated based on the coefficients of an orthogonal quad-
ratic regression), and Linearity (i.e., strength of linearity,
which is the sum of squared residuals of time series from
a linear autoregression) features of the subsequence.
Table 4 shows number of true positives (TP), number

.. .. _ TP .
of false positives (FP), Precision = o and total time

(TT) it took to run the automated steps of IDEAL against
each data set under test. As the data is unlabeled, we can-
not calculate the recall metric, which is based on the num-
ber of false negatives. The number of true positives and
false positives are calculated based on our observation on
the data visualization plots. It took between 58 and 108 s
to run IDEAL against the data sets. IDEAL could detect

between 1 and 4 abnormal subsequences in these data sets.
The precision was between 75 and 100%.

Conclusions

We extended our previous data quality test approach to
address the problem of anomaly detection in data pertain-
ing to COVID-19. We (1) proposed a two-level reshaping
technique for data preparation, (2) added a data visuali-
zation plot for anomaly explanation, and (3) evaluated
the approach against different COVID-19 data sets in the
domain knowledge absence. We ran two experiments to
validate the suspicious subsequences detected by IDEAL
from Johns Hopkins, New York Times, and COVID-19
tracking project. We compared the attribute values of the
suspicious subsequence detected from a source with those
collected from other sources of data. IDEAL could find an
anomalous subsequence in COVID-19 Tracking data set in
the number of deaths in the New York state. IDEAL could
find three abnormal subsequences in the three sources,
which need more investigation by domain experts.

We also evaluated the anomaly detection effectiveness
of IDEAL using four health data sets from Anschutz medi-
cal campus. We compared a suspicious supsequence with
other subsequences in a homogeneous population. IDEAL
could detect ten abnormal subsequences in these data sets.

In the future, we will evaluate the approach using other
types of COVID-19 time series data. We plan to extend
IDEAL to find anomalies in streaming COVID-19 data.
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Table 4 Results for health data sets

Data set ID TP FP Precision TT (s)
1 4 1 0.80 58

2 3 1 0.75 76

3 2 0 1.00 64

4 1 0 1.00 108
Appendices

An LSTM-Autoencoder

A Long Short Term Network (LSTM) [9] is a Recurrent
Neural Network (RNN) [51] that contains loops in its struc-
ture to allow information to persist and make network learn
sequential dependencies among data records [9]. An RNN
can be represented as multiple copies of a neural network,
each passing a value to its successor. The original RNNs
can only learn short-term dependencies among data records
using the recurrent feedback connections [45]. LSTMs
extend RNNs using specialized gates and memory cells in
their neuron structure to learn long-term dependencies. The
computational units (neurons) of an LSTM are called mem-
ory cells. An LSTM has the ability to remove or add infor-
mation to the memory cell state using gates. The gates are
defined as weighted functions that govern information flow
in the memory cells. The gates are composed of a sigmoid
layer and a point-wise operation to optionally let information
through. The sigmoid layer outputs a number between zero
(to let nothing through) and one (to let everything through).
There are three types of gates, namely, forget, input, and
output.

— Forget gate Decides what information to discard from the
memory cell. Equation 3 shows the mathematical repre-
sentation of the forget gate.

fr=oWplh,_y.x]1+ b)), (€)]

where W, is the connection weight between the inputs

(h,_, and x,) and the sigmoid layer; by is the bias term and

o is the sigmoid activation function. In this gate, f, =1

means that completely keep the information and f, = 0
means that completely get rid of the information.

— Input gate Decides which values to be used from the net-

work input to update the memory state. Equation 4 shows
the mathematical representation of the input gate.

C=fi*xC_y+i* Cz’ 4

where C, is the new memory cell state and C,_ is the old
cell state, which is multiplied by f, to forget the informa-
tion decided by the forget gate; C, is the new candidate
value for the memory state, which is scaled by i, as how
much the gate decides to update the state value.

— Output gate Decides what to output based on the input
and the memory state. Equation 5 shows the mathemati-
cal representation of the output gate. This gate pushes the
cell state values between —1 and 1 by using a hyperbolic
tangent function and multiplies it by the output of its
sigmoid layer to decide which parts of the input and the
cell state to output.

0, = o(W, - [h_.x] +by) S
h, = o,  tanh(C,) ©)

An autoencoder is an unsupervised deep neural network that
discovers constraints in the unlabeled input data. An autoen-
coder is composed of an encoder and a decoder. The encoder
compresses the data from the input layer into a short rep-
resentation, which is a non-linear combination of the input
elements. The decoder decompresses this representation into
a new representation that closely matches the original data.
The network is trained to minimize the reconstruction error
(RE), which is the average squared distance between the
original data and its reconstruction [52].

An LSTM-autoencoder [44] is an extension of an autoen-
coder for time-series data using an encoder-decoder LSTM
architecture. An LSTM-autoencoder can capture the tempo-
ral dependencies among the input records by using LSTM
networks as the layers of the autoencoder network.

Figure 13 shows the LSTM-autoencoder architecture. The
input and output are fixed-size time series matrices.
XiJ = [x?J, ,xi]._l] is the jth record with d attributes, 7 is
the ith time series that contains w records, and w is the win-
dow size. The network output has the same dimensionality
as the network input. The network is composed of two hid-
den layers that are LSTMs with @’ units. The first LSTM
layer functions as an encoder that investigates the dependen-
cies from the input sequence and produces a complex hidden
context (i.e., d’ encoded time series features, where the value
of d’ depends on the underlying encoding used by the
autoencoder). The second LSTM layer functions as a
decoder that produces the output sequence, based on the
learned complex context and the previous output state. The
TimeDistributed layer is used to process the output from the
LSTM hidden layer. This layer is a dense (fully-connected)
wrapper layer that makes the network return a sequence with
shape (d * w). The reconstruction error for this network is
defined as follows [52]:
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Fig. 13 An LSTM-autoencoder network

m
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where T; and 77 are the ith network input and output and m
is the total number of subsequences.
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