
1 
 

Flexible and Interpretable Generalization of Self-1 

Evolving Computational Materials Framework  2 
Mohammed Bazroun1, Yicheng Yang1, and In Ho Cho1, 2 3 

ABSTRACT 4 

The recent innovations of computational material models by machine learning (ML) methods face 5 

formidable challenges. Incorporating internal heterogeneity and diverse boundary conditions 6 

(BC’s) into existing ML methods remains difficult, and the weak interpretability of ML remains 7 

unresolved. To tackle these challenges, this paper generalizes a recently developed self-evolving 8 

computational material models framework built upon Bayesian update and evolutionary algorithm. 9 

This paper proposes a new material-specific information index (II), which is capable of 10 

autonomously quantifying the internal heterogeneity and diverse BC’s. Also, this paper introduces 11 

highly flexible cubic regression spline (CRS)-based link functions which can offer mathematical 12 

expressions of salient material coefficients of the existing computational material models in terms 13 

of convolved II. Thereby, this paper suggests a novel means by which ML can directly leverage 14 

internal heterogeneity and diverse BC’s to autonomously evolve computational material models 15 

while keeping interpretability. Validations using a wide spectrum of large-scale reinforced 16 

composite structures confirm the favorable performance of the generalization. Example 17 

expansions of nonlinear shear of quasi-brittle materials and progressive compressive buckling of 18 

reinforcing steel underpin efficiency and accuracy of the generalization. This paper adds a 19 

meaningful avenue for accelerating the fusion of computational material models and ML.  20 
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1. Introduction 25 

Traditionally, computational material models are derived from well-designed experiments and 26 

statistical fitting (Fig. 1B). Owing to their fascinating learning power of complex data, machine 27 

learning (ML) methods have attracted researchers in computational mechanics and structures over 28 

the past decades. Researchers apply ML to constitutive rules at the material point level (Fig. 1C). 29 

This paper denotes such attempts as an “ML-driven” approach. For instance, Hashash et al. [1] 30 

derived the consistent material stiffness matrix for constitutive model using a standard multi-layer 31 

feed-forward neural network. Koenuma et al. [2] used deep learning to understand aluminum alloy 32 

sheets' deformation behavior. Vlassis et al. [3] performed a hybrid ML approach that combines an 33 

unsupervised graph convolutional neural network, which uses Sobolev training to fit target output 34 

values as well as derivatives. Logarzo et al. [4] developed a recurrent neural networks-based 35 

constitutive model to handle sequence-to-sequence data, including the deformation histories, stress 36 

histories, and the fading gradient effect. Masi et al. [5] proposed a neural network model that is 37 

physics-based and thermodynamics-based artificial neural networks. The model uses the recurrent 38 

neural network for modeling path-dependent plasticity models.  39 

On the other hand, some apply ML methods to the global structural level (Oh et al. [6]; Okazaki 40 

et al. [7]; Wu and Jahanshahi [8]; Cladera and Mari [9]; Tehranizadeh and Safi [10]). In particular, 41 

Abdalla et al. [11] adopted an artificial neural network (ANN) for predicting the shear resistance 42 

of reinforced beam. Abdalla et al. [12] used ANN to predict the optimum design parameters of 43 

unbonded post-tensioned coupled precast concrete wall systems. Abuodeh et al. [13] studies the 44 

shear deficient reinforced concrete beams connected with fiber-reinforced polymers laminates 45 

using the resilient back-propagating neural network, the neural interpretation diagrams, and the 46 

recursive feature elimination. Solhmirzaei et al. [14] used support vector machine, k-nearest 47 
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neighbor, and ANN for classifying the failure mode of ultra-high-performance concrete beams and 48 

then used genetic programming for deriving an expression of the beams’ shear capacity. Table B.1 49 

in the appendix summarizes some global structural level applications of ML methods in more 50 

detail. 51 

 52 

 53 
Fig. 1. A schematic comparison of (A) the proposed glass-box computational material framework, 54 
(B) the traditional approach to constitutive rule derivation, and (C) the recent ML-based 55 
approaches. 56 

 57 
Another notable mainstream is to directly use experimental or simulation data for describing 58 

material behaviors. This paper denotes this attempt as a “data-driven” approach since their focus 59 

lies indirect route between data and material behavior, sometimes bypassing any form of constitute 60 

rules. For instance, Bessa et al. [15] developed a new data-driven computational framework for 61 

ML to help design new material systems and structures by three steps of designing experiments, 62 

computational analysis to create the material response database, and ML through a feedforward 63 

network. Ma and Pan [16] presented a data-driven nonintrusive model order reduction method for 64 

dynamical systems with moving boundaries by combining three techniques: proper orthogonal 65 

decomposition, Gaussian process regression, and moving least squares interpolation. Inspired by 66 

the initial work of Kirchdoerfer and Ortiz [17], Eggersmann et al. [18] extended the data-driven 67 



4 
 

computing paradigm by combining locally linear tangent spaces into the data set. Patel et al. [19] 68 

presented a regression framework for finding continuum models from high fidelity molecular 69 

simulation data based on a neural network parameterization of governing physics in modal space. 70 

Despite their meaningful contributions to our understanding of materials and structures, there are 71 

two critical challenges, the lack of interpretability and the limited description of the internal 72 

complexity of heterogeneous materials and diverse boundary conditions (BC’s). The weak 73 

interpretability issue is rooted in the ML method’s nature, and the incomplete description of 74 

internal complexity and BC’s are inherited from data, the starting point of training and learning.  75 

In terms of the first challenge of interpretability, most of the existing ML-driven approaches to 76 

material models and structures rarely offer detailed explanations behind the input-output relations, 77 

thereby rendering them a “black-box” approach. This limit is considered a severe disadvantage in 78 

practical applications (Cheng et al. [20]). Therefore, it is of critical importance to develop a “glass-79 

box” approach (as opposed to the black-box) that can help unravel the hidden relation between 80 

input and output engineering data. As regards the second challenge of incomplete data, both data-81 

driven and ML-driven approaches essentially rely upon training data which are obtained from 82 

small-scale laboratory tests under specific BC’s to come up with a sort of surrogate model 83 

representing or replacing the constitutive model (Fig. 1C). In advanced settings, material 84 

heterogeneity is also included for small experiments or computational simulations for training data 85 

generation. For instance, Mozaffar et al. [21] used the recurrent neural network for finding history 86 

and microstructure-dependent constitutive models for the homogenized stresses and plastic energy 87 

of heterogeneous materials. Abueidda et al. [22] developed convolutional network models to 88 

obtain new optimum materials considering linear elastic or hyperplastic materials. These models 89 

were based on the topology optimization and the ResUnet method, which is a convolutional neural 90 
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network aimed to get high performance with fewer parameters. Chen and Gu [23] presented a 91 

framework based on deep neural networks to obtain and design a novel composite material. 92 

