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Flexible and Interpretable Generalization of Self-

Evolving Computational Materials Framework
Mohammed Bazroun', Yicheng Yang!, and In Ho Cho'2

ABSTRACT

The recent innovations of computational material models by machine learning (ML) methods face
formidable challenges. Incorporating internal heterogeneity and diverse boundary conditions
(BC’s) into existing ML methods remains difficult, and the weak interpretability of ML remains
unresolved. To tackle these challenges, this paper generalizes a recently developed self-evolving
computational material models framework built upon Bayesian update and evolutionary algorithm.
This paper proposes a new material-specific information index (II), which is capable of
autonomously quantifying the internal heterogeneity and diverse BC’s. Also, this paper introduces
highly flexible cubic regression spline (CRS)-based link functions which can offer mathematical
expressions of salient material coefficients of the existing computational material models in terms
of convolved II. Thereby, this paper suggests a novel means by which ML can directly leverage
internal heterogeneity and diverse BC’s to autonomously evolve computational material models
while keeping interpretability. Validations using a wide spectrum of large-scale reinforced
composite structures confirm the favorable performance of the generalization. Example
expansions of nonlinear shear of quasi-brittle materials and progressive compressive buckling of
reinforcing steel underpin efficiency and accuracy of the generalization. This paper adds a
meaningful avenue for accelerating the fusion of computational material models and ML.

Keywords: Evolutionary algorithm; cubic regression spline; computational material model,;

machine learning for heterogeneity; machine learning for varying boundary conditions; nonlinear
analysis of reinforced concrete structures
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1. Introduction

Traditionally, computational material models are derived from well-designed experiments and
statistical fitting (Fig. 1B). Owing to their fascinating learning power of complex data, machine
learning (ML) methods have attracted researchers in computational mechanics and structures over
the past decades. Researchers apply ML to constitutive rules at the material point level (Fig. 1C).
This paper denotes such attempts as an “ML-driven” approach. For instance, Hashash et al. [1]
derived the consistent material stiffness matrix for constitutive model using a standard multi-layer
feed-forward neural network. Koenuma et al. [2] used deep learning to understand aluminum alloy
sheets' deformation behavior. Vlassis et al. [3] performed a hybrid ML approach that combines an
unsupervised graph convolutional neural network, which uses Sobolev training to fit target output
values as well as derivatives. Logarzo et al. [4] developed a recurrent neural networks-based
constitutive model to handle sequence-to-sequence data, including the deformation histories, stress
histories, and the fading gradient effect. Masi et al. [5] proposed a neural network model that is
physics-based and thermodynamics-based artificial neural networks. The model uses the recurrent
neural network for modeling path-dependent plasticity models.

On the other hand, some apply ML methods to the global structural level (Oh et al. [6]; Okazaki
et al. [7]; Wu and Jahanshahi [8]; Cladera and Mari [9]; Tehranizadeh and Safi [10]). In particular,
Abdalla et al. [11] adopted an artificial neural network (ANN) for predicting the shear resistance
of reinforced beam. Abdalla et al. [12] used ANN to predict the optimum design parameters of
unbonded post-tensioned coupled precast concrete wall systems. Abuodeh et al. [13] studies the
shear deficient reinforced concrete beams connected with fiber-reinforced polymers laminates
using the resilient back-propagating neural network, the neural interpretation diagrams, and the

recursive feature elimination. Solhmirzaei et al. [14] used support vector machine, k-nearest
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neighbor, and ANN for classifying the failure mode of ultra-high-performance concrete beams and
then used genetic programming for deriving an expression of the beams’ shear capacity. Table B.1
in the appendix summarizes some global structural level applications of ML methods in more

detail.
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Fig. 1. A schematic comparison of (A) the proposed glass-box computational material framework,
(B) the traditional approach to constitutive rule derivation, and (C) the recent ML-based
approaches.

Another notable mainstream is to directly use experimental or simulation data for describing
material behaviors. This paper denotes this attempt as a “data-driven” approach since their focus
lies indirect route between data and material behavior, sometimes bypassing any form of constitute
rules. For instance, Bessa et al. [15] developed a new data-driven computational framework for
ML to help design new material systems and structures by three steps of designing experiments,
computational analysis to create the material response database, and ML through a feedforward
network. Ma and Pan [16] presented a data-driven nonintrusive model order reduction method for
dynamical systems with moving boundaries by combining three techniques: proper orthogonal
decomposition, Gaussian process regression, and moving least squares interpolation. Inspired by

the initial work of Kirchdoerfer and Ortiz [17], Eggersmann et al. [18] extended the data-driven
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computing paradigm by combining locally linear tangent spaces into the data set. Patel et al. [19]
presented a regression framework for finding continuum models from high fidelity molecular
simulation data based on a neural network parameterization of governing physics in modal space.
Despite their meaningful contributions to our understanding of materials and structures, there are
two critical challenges, the lack of interpretability and the limited description of the internal
complexity of heterogeneous materials and diverse boundary conditions (BC’s). The weak
interpretability issue is rooted in the ML method’s nature, and the incomplete description of
internal complexity and BC’s are inherited from data, the starting point of training and learning.

In terms of the first challenge of interpretability, most of the existing ML-driven approaches to
material models and structures rarely offer detailed explanations behind the input-output relations,
thereby rendering them a “black-box” approach. This limit is considered a severe disadvantage in
practical applications (Cheng et al. [20]). Therefore, it is of critical importance to develop a “glass-
box” approach (as opposed to the black-box) that can help unravel the hidden relation between
input and output engineering data. As regards the second challenge of incomplete data, both data-
driven and ML-driven approaches essentially rely upon training data which are obtained from
small-scale laboratory tests under specific BC’s to come up with a sort of surrogate model
representing or replacing the constitutive model (Fig. 1C). In advanced settings, material
heterogeneity is also included for small experiments or computational simulations for training data
generation. For instance, Mozaffar et al. [21] used the recurrent neural network for finding history
and microstructure-dependent constitutive models for the homogenized stresses and plastic energy
of heterogeneous materials. Abueidda et al. [22] developed convolutional network models to
obtain new optimum materials considering linear elastic or hyperplastic materials. These models

were based on the topology optimization and the ResUnet method, which is a convolutional neural
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network aimed to get high performance with fewer parameters. Chen and Gu [23] presented a
framework based on deep neural networks to obtain and design a novel composite material.
Abueidda et al. [24] presented a sequence learning model that can predict the entire path-dependent
for a periodic elastoplastic material using different recurrent neural network architectures such
as long short-term memory and gated recurrent unit. Kollmann et al. [25] developed a
convolutional neural network (CNN) model based on the ResUnet method presenting a non-
iterative topology optimization of metamaterials. However, there exists an intrinsic discrepancy
between reality and physical or computational experiments. Inside the real-world structures,
substantially diverse BC’s and material heterogeneity exist, and the training data sets can hardly
encompass the entire spaces of all possible physical conditions.

To overcome the critical challenges, this work adopts and generalizes a “glass-box” computational
material model framework (Fig. 1A) developed by Cho [26] (in short, glass-box framework
hereafter). The central novelty of the glass-box framework is twofold. First, it can combine basic
physics principles and spatial convolution (a salient driving force of deep learning) to generate
convolved information index (II) so that ML autonomously perceives internal heterogeneity and
complex BC’s within real-world structures. Second, the glass-box framework offers room for
transparent link functions (LF’s) that can unravel hidden rules behind the material coefficients of
adopted computational material mechanisms. The convolved II can put scientists’ eyes onto ML
and see through a complex physical system imbued with heterogeneity and diverse BC’s; LF’s can
help unravel the hidden relations between the convolved II and mechanisms.

Still, in the initial work, the glass-box framework accommodates two material models with a
simple two-parameter exponential form LF, which necessitates substantial generality, flexibility,

and expandability for broader applicability. This paper generalizes the glass-box framework by
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proposing a set of new convolved II’s essential for the extension to additional material
mechanisms. This paper describes how to develop new convolved II tailored for new additional
material mechanisms, and the example extended mechanisms include the nonlinear shear of
cracked quasi-brittle materials and reinforcing steel’s progressive buckling mechanisms.
Importantly, this paper explains how to honor and infuse the existing material mechanisms onto
the glass-box framework. Also, this paper generalizes the glass-box framework by including the
cubic regression spline (CRS) (Hastie and Tibshirani [27]; Wood [28]). The CRS-based LF can
simultaneously describe constant shift, linear, and highly nonlinear relationships since it
mathematically contains all these relations in terms of simple bases. CRS-based LF’s successfully
help unravel the hidden rules about strength enhancement, nonlinear shear strength degradation,
and the progressive buckling phenomena. As illustrated in Fig. 1A, the proposed glass-box
framework leverages existing constitutive model at integration (material) points on an implicit
FEA platform but seeks to replace decisive material coefficients of the constitutive model with the
machine learning-identified rules, thereby engendering “evolving” constitutive models.

This paper is organized as follows. Section 2 summarizes and gives a general idea about the
adopted glass-box framework. Section 3 presents a new convolved II that is tailored for new
material models related to the smart bar’s progressive buckling phenomena. Section 4 derives a
flexible and transparent expression of a hidden relation between convolved II and computational
material’s coefficients by using CRS-based LF. Section 5 revisits existing computational material
models that are used for demonstrating the extensibility of the glass-box framework. Section 6
presents feasibility test settings to show the framework's positive impacts with a wide spectrum of
large-scale reinforced composite structures. Section 7 discusses the results from the feasibility test

and shows the accuracy of the proposed framework.
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2. Revisit to the glass-box computational material framework

2.1. Overall flow of glass-box framework

As schematically illustrated in Fig. 2, there are notable analogies between the adopted glass-box

framework and the convolutional neural network (CNN), a popular deep learning method. In both,

convolution is used for learning and prediction with complex data sets. The generation of

convolved II of the glass-box framework is similar to the convolution and pooling of CNN in the

sense that both can provide a spatially weighted averaging to collect information from adjacent

regions and come up with new information measures. In lieu of error backpropagation of CNN,

the global fitness of the unraveled rules is used for the next-generation products in the evolutionary

algorithm. While in CNN, each neuron’s weight and activation function describe the nonlinear

relationship (still opaque), the glass-box framework seeks to find transparent (i.e., in terms of

expression) rule via LF at each material point.
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Fig. 2. A high- level analogy between the typlcal convolutional neural network (CNN) and the
glass-box framework: (a) a typical single neuron of CNN; (b) the glass-box framework’s an

individual material point which is the counterpart to the single neuron of CNN. W( ) is the weight

in layer (/) from neuron j to #; f(.) is an activation function; bi(l) is the bias term.
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Fig. 3 shows the self-evolving nature of the glass-box framework in which the Bayesian update
plays in concert with the evolutionary algorithm, a genetic algorithm (GA) herein. With new
specimens, convolved II guides the ML method to internal heterogeneity and BC’s at the material
point level. Then, multiple LF’s of multiple computational material models interact within the
loops of generations and organisms in GA and high-fidelity computational simulation platform
(HFCS) for typical selection, spawning, and evolution of GA. LF’s can understand the hidden
relations between convolved Il and a computational material model (denoted as M). Finally, to
strengthen the best-so-far LF, new experimental data of different test systems are used by Bayesian

updates with the prior best of the LF.

