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Abstract—Twitter provides a platform for users to express their uncertainties of black-box models [3], [4]. But this wrapper
opinions in the form of Twitter messages called tweets.  can only estimate uncertainties from input data. Since this
Analyzing tweets from a specific city or demographical group  \rapper cannot access model parameters for measuring the
requires  geographical —or demographical information. . o tainties caused by inference models, this approach still
Unfortunately, most Twitter users do not provide these details cannot compute overall inference uncertainties. New

in their profiles. To overcome this challenge, tools have been h bridee th b inf hods and
developed for inferring users’ geographical and demographical approaches to briage the gap between inference methods an

information from Twitter data. Using inference results is risky uncertainty estimation are required.

due to the lack of uncertainty estimation of these results. Here, Inspired by the uncertainty measurement wrapper of Mena

we present a framework to estimate uncertainties of Twitter et al., we propose a simple uncertainty estimation framework

inference results. The effectiveness of this framework is verified to address the challenge of uncertainty estimation. This

in experiments. framework is twofold. First, the originally trained models

teach student BNNs by knowledge distillation. Second, the

uncertainty estimation is then conducted on the student BNNS.

Besides estimating inference uncertainty, this framework

gives users flexibility in model selection. We test this

framework on an existing Twitter inference model for tweet
Twitter inference aims to infer latent attributes of Twitter ~ geolocation. Experimental results verify that our general

data. Geolocation inference focuses on identifying the  framework can effectively estimate inference results.

locations of Twitter users [1], while demographic inference

addresses the demographical information of Twitter users [2]. II.  RELATED WORKS

These inferred attributes provide necessary details for Twitter

data analysis. For instance, geolocation data can be appliedin 4. Bayesian Neural Network

the analysis of local event impacts. Twitter inference has Theoretically, we can estimate uncertainty using

received increasing attention. However, the uncertainties of stochastic neural networks, which contain stochastic

these inferences threaten the reliability of the downstream  components. For example, some stochastic neural networks

analysis. To address this threat, it is necessary to estimate the  use stochastic weights, which are random variables following

Keywords-Uncertainty Estimation; Bayesian Neural Network;
Knowledge Distillation; Twitter Inference

I. INTRODUCTION

uncertainties of inference results. specific probability distributions. Also, some stochastic neural
Estimating uncertainties of Twitter inference results is  networks use stochastic activation functions, whose outputs
crucial but challenging. When inferring latent information, are random variables. These stochastic components can assist

both input data and inference methods may bring uncertainties in measuring output uncertainties. Training stochastic neural
into the results. All uncertainties will threaten the reliability of ~ networks is non-trivial. Bayesian inference is a widely used
Twitter data analysis using inference results. For example, an  training strategy. Stochastic neural networks trained by
inference may mislabel a tweet post by an Alabama-based ~ Bayesian inference are defined as Bayesian neural networks
user as a tweet post by a Tennessee-based user. The analysis ~ (BNNs) [5]. Two types of approaches are popular in BNN
results based on this inference could be misleading. Therefore, ~ raining: Markov  Chain Monte Carlo (MCMC)  and
it is critical to estimate the uncertainties of inference results. Vgnatlopal inference [6], [7]. MCMC is a clags of statlstl.cal
Unfortunately, uncertainty estimation is challenging. simulation mgthods based on t.he M.arkov Chain. In practice,
Although there are some available models for uncertainty the Metropohs.— Hastlngs algorithm 18 the most used M.CMC
estimation, c.g., Bayesian neural network (BNN), most method for training BNNs [8]. To improve the scalability of

Twitter inf thod t based on th dels. O BNN training, researchers developed variational inference
witter inference methods are not based on these Mocels. LNe — mah4ds that attempt to learn a relatively simple variational
possible solution is to treat these methods as black-box

D distribution from the training data. Because of the advantage
models. Mena et al. developed a wrapper for estimating
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on training large-size BNNs, variational inference methods
have received significant research attention.

B. Knowledge Distillation

Knowledge distillation (KD) is a machine learning
technique that transfers knowledge from a teacher model to a
student model [9]. A teacher model is usually complex and
learns well from original training data, while a student model
is usually easy to analyze and deploy. Knowledge distillation
is composed of two steps: the teacher model is trained on the
original training set and is then used to train the student
model(s). Three types of knowledge distillation have been
studied: response-based knowledge distillation, feature-based
distillation, and relation-based knowledge. These methods
focus on distilling knowledge with different types of
mappings or relations [10]. The proposed framework will use
response-based knowledge distillation, which uses the input
and corresponding output of the output layer of the teacher
model to train the student model.

III.

Inspired by the uncertainty measurement wrapper of [3],
[4], we propose a simple uncertainty estimation framework.
This framework transfers the knowledge of trained inference
models to BNN-based models and measures the uncertainties
of BNN-based models. The framework is briefly outlined in
Fig. 1 and detailed in the rest of this section.