Abueidda et al. [24] presented a sequence learning model that can predict the entire path-dependent 93 

for a periodic elastoplastic material using different recurrent neural network architectures such 94 

as long short-term memory and gated recurrent unit. Kollmann et al. [25] developed a 95 

convolutional neural network (CNN) model based on the ResUnet method presenting a non-96 

iterative topology optimization of metamaterials. However, there exists an intrinsic discrepancy 97 

between reality and physical or computational experiments. Inside the real-world structures, 98 

substantially diverse BC’s and material heterogeneity exist, and the training data sets can hardly 99 

encompass the entire spaces of all possible physical conditions.  100 

To overcome the critical challenges, this work adopts and generalizes a “glass-box” computational 101 

material model framework (Fig. 1A) developed by Cho [26] (in short, glass-box framework 102 

hereafter). The central novelty of the glass-box framework is twofold. First, it can combine basic 103 

physics principles and spatial convolution (a salient driving force of deep learning) to generate 104 

convolved information index (II) so that ML autonomously perceives internal heterogeneity and 105 

complex BC’s within real-world structures. Second, the glass-box framework offers room for 106 

transparent link functions (LF’s) that can unravel hidden rules behind the material coefficients of 107 

adopted computational material mechanisms. The convolved II can put scientists’ eyes onto ML 108 

and see through a complex physical system imbued with heterogeneity and diverse BC’s; LF’s can 109 

help unravel the hidden relations between the convolved II and mechanisms.  110 

Still, in the initial work, the glass-box framework accommodates two material models with a 111 

simple two-parameter exponential form LF, which necessitates substantial generality, flexibility, 112 

and expandability for broader applicability. This paper generalizes the glass-box framework by 113 
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proposing a set of new convolved II’s essential for the extension to additional material 114 

mechanisms. This paper describes how to develop new convolved II tailored for new additional 115 

material mechanisms, and the example extended mechanisms include the nonlinear shear of 116 

cracked quasi-brittle materials and reinforcing steel’s progressive buckling mechanisms. 117 

Importantly, this paper explains how to honor and infuse the existing material mechanisms onto 118 

the glass-box framework. Also, this paper generalizes the glass-box framework by including the 119 

cubic regression spline (CRS) (Hastie and Tibshirani [27]; Wood [28]). The CRS-based LF can 120 

simultaneously describe constant shift, linear, and highly nonlinear relationships since it 121 

mathematically contains all these relations in terms of simple bases. CRS-based LF’s successfully 122 

help unravel the hidden rules about strength enhancement, nonlinear shear strength degradation, 123 

and the progressive buckling phenomena. As illustrated in Fig. 1A, the proposed glass-box 124 

framework leverages existing constitutive model at integration (material) points on an implicit 125 

FEA platform but seeks to replace decisive material coefficients of the constitutive model with the 126 

machine learning-identified rules, thereby engendering “evolving” constitutive models. 127 

This paper is organized as follows. Section 2 summarizes and gives a general idea about the 128 

adopted glass-box framework. Section 3 presents a new convolved II that is tailored for new 129 

material models related to the smart bar’s progressive buckling phenomena. Section 4 derives a 130 

flexible and transparent expression of a hidden relation between convolved II and computational 131 

material’s coefficients by using CRS-based LF. Section 5 revisits existing computational material 132 

models that are used for demonstrating the extensibility of the glass-box framework. Section 6 133 

presents feasibility test settings to show the framework's positive impacts with a wide spectrum of 134 

large-scale reinforced composite structures. Section 7 discusses the results from the feasibility test 135 

and shows the accuracy of the proposed framework. 136 
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 137 
2. Revisit to the glass-box computational material framework 138 

2.1. Overall flow of glass-box framework 139 

As schematically illustrated in Fig. 2, there are notable analogies between the adopted glass-box 140 

framework and the convolutional neural network (CNN), a popular deep learning method. In both, 141 

convolution is used for learning and prediction with complex data sets. The generation of 142 

convolved II of the glass-box framework is similar to the convolution and pooling of CNN in the 143 

sense that both can provide a spatially weighted averaging to collect information from adjacent 144 

regions and come up with new information measures. In lieu of error backpropagation of CNN, 145 

the global fitness of the unraveled rules is used for the next-generation products in the evolutionary 146 

algorithm. While in CNN, each neuron’s weight and activation function describe the nonlinear 147 

relationship (still opaque), the glass-box framework seeks to find transparent (i.e., in terms of 148 

expression) rule via LF at each material point.  149 

 150 

 151 
Fig. 2. A high-level analogy between the typical convolutional neural network (CNN) and the 152 
glass-box framework: (a) a typical single neuron of CNN; (b) the glass-box framework’s an 153 
individual material point which is the counterpart to the single neuron of CNN. 𝑊!,#

(%) is the weight 154 

in layer (l) from neuron j to i; 𝑓(. ) is an activation function; 𝑏!
(%) is the bias term.  155 
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 156 
Fig. 3 shows the self-evolving nature of the glass-box framework in which the Bayesian update 157 

plays in concert with the evolutionary algorithm, a genetic algorithm (GA) herein. With new 158 

specimens, convolved II guides the ML method to internal heterogeneity and BC’s at the material 159 

point level. Then, multiple LF’s of multiple computational material models interact within the 160 

loops of generations and organisms in GA and high-fidelity computational simulation platform 161 