Autonomously quantify New specimen
Heterogeneity & BC’s & \ Ne \ifflf a?éria[
8 [ latvx eV J Bayesian Update
E e S — &_ _—— = Data Base:
o :‘i / 1 Prob(Fitness(a)) va;
=2 Lu(lla) = ¢ | £;,(T;a") vM
g .=
£ 5| ] ( 4
CON| M(&(x); c) & HFCS ] | Best so far £;,(IT;a")
mN_ _

Fig. 3. The overall flow of the self-evolving nature of the glass-box computational materials
framework. II(x) = convolved information index; V = the domain; £,, = link function; ¢ = target
coefficients of adapted computational materials; M (g(x); ¢) = a computational material model;
HFCS = high-fidelity computational simulation platform; L), = best-so-far link function.

In terms of creating the next generation of GA, there are many evolution methods about GA in the
literature (Wang et al. [29]; Tang et al. [30]; Johnson and Rahmat-Samii [31]; Waisman et al. [32];
Koza [33]). The adopted glass-box framework uses the fitness-proportionate probability (FPP) to
ease Bayesian update, in which the probability of an organism s in the recent generation is selected
as a new parent for the next generation. A detailed explanation is presented in Cho [26]. Here, a

central idea is summarized. In general, prior knowledge is the collected information obtained from
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earlier validations using different specimens. In the beginning, an initial unknown distribution of
parameter a is signified as m(@),.i0r = pP(alLy) where p(alLy) is the probability density
function (PDF) of a set of free parameters a for an LF L, related to a material model M. Then, the

Bayesian update of LF’s can be obtained by

p(m(a),riorla, Ly)p@lLy)
7T(a)posterior = p(aln(a)PTior'LM) - p(p;l(o;)prio:/IILM) :

(1)

where p(ﬂ(a)pn-or |L M) = [ p(n(a)p”or)p(aIL u) da. After that, using different specimens
creates new a and 7()posterior 0 SETVE as T(a)yyor for the next update. It should be noted that
the Bayesian update is performed through the detected fitness distributions instead of assuming an
artificial distribution of m(a). In detail, completing a full GA throughout whole generations can
lead to the best generation and organism that contains the largest fitness score. The prior best
generation’s fitness score F*(s; L)) is combined with the current fitness scores F(s; S*(a), Ly)
where S*(a) is the set of a of the prior best generation. Also, based on the FPP rule, the Bayesian
fitness score of an individual new organism Fg(s; Ly), s = 1, ..., My,4, can be obtained by

) _ 1F(s;8"(@), Ly)F " (s; Ly)
P =TT S F (s L) @

where

k=) FsiS" @, L) P (si Lu)

RCT )

2.2. Convolved information index

The 1II is used to give ML the ability to learn and improve the unknown of a material model and
use it in LF. The main goal of convolved II is to autonomously determine the laboratory-reality
similarity, i.e., complex heterogeneity and diverse BC’s inside the physical system. There is no

limit to derive domain-specific II, and there is ample room to incorporate engineering principles
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or basic mechanics for the desired physical information. Cho [26] presented an efficient derivation
that uses “virtual stress” at material points, which provides a new feature to each material point to

make ML methods understand the physical system. This virtual stress-based II is defined as

o] 1S
= exp 3_

where II € R[0,1]. S‘S'In;r and eﬂ,‘l correspond to realistic deformation inside the real system and

(m)

vpr

(m) (m) ‘
&y pr Eyr T (])

(4)

the free deformation under the virtual stress oy, respectively. As shown in Fig. 4, this new II can
help internal material points “feel” adjacent heterogeneity as well as general BC’s. This virtual
stress-based II quantifies the degree of proximity to nearby stiff materials or BC’s with a single
scalar value within [0, 1]. The full derivation of this virtual stress-based II is presented in Appendix
C.

As another example of 11, it can be derived by using gravity (i.e., self-weight of the structure) (Cho

and Hall [34]). This gravity-based II was defined in terms of compression induced lateral strains

& as
= [ 1-d Linear .form (5)
1/exp (d) Exponential form
where d is an intermediate-term, and it can be obtained as
1/{(e £ £
d — _(( 1>+ + ( 2>+ + ( 3>+> (6)
2\ &y €12 €13

where ¢; is the strain in the ith principal direction; x, = x for x > 0 and x, = 0 for x < 0. This

choice of gravity was successful in quantifying the complex reinforcement layout.

10
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220
221 Fig. 4. Example plots of II: (a) ~ (d) birds-eye (bottom row) and plan view (top row); (a) real-scale

222 composite structure with dimensions of (1m X 1m X 1m) containing 16 steel bars; (b) the
223 convolved II distribution on the horizontal cross-section 1, (c) on the horizontal cross-section 2,
224  and (d) on the horizontal cross-section 3. The vertical axis corresponds to the convolved II; (e) a
225  view of randomly scattered stiff small cubes with dimensions each of (0.01m X 0.01m X 0.01m)
226  inside a soft body with dimensions of (1m X 1m X 1m). The random cubes’ stiffness is
227 (10%,103,10%*) times greater than that used in the soft material; (f) convolved II distribution
228  confirms the proximity of the stiff cubes; (g) plan view of convolved II at the cross-section.

229
230  Both of these two II’s can effectively quantify the realistic proximity to stiff reinforcements and

231 firmly fixed bottom. However, the key difference between them is that the virtual stress-based II
232 has no dependency on gravity direction and thus rotation-invariant. The gravity-based Il is easy to
233 implement, but by nature, it is dependent upon the direction of self-weight. Thus, throughout this

234 paper, we used the virtual stress-based II for all the subsequent formulations and feasibility tests.
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With the virtual stress-based II (Eq. 4), the spatial convolution has been conducted

by
nx) = [wx§1(E)d§ (7)
where w () can represent the Gaussian weighting function, and it can be defined as
w(r) = (LV2m) exp (— ;_;) (8)

where N = 3; L is the influence range; r is the spatial distance and can be defined as r = |x — §|;
X is the position vectors; § is the integration point location vector (Bazant and Jirasek [35]; Cho
and Hall [34]). Fig. 4a-d show how the convolved II can feel the proximity to the fixed bottom
boundary (Fig. 4b) and free top boundary (Fig. 4d). Also, Fig. 4c shows how the convolved II can
inform material points with stiff embedded bars (Fig. 4c). Figs. 4e-g show how the convolved II
can help material points feel the adjacent stiff (heterogeneous) materials and can perceive the
randomly distributed heterogeneous small volumes. All of these “perception” is autonomously
done.

As proven in Cho [26], the favorable properties of the virtual stress-based II include the invariance
to the external tractions (e.g., pressures or gravity), rotation, or translation. The convolved II is
only affected by the physical proximity to adjacent materials and BC’s. This invariance is critical
and cannot be achieved by the use of principal stresses. For instance, Fig. 5a shows separate
simulations of a stiff bucket filled with soft material with varying gravity and pressures. Fig. 5b
and Fig. 5c show the maximum principal stress on the soft material's mid-height with gravity in
the Y- and X-direction, respectively. Fig. 5d and Fig. Se show the maximum principal stress under
vertical pressure of 10 KPa and 100 KPa, respectively. Unlike these principal stresses, the current
virtual stress-based convolved II is completely independent of gravity directions, external tractions
(i.e., all plots of Fig. 4 are independent of external tractions or gravity).

12
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Fig. 5. Example plots of principal stress-based II and each dependency on the gravity direction:
(a) the insight of a soft material in a stiff bucket with dimensions of (2m X 2m X 2m); (b) the
maximum principal stress on the mid-height of the soft material with gravity on y-direction; (c)
the maximum principal stress on the mid-height of the soft material with gravity on x-direction;
(d) the maximum principal stress for a pressure of 10 KPa on z-direction; (e) the maximum
principal stress for a pressure of 100 KPa on z-direction.

3. New convolved II tailored for a smart bar model’s progressive buckling

This section elaborates on how the convolved II concept can be applied to an existing
computational material model. As an example, a new convolved Il is proposed to help evolutionary
ML autonomously improves decisive material coefficients of a complex progressive reinforcing
steel bar buckling model. Under excessively repeated loadings, reinforcing steel bar exhibits
progressive buckling behavior, which is highly challenging to capture by experimental efforts
(Rodriquez et al. [36]; Dhakal and Maekawa [37]). The computational bar model is denoted as the
“smart” bar model (Cho [38]) since it leverages internal topological information such as bar
connectivity and damage states of surrounding brittle materials.

Recalling the fundamental limit of the traditional experiment-based derivation (Fig. 1B) of the
computational material model, the formulations about the progressive buckling are likely to

depend on simplified assumptions such as fixed-end BC’s of a bare bar without interaction with
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surrounding heterogeneous materials. In the smart bar model, the onset of compressive buckling
is expected when all the surrounding brittle material’s elements enter at least a partially crushed

state. Therefore, to evaluate the energy state of the material, two internal state variables are

considered. First, the internal state variable at the integration point level al.(k) describes uncrushed

state by 1 and crushed state by 2

k 1 forminef” > ¢
ai( ) { k = Sth 9)
2 otherwise

where k is the crack surface € {1,2,3}; &, is the strain threshold for entering the crush phase,
which is assumed to be the strain associated with the compressive strength. Second, the internal

state variable at the element level, which can be denoted as 4;, can show intact, partially crushed,

and fully crushed states of an element using simple integer values such as 0, 1, and 2, respectively.

0 B; < NINTY) x 3
A4 =41 NINTU x3 < B; <NINTY) x 6 (10)
2 B; > NINTD x 6

where NINTU) is the number of integration points of the jth element € surrounding element S,,,;

NINTO) 3
k
gi= > a (1)
i=1 k=1
The topological transition is assumed to take place if all surrounding elements enter the partially

crushed phase, which can be determined by

n(Sm)

Z 4 = n(S) (12)
=1

where n(S,,) is the number of surrounding elements in S,,. Hence, once the above condition is
confirmed, the onset of buckling can be obtained by proposing a new convolved II of the bar,

denoted as II, where II, € R[0,1] and it can be defined as

14
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NINT "(Sm)

oM 2= 2
1,(6) = (sm) Z Z ls NINT 3 (13)

()

Where I1(i) is the convolved II at the ith integration pomt 1s the average convolved II of jth

element material; A(t) is the damage state of jth brittle element material at time ¢; the values 2 and
3 are used for scaling.

In Eq. 13, I1,, can collect the adjacent information presented by the convolved II and the damage
states by summation over all integration points (i.e., NINT) of all associated n(S,,) surrounding
elements since the current surrounding brittle material’s status affects the buckling of the
reinforcing steel. For example, when the average convolved II is 0 (free to deform), and the brittle
material is fully crushed (i.e., A(t) = 2), there will be no impact from the surrounding brittle
material on the reinforcement bar; hence, I1, = 0. However, when the convolved II is 1 (almost
fixed), and the brittle material is intact (A(t) = 0), the brittle material will not allow buckling on
the reinforcement bar; hence, II, = 1 (Fig. 6).

In the feasibility test sections, we will demonstrate how this new convolved II is effectively used
to incorporate additional material models related to smart bar computational material models. This
supports the expandability of the proposed approach to include many new material models by
devising a new material-specific new II. As long as the II conveys physical meaning and a
manageable range of [0, 1], researchers can propose their own II for further complex material

models.
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Fig. 6. The proposed mapping from the convolved information index IT to I1,,.