A. Build BNN-based Student Models

Here, we present a guideline for building BNN-based student
models to measure inference uncertainties. Different inference
models have been used in Twitter inference [11]-[13]. If an
inference model is a neural network, we can build the
corresponding student BNN model based on the original
model with the BNN component added to its output layer.
BNN components can also be added to other internal layers of
this neural network, but it requires additional computational
time for knowledge distillation and uncertainty estimation.
Therefore, we recommend adding BNN components only at
the output layer. If an inference model is composed of many
different neural networks, e.g., an ensemble of several neural
networks, this framework will use the dominant neural
network, whose architecture is dominant in the inference
model, as the student model with the BNN component in the
output layer. If an inference model is not using neural
networks, we recommend designing a BNN-model whose
input and output formats are consistent with the original
inference model. Knowledge distillation prefers relatively
simple student models for response-based distillation [10].
Therefore, we can use a simple network architecture that
meets the requirements of input and output formats. Similarly,
the BNN component is added to the output layer.

METHOD

B. Transfer Knowledge and Measure Uncertainties

The proposed framework uses originally trained models
as the teacher models in knowledge distillation, which
distillates learned knowledge from original models to the
BNN-based student models. The framework follows the
standard steps of response-based knowledge distillation [14].
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Fig. 1. Framework Outline

A Twitter inference model is essentially a multiclass
classification model. The output classification results can be
normalized as class probabilities by the softmax function,
which is given as follows:

q(2); = e”1/¥5-1 % (M
where z is the set of class prediction logits, z; is the i-th
element of z, C is the number of classes, and q(z); is the i-th
class prediction probability. To further improve performance,
we consider temperature T in the following expression.

q(z,T); = €T /55, e 2)
Equation (1) is the special case of (2) when T is 1. After T is
specified, this framework applies (2) to normalize teacher
models’ outputs and uses normalized outputs to train student
models. Also, the loss function used in training is the
evidence lower bound (ELBO) loss function, which
combines cross entropy and KL divergence [15].

The resulting student models can conduct inference on
Twitter data like teacher models. Because the output layer of
student models contains BNN components, the uncertainties
of inference results can be measured. Specifically, this
framework uses the uncertainty approximation method
detailed by Chai [16]. As for an input tweet, the BNN-based
model parameters are sampled for K times. The k-th sample
of model parameters is represented by w¥*. This framework
applies the softmax function to normalize original outputs
into probabilities of predicted classes. The probability of
classifying the i-th testing tweet to class ¢ based on w* is
denoted by pf‘fc . The predictive uncertainty of i -th
classification, represented by H;, can be approximated as the
entropy using the following expression:

1 1
Hy=-%¢, [(;Zﬁﬂ pfc) log (;Zlk(:l p{fc)]
where C is the number of classes.

(€)

C. Inference Model Selection After Uncertainty Estimation

The proposed framework applies knowledge distillation to
switch inference models. After knowledge distillation is
finished, student models can replace the original teacher
models in Twitter inference. As for a specific inference result,
if its uncertainty meets the user’s need, the user can keep this
result. Otherwise, the user can select another student model
and repeat knowledge distillation and uncertainty
measurement. This design gives users the flexibility of
choosing models for lowering uncertainties.

IV. EXPERIMENTS
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To verify the effectiveness of our framework, we applied
this framework to estimate the uncertainties of a geolocation
inference tool [12].

A. Data Collection and Preprocessing

We tested our framework on the WNUT’16 shared task
data, which was also used in [12]. Tweepy [17] collected
1,197,798 tweets according to tweet IDs of the WNUT’16
shared task data. Each tweet is associated with a city. We
observed 2,965 different cities. All collected tweets were
divided into training and testing sets. About 1% tweets were
assigned to the testing set in [12]. Similarly, we randomly
assigned 11,978 tweets for testing, while the rest of the tweets
were assigned to the training set.

B. Baseline Models

Our experiments verified whether the uncertainties of
student model outputs are close to that of teacher models. In
[12], Thomas et al. developed an inference method using two
types of neural networks. One was long short-term memory
(LSTM). The other was perception with rectified linear unit
(ReLU) activation function. These two types of neural
networks handled different types of Twitter data such as text,
user language, and time zone. The results of neural networks
were combined for generating the final inference results. This
inference model had two training modes. One was to train all
neural networks independently first, then train the
combination layer without updating parameters of LSTMs
and perceptions. This mode was called full-fixed. Another
mode, called full-scratch, was to train all neural networks and
the combination layer at the same time. Our experiments used
both modes as baseline methods. Furthermore, we directly
added BNN components to the output layer, i.e., the
combination layer, to build full-fixed-BNN and full-scratch-
BNN. Both were also used as baseline models if they were
trained without using knowledge distillation.

C. Knowledge Distillation Setting

In knowledge distillation experiments, we used training
set input and teacher model output to train student models.
Student models were tested on the original testing set. Our
experiments tested two knowledge distillation settings. One
was to use full-fixed-BNN as teacher and student models.
The other was to use full-scratch-BNN as teacher and student
models. The purpose was to verify whether the uncertainties
of the student models were close to that of the corresponding
baseline methods. Also, the experiments evaluated the impact
of knowledge distillation on inference accuracy. The
experiments were conducted with distillation temperature T
equal to 1, 2, 5, 10, 20, and 50. The purpose was to evaluate
the impact of distillation temperature on uncertainty.