(HFCS) for typical selection, spawning, and evolution of GA. LF’s can understand the hidden 162 

relations between convolved II and a computational material model (denoted as M). Finally, to 163 

strengthen the best-so-far LF, new experimental data of different test systems are used by Bayesian 164 

updates with the prior best of the LF. 165 

 166 

 167 
Fig. 3. The overall flow of the self-evolving nature of the glass-box computational materials 168 
framework. 𝐼𝐼((𝒙) = convolved information index; V = the domain; ℒ' = link function; c = target 169 
coefficients of adapted computational materials; 𝑀(𝜺(𝒙); 𝒄) = a computational material model; 170 
HFCS = high-fidelity computational simulation platform; ℒ'∗  = best-so-far link function. 171 

 172 
In terms of creating the next generation of GA, there are many evolution methods about GA in the 173 

literature (Wang et al. [29]; Tang et al. [30]; Johnson and Rahmat-Samii [31]; Waisman et al. [32]; 174 

Koza [33]). The adopted glass-box framework uses the fitness-proportionate probability (FPP) to 175 

ease Bayesian update, in which the probability of an organism s in the recent generation is selected 176 

as a new parent for the next generation. A detailed explanation is presented in Cho [26]. Here, a 177 

central idea is summarized. In general, prior knowledge is the collected information obtained from 178 
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earlier validations using different specimens. In the beginning, an initial unknown distribution of 179 

parameter a is signified as 𝜋(𝐚))*!+* = 𝑝(𝐚|ℒ') where 𝑝(𝐚|ℒ') is the probability density 180 

function (PDF) of a set of free parameters a for an LF ℒ' related to a material model M. Then, the 181 

Bayesian update of LF’s can be obtained by 182 

𝜋(𝐚))+,-.*!+* = 𝑝4𝐚5𝜋(𝐚))*!+* , ℒ'7 =
𝑝4𝜋(𝐚))*!+*|𝐚, ℒ'7𝑝(𝐚|ℒ')

𝑝4𝜋(𝐚))*!+*|ℒ'7
(1) 183 

where 𝑝4𝜋(𝐚))*!+*|ℒ'7 = 	∫ 𝑝4𝜋(𝐚))*!+*7𝑝(𝐚|ℒ')	𝑑𝐚.	After that, using different specimens 184 

creates new a and  𝜋(𝐚))+,-.*!+* to serve as 𝜋(𝐚))*!+* for the next update. It should be noted that 185 

the Bayesian update is performed through the detected fitness distributions instead of assuming an 186 

artificial distribution of 𝜋(𝐚). In detail, completing a full GA throughout whole generations can 187 

lead to the best generation and organism that contains the largest fitness score. The prior best 188 

generation’s fitness score ℱ∗(𝑠; ℒ') is combined with the current fitness scores ℱ(𝑠; 𝑆∗(𝐚), ℒ') 189 

where 𝑆∗(𝐚) is the set of a of the prior best generation. Also, based on the FPP rule, the Bayesian 190 

fitness score of an individual new organism ℱ/(𝑠; ℒ'), 𝑠 = 1,… ,𝑀+*0, can be obtained by 191 

ℱ/(𝑠; ℒ') 	=
1
𝑘
ℱ(𝑠; 𝑆∗(𝐚), ℒ')ℱ∗(𝑠; ℒ')

∑ ℱ∗(𝑠; ℒ')∀,
(2) 192 

where 193 

𝑘 =C
ℱ(𝑠; 𝑆∗(𝐚), ℒ')ℱ∗(𝑠; ℒ')

∑ ℱ∗(𝑠; ℒ')∀,∀,
(3) 194 

 195 
2.2. Convolved information index 196 

The II is used to give ML the ability to learn and improve the unknown of a material model and 197 

use it in LF. The main goal of convolved II is to autonomously determine the laboratory-reality 198 

similarity, i.e., complex heterogeneity and diverse BC’s inside the physical system. There is no 199 

limit to derive domain-specific II, and there is ample room to incorporate engineering principles 200 
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or basic mechanics for the desired physical information. Cho [26] presented an efficient derivation 201 

that uses “virtual stress” at material points, which provides a new feature to each material point to 202 

make ML methods understand the physical system. This virtual stress-based II is defined as 203 

𝐼𝐼 = exp H1 −
1
3CJ

𝜀2,)*
(3)(𝑗)

𝜀2,)*
(3) (𝑗) − 𝜀45,)*

(3) (𝑗)
J

6

#78

M (4) 204 

where 𝐼𝐼 ∈ ℝ[0,1]. 𝜀45,)*
(3)  and 𝜀2,)*

(3)  correspond to realistic deformation inside the real system and 205 

the free deformation under the virtual stress 𝛔𝐕, respectively. As shown in Fig. 4, this new II can 206 

help internal material points “feel” adjacent heterogeneity as well as general BC’s. This virtual 207 

stress-based II quantifies the degree of proximity to nearby stiff materials or BC’s with a single 208 

scalar value within [0, 1]. The full derivation of this virtual stress-based II is presented in Appendix 209 

C.  210 

As another example of II, it can be derived by using gravity (i.e., self-weight of the structure) (Cho 211 

and Hall [34]). This gravity-based II was defined in terms of compression induced lateral strains 212 

𝜀%! as  213 

𝐼𝐼 = U 1 − 𝑑 Linear	form
1/exp	(𝑑) Exponential	form (5) 214 

where d is an intermediate-term, and it can be obtained as  215 

𝑑 =
1
2c
〈𝜀8〉:
𝜀%8

+
〈𝜀;〉:
𝜀%;

+
〈𝜀6〉:
𝜀%6

g (6) 216 

where 𝜀! is the strain in the ith principal direction; 𝑥: = 𝑥 for 𝑥 > 0 and 𝑥: = 0 for 𝑥 ≤ 0. This 217 

choice of gravity was successful in quantifying the complex reinforcement layout.  218 

 219 
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 220 
Fig. 4. Example plots of II: (a) ~ (d) birds-eye (bottom row) and plan view (top row); (a) real-scale 221 
composite structure with dimensions of (1𝑚 × 1𝑚 × 1𝑚) containing 16 steel bars; (b) the 222 
convolved II distribution on the horizontal cross-section 1, (c) on the horizontal cross-section 2, 223 
and (d) on the horizontal cross-section 3. The vertical axis corresponds to the convolved II; (e) a 224 
view of randomly scattered stiff small cubes with dimensions each of (0.01𝑚 × 0.01𝑚 × 0.01𝑚) 225 
inside a soft body with dimensions of (1𝑚 × 1𝑚 × 1𝑚). The random cubes’ stiffness is 226 
(10;, 106, 10<) times greater than that used in the soft material; (f) convolved II distribution 227 
confirms the proximity of the stiff cubes; (g) plan view of convolved II at the cross-section. 228 