4. Flexible link function

4.1. Cubic regression spline-based link function

Another key enabler of the glass-box computational materials framework is the transparent and
expressive LF, denoted as £, (I];a) — ¢, where a is a set of free parameters of LF, and ¢ is a set
of material coefficients for a given material M. LF seeks to offer a mathematical expression
between II and M, while evolutionary ML focuses on the evolution of a of LF. In general, to aim
the continuous evolution, LF can look to the flexible expressions of the free material coefficients
instead of fixed values such as weights of hidden neurons of deep learning. Also, LF can provide
an acceptable explanation of the relation between the physical rules and information in which the
relationship is self-evolving with the increasing of data.

In this paper, GA is adopted as the main evolutionary algorithm. The choice of GA is sufficient to
explain the feasibility of the self-evolving capability of LF’s. The fitness scores of all organisms
are recorded to obtain the prior best LF’s in which the organism can represent each candidate for
a’s of LF’s. There are two requirements of L, are: (1) The evolutionary algorithm should be
integrated with the LF for consistent evolution with more experimental data, and (2) the LF should

ultimately span the input-output spaces. As long as satisfying these two requirements, LF can be
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selected from any activation functions, including popular functions in the ML community (Fig. 7
and Table 1). Our goal is to derive a flexible and transparent expression of a hidden relation
between convolved II and computational material’s coefficients ¢. Thus, this paper suggests a

highly flexible CRS-based LF.

Table 1. Popular activation functions in ML methods.

Types Definition Range
Sigmoid _ 0,1)
fe) = 1+e™™*
Hyperbolic tangent (tanh) fo) (e*—e™) (-1,
X)=-——=
(e* +e™)
Rectified Linear Unit (ReLU) fx)=0 forx <0
fx)=x forx >0
12
08 +
04
04 L —— Sigmoid
-0.8 7, ------------------------ Hyperbolic tangent
Tk - -— RelLu
_12 7\|\\=\\\\ Ll Ll \\|\\I\\I\\\:\\I\\I\I\|I\|\I\}I\\\

-12 -1 -08-06-04-02 0 02 04 06 08 1 12
X

Fig. 7. Most popular activation functions.

CRS-based LF harnesses the flexibility of the connected cubic smooth functions (Hastie and
Tibshirani [27]; Wood [28]). Briefly, it is instructive to touch upon the definition of CRS. It should
be noted that this paper does not use CRS for regression-purpose. Rather, CRS is solely used for
identifying hidden expressions of the material coefficients. The representation of smooth functions

of CRS is given by

g(.“i) = f,Cer) + £, () + - (14)
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where g is a smooth LF; y; = E(Y;|x;); Y; is a response variable; x;; is the jth covariate in a
multidimensional vector X; where i indicates the ith instance; f; is a smooth function
corresponding to the jth covariate. After scaling, we can always make x; lie in the interval [0, 1],

and the smooth function f can be assumed to consist of ¢ basis functions as

q

fG) =) abi() (15)

i=1
where a; is the unknown free parameter of the basis function; b;(x) is the ith basis function in
which can be given as b;(x) = 1, b,(x) = x,and b;,, = R(x,z;) fori =1, ...,q — 2; R(x, z) can
be defined in a general form as
1\ 1 1\ 1 I 1 1\ | 7
[(Z—z) _ﬁ] [(x—z) —ﬁ] [('x—Z| -3) —2(lk-21-3) +35

R(x,z) = 2 - >4 (16)

where z is the knot location (i.e., point where the cubic curves are connected). Thus, the final
smooth curve is made up of sections of cubic polynomial joined together so that they are

continuous up to the 2" derivative at each knot, as illustrated in Fig. 8.
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Fig. 8. Illustration of CRS with the decomposed five bases and the final weighted summation of
the smooth function f{x) at the right bottom. Each box shows the free parameter a; of each basis
bi(x).

Inheriting the flexibility of the CRS bases, this paper proposes CRS-based LF of the convolved II

(denoted as IT) as

£, (TT; 2) = ayby (1) + ayb, (7T) + Z ispbisn (7T (17)

i

It should be noted that if a material behavior is known as simple (e.g., monotonic increasing or
decreasing; Fig. 9), a simple form LF such as two-parameter exponential LF (Cho [26]) may
suffice. Although exponential LF takes only two free parameters, Fig. 9 underpins its wide
coverage in shapes and amplitudes. The two-parameter exponential LF is given as

Ly(IT;a) = expla, (I1)%] (18)
Both CRS-based LF and exponential LF have excellent flexibility compared to the fixed activation
functions (Fig. 7). Therefore, this paper advocates the highly flexible CRS-based LF and uses the

exponential LF as a comparative study.

19



382
383

384

385
386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

Fon
&
=
S

5 5
: ]
g 4 _g ‘.—--‘-___ ;;;;; // é 4 —j "
-5 : - _: a = .
23 7 a-15 -7 20 1 ’
3 - - |
[ - // A 2 4
— 2t —_ '\é
R - - | =
Al =T T =11
g S —
0 02 04 06 08 1 0 02 04 06 08
Convolved information index 7 Convolved imformation index [T
0 e 0.04 ---0.08 0.1 — 0 03 06
— =1 10 —-- 100 0.9 1.2 1.5

Fig. 9. Exponential LF: (a) convex and concave shapes controlled by a>; (b) amplitude controlled
by a;.

4.2. Remarks on pre-shrinking of the search range

If HFCS is light in terms of computational time, the evolutionary algorithm will successfully find
the global optimum via typical fitness-based evolution, inheritance, spawning, and mutation
processes. However, our paper deals with multi-scale computational material models required to
analyze large-scale, highly nonlinear composite structures at their ultimate nonlinear behaviors
(Cho [26]; Cho [38]). Using hundreds of CPUs, each HFCS may take hours to days, even with the
aid of parallel computing (Cho and Porter [39]; Cho and Hall [40]). Therefore, it is practically
important to shrink the vast search range in view of domain-specific knowledge. To offer a
practical recommendation, in this section, we expound upon two cases: the desired maximum value
of CRS-based LF (L)) occurs at the right end (i.e., the monotonic increasing case (Fig. 10a)), and
the maximum happens in the middle of the span (i.e., the convex case (Fig. 10b)). It should be
noted that this remedy shall be extended to cover different scenarios, but the bottom line will be
similar. Also, if researchers can access sufficiently large computing resources, they may directly

tackle the vast searching space without this recommendation.
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Fig. 10. The CRS-based LF's general shape for the desired maximum value: (a) monotonic
increasing; (b) target maximum in the middle.

In the monotonic increasing case, the range of the free parameters of £, can be obtained by

applying the general mathematical condition to find the maximum of a linear function.

ALy,

W =20= a, + a363 (xmax) + a4b,4(xmax) + aSb,S(xmax) =0 (19)

Xmax=1.0
where b,(X,q,) is the first derivative of the basis functions that can be calculated, as shown in
Fig. 11b. However, the conditions are slightly changed in the convex case while the range of the
free parameters of £, can be obtained by applying the first and second derivatives to find the local
maximum where the slope is zero. The detailed algebraic proofs are presented in Appendix D and

E.
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In general, Table 2 and Table 3 provide some recommendations to obtain the free parameters of

Ly, for a different maximum target. It should be noted that these recommendations are not a strict

limit of the search range. Instead, they may be used with discretion to find a meaningful

relationship with substantially time-consuming simulations swiftly.

Table 2. Recommendations to follow monotonic increasing relation.

002 0.€0.6 08 1
by

Target CRS Exponential
max of
LF ai az as a4 as ai az
1 [0.5, 1] [0, 0.5] [-168, 168] [-168, 168] [-120, 120] 0 [0, 100]
2 [1,2] [0, 1] [-336, 336] [-336, 336] [-240, 240] [0,0.69] [0, 100]
3 [1.5, 3] [0, 1.5] [-504, 504] [-504, 504] [-360, 360] [0,1.11 [0, 100]
4 [2,4] [0, 2] [-672, 672] [-672, 672] [-480, 480] [0,1.38] [0, 100]
5 [2.5, 5] [0, 2.5] [-840, 840] [-840, 840] [-600, 600] [0,1.61] [0, 100]
7.5 [3.5,7.5] [0,3.5] [-1176, 1176] [-1176, 1176] [-900, 900] [0,2.01] [0, 100]
10 [5,10] [0, 5] [-1680, 1680] [-1680, 1680] [-1200, 1200] [0,2.3] [0, 100]
20 [10, 20] [0, 10] [-3359, 3359] [-3359, 3359] [-2400, 2400] [0, 3] [0, 100]
50 [25, 50] [0, 25] [-8398, 8398] [-8398, 8398] [-6000, 6000]  [0,3.91] [0, 100]
100 [50,100] [0, 50] [-16800, 16800] [-16800, 16800]  [-12000, 12000] [0, 4.61] [0, 100]

Table 3. Recommendations to have the maximum at the middle.

Target CRS
max of
LF ai az as as as
1 [0.25, 1] [0, 0.5] [0, 320] [0, 255] [0, 107]
2 [0.5, 2] [0, 1] [0, 640] [0, 511] [0, 213]
3 [0.75, 3] [0, 1.5] [0, 960] [0, 766] [0, 320]
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4 [1, 4] [0, 2] [0,1280]  [0,1022] [0, 427]
5 [1.25,5]  [0,2.5]  [0,1600]  [0,1277] [0, 533]
75 [1.88,7.5] [0,3.5]  [0,2400]  [0,1916] [0, 800]
10 [2.5, 10] [0, 5] [0,3201]  [0,2554] [0, 1067]
20 [5, 20] [0, 10] [0,6401]  [0,5109]  [0,2133]
50 [12.5,50]  [0,25]  [0,16003] [0, 12772] [0, 5333]
100 [25,100]  [0,50]  [0,32006] [0,25543] [0, 10667]

5. Existing computational material models to be evolved by glass-box framework

One of the glass-box framework's novelties is that it can honor and leverage the existing material
models in lieu of completely replacing them. Computational material models often have unknown
material coefficients, which have critical roles in the material mechanisms. They are difficult to
obtain from empirical calibrations because of complex heterogeneity and diverse BC’s of real
materials. Hence, this section describes how to use the proposed glass-box framework to dissolve
the hidden relationship between the convolved II and the decisive, unknown material coefficients.
It should be noted that the inclusion of other advanced material models is straightforward, and this

paper focuses on how to expand them.

5.1. Glass-box framework for nonlinear quasi-brittle materials models

The first material mechanism is the fixed-type smeared crack model. The adopted crack model
permits three orthogonal crack surfaces (Fig. 12b). The microscopic crack stress tensor 6" can be
determined by crack-normal stress function W, and crack-tangential stress function ¥. In
particular, this paper adopts quasi-brittle material models (Thorenfeldt [41]; Taucer et al. [42];
Reinhardt [43]) for updating microscopic stresses on the three crack surfaces. The mesh
objectivity about tensile crack can be achieved by adopting the crack bandwidth (Bazant and Oh

[44]; Cho [45]).
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Fig. 12. Microphysical mechanisms of the quasi-brittle materials used for feasibility tests: (a) 3D
nonlinear shear mechanism-based soft matrix-rigid hemisphere interlocking (adapted from Cho
[38], Cho [45]); (b) Multi-directional smeared crack mechanism allowing three orthogonal cracks
over random-sized aggregates (adapted from Cho [26]).