D. Performance Measurement

We measure accuracy, overall uncertainty, and overall
uncertainty difference in experiments. The model accuracy,
represented by Acc, were measured by the following
expression:

Acc = —
KN

4)
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where N is the number of tweets in the testing set, n is the
number of predictions whose highest values refer to the
correct classes, and K is the number of sampling times.
Please note that K is 1 for non-BNN models such as full-
fixed and full-scratch. The overall uncertainty of a model
with respect to the testing set is represented by U, which can
be computed by the following expression:

N 2
i=1 Hi

U= 2= )
where N is the number of tweets in the testing set, and H; is
the uncertainty of the i-th tweet. H; can be computed by (3)
Similarly, we define the overall uncertainty difference
between two inference models, represented by D, as follows:

D= I (Hai=Hp,)? 6)
N

where H,, ; and H, ; are uncertainties of the predictions of i-

th tweet with inference models a and b, respectively.

E. Experimental Results

All experimental results are detailed in Tables I and II.
Table I focuses on full-fixed and related BNN models, while
Table II gives results of full-scratch and related BNN models.
Table I shows the accuracies of BNN models are better than
that of the non-BNN baseline model. Furthermore, the overall
uncertainties of models trained by knowledge distillation are
close to that of the BNN model trained without using
knowledge distillation. It also matches the small overall
uncertainty differences between the models with and without
using knowledge distillation. Additionally, adjusting
temperatures of knowledge distillation between 1 and 20 does
not significantly change the overall uncertainty and
uncertainty difference, while the overall uncertainty
difference with temperature 50 is higher than that of other
temperatures. Table I also suggests similar results on full-
scratch. The accuracies of BNN model are consistently
greater than that of full-scratch. Also, the overall
uncertainties of BNN models based on knowledge distillation
are close to that of the BNN model without using knowledge
distillation. It is also reflected on small overall uncertainties
differences between two types of BNN models. With the full-
scratch mode, adjusting temperatures of knowledge
distillation between 1 and 50 does not significantly change
the overall uncertainty and uncertainty difference.

V.  DISCUSSION

This paper proposes a simple framework for estimating
uncertainties of Twitter inference results. This framework
transfers knowledge from the original models to BNN-based
models. Experiments results show that the uncertainties of
student models are close to that of teacher models if model
architectures are similar. We can use this framework to
estimate uncertainties of original inference models, whose
most model details are clear. Furthermore, we can also use
this framework to select inference models with low
uncertainties, even if the original inference models are black-
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TABLE 1. RESULTS ON MODELS RELATED TO FULL-FIXED

Overall Overall Uncertainty
Models Accuracy | Uncertainty Difference
Full-Fixed 0.693 NA NA
Full-Fixed-BNN
without KD 0.773 2.88 0
Full-Fixed-BNN
with KD T=1 0.737 3.14 0.900
Full-Fixed-BNN
with KD T=2 0.739 3.14 0.869
Full-Fixed-BNN
with KD T=5 0.744 3.20 0.900
Full-Fixed-BNN
with KD T=10 0.742 3.23 0.916
Full-Fixed-BNN
with KD T=20 0.740 3.26 0.963
Full-Fixed-BNN
with KD T=50 0.699 3.50 1.394
TABLE II. RESULTS ON MODELS RELATED TO FULL-SCRATCH
Overall
Overall Uncertainty
Models Accuracy | Uncertainty Difference
Full-Scratch 0.654 NA NA
Full-Scratch-BNN
without KD 0.687 1.69 0
Full-Scratch-BNN
with KD T=1 0.793 2.66 1.68
Full-Scratch-BNN
with KD T=2 0.815 2.60 1.65
Full-Scratch-BNN
with KD T=5 0.833 2.61 1.65
Full-Scratch-BNN
with KD T=10 0.838 2.59 1.64
Full-Scratch-BNN
with KD T=20 0.836 2.60 1.64
Full-Scratch-BNN
with KD T=50 0.830 2.65 1.68

boxes. According to Table II, in comparison of the BNN
model without knowledge distillation, other BNN models
have better accuracies and worse uncertainties. These results
suggest accuracy improvement cannot guarantee uncertainty
improvement. It highlights the importance of uncertainty
estimation on inference results. The success of our
framework on the experiments encourages us to extend it to
more areas for uncertainty estimation.

VL

This paper presents a simple framework for estimating
uncertainties of Twitter inference results. This framework
distillates learned knowledge from original inference models
to BNN-based student models, and measures uncertainties on
student models. The experimental results suggest that the
proposed framework can accurately model the overall
inference uncertainties. We will extend this framework to be
a general tool for estimating predictions made by all machine
learning models.

CONCLUSION AND FUTURE WORK
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