 229 
Both of these two II’s can effectively quantify the realistic proximity to stiff reinforcements and 230 

firmly fixed bottom. However, the key difference between them is that the virtual stress-based II 231 

has no dependency on gravity direction and thus rotation-invariant. The gravity-based II is easy to 232 

implement, but by nature, it is dependent upon the direction of self-weight. Thus, throughout this 233 

paper, we used the virtual stress-based II for all the subsequent formulations and feasibility tests.   234 



12 
 

With the virtual stress-based II (Eq. 4), the spatial convolution has been conducted 235 

by236 

𝐼𝐼((𝐱) = ∫𝜔(𝐱, 𝝃) 𝐼𝐼(𝝃)𝑑𝝃 (7) 237 

where 𝜔(𝑟) can represent the Gaussian weighting function, and it can be defined as 238 

𝜔(𝑟) = 4𝐿√2𝜋7
=>
exp c−

𝑟;

2𝐿;
g (8) 239 

where 𝑁 = 3; L is the influence range; r is the spatial distance and can be defined as 𝑟 = |𝐱 − 𝝃|; 240 

𝐱 is the position vectors; 𝝃 is the integration point location vector (Bazant and Jirasek [35]; Cho 241 

and Hall [34]). Fig. 4a-d show how the convolved II can feel the proximity to the fixed bottom 242 

boundary (Fig. 4b) and free top boundary (Fig. 4d). Also, Fig. 4c shows how the convolved II can 243 

inform material points with stiff embedded bars (Fig. 4c). Figs. 4e-g show how the convolved II 244 

can help material points feel the adjacent stiff (heterogeneous) materials and can perceive the 245 

randomly distributed heterogeneous small volumes. All of these “perception” is autonomously 246 

done. 247 

As proven in Cho [26], the favorable properties of the virtual stress-based II include the invariance 248 

to the external tractions (e.g., pressures or gravity), rotation, or translation. The convolved II is 249 

only affected by the physical proximity to adjacent materials and BC’s. This invariance is critical 250 

and cannot be achieved by the use of principal stresses. For instance, Fig. 5a shows separate 251 

simulations of a stiff bucket filled with soft material with varying gravity and pressures. Fig. 5b 252 

and Fig. 5c show the maximum principal stress on the soft material's mid-height with gravity in 253 

the Y- and X-direction, respectively. Fig. 5d and Fig. 5e show the maximum principal stress under 254 

vertical pressure of 10 KPa and 100 KPa, respectively. Unlike these principal stresses, the current 255 

virtual stress-based convolved II is completely independent of gravity directions, external tractions 256 

(i.e., all plots of Fig. 4 are independent of external tractions or gravity).   257 
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 258 

 259 
Fig. 5. Example plots of principal stress-based II and each dependency on the gravity direction: 260 
(a) the insight of a soft material in a stiff bucket with dimensions of (2m × 2m × 2m); (b) the 261 
maximum principal stress on the mid-height of the soft material with gravity on y-direction; (c) 262 
the maximum principal stress on the mid-height of the soft material with gravity on x-direction; 263 
(d) the maximum principal stress for a pressure of 10 KPa on z-direction; (e) the maximum 264 
principal stress for a pressure of 100 KPa on z-direction.  265 

 266 
3. New convolved II tailored for a smart bar model’s progressive buckling 267 

This section elaborates on how the convolved II concept can be applied to an existing 268 

computational material model. As an example, a new convolved II is proposed to help evolutionary 269 

ML autonomously improves decisive material coefficients of a complex progressive reinforcing 270 

steel bar buckling model. Under excessively repeated loadings, reinforcing steel bar exhibits 271 

progressive buckling behavior, which is highly challenging to capture by experimental efforts 272 

(Rodriquez et al. [36]; Dhakal and Maekawa [37]). The computational bar model is denoted as the 273 

“smart” bar model (Cho [38]) since it leverages internal topological information such as bar 274 

connectivity and damage states of surrounding brittle materials.    275 

Recalling the fundamental limit of the traditional experiment-based derivation (Fig. 1B) of the 276 

computational material model, the formulations about the progressive buckling are likely to 277 

depend on simplified assumptions such as fixed-end BC’s of a bare bar without interaction with 278 
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surrounding heterogeneous materials. In the smart bar model, the onset of compressive buckling 279 

is expected when all the surrounding brittle material’s elements enter at least a partially crushed 280 

state. Therefore, to evaluate the energy state of the material, two internal state variables are 281 

considered. First, the internal state variable at the integration point level 𝛼!
(?) describes uncrushed 282 

state by 1 and crushed state by 2 283 

𝛼!
(?) = x1 formin 𝜀?@* > 𝜀-A

2 otherwise
(9) 284 

where 𝑘	is	the	crack	surface ∈ {1,2,3}; 𝜀-A is the strain threshold for entering the crush phase, 285 

which is assumed to be the strain associated with the compressive strength. Second, the internal 286 

state variable at the element level, which can be denoted as 𝜆#, can show intact, partially crushed, 287 

and fully crushed states of an element using simple integer values such as 0, 1, and 2, respectively.  288 

𝜆# = É
0 𝛽# ≤ NINT(#) × 3
1 NINT(#) × 3 < 𝛽# ≤ NINT(#) × 6
2 𝛽# > NINT(#) × 6

(10) 289 

where NINT(#) is the number of integration points of the 𝑗th element ∈ surrounding	element	𝑆3; 290 

𝛽# = C C𝛼!
(?)