In term of tangential stress function W, Cho [38] had derived a three-dimensional (3D)
interlocking model for describing the degradation of tangent shear resistance at the cracked
material by using the tribology and the 2-D interlocking model (Fig. 12a). Tribology assumes that
the plastic deformation occurs on the hemisphere part because of the simple contact with a rigid
flat plate (Jackson and Green [46]). The present work is assuming that the permanent plastic

deformation happens at the soft matrix part only. The tangent shear stiffness G can be obtained by

2
G =C. “faner—1-af1-a + %u(l - ) (20)

Go
A+
where C., is the ambient condition-dependent empirical coefficient; G, is the elastic shear
modulus; pu is the friction coefficient; € = 2d/D,,,4,. The relationship between € and ¢ in one-
dimensional case given by € = £(Dyax/2)/L, where € is the normal strain to the crack surfaces;
d is the distance between crack surfaces; L is the length of the element; D,,,, is the diameter of
the ideal particle. The physical explanation of the interaction between the rigid particle and soft

matrix offers a clear understanding of the realistic behavior of cyclic shear resistance.

Next, normal stress function W,, can be obtained by the following
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where gf” [MPa] is the current normal stress on the ith crack surface; 8 is the ambient condition-
dependent strength enhancement factor; o, [MPa] is the compressive strength without lateral
constraints; { = &' /€y; € is the normal strain on the ith crack surface; ¢ is the strain at the
compressive strength; n = 0.8 + - 9./17; the parameter k = 1 forg, < &f" < 0,ork = 0.67 +
B a./62 for & < ¢g,.

B,C.s,and u are the unknown material coefficients, which have critical roles in the material
mechanisms, as shown in Fig. 13. They are difficult to obtain from empirical calibrations because
of the irregular asperity of cracked surfaces and the heterogeneity of real materials. Hence, this

paper uses the proposed framework to dissolve the relationship between (S, C., 1) and II.
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Fig. 13. The critical role of 8, C., and p in the mechanisms: (a) the impact of different 8's on the
normal stress; (b) the impact of different C.;'s on the shear stress; (c) the impact of different u’s
on the tangent shear stiffness G.

5.2. Glass-box framework for a smart bar model with progressive buckling

This section describes how the glass-box framework can be used to learn the hidden decisive
material coefficient of the smart bar model, which can capture progressive buckling. The target
smart bar model is a generalized Menegotto-Pinto bar model capable of capturing progressive bar
buckling, yielding, and rapture in a smooth transition during reversed loading. The model is
denoted as “smart” since it leverages the topological information and surrounding quasi-brittle
materials’ damage information as briefly described in Section 3. However, the smart bar model
has a hidden decisive material coefficient. To derive the material coefficient, many used idealized

experiments or analytical formulation (e.g., Dhakal and Maekawa [37]). Although a deep reality-
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laboratory gap remains, the general knowledge gleaned from the previous studies is meaningful.
In sum, researchers found: (1) the average compressive stress is smaller than the point wise stress
after the onset of buckling; (2) the average post-buckling compressive stress becomes constant
after it decreases to the post-buckling residual compressive strength ¢, f;, where ¢; is the factor for
residual strength after buckling and f, is yielding stress; (3) the degradation rate of average
compressive stress is almost constant, and it can be expressed by the post-buckling negative
stiffness of the bar ¢, E as

c=0"—cE/ (¢ —¢€); fore > ¢&* (22)
where o* is the stress at the onset of buckling. E; is Young’s modulus of the reinforcing bar; € is

current strain; €* is the strain at the onset of buckling, and it can be defined as

* L
=k %—zs-ﬁLb

— |; th i =7 23
y 100D, otherwise & &y (23)

&

where ¢, is the strain at yielding; f,, is stress at yielding. D; is the diameter of the bar cross-section.

L, is the updated buckling length defined by Cho [38] as

kL (24)

Lg)for Vel€BUp,

Ly

where Lg) is initial buckling length of the ith steel bar (denoted by e} meaning a line entity); BU,,
is the basic topological group consisting of a bar and its adjacent solid elements; £ is the effective
length factor.

Herein, k, c;, and c, are the unknown material coefficients, which are difficult to obtain from the
empirical calibrations because the reinforcing system deforms in a complicated way and depends

on different factors related to microstates of surrounding materials and diverse BC’s. Therefore,

27



511

512

513

514
515

516
517
518
519

520
521

522

523

524

this paper employs the proposed glass-box framework to unravel the relationship between

(k, ¢y, ;) and 11, (Fig. 14).
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Fig. 14. Coefficient effects on the stress-strain curve: (a) buckling model proposed by (Dhakal and
Maekawa [37]) where o] is point wise stress corresponding to €* (strain at the onset of buckling);
(b) using different factors for residual strength after buckling c;; (c) using different reduction
factors for post-buckling (softening regime) c,; (d) the effect of different k on the onset of buckling

strain £*.

5.3. Rationales for the selected material mechanisms

We briefly explain why this study selected the aforementioned four microphysical mechanisms. A

rectangular wall (denoted WSHS5 from Dazio et al. [48]) has been used to show the key aspect and

the role of different mechanisms in nonlinear regimes (Fig. 15). First, the multi-directional, fixed-
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type smeared crack model (denoted as “Adv. Concrete” in Fig.15a) is adopted since it can preserve
the actual crack directions allowing at most three orthogonal cracks. The preserved physical crack
surfaces are important to incorporate nonlinear shear mechanism (“NL-shear” in Fig. 15a) since
the NL-shear is based on the physical interaction between the rigid particle and soft matrix (Cho
[38]). The importance of the Adv. Concrete and NL-shear in capturing nonlinear degradation of
shear capacity is shown by the green-colored curve in Fig. 15a. Next, this study adopts the
nonlinear reinforcing steel bar mechanism (denoted P-Buckling) based on the generalized
Menegotto-Pinto hysteresis (Cho [38]). The bar mechanism can utilize the topological information
of surrounding concrete’s damage (e.g., partially intact or crushing) of the center bar capable of
describing progressive compressive buckling of the bar. As shown in yellow and red curves in Fig.
15a, the inclusion of the P-buckling mechanism helps the curve approach to the real envelope
(black line) at the large displacement ranges (far left and right regimes of Fig. 15a). It should be
noted that there are ample rooms to incorporate other advanced mechanisms such as multiscale or
plasticity theories in the future extention, but the adopted four mechanisms are sufficient to support
the goal of this study.
(a) (b)
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Fig. 15. Comparison among simulations with different nonlinear mechanisms: (a) “Adv Concrete”
means multi-directional smeared crack mechanism. “NL-Shear” means the nonlinear shear

29



544
545
546

547
548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

mechanism based on rigid particle-soft matrix interlocking. “P-Buckling” means the progressive
buckling steel bar mechanism. The experiment line indicates the outer envelope of the real force-
displacement curve of (b) (adapted from experiment of Dazio et al. [48]).

6. Feasibility Test

Schmidt and Lipson [47] used externally observable physics rules to calculate the prediction errors.
Similarly, the proposed glass-box framework can leverage the externally observed global
responses as a measure of error or prediction performance metric. Thus, raw fitness scores (i.e.,

the inverse of error) are given by
1 : :
R(a) = §(|mathFT — maXVtFp| + |m1thFr — mantFpD (25)

where F,. and F,, are the nonlinear force responses from real experiment and simulation prediction,

respectively. The adjusted fitness scores F, are calculated by

1
F = - 26
=T+ R@) (26)
Lastly, the normalized fitness scores F can be calculated by
F = Ta 27)
ZVS F a

The uncertainty behind the GA-driven LF’s and subsequent computational predictions can be
carried by the standard deviation of absolute values of relative errors of all organisms in the best

so far generation, which termed as o,

0er = Var(Brr]) = jnslzwms)v - (Y. o) (28)

where

(29)

r(s) 1 (|mathFT - maXVtFp| |miny, F, — mithFp|>
s) == _
2 |maxy, F, | |minyF,|

30



565

566
567

568

569

570

571

572
573

where s and ng are an organism and the total organisms in the generation, respectively.

6.2. Diverse large-scale specimens for feasibility test

Table 4, Fig. 16, and Fig. 17 summarize material properties, geometric, and reinforcement

information of various walls used to train the glass-box framework. The five rectangular walls

(named WSH 1-5) were experimented by Dazio et al. [48]. The U-shaped wall (named TUB) was

investigated by Beyer et al. [49].

Table 4. Material properties of specimen walls.

Description WSHI1 WSH2 WSH3 WSH4 WSHS5 TUB
Width (mm) 2000 2000 2000 2000 2000 1300
Length (mm) 150 150 150 150 150 1050
Height (mm) 4560 4560 4560 4560 4560 3350
Axial load (KN) 689 691 686 695 1474 780
Compressive strength (MPa) 45 45 45 45 45 55
Module of elasticity (MPa) 31529 31529 31529 31529 31529 34856
Strain at compressive strength 0.002 0.002 0.002 0.002 0.002 0.002
Tensile strength (MPa) 4.5 4.5 4.5 4.5 4.5 5.5
Strain at tensile 0.000143 0.000143 0.000143 0.000143 0.000143  0.000158
D3.5(656) D4.2(526) D4.2(562) D6(519) D4.2(562)  D6(518)
D (Diameter in mm) D6(590) D6(515) D6(489) D8(650) D6(550) D12(471)
Yielding stress (MPa) D10(600)  D10(671) D8(680) D12(600) D8(700)
D12(700)
D3.5(662) D4.2(583) D4.2(615) D6(559) D4.2(615)  D6(681)
D (Diameter in mm) D6(600) D6(535) D6(552) Dg&(714) D6(559) D12(574)
Ultimate stress (MPa) D10(620)  D10(747) D8(700) D12(675) D8(714)
D12(726)
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577  (b) U-shaped wall named as TUB. Black lines are actual reinforceing steel bars’ layouts which are
578 all modeled in the full-scale computational simulation with space truss elements.
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6.3. Set-up of evolutionary algorithm and initial material coefficients

The main settings for GA are as follows. The mutation rate is fixed to be 0.02 to control the random
“jump” in the location of the generated solution. Four genes and four alleles encode the real
variable. The LF parameter ranges are set based on each material coefficient range. For example,
p = 0.4 has been well-proven by Walraven [50], so the range is set to be [0,1] to search for enough
range. ¢; = 0.2 is the minimum value based on experimental results of a single bar without
surrounding concrete recommended by Dhakal and Maekawa [37], while ¢; = 1.0 is the maximum

possible residual strength, which is the same as the yield strength of steel, so the range is set to be
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[0,1]. Moreover, ¢, = —0.02 is the minimum degradation rate recommended by Dhakal and
Macekawa [37], which is reasonable on a single bar without any surrounding concrete, but the range
of ¢, is set to be [—0.02,0], where ¢, = —0.005 shows a large enough ultimate strain of steel bar.
In addition, ¥ = 1.0 is the minimum value recommended by (Dhakal and Maekawa [37]) to predict
the onset of buckling on a single bar without surrounding concrete, while k = 2.0 is the maximum
possible value that can delay the onset of buckling since the bar steel is surrounded by concrete,
so the range is set to be [0,2]. However, the range of S is set to be [0,12] to search for enough
range where default § = 1.0. Also, the range for scaling of C, (denoted as S,.) is set to be [0,4300]
where the default of S, is equal to one. It should be noted here that C.; = S, X 0.0001, so the
range of C.; can be [0,0.43] based on Cho [26]. Moreover, in order to compare between
exponential and CRS-based LF’s for the paper in the following sections, the range of « is set to be
[0, 1] and [0, 4.5] which a is an enhancement factor for &,. Table 5 and Table 6 show the LF
parameter ranges for each material coefficient that has been used in this work.

In addition, two models (called Model I and Model II) were used in the feasibility test. Model I,
which is adopted from Cho [26], and has only two physical targets (f, and C.,), has been used in
this work to validate and compare between CRS-based and exponential LF (Eq. 30). Model II,
which is proposed in this work, has been used to add more physical targets such as (i, ¢;, ¢,, k)
to learn and provide the mathematical expressions for these empirical coefficients, so it has been

using 6-coefficients in this model (Eq. 30 and Eq. 31).

BUD) = Ly(IT; ag)

_ _ 30
Ces(ID) = Ls (IT; a5,) x 0.0001 (30)
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wdn = £,(I1;a,)
k(I,11,,t) = L,.(I1,1I,,t;a,)
o (11, t) = L., (1L 11, t;a.,)
¢, (1, 10y, t) = L, (11,11, t;a,)

(31)

where L is the LF of beta; ag is a free parameter vector of Lg to be determined by the evolutionary

algorithm; t is the time step since I1,, is dependent on current damage.

It should be noted that g, C, and u are material coefficients that affect the strength of the brittle
material; hence, convolved II has been used to unravel the hidden relationship between these
material coefficients and II. However, k, ¢;, and ¢, are material coefficients that affect the buckling
of the reinforcement steel, in which it is dependent on the current damage of the surrounding
material at the time step ¢ and the adjacent information of the brittle material; hence, IT, has been

used for these material coefficients.

Table 5. The initial ranges for the LF free parameters of the new physical targets.
CRS-based LF

Parameters u e [0,1] c; €10,1] ¢, €[-0.2,0] Kk € [0,2]
ai [0, 0.5] [0, 0.5] [-0.05, 0] [0, 1]
a: [0, 0.5] [0, 0.5] [-0.05, 0] [0, 1]
as [0, 288] [0, 288] [-29, 0] [0, 576]
as [0, 288] [0, 288] [-29, 0] [0, 576]
as [0, 120] [0, 120] [-12, 0] [0, 240]
zi [0, 0.333]
z2 [0.333, 0.6667]
z3 [0.6667, 1]

Table 6. The setting used for feasibility tests.

Exponential LF
Parameters a €[0,1] a € [0,4.5] B €1[0,12] S. €[0,4300]
ai [-100, 0] [0, 1.5] [0, 2.52] [0, 8.39]
a: [-1, 0] [0, 10] [0, 10] [0, 10]
CRS-based LF
ai [0, 1E-6] [0,2.25] [0, 5] [0, 10]
a: [0, 1E-6] [0,2.25] [0, 5] [0, 2000]
as [0, 1E-6] [0, 756] [0, 1000] [0, 1E+6]
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as [0, 1E-6] [0, 756] [0, 1000] [0, IE+6]

as [0, 1E-6] [0, 5407 [0, 1000] [0, 1E+6]
z [0, 0.333]

2 [0.333, 0.6667]

23 [0.6667, 1]

7. Discussion on feasibility test results

7.1. Interpretation of the identified rules

The main goal of the glass-box framework is to learn the hidden physical rules by providing
mathematical expressions about the target material coefficients and the convolved II through LF.
From the statistical angle, (Eq. 7) shows that each convolved II can be considered as marginal

likelihood with the Gaussian conditional probability NV (X, L?):

(%) = Epygeg iy UD) = f (L@)‘”exp(—%> (@) 32

where the dimension N = 3; the spatial influence range L = 0.001 m; X ;) € V is ith material point
(or integration point) in the domain V. An explicit form of the best-so-far LF can help to explain
and show the hidden relationships. For instance, the identified physical rule about f and the II in
a clear CRS form is given by
B(xw) = a1 + az X I1(xp)) + i1 @z X b1l (%))
= a4 + @y X By 1)U + Ty 00 X by (EN(X@_LZ)(H)) (33)
where a is presented in Table 7, and plots of the above bases are shown in Fig. 18. Similarly,

with different a, the identified rule of C.; and the convolved II is given by

3
Cos(X@p) = aq + ap X Epy 12D + Z Q2 X bjip (IEN(X(D,LZ)(II)) (34)

j=1
where a is presented in Table 7, and plots of the above bases are shown in Fig. 19. These physical

rules about f and C.s are not fixed, nor unique. Instead, these rules propose the best-so-far,

36



642

643

644

645

646

647

648

649
650

651

652
653

654

655

approximate expressions regarding the target phenomena. Still, compared to the “black-box” style
prediction of traditional ML methods, the identified rules are meant for future investigations using
domain-knowledge.

In general, the feasibility test with micro-physical material models showed the capability of the
framework in obtaining reasonable expressions for the role of material coefficients in the material
mechanisms. By the flexibility and transparency of LF, the discovered physical rule may lead to

numerous possible rules.

Table 7. The best-so-far free parameters of CRS-based LF.

B Ces u C1 C; K
ai 4.00 0.00031 0.33 041 -0.02 04
az 3.61 0.027 0.22 0.2 -0.025 0.64
az 263 77.25 22.59 253 -20.36 368.19
as 580 70.59 214.69 45.18 -10.46 350.12
as 502 87.84 89.88 106.35 -11.06 74.35
zl 0.12 0.31 0.15 0.2 0.28 0.08
z 0.56 0.58 043 0.45 0.6 0.36
z3 0.78 0.71 091 0.9 0.94 0.98
5 5 T 51
o b . / o b= 263
o &I ~ 0 4 o I
i—! a;=4.0 "31 F a,=3.6 -2" F
S5 e s dpipinpengan] 5 i
002040608 1 0 02040608 1 0 02040608 1
IT 11 Jii
5 T 9 T
< 0 ;/\ 7 ;
SR gy ) ol
5 e 34
002040608 1 < 1+ 5
11 &1 £ B = Y a;b; (I1)
5 it
5 3 F ;
- 0 {‘—.__/‘—.-" 5 £
I T B
0 02040608 1 9 * oy *

i 0 o2 o4 - 05 08 1
i
Fig. 18. The decomposed five bases and the final weighted summation of the smooth function
B(II) at the right bottom. Each box shows the parameter a; of each basis b;(x).
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Fig. 19. The decomposed five bases and the final weighted summation of the smooth function
C.s(II) at the right bottom. Each box shows the parameter a; of each basis b;(x).

7.2. CRS-based LF’s versus manually calibrated high-fidelity simulation

As shown in Fig. 20 and Table 8, the best-so-far result for each wall compares the prediction in
terms of force and displacements using the glass-box framework and a parallel multi-scale finite
element analysis (FEA) platform named VEEL (Cho [38]; Cho and Porter [39]). The training set
starts with WSH 1, which has the least minimum error, and because of that, the prior best for WSH
1 is reserved for other walls. The glass-box framework with CRS-based LF shows less error than
the default VEEL. Furthermore, as the GA learns the hidden relationship between IT and (B, Cs),
the framework can provide a mathematical expression between the II and the coefficients through

LF using a single target LF, as shown in Fig. 21.
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Fig. 20. Comparison of the accuracy of the adopted framework and default VEEL in terms of force
and displacement: (a) the best-so-far results for WSH 1 with least minimum error; (b)~(e) the best-
so-far results of different specimens WSH 2 ~ WSH 5 for strengthening the glass-box framework;
(f) the best-so-far results of north-south (NS) direction loading for the last specimen TUB used in
the framework; (g) the best-so-far results of East-West (EW) direction loading for TUB; (h)
summary of the comparison between glass-box framework (EV-VEEL) and default VEEL.
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679  Table 8. Summary of glass-box framework results.

Wall Finished Max. Max. Best Best Max. CPU Min.
Type (Minutes) Gen.  Org.  Generation Organism  Group Err (%)
WSH 1 2524 3 100 0 58 10 160 0.2
WSH 2 4560 3 100 1 91 20 320 1.9
WSH 3 4323 10 1000 2 761 20 320 0.6
WSH 4 3381 3 100 1 76 20 320 5.9
WSH 5 6332 3 100 1 25 10 160 0.6
TUB 7227 2 50 0 47 10 160 2.3
680
681
( )12 ®) o6
% %
a 3
. . . ‘ 08 By
0 02 04 06 0.8 1 0 02 04 06 08 1
Convolved information index JJ Convolved information index J7
—— WSH] e WSH2 ----- WSH3 —— WSHI oo WSH2 ----- WSH3
682 ‘WSH4 - - - WSHS — —TUB WSH4 - - - WSH5 — —TUB

683  Fig. 21. Collecting coefficients through an LF: (a) § through convolved II; (b) C, for different
684  walls.

685
686  7.3. CRS-based versus exponential LF’s

687  In this section, two-parameter exponential LF and CRS-based LF have been used on WSH4 to
688  compare the flexibility of the LF and ensure the accuracy of the proposed framework. As shown
689  in Fig. 22, the minimum error in WSH 4 of exponential LF has changed slightly with the change

690 of the a range. However, CRS-based LF, which contains less error than exponential LF, showed
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more sensitivity to a range. Thus, it can be more applicable in delivering the material coefficients'

mathematical relations due to the CRS form's multiple-parameter relationship.
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Fig. 22. Force-displacement of WSH 4 using different search ranges for a: (a) exponential LF with
€ [0, 1]; (b) exponential LF with a € [0, 4.5]; (c) CRS-based LF with @ € [0, 1]; (d) CRS-based
LF with a € [0, 4.5].

7.4. Generalization to 6 material models coefficients

The notable strength of the proposed glass-box framework lies in its expandability. It is highly
facile to expand the learning core to include more new material coefficients. The glass-box
framework's evolutionary algorithm is long gene-based storage that can be easily extended by

adding more gene expressions for more material models (Fig. 23).
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Fig. 23. Schematic of expandable gene-based storage of the evolutionary algorithm of the
proposed glass-box framework.

To demonstrate the favorable expandability, this section extended the glass-box framework by
including the 6-coefficients model (Model II) and comparing the accuracy to the default VEEL
and 2-coefficients model (Model I). Then, each wall's prior best has been used to test a U-shaped
wall, TUB (Fig. 24, Fig. 25, Table 9). First, WSHS5 results show that the minimum error of the
best-so-far generation of WSHS in Model II, which is 0.6%, is less than the default VEEL (4.3%)
and Model I (0.73%). Also, using the prior best of WSHS for testing TUB shows better accuracy
in Model II than using Model I and default VEEL, in which the minimum error using Model II is
3.1% while it is 6.5% and 3.9% with using default VEEL and Model I, respectively. However, the
results of WSH3 show less accuracy, which the minimum error of the best-so-far generation is
2.3% with using 10 generations and 500 organisms, while the default VEEL (4.0%) and Model I
are 4.0% and 2.13%, respectively. Also, the test of TUB using the prior best of WSH3 shows
promising results in using Model II, in which the minimum error is 4.3% using Model II while it
is 3.9% in Model I. Generally, it should be noted that increasing generations and organisms

increase the accuracy, but it costs more computational time and computing memory.
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Fig. 24. Comparison between the accuracy of Model II: 6- coefficients (left column), Model I: 2-
coefficients (right column), and default VEEL for the walls WSHS and TUB in terms of force and
displacement: (a) the best-so-far results for WSH 5 with the least minimum error; (b) the best-so-
far results of north-south (NS) direction loading for TUB; (c) the best-so-far results of east-west
(EW) direction loading for TUB.
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Fig. 25. Comparison between the accuracy of Model II: 6- coefficients (left column), Model I: 2-
coefficients (right column), and default VEEL for the walls WSH3 and TUB in terms of force and
displacement: (a) the best-so-far results for WSH 3 with the least minimum error; (b) the best-so-
far results of north-south (NS) direction loading for TUB; (c) the best-so-far results of east-west

(EW) direction loading for TUB.