6

?78

BCBD(")

!78

(11) 291 

The topological transition is assumed to take place if all surrounding elements enter the partially 292 

crushed phase, which can be determined by  293 

C 𝜆#

E(F$)

#78

≥ 𝑛(𝑆3) (12) 294 

where 𝑛(𝑆3) is the number of surrounding elements in 𝑆3. Hence, once the above condition is 295 

confirmed, the onset of buckling can be obtained by proposing a new convolved II of the bar, 296 

denoted as 𝐼𝐼(Gwhere 𝐼𝐼(G ∈ ℝ[0,1] and it can be defined as 297 
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𝐼𝐼(G(𝑡) =
1

𝑛(𝑆3)
C C é

𝐼𝐼((𝑖)
3 ∙ 𝑁𝐼𝑁𝑇 +

2 − 𝜆(𝑡)
3 í

(#)E(F$)

#78

>5>H

!78

(13) 298 

Where 𝐼𝐼( (𝑖) is the convolved II at the ith integration point; 55
I (!)
>5>H

 is the average convolved II of jth 299 

element material; 𝜆(𝑡) is the damage state of jth brittle element material at time t; the values 2 and 300 

3 are used for scaling. 301 

In Eq. 13, 𝐼𝐼(G can collect the adjacent information presented by the convolved II and the damage 302 

states by summation over all integration points (i.e., NINT) of all associated 𝑛(𝑆3) surrounding 303 

elements since the current surrounding brittle material’s status affects the buckling of the 304 

reinforcing steel. For example, when the average convolved II is 0 (free to deform), and the brittle 305 

material is fully crushed (i.e., 𝜆(𝑡) = 2), there will be no impact from the surrounding brittle 306 

material on the reinforcement bar; hence, 𝐼𝐼(G = 0. However, when the convolved II is 1 (almost 307 

fixed), and the brittle material is intact (𝜆(𝑡) = 0), the brittle material will not allow buckling on 308 

the reinforcement bar; hence, 𝐼𝐼(G = 1 (Fig. 6). 309 

In the feasibility test sections, we will demonstrate how this new convolved II is effectively used 310 

to incorporate additional material models related to smart bar computational material models. This 311 

supports the expandability of the proposed approach to include many new material models by 312 

devising a new material-specific new II. As long as the II conveys physical meaning and a 313 

manageable range of [0, 1], researchers can propose their own II for further complex material 314 

models.  315 

 316 
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 317 
Fig. 6. The proposed mapping from the convolved information index 𝐼𝐼(  to 𝐼𝐼(G. 318 

 319 
4. Flexible link function 320 

4.1. Cubic regression spline-based link function 321 

Another key enabler of the glass-box computational materials framework is the transparent and 322 

expressive LF, denoted as ℒ'(𝐼𝐼( ; 𝐚) → 𝐜, where 𝐚 is a set of free parameters of LF, and c is a set 323 

of material coefficients for a given material M. LF seeks to offer a mathematical expression 324 

between 𝐼𝐼(  and M, while evolutionary ML focuses on the evolution of 𝐚 of LF. In general, to aim 325 

the continuous evolution, LF can look to the flexible expressions of the free material coefficients 326 

instead of fixed values such as weights of hidden neurons of deep learning. Also, LF can provide 327 

an acceptable explanation of the relation between the physical rules and information in which the 328 

relationship is self-evolving with the increasing of data.  329 

In this paper, GA is adopted as the main evolutionary algorithm. The choice of GA is sufficient to 330 

explain the feasibility of the self-evolving capability of LF’s. The fitness scores of all organisms 331 

are recorded to obtain the prior best LF’s in which the organism can represent each candidate for 332 

a’s of LF’s. There are two requirements of ℒ' are: (1) The evolutionary algorithm should be 333 

integrated with the LF for consistent evolution with more experimental data, and (2) the LF should 334 

ultimately span the input-output spaces. As long as satisfying these two requirements, LF can be 335 
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selected from any activation functions, including popular functions in the ML community (Fig. 7 336 

and Table 1). Our goal is to derive a flexible and transparent expression of a hidden relation 337 

between convolved II and computational material’s coefficients c. Thus, this paper suggests a 338 

highly flexible CRS-based LF. 339 

 340 
Table 1. Popular activation functions in ML methods. 341 

Types Definition Range 
Sigmoid 𝑓(𝑥) =

1
1 + 𝑒%& 

(0,1) 

Hyperbolic tangent (tanh) 
𝑓(𝑥) =

(𝑒& − 𝑒%&)
(𝑒& + 𝑒%&) 

(−1,1) 

Rectified Linear Unit (ReLU) 𝑓(𝑥) = 0 for	𝑥 ≤ 0 

𝑓(𝑥) = 𝑥 for	𝑥 > 0 

 342 

 343 
Fig. 7. Most popular activation functions. 344 

 345 
CRS-based LF harnesses the flexibility of the connected cubic smooth functions (Hastie and 346 

Tibshirani [27]; Wood [28]). Briefly, it is instructive to touch upon the definition of CRS. It should 347 

be noted that this paper does not use CRS for regression-purpose. Rather, CRS is solely used for 348 

identifying hidden expressions of the material coefficients. The representation of smooth functions 349 

of CRS is given by  350 

𝑔4𝜇𝑖7 = 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖) +⋯ (14) 351 
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where 𝑔 is a smooth LF; 𝜇! ≡ 𝔼(𝑌!|𝑥!); 𝑌! is a response variable; 𝑥#! is the jth covariate in a 352 

multidimensional vector 𝐱! where 𝑖 indicates the ith instance; 𝑓# is a smooth function 353 

corresponding to the jth covariate. After scaling, we can always make 𝑥! lie in the interval [0, 1], 354 

and the smooth function 𝑓 can be assumed to consist of q basis functions as 355 

𝑓(𝑥) =C𝑎!𝑏!(𝑥)
J

!78

(15) 356 

where 𝑎! is the unknown free parameter of the basis function; 𝑏!(𝑥) is the ith basis function in 357 

which can be given as 𝑏8(𝑥) = 1, 𝑏;(𝑥) = 𝑥, and	𝑏!:; = 𝑅(𝑥, 𝑧!)	for	𝑖 = 1,… , 𝑞 − 2; 𝑅(𝑥, 𝑧) can 358 

be defined in a general form as 359 

𝑅(𝑥, 𝑧) =
Uû𝑧 − 12ü

;
− 1
12† Uû𝑥 −

1
2ü

;
− 1
12†

4 −
Uû|𝑥 − 𝑧| − 12ü

<
− 12 û|𝑥 − 𝑧| −

1
2ü

;
+ 7
240†

24
(16)

 360 

where z is the knot location (i.e., point where the cubic curves are connected). Thus, the final 361 

smooth curve is made up of sections of cubic polynomial joined together so that they are 362 

continuous up to the 2nd derivative at each knot, as illustrated in Fig. 8.  363 

 364 
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 365 
Fig. 8. Illustration of CRS with the decomposed five bases and the final weighted summation of 366 
the smooth function f(x) at the right bottom. Each box shows the free parameter ai of each basis 367 
bi(x). 368 

 369 
Inheriting the flexibility of the CRS bases, this paper proposes CRS-based LF of the convolved II 370 

(denoted as 𝐼𝐼( ) as 371 

ℒ'(𝐼𝐼( ; 𝐚) = 𝑎8𝑏8(𝐼𝐼() + 𝑎;𝑏;(𝐼𝐼() +C𝑎!:;𝑏!:;(𝐼𝐼()
!

(17) 372 

 It should be noted that if a material behavior is known as simple (e.g., monotonic increasing or 373 

decreasing; Fig. 9), a simple form LF such as two-parameter exponential LF (Cho [26]) may 374 

suffice. Although exponential LF takes only two free parameters, Fig. 9 underpins its wide 375 

coverage in shapes and amplitudes. The two-parameter exponential LF is given as  376 

ℒ'(𝐼𝐼( ; 𝐚) ≡ exp[𝑎8(𝐼𝐼()K'] (18) 377 

Both CRS-based LF and exponential LF have excellent flexibility compared to the fixed activation 378 

functions (Fig. 7). Therefore, this paper advocates the highly flexible CRS-based LF and uses the 379 

exponential LF as a comparative study.  380 

 381 
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 382 
Fig. 9. Exponential LF: (a) convex and concave shapes controlled by a2; (b) amplitude controlled 383 
by a1. 384 

 385 
4.2. Remarks on pre-shrinking of the search range 386 

If HFCS is light in terms of computational time, the evolutionary algorithm will successfully find 387 

the global optimum via typical fitness-based evolution, inheritance, spawning, and mutation 388 

processes. However, our paper deals with multi-scale computational material models required to 389 

analyze large-scale, highly nonlinear composite structures at their ultimate nonlinear behaviors 390 

(Cho [26]; Cho [38]). Using hundreds of CPUs, each HFCS may take hours to days, even with the 391 

aid of parallel computing (Cho and Porter [39]; Cho and Hall [40]). Therefore, it is practically 392 

important to shrink the vast search range in view of domain-specific knowledge. To offer a 393 

practical recommendation, in this section, we expound upon two cases: the desired maximum value 394 

of CRS-based LF (ℒ') occurs at the right end (i.e., the monotonic increasing case (Fig. 10a)), and 395 

the maximum happens in the middle of the span (i.e., the convex case (Fig. 10b)). It should be 396 

noted that this remedy shall be extended to cover different scenarios, but the bottom line will be 397 

similar. Also, if researchers can access sufficiently large computing resources, they may directly 398 

tackle the vast searching space without this recommendation.    399 

 400 
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 401 
Fig. 10. The CRS-based LF's general shape for the desired maximum value: (a) monotonic 402 
increasing; (b) target maximum in the middle. 403 

 404 
In the monotonic increasing case, the range of the free parameters of ℒ' can be obtained by 405 

applying the general mathematical condition to find the maximum of a linear function. 406 

𝑑ℒ'
𝑑𝑥 °L$()78.N

≥ 0 ⇒ 𝑎; + 𝑎6𝑏6£ (𝑥3KL) + 𝑎<𝑏<£ (𝑥3KL) + 𝑎O𝑏O£ (𝑥3KL) ≥ 0 (19) 407 

where 𝑏P£ (𝑥3KL) is the first derivative of the basis functions that can be calculated, as shown in 408 

Fig. 11b. However, the conditions are slightly changed in the convex case while the range of the 409 

free parameters of ℒ' can be obtained by applying the first and second derivatives to find the local 410 

maximum where the slope is zero. The detailed algebraic proofs are presented in Appendix D and 411 

E.  412 

 413 
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 414 
Fig. 11. The mathematical relation of the basis function: (a) three basis functions b3, b4, and b5; 415 
(b) the first derivative of the basis functions; (c) the second derivative of the basis functions. 416 

 417 
In general, Table 2 and Table 3 provide some recommendations to obtain the free parameters of 418 

ℒ' for a different maximum target. It should be noted that these recommendations are not a strict 419 

limit of the search range. Instead, they may be used with discretion to find a meaningful 420 

relationship with substantially time-consuming simulations swiftly.  421 

 422 
Table 2. Recommendations to follow monotonic increasing relation. 423 
Target 
max of 
LF 

CRS Exponential 

a1 a2 a3 a4 a5 a1 a2 

1 [0.5, 1] [0, 0.5] [-168, 168] [-168, 168] [-120, 120] 0 [0, 100] 
2 [1, 2] [0, 1] [-336, 336] [-336, 336] [-240, 240] [0, 0.69] [0, 100] 
3 [1.5, 3] [0, 1.5] [-504, 504] [-504, 504] [-360, 360] [0, 1.1] [0, 100] 
4 [2, 4] [0, 2] [-672, 672] [-672, 672] [-480, 480] [0, 1.38] [0, 100] 
5 [2.5, 5] [0, 2.5] [-840, 840] [-840, 840] [-600, 600] [0, 1.61] [0, 100] 
7.5 [3.5, 7.5] [0, 3.5] [-1176, 1176] [-1176, 1176] [-900, 900] [0, 2.01] [0, 100] 
10 [5, 10] [0, 5] [-1680, 1680] [-1680, 1680] [-1200, 1200] [0, 2.3] [0, 100] 
20 [10, 20] [0, 10] [-3359, 3359] [-3359, 3359] [-2400, 2400] [0, 3] [0, 100] 
50 [25, 50] [0, 25] [-8398, 8398] [-8398, 8398] [-6000, 6000] [0, 3.91] [0, 100] 
100 [50, 100] [0, 50] [-16800, 16800] [-16800, 16800] [-12000, 12000] [0, 4.61] [0, 100] 