Table 9. Validation results using default VEEL, Model I, and Model II.

Max. Max default Model I: 2-Coeffs ~ Model II: 6-Coeffs
Wall name . . VEEL Err . :
Generations  Organisms [%] Min. Err [%] Min. Err [%]
WSH3 10 500 4.0 2.13 2.2
WSHS5 3 100 4.3 0.73 0.6
TUB (best WSH3) 10 6.5 54 4.3
TUB (best WSHS5) ’ 3.9 3.1
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Another important aspect of the proposed approach is the accessibility to detailed nonlinear
damage behaviors of complex composite structures. As shown in Fig. 26, the proposed framework
can directly access the microscopic nonlinear damage phenomena by capturing the compressive
buckling of longitudinal reinforcing bars associated with concrete crushing and spalling. Such
detailed damage responses are hard to capture by conventional computational analyses.
Progressive buckling occurs (Fig. 26 d-g) in the combined effects of damages of surrounding
quasi-brittle materials (Fig. 26 b-c; a large portion is spalled out or crushed out). The progressive
buckling behavior is captured by the proposed approach by integrating all the damage information

of surrounding materials and steel materials’ current hysteretic stress-strain history.
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Fig. 26. The predicted responses of longitudinal steel bars depending on their locations: (a) cross-
section of TUB (all dimensions are in mm); (b) concrete damage state at the north face of TUB;
(c) concrete damage state at the south face (b and c are cited from Beyer et al. [49]); (d) stress-
strain of steel bar A, (e) of steel bar C, (f) of steel bar B, and (g) of steel bar D.
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7.5. Gradual Evolution Confirmed by a Simple Column Experiment

In this section, a composite hollow column (experimented by Cho [51]) has been analyzed to
quantitatively demonstrate the gradual evolution. The material properties and geometric details
are given in Table 10 and Fig. 27a. The hollow column (denoted as H40-300) is loaded by
horizontal cyclic displacement loadings at the top and subjected to a constant axial force
equivalent to 10% of the cross-sectional strength. As shown in Fig. 27b, the evolution via a
combination of the Bayesian update and the genetic algorithm gradually improves the learning of
the best-so-far rules for the material parameters of the mechanisms: i.e., gloal error decreases from

1.42% to 0.27%.

Axial Load
(760 KN)

Cyclic
loading
direction

2 3 4 5

Number of generation

(a) (b)

Fig. 27. The hollow column denoted as H40-300: (a) the geometry and details of the hollow
column; (b) the best result of each generation to show the gradual evolution.
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Table 10. Material properties of the hollow column (H40-300).

Concrete Longitudinal bar Hoop
Compressive  Module of Strain at Tensile  Strain . Yielding . ) Yielding
.. . Diameter Diameter  Spacing
strength elasticity =~ compressive strength at (mm) stress (mm) (mm) stress
(MPa) (MPa) strength (MPa)  tensile (MPa) (MPa)
422 27,300 0.002 42 0.00014 10 350 6 50 or 100 350

8. Conclusion

This paper describes how to generalize the glass-box computational material framework by
proposing a new material-oriented convolved information index (denoted as II,) and highly
flexible cubic regression spline (CRS)-based link function (LF), and the conclusion can be
summarized as follow.

e The proposed framework can honor and leverage the existing material models by
selectively replacing the decisive material coefficients by LF and the convolved II.

e The new convolved information index (II) introduced for nonlinear shear and progressive
bar buckling mechanisms demonstrates the successful expandability of the proposed
framework.

e Virtual stress-based convolved II helps the proposed framework to leverage complex
internal material heterogeneity and diverse BC’s inside the large-scale structures.

e CRS-based LFs appear more flexible and accurate than exponential LF. In particular, CRS-
based LFs are able to describe the hidden rules behind the six target mechanisms’ decisive
material coefficients: i.e., the confinement-induced strength enhancement (f3), three-
dimensional interlocking-based nonlinear shear strength (C.; and p), the progressive
compressive buckling of reinforcing bars (c;, ¢;, k).

e A variety of feasibility tests with large-scale reinforced composite structures confirmed

that CRS-based LFs can outperform the manually calibrated high-fidelity simulations.
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The next steps should include in-depth mathematical, analytical, and computational
investigations. It shall be about the impact of flexible CRS bases on the adopted evolutionary
algorithms and the favorable settings of the hyper-parameters (i.e., parameters related to the global
learning algorithm’s settings) of glass-box learning cores. Also, there should be a study on the
effect of the sequence of the training specimens (i.e., complex specimen to the simple one, or
independent of the complexity of specimens) on the context of the Bayesian update. Another
important issue may be the inclusion of many advanced physical mechanisms at other scientific

domains or diverse length scales from macro, micro, and even nano-scale (Cho et al. [52]).

Appendix

A. Introduction to the Convolutional Neural Network

The convolutional neural network (CNN) is a class of artificial neural networks that can be highly
successful in practical applications such as image processing, learning and predicting continuous
signals, and data classification (Oord et al. [53]; Raissi et al. [54]; Lee and Carlberg [55]). The
structure of CNN is similar to the standard neural network, in which it includes convolutional
layers, pooling layers, and fully connected layers (Fig. 2). First, the convolutional layer can obtain
a set of feature maps which is the output of a mathematical operation between two inputs: an
image matrix and a feature detector called a filter that can extract the optimum features from the
input data. Then, the pooling layers simplify the information passed from the convolutional layer
and reduce the scale of feature maps; hence, these layers can reduce computation and overfitting
as there are only some parameters. In the pooling layers, many operations can be used, such as
max-pooling, average-pooling, and min-pooling. Finally, the output of the previous procedures is
fed into the fully connected layers, which contain the activation functions and the neurons, to

classify and form the final output. The output of each neuron can be obtained by
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atV = f Z wx; + b (A1)
j=1

where a*? is the output of the neuron; WY is the weight in layer (/) from neuron j to I; x; is the
p i,j g y .] ]

input of the neuron j; bl.(l) is the bias term; f'(.) is an activation function.
For measuring the performance of the model, a cost/loss function is applied to compare the
predicted output to the target output, which can be defined as

J(W,b) = Err + Ag(W) (A.2)
where J(W, b) is the cost function that can return the error between predicted results compared
with the actual results; Err is a prediction error; A is a weight decay term for a function of W;
g (W) can be squared sum of W; ; to prevent overfitting.
Then, the backpropagation process can feed the cost value backward to minimize the cost value
iteratively. For the minimization, the cost gradient V,,y/ can be defined as

Vol = 8 Da® (A.3)

where § and a are the terminal error term and the activation at the associated layer. This leads to
a gradient AW® = AW® + V], and ultimately leads to update WO = WO — o[AWO +

AW®] where a controls learning speed.

B. Literature review of ML-based RC structure applications

There are many attempts to apply ML methods to the global structural level. Mangalathu et al.
[56] used Naive Bayes, K-Nearest Neighbors, Decision Tree, and Random Forest to determine the
failure mode of shear walls. Lee and Lee [57] presented an artificial neural network (ANN) to
predict the shear strength of slender fiber-reinforced polymer reinforced concrete flexural

members without stirrups. Abuodeh et al. [58] used ML techniques to predict and study the
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835  behavior of shear-deficient reinforced concrete beams strengthened in shear. Arslan [59] used

836  ANN algorithms to determine the influence of the structural parameters observed in earthquakes.

837  Luo and Paal [60] presented an ML model to predict backbone curves used to evaluate the force-

838  deformation behavior subjected to cyclic loading. Tsai and Hsu [61] used the backpropagation

839  neural network technique to detect the RC structural damages. Jeng and Mo [62] presented a

840  methodology to predict the early seismic response of prestressed concrete bridges by using ANN.

841
842  Table B.1. Literature summary of ML-based RC structure analyses.
Authors Samples variables Target Accuracy Comments
Mangalathu 393 Shear 14 The failure mode of  *P.A.=86%  The target is four categories of failure mode (Shear '1', flexure
et al. [56] walls shear walls '2', flexure-shear '3', sliding '4").
P.A.= ﬁ/ N> Where 7 is the number of correct failure mode
predictions, and N is the total failure mode predictions.
S. Lee, 106 RC 6 Shear strength R? =095 The authors used real experiment data of beams without
C. Lee [57] members stirrups to predict V.rand then compare the results with
empirical equations.
Abuodeh 120 RC 15 Shear strength R?=0.89 The authors used real experimental data of beams to predict the
et al. [58] Beams shear strength of FRP V; and then compare the results with
design standards.
Arslan [59] 256 RC 8 Displacement drift R%? =10.98 Authors used pushover analysis results of real buildings to
buildings Capacity predict values for the global drift capacities at three
performance levels (Immediate Occupancy '1O', Life Safety
'LS', Collapse Prevention 'CP").
Luo and Paal 262 15 Yield and maximum R?=0.99 Authors used real experimental data of columns to predict yield
[60] Columns Shear force, drift shear force Vj,, drift ratio at yield shear §,, maximum shear

values

force V,,, and drift ratio at maximum shear §,,.

843 *P.A. is the prediction Accuracy.

844

845  C. Calculation procedure of virtual stress-based information index

846  This paper adopted the virtual stress-based information index (Cho [26]). Here, we summarize the

847  key procedure to calculate the information index using virtual excitation, and further details can

848  be found in Cho [26]. Every material point at x € (), where () is the target structure’s domain, is

849  involved by virtual stress oy = (I 0)", where I € R3 is the unity vector and 0 € R3 is zero
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vector. A separate finite element analysis denoted as virtual FEA and eigenvalue analysis are
performed to generate two virtual principal strain vectors.

The first virtual principal strain vector sg,rlnl))r € R3, where m = 1, ..., n,;, and n,; is the total finite
elements, can carry realistic deformation under the virtual stress oy for the real constraints, and it
can be obtained by eigenvalue analysis of strains from the virtual FEA. Within the system, a finite
element’s integration point at location & € R3 and virtual force vector Ry € RNPOF where Npop
is the total degree of freedom of the system, and it is assumed to be virtually provided by the virtual

stress vector. Ry can be calculated by a typical FE procedure as

Nel

Ry = Z f (B} 6y dvm (C.1)
m=1 vem

where B(™ is the typical matrix of derivatives of shape functions. After that, a virtual FEA of the

real system subjected to only Ry with no other external forces is performed to obtain the virtual
displacement vector Uy € RNPOF and the element-wise displacement vector Uy ™. Then, at every

integration point at location § of an element (m), the virtual initial strain vector under the realistic
constraints SVI )(E) € R® can be calculated as

ey (®) = BM@U,™ (C.2)
After that, by performing the eigenvalue analysis with SVI )(E) the principal strain vector

sg,rlnz)r(i) € R3 and the associated transformation matrix T\(,Tlngr (¥) € R3 can be obtained.

The second virtual principal strain vector s‘(, p)r € R3, can carry the amount of free deformation

: . : . -1 .
under the virtual stress oy and it can be obtained by transforming {(D(’")) : O'V} where D™ is
the linear elastic material matrix. As the counterpart of oy, we have the virtual strain vector

(m) (%) € R® that can be calculated with a linear elastic material matrix D™ (¥) as
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ey (§) = {(D(’")(E))_l}cv (C.3)
Hence, the second principal strain can be obtained by
T @ (® = (el @, 7 @) (C.4)

where yvp (‘g’) € R3 is the shear strain vector, which is negligible.

D. Calculation procedure of monotonic increasing link function

The range of the parameters of £,, in monotonic increasing can be obtained by applying the general

mathematical condition to find the maximum of a linear function.

dLy,

x|, 1o > 0= a, + ashs(Xmax) + @by (Xmax) + asbs(Xmax) = 0 (D.1)
where b,(Xpmqy) is the first derivative of the basis functions that can be calculated. The other
equation that can be used to obtain LF parameters is the general equation of LF Ly, (X0 = 1.0) =
Lis 5o Where Ly is the maximum target LF that can be given by domain knowledge. It is not
easy to solve these two equations with five unknowns; therefore, three more equations can be
suggested from trial and error and the properties of basis functions individually. First, because
a;and a, correspond to global shifting and linear increasing of LF, they are assumed to be

equivalently dominant.

L L
ae%; cw% (D.2)

The other suggested equation is assuming as to be equal to the maximum target. Since the fifth
basis function bg locates the maximum at x = 1 or 0 (see Fig. 11a). Hence, as can be obtained as

Ly max

bs(1.0) (D-3)

a5:
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By solving the equation of £, (X,,,45) for as and solving Eq. D.1 for a,, we can have the maximum

initial range of a3 and a, as

Ly ba(10) Ay
— — - < D.4
T (1.0)  by(10) M M= (D-4)

where A, and B;; are constants that can be calculated as

_ LMmax b _[’Mmax 65(1'0)LMmax
A”‘( 2 >+(3(1'°) b3<1.0)>+( b;(10) ) ®-%
. b,(1.0) .
B,, = b,(1.0) — bgg—lloibgj(m) (C.6)

E. Calculation procedure of convex link function

The conditions are slightly changed when the maximum target is located at the middle (¥ = 0.5).
Herein, the range of the parameters of £, can be obtained by applying the first and second

derivatives to find the local maximum where the slope is zero.

dr . ] .
— =02 a, + ashs(R) + a,by(®) + ashs(X) = 0 (E.1)
dx xX=0.5
d2L . . .
deM < 0= azh;(R) + aby(R) + ashe(®) <0 (E.2)
x=0.5

where b,(x) = db;(x)/dx, and b;(x) = d?b;(x)/dx?, as shown in Fig. 11b and Fig. 11c. Still,
there are three equations with five unknowns. As before, being equivalently dominant, a; and a,

are assumed to be equal at ¥ = 0.5, and they can be obtained as

Mmax 4, = LMmax (E. 3)

W=y R 2

Substituting Eq. E.3 into Equations E.1, E.2 and £,,(X) to obtain a3, a,, and as as

az = (Cy; — Dy1E11) — (D11 F11)as (E.4)

a, = Eyy — Fii0as (E.5)
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(Cll - DllEll)b;(Q?) + Ellbélly-(f)

a — — — (E.6)
7 (bs(®) — D11Fi1bs(R) — Fiaby(®))
where C;,~F;; are constants that can be defined as
L b, (%
611:_%; 11:# (E.7)
4by(X)bs (%) b3 (%)
Latygebs®) = 2Laa b DB R [Bs(®)bs@)] = [B:@)bs@)]
11 = ; Fi = (E.8)

by (®)[b3(2)B4 () — By (R)bs(R)] b3 (R)b4(R) — b3(£)b, (%)

F. Scalability of the Adopted Parallel Grouping Algorithm

The proposed framework requires many organisms, along with high-precision computational
material models, to perform reliable learning and evolution. However, a full GA has a global
iteration for many organisms, which is an “embarrassingly parallelizable” process. To handle
many organisms concurrently, we apply a CPU group technique for a separate parallel multi-scale

FEA.

Let SG;,i =1, ..., ng; be a subgroup of CPUs, which performs the computation of a portion of

organisms. Each CPU group has M (5G1) Such that

org
nseg
Morg = Z Mﬁig"): Gepy :U?jf SG; (F.1)

i=1
where Gepy = {Py, P, ..., Pp—1} in size of p is the set of all available processors, and SG; =

(SGy) p(SGy) (SGy)
{RED, PP, P

p(i)_l} is the i;;, subgroup of processors in size of p(;).

Pav (i < nge)
p(i):{ g 56 (F.2)

P — Pavg (i = ng¢)

2

~ )— 1; The authors’ dedicated work in large and
SG

where i =1, ...,n5 and pgyy = floor(

complex parallel multi-scale FEAs (Cho and Porter [39]; Cho and Hall [40]; Cho [26]) proved the
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power of multi-layered CPU grouping parallelism. As shown in Fig. F.1a, it briefly illustrates the
architecture of the multi-layered parallelism. In general, each CPU subgroup handles M, /nsq
organisms. The platform used in the paper for all the parallel computers is Condo 2017 of Iowa
State University, consisting of 192 SuperMicro nodes. Each node has two 8-core Intel Haswell

processors, 128GB of memory, and a 2.5 TB local disk.

(@) L P,: Global Master } (b) 14
12 —a— CPU Grouping
IC ommunication pipeline —e— linear speedup
| \ o 10
SC 3 8
5G =
p[(, V. Group Po °:Group 8 4
Master Master &,
]
| | eee |f | 2
QOQ ) e ([ (S6ngg) _ (SGngg) 0
DDD Py Ve Pyt DDD P, rens Plyy-1
sul Sub - 0 5 10 15 20 25
Subgroup 1 Subgroup 5G,,,. Number of groups

Fig. F.1. (a) the architecture of hierarchical and multi-layered CPU grouping techniques. The
global master only communicates with the hierarchical group masters in the pipeline; (b) super
speedup of CPU grouping technique based on wall-clock time for learning one generation of 80
organisms by varying number of groups ng;. Running time is normalized by that of 4 subgroups
(i.e., 26722 seconds).

In Fig. F.1b, the CPU grouping technique appears to exhibit a seemingly ‘super speedup’ (i.e.,
faster than the ideal linear speedup) by distributing the expensive computational cost of individual
parallel multi-scale FEA. The authors’ dedicated work in Cho and Porter [39] theoretically
explains the seemingly super-linear speedup of the present multi-layered parallel multi-scale
analysis. In Table F.1, each subgroup has a fewer number of CPUs as the number of groups
increases. One of the reasons for this promising performance is communication reduction due to
the Condo cluster system's shared memory since the intra-node transfer cost is typically smaller

than the inter-node transfer cost.
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Table F.1. The number of CPUs (i.e., p(;)) in the ith subgroup of CPUs by a varying number of
groups ng;. The total number of CPUs (i.e., p) is fixed as 320.

nSG =4 nSG =8 nSG =16 nSG =20
140) 80 40 20 16
Time (sec) 26,722 7,489 2,747 2,287

Suppose we have access to the cloud computing environment. In that case, the proposed program
can handle many organisms to optimize the link function between the computational material

models and the information index.

G. Statistical Application Examples using Generalized Additive Model

Previous researchers applied genetic programming to find a functional relationship between the
features in data to the target (e.g., Solhmirzaei et al. [14]). In a similar fashion, researchers can
derive a statistical prediction model of a target behavior by coupling the best-so-far evolving
VEEL with an advanced statistical method. As a practical example, a generalized additive model
(GAM) is used to derive a statistical model of the maximum shear force of rectangular walls using
CRS. In general, GAM is a non-parametric regression model that can depend on the sum of
undetermined smooth functions (Hastie and Tibshirani [27]; Wood [28]; Song et al. [63]), and the
general form of GAM is given by Eq. 14. In this example, the statistical prediction is performed
on training data, containing 283 instances, seven descriptive variables, and one target variable.
These 283 instances are generated by the evolving VEEL with the best-so-far setting as of the date
of simulation. The training was performed on the training dataset (70% of the full data, 198
instances). The final identified statistical model based on GAM can be written in the open-source

statistics program R as (G.1)
Fumax = gam(FS~s(L,bs = "cr",k = 7) + s(Th,bs = "cr",k = 7) + s(H,bs = "cr", k = 7)
+ s(AFR,bs = "cr",k = 7) + s(Fc,bs = "cr",k = 7) + s(Fy,bs = "cr", k = 7)

+ s(D,bs = "cr", k = 7), family = Gamma(link = "log"), data = trainset)
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where this study uses the Gamma distribution which is suitable for the nature of data (real and
positive values), and we use the logarithmic link of GAM. In addition, the number of basis
dimensions in smooth functions (k) has been chosen to be seven as recommended by literature
(e.g., Wood [28]). The instances of concrete shear walls can be described by different variables

(Table G.1). The results of the statistical training is shown in Fig. G.1.

Table G.1. Variable Characteristics

Variables Detail
L Length of shear wall
Th Thickness of shear wall
H Height of shear wall
AFR Axial force ratio
Fc Concrete compressive strength
Fy Yield strength of longitudinal reinforcement
D Diameter of boundary longitudinal reinforcement
FS Maximum shear force
(a) Response vs. Fitted Values (b) Histogram of residuals
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Fig. G.1. The results of the training dataset. (a) response vs. fitted values; (b) Histogram of
residuals; (c) residuals vs. linear predictor; (d) Q-Q plot.

With 30% test data set, the coefficient of determination (R?) is calculated as 0.84 (Fig. G.2). It
should be noted that this accuracy may not be the global optimal subject to further improvement
by optimization of GAM itself (e.g., Song et al. [63]). Still, this example demonstrates well that
the proposed evolved framework can be coupled with an advanced statistical method to obtain a

practically useful statistical prediction model.

900
— L ]
g S0+ oL
5 700 ¢ e o
g 600 ¢ . LA
= 5500 | v’
= & 400 £ f o
Zhs
5300 + - WF
= E %o b
E 200 _5 .J. ®
S w0 f " ’
= Tt
0 : — '
0 200 400 600 800

Maximum Shear Force [KN] (Predicted)

Fig. G.2. Prediction test against test dataset containing 30% of the full data (85 instances), resulting
in R% = 0.84.

Acknowledgments

This research is, in part, supported by the research funding of the National Science Foundation
under grant OAC-1931380, and the University of Jeddah-Saudi Arabia. The computational
simulation reported in this paper is partially supported by the HPC@ISU equipment at lowa State
University, some of which have been purchased through funding provided by NSF under MRI

grant number CNS 1229081and CRI grant number 1205413.

59



1004
1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

References

[1] Hashash, Y. M. A., Jung, S., & Ghaboussi, J. 2004. "Numerical implementation of a neural
network based material model in finite element analysis." International Journal for
numerical methods in engineering, 59(7), 989-1005.

[2] Koenuma, Kohta, Akinori Yamanaka, Ikumu Watanabe, and Toshihiko Kuwabara. 2020.
"Estimation of Texture-Dependent Stress-Strain Curve and r-Value of Aluminum Alloy
Sheet Using Deep Learning." Materials Transactions 61 (12): 2276-2283.

[3] Vlassis, Nikolaos N., Ran Ma, and WaiChing Sun. 2020. "Geometric deep learning for
computational mechanics Part I: Anisotropic Hyperelasticity." Computer Methods in
Applied Mechanics and Engineering 371: 113299.

[4] Logarzo, Hernan J., German Capuano, and Julian J. Rimoli. 2021. "Smart constitutive laws:
Inelastic homogenization through machine learning." Computer Methods in Applied
Mechanics and Engineering 373: 113482.

[5] Masi, Filippo, loannis Stefanou, Paolo Vannucci, and Victor Maffi-Berthier. 2020.
"Thermodynamics-based Artificial Neural Networks for constitutive modeling." Journal
of the Mechanics and Physics of Solids 147: 104277.