 424 
Table 3. Recommendations to have the maximum at the middle. 425 
Target 
max of 
LF 

CRS 

a1 a2 a3 a4 a5 

1 [0.25, 1] [0, 0.5] [0, 320] [0, 255] [0, 107] 
2 [0.5, 2] [0, 1] [0, 640] [0, 511] [0, 213] 
3 [0.75, 3] [0, 1.5] [0, 960] [0, 766] [0, 320] 
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4 [1, 4] [0, 2] [0, 1280] [0, 1022] [0, 427] 
5 [1.25, 5] [0, 2.5] [0, 1600] [0, 1277] [0, 533] 
7.5 [1.88, 7.5] [0, 3.5] [0, 2400] [0, 1916] [0, 800] 
10 [2.5, 10] [0, 5] [0, 3201] [0, 2554] [0, 1067] 
20 [5, 20] [0, 10] [0, 6401] [0, 5109] [0, 2133] 
50 [12.5, 50] [0, 25] [0, 16003] [0, 12772] [0, 5333] 
100 [25, 100] [0, 50] [0, 32006] [0, 25543] [0, 10667] 

 426 
5. Existing computational material models to be evolved by glass-box framework 427 

One of the glass-box framework's novelties is that it can honor and leverage the existing material 428 

models in lieu of completely replacing them. Computational material models often have unknown 429 

material coefficients, which have critical roles in the material mechanisms. They are difficult to 430 

obtain from empirical calibrations because of complex heterogeneity and diverse BC’s of real 431 

materials. Hence, this section describes how to use the proposed glass-box framework to dissolve 432 

the hidden relationship between the convolved II and the decisive, unknown material coefficients. 433 

It should be noted that the inclusion of other advanced material models is straightforward, and this 434 

paper focuses on how to expand them. 435 

 436 
5.1.  Glass-box framework for nonlinear quasi-brittle materials models 437 

The first material mechanism is the fixed-type smeared crack model. The adopted crack model 438 

permits three orthogonal crack surfaces (Fig. 12b). The microscopic crack stress tensor 𝛔@*can be 439 

determined by crack-normal stress function ΨE and crack-tangential stress function Ψ,. In 440 

particular, this paper adopts quasi-brittle material models (Thorenfeldt [41]; Taucer et al. [42]; 441 

Reinhardt [43]) for updating microscopic stresses on the three crack surfaces. The mesh 442 

objectivity about tensile crack can be achieved by adopting the crack bandwidth (Bazant and Oh 443 

[44]; Cho [45]). 444 

 445 
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 446 
Fig. 12. Microphysical mechanisms of the quasi-brittle materials used for feasibility tests: (a) 3D 447 
nonlinear shear mechanism-based soft matrix-rigid hemisphere interlocking (adapted from Cho 448 
[38], Cho [45]); (b) Multi-directional smeared crack mechanism allowing three orthogonal cracks 449 
over random-sized aggregates (adapted from Cho [26]). 450 

 451 
In term of tangential stress function Ψ,, Cho [38] had derived a three-dimensional (3D) 452 

interlocking model for describing the degradation of tangent shear resistance at the cracked 453 

material by using the tribology and the 2-D interlocking model (Fig. 12a). Tribology assumes that 454 

the plastic deformation occurs on the hemisphere part because of the simple contact with a rigid 455 

flat plate (Jackson and Green [46]). The present work is assuming that the permanent plastic 456 

deformation happens at the soft matrix part only. The tangent shear stiffness G can be obtained by 457 

𝐺(𝜀̃) = 𝐶@,
𝐺N

(1 + 𝜇)
2
𝜋
®tan=8©𝜀̃=; − 1 − 𝜀̃©1 − 𝜀̃; +

𝜋
2
𝜇(1 − 𝜀̃;)™ (20) 458 

where 𝐶@, is the ambient condition-dependent empirical coefficient; 𝐺N is the elastic shear 459 

modulus; 𝜇 is the friction coefficient; 𝜀̃ = 2𝑑/𝐷3KL. The relationship between 𝜀̃ and 𝜀 in one-460 

dimensional case given by 𝜀 = 𝜀̃(𝐷3KL/2)/𝐿, where 𝜀 is the normal strain to the crack surfaces; 461 

𝑑 is the distance between crack surfaces; 𝐿 is the length of the element; 𝐷3KL is the diameter of 462 

the ideal particle. The physical explanation of the interaction between the rigid particle and soft 463 

matrix offers a clear understanding of the realistic behavior of cyclic shear resistance. 464 

Next, normal stress function ΨE can be obtained by the following 465 
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ΨE(𝜀!@*) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜀!@* < 0 𝜎!@* = −(𝛽 ∙ 𝜎@)𝜁 ±

𝑛
𝑛 − 1 + 𝜁E∙?≤

𝜀!@* > 0 𝜎!@* =

⎩
⎪
⎨

⎪
⎧ (𝑓-/𝜀-)𝜀!@* 0 < 𝜀!@* ≤ 𝜀-

𝑓- é1 − ∑
𝜀!@* − 𝜀!
𝜀R − 𝜀-

∏
@

í 𝜀- < 𝜀!@* ≤ 𝜀R

0 𝜀R <𝜀!@*

(21) 466 

where 𝜎!@* [MPa] is the current normal stress on the ith crack surface; 𝛽 is the ambient condition-467 

dependent strength enhancement factor; 𝜎@ [MPa] is the compressive strength without lateral 468 

constraints;	𝜁 = 𝜀!@* 𝜀N⁄ ; 𝜀!@* is the normal strain on the ith crack surface; 𝜀N is the strain at the 469 

compressive strength; 𝑛 = 0.8 + 𝛽 ∙ 𝜎@/17; the parameter 𝑘 = 1 for 𝜀N < 𝜀!@* < 0, or 𝑘 = 0.67 +470 

𝛽 ∙ 𝜎@/62 for 𝜀!@* < 𝜀N. 471 

𝛽, 𝐶@,, and	𝜇 are the unknown material coefficients, which have critical roles in the material 472 

mechanisms, as shown in Fig. 13. They are difficult to obtain from empirical calibrations because 473 

of the irregular asperity of cracked surfaces and the heterogeneity of real materials. Hence, this 474 

paper uses the proposed framework to dissolve the relationship between (𝛽, 𝐶@,, 𝜇) and II. 475 