[6] Oh, B. K., Y. Park, and H. S. Park. 2020. "Seismic response prediction method for building
structures using convolutional neural network." Structural Control and Health Monitoring.

[7] Okazaki, Y., S. Okazaki, S. Asamoto, and P. J. Chun. 2020. "Applicability of machine learning
to a crack model in concrete bridges." Computer-Aided Civil and Infrastructure

Engineering.

60



1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

[8] Wu, R. T., and M. R. Jahanshahi. 2019. "Deep convolutional neural network for structural
dynamic response estimation and system identification." Journal of Engineering
Mechanics 145 (1): 04018125.

[9] Cladera, A., and A. R. Mari. 2004. "Shear design procedure for reinforced normal and high-
strength concrete beams using artificial neural networks. Part II: beams with stirrups."
Engineering Structures 26 (7): 927-936.

[10] Tehranizadeh, M., and M. Safi. 2004. "Application of artificial intelligence for construction
of design spectra." Engineering structures 26 (6): 707-720.

[11] Abdalla, J. A., Elsanosi, A., & Abdelwahab, A. 2007. "Modeling and simulation of shear
resistance of R/C beams using artificial neural network." Journal of the Franklin
Institute, 344(5), 741-756.

[12] Abdalla, J. A., Saqan, E. 1., & Hawileh, R. A. 2014. "Optimum seismic design of unbonded
post-tensioned precast concrete walls using ANN." Comput Concrete, 13, 547-567.

[13] Abuodeh, O. R., Abdalla, J. A., & Hawileh, R. A. 2020. "Prediction of shear strength and
behavior of RC beams strengthened with externally bonded FRP sheets using machine
learning techniques." Composite Structures, 234, 111698.

[14] Solhmirzaei, R., Salehi, H., Kodur, V., & Naser, M. Z. 2020. "Machine learning framework
for predicting failure mode and shear capacity of ultra high performance concrete
beams." Engineering structures, 224, 111221.

[15] Bessa, M. A., Z. Liu Bostanabad, Daniel W. Apley, C. Brinson, W. Chen, and Wing Kam
Liu. 2017. "A framework for data-driven analysis of materials under uncertainty:
Countering the curse of dimensionality." Computer methods in applied mechanics and

engineering 320: 633-667.

61



1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

[16] Ma, Zhan, and Wenxiao Pan. 2021. "Data-driven nonintrusive reduced order modeling for
dynamical systems with moving boundaries using Gaussian process regression." Computer
Methods in Applied Mechanics and Engineering 373: 113495.

[17] Kirchdoerfer, T., and M. Ortiz. 2016. "Data-driven computational mechanics." Computer
Methods in Applied Mechanics and Engineering 304: 81-101.

[18] Eggersmann, R., L. Stainier, M. Ortiz, and S. Reese. 2020. "Model-free data-driven
computational mechanics enhanced by tensor voting." Computer Methods in Applied
Mechanics and Engineering 373: 113499.

[19] Patel, Ravi G., Nathaniel A. Trask, Mitchell A. Wood, and Eric C. Cry. 2020. "A physics-
informed operator regression framework for extracting data-driven continuum models."

[20] Cheng, M.Y., P.M. Firdausi, and D. Prayogo. 2014. "High-performance concrete compressive
strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)."
Engineering Applications of Artificial Intelligence 29: 104-113.

[21] Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., & Bessa, M. A. 2019. "Deep
learning predicts path-dependent plasticity." Proceedings of the National Academy of
Sciences, 116(52), 26414-26420.

[22] Abueidda, D. W., Koric, S., & Sobh, N. A. 2020. "Topology optimization of 2D structures
with nonlinearities using deep learning." Computers & Structures, 237, 106283.

[23] Chen, C. T., & Gu, G. X. 2020. "Generative deep neural networks for inverse materials design
using backpropagation and active learning." Advanced Science, 7(5), 1902607.

[24] Abueidda, D. W., Koric, S., Sobh, N. A., & Sehitoglu, H. 2021. "Deep learning for plasticity

and thermo-viscoplasticity." International Journal of Plasticity, 136, 102852.

62



1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

[25] Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E., & Sobh, N. A. 2020. "Deep
learning for topology optimization of 2D metamaterials." Materials & Design, 196,
109098.

[26] Cho, 1. 2019. "A framework for self-evolving computational material models inspired by deep
learning." International Journal for Numerical Methods in Engineering 120 (10): 1202-
1226.

[27] Hastie, T., and R. Tibshirani. 1990. Generalized Additive Models. Chapman & Hall.

[28] Wood, Simon N. 2006. Generalized additive models: an introduction with R. Boca Raton,
FL: Chapman & Hall/CRC.

[29] Wang, S. Y., K. Tai, and M. Y. Wang. 2006. "An enhanced genetic algorithm for structural
topology optimization." International Journal for Numerical Methods in Engineering 65
(1): 18-44.

[30] Tang, W., L. Tong, and Y. Gu. 2005. "Improved genetic algorithm for design optimization of
truss structures with sizing, shape and topology variables." International Journal for
Numerical Methods in Engineering 62 (13): 1737-1762.

[31] Johnson, J. M., and Y. Rahmat-Samii. 1999. "Genetic algorithms and method of moments
(GA/MOM) for the design of integrated antennas." IEEE Transactions on Antennas and
Propagation 47 (10): 1606-1614.

[32] Waisman, H., E. Chatzi, and A. W. Smyth. 2010. "Detection and quantification of flaws in
structures by the extended finite element method and genetic algorithms." International
Journal for Numerical Methods in Engineering 82 (3): 303-328.

[33] Koza, John R. 1992. Genetic Programming: On The Programming of Computers By Means

of Natural Selection. MIT press.

63



1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

[34] Cho, I., and J. Hall. 2014. "General confinement model based on nonlocal information."
Journal of Engineering Mechanics 140 (6).

[35] Bazant, Z. P., and M. Jirasek. 2001. "Nonlocal integral formulation of plasticity and damage:
survey of progress." Journal of Engineering Mechanics 128 (11): 1119-1149.

[36] Rodriguez, M. E., J.C. Botero, and J. Villa. 1999. "Cyclic stress-strain behavior of reinforcing
steel including effect of buckling." Journal of Structural Engineering 125 (6): 605-612.

[37] Dhakal, R. P., and K. Maekawa. 2002. "Modeling for postyield buckling of reinforcement."
Journal of structural engineering 128 (9): 1139-1147.

[38] Cho, I. 2013. "Virtual earthquake engineering laboratory capturing nonlinear shear, localized
damage and progressive buckling of bar." Earthquake Spectra 29 (1): 103-126.

[39] Cho, I., and K. Porter. 2014. "Multi-layered grouping parallel algorithm for multiple-level
multi-scale analyses." International Journal for Numerical Methods in Engineering 100
(12): 914-932.

[40] Cho, 1., and F. Hall. 2012. "Parallelized Implicit Nonlinear FEA Program for Real Scale RC
Structures under Cyclic Loading." Journal of computing in civil engineering 26 (3): 356-
365.

[41] Thorenfeldt, E. 1987. "Mechanical properties of high-strength concrete and applications in
design." In Symposium Proceedings, Utilization of High-Strength Concrete.

[42] Taucer, F., E. Spacone, and F. C. Filippou. 1991. "A fiber beam-column element for seismic
response analysis of reinforced concrete structures." Earthquake engineering research
center 91.

[43] Reinhardt, H. W. 1984. "Fracture mechanics of an elastic softening material like concrete."

HERON 29 (2).

64



1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

[44] Bazant, Z. P., and B. H. Oh. 1983. "Crack band theory for fracture of concrete." Materiaux et
Constructions 16: 155-177.

[45] Cho, I. 2018. "Deformation Gradient-Based Remedy for Mesh Objective Three-Dimensional
Interlocking Mechanism." ASCE Journal of Engineering Mechanics 144 (1).

[46] Jackson, R. L., and 1. Green. 2006. "A statistical model of elasto-plastic asperity contact
between rough surfaces." Tribology International 39 (9): 906-914.

[47] Schmidt, M., and H. Lipson. 2009. "Distilling free-form natural laws from experimental data."
science 324: 81-85.

[48] Dazio, A., K. Beyer, and H. Bachmann. 2009. "Quasi-static cyclic tests and plastic hinge
analysis of RC structural walls." Engineering Structures 31 (7): 1556-1571.

[49] Beyer, K., A. Dazio, and M. J. N. Priestly. 2008. "Quasi-static cyclic tests of two U-shaped
reinforced concrete walls." Journal of earthquake engineering 12 (7): 1023-1053.

[50] Walraven, J. 1994. "Rough cracks subjected to earthquake loading." Journal of Structural
Engineering 120 (5): 1510-1524.

[51] Cho, K. 2004. "An experimental and analytical study on the seismic behavior of RC piers
using high-strength concrete and high-strength rebars." (Doctoral dissertation, Seou!
National Univ).

[52] Cho, L., Li, Q., Biswas, R., and Kim, J., 2020. A Framework for Glass-Box Physics Rule
Learner and Its Application to Nano-Scale Phenomena, Nature, Communications Physics
3, Article Number 78 [DOI:10.1038/s42005-020-0339-x].

[53] Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A,

Kavukcuoglu K. 2016. "A generative model for raw audio." Sound Mach, Learn.

65



1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[54] Raissi, M., Perdikaris, P., & Karniadakis, G. E. 2017. "Physics informed deep learning (part
1): Data-driven solutions of nonlinear partial differential equations." arXiv preprint
arXiv:1711.10561.

[55] Lee, K., & Carlberg, K. T. 2020. "Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders." Journal of Computational

Physics, 404, 108973.

[56] Mangalathu, S., H. Jang, S.H. Hwang, and J.S. Jeon. 2020. "Data-driven machine-learning-
based seismic failure mode identification of reinforced concrete shear walls." Engineering
Structures 208: 110331.

[57] Lee, S., and C. Lee. 2014. "Prediction of shear strength of FRP-reinforced concrete flexural
members without stirrups using artificial neural networks." Engineering structures 61: 99-
112.

[58] Abuodeh, Omar R., Jamal A. Abdalla, and Rami A. Hawileh. 2020. "Prediction of shear
strength and behavior of RC beams strengthened with externally bonded FRP sheets using
machine learning techniques." Composite Structures 234: 111698.

[59] Arslan, M. Hakan. 2010. "An evaluation of effective design parameters on earthquake
performance of RC buildings using neural networks." Engineering Structures 32.7: 1888-
1898.

[60] Luo, Huan, and S. G. Paal. 2018. "Machine learning-based backbone curve model of
reinforced concrete columns subjected to cyclic loading reversals." Journal of Computing

in Civil Engineering 32 (5).

66



1161

1162

1163

1164

1165

1166

1167

1168

[61] Tsai, C. H., and D. S. Hsu. 2002. "Diagnosis of reinforced concrete structural damage base
on displacement time history using the backpropagation neural network technique.”
Journal of Computing in Civil Engineering 16 (1): 49-58.

[62] Jeng, C. H., and Y. L. Mo. 2004. "Quick seismic response estimation of prestressed concrete
bridges using artificial neural networks." Journal of Computing in Civil Engineering 18
(4): 360-372.

[63] Song, L., Cho, L. H., & Wong, R. K. 2020. "An advanced statistical approach to data-driven

earthquake engineering." Journal of Earthquake Engineering, 24(8), 1245-1269.

67