 476 
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 477 
Fig. 13. The critical role of 𝛽, 𝐶@,, and 𝜇 in the mechanisms: (a) the impact of different 𝛽′𝑠 on the 478 
normal stress; (b) the impact of different 𝐶@,′𝑠 on the shear stress; (c) the impact of different 𝜇’s 479 
on the tangent shear stiffness G. 480 

 481 
5.2. Glass-box framework for a smart bar model with progressive buckling 482 

This section describes how the glass-box framework can be used to learn the hidden decisive 483 

material coefficient of the smart bar model, which can capture progressive buckling. The target 484 

smart bar model is a generalized Menegotto-Pinto bar model capable of capturing progressive bar 485 

buckling, yielding, and rapture in a smooth transition during reversed loading. The model is 486 

denoted as “smart” since it leverages the topological information and surrounding quasi-brittle 487 

materials’ damage information as briefly described in Section 3. However, the smart bar model 488 

has a hidden decisive material coefficient. To derive the material coefficient, many used idealized 489 

experiments or analytical formulation (e.g., Dhakal and Maekawa [37]). Although a deep reality-490 
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laboratory gap remains, the general knowledge gleaned from the previous studies is meaningful. 491 

In sum, researchers found: (1) the average compressive stress is smaller than the point wise stress 492 

after the onset of buckling; (2) the average post-buckling compressive stress becomes constant 493 

after it decreases to the post-buckling residual compressive strength 𝑐8𝑓S where 𝑐8 is the factor for 494 

residual strength after buckling and 𝑓S is yielding stress; (3) the degradation rate of average 495 

compressive stress is almost constant, and it can be expressed by the post-buckling negative 496 

stiffness of the bar 𝑐;𝐸, as 497 

𝜎 = 𝜎∗ − 𝑐;𝐸,(𝜀 − 𝜀∗); 	for	𝜀 > 𝜀∗ (22) 498 

where 𝜎∗ is the stress at the onset of buckling. 𝐸, is Young’s modulus of the reinforcing bar; 𝜀 is 499 

current strain; 𝜀∗ is the strain at the onset of buckling, and it can be defined as 500 

𝜀∗

𝜀S
= 𝜅æ55 − 2.3ø

𝑓S
100

𝐿G
𝐷,
¿ ; 												otherwise	𝜀∗ ≥ 7𝜀S (23) 501 

where 𝜀S is the strain at yielding; 𝑓S is stress at yielding. 𝐷, is the diameter of the bar cross-section. 502 

𝐿G is the updated buckling length defined by Cho [38] as 503 

𝐿G ≡ C 𝑘𝐿N
(!)

T*
(+)U+*	∀.+

,∈/X$

(24) 504 

where 𝐿N
(!) is initial buckling length of the ith steel bar (denoted by 𝑒!8 meaning a line entity); BUm 505 

is the basic topological group consisting of a bar and its adjacent solid elements; k is the effective 506 

length factor. 507 

Herein, 𝜅, 𝑐8, and	𝑐; are the unknown material coefficients, which are difficult to obtain from the 508 

empirical calibrations because the reinforcing system deforms in a complicated way and depends 509 

on different factors related to microstates of surrounding materials and diverse BC’s. Therefore, 510 
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this paper employs the proposed glass-box framework to unravel the relationship between  511 

(𝜅, 𝑐8, 𝑐;) and 𝐼𝐼(G (Fig. 14). 512 

 513 

 514 
Fig. 14. Coefficient effects on the stress-strain curve: (a) buckling model proposed by (Dhakal and 515 
Maekawa [37]) where 𝜎%∗ is point wise stress corresponding to 𝜀∗ (strain at the onset of buckling); 516 
(b) using different factors for residual strength after buckling 𝑐8; (c) using different reduction 517 
factors for post-buckling (softening regime) 𝑐;; (d) the effect of different 𝜅 on the onset of buckling 518 
strain 𝜀∗. 519 

 520 
5.3. Rationales for the selected material mechanisms 521 

We briefly explain why this study selected the aforementioned four microphysical mechanisms. A 522 

rectangular wall (denoted WSH5 from Dazio et al. [48]) has been used to show the key aspect and 523 

the role of different mechanisms in nonlinear regimes (Fig. 15). First, the multi-directional, fixed-524 
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type smeared crack model (denoted as “Adv. Concrete” in Fig.15a) is adopted since it can preserve 525 

the actual crack directions allowing at most three orthogonal cracks. The preserved physical crack 526 

surfaces are important to incorporate nonlinear shear mechanism (“NL-shear” in Fig. 15a) since 527 

the NL-shear is based on the physical interaction between the rigid particle and soft matrix (Cho 528 

[38]). The importance of the Adv. Concrete and NL-shear in capturing nonlinear degradation of 529 

shear capacity is shown by the green-colored curve in Fig. 15a. Next, this study adopts the 530 

nonlinear reinforcing steel bar mechanism (denoted P-Buckling) based on the generalized 531 

Menegotto-Pinto hysteresis (Cho [38]). The bar mechanism can utilize the topological information 532 

of surrounding concrete’s damage (e.g., partially intact or crushing) of the center bar capable of 533 

describing progressive compressive buckling of the bar. As shown in yellow and red curves in Fig. 534 

15a, the inclusion of the P-buckling mechanism helps the curve approach to the real envelope 535 

(black line) at the large displacement ranges (far left and right regimes of Fig. 15a). It should be 536 

noted that there are ample rooms to incorporate other advanced mechanisms such as multiscale or 537 

plasticity theories in the future extention, but the adopted four mechanisms are sufficient to support 538 

the goal of this study.  539 

 540 

 541 
Fig. 15. Comparison among simulations with different nonlinear mechanisms: (a) “Adv Concrete” 542 
means multi-directional smeared crack mechanism. “NL-Shear” means the nonlinear shear 543 
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mechanism based on rigid particle-soft matrix interlocking. “P-Buckling” means the progressive 544 
buckling steel bar mechanism. The experiment line indicates the outer envelope of the real force-545 
displacement curve of (b) (adapted from experiment of Dazio et al. [48]). 546 

 547 
6. Feasibility Test 548 

Schmidt and Lipson [47] used externally observable physics rules to calculate the prediction errors. 549 

Similarly, the proposed glass-box framework can leverage the externally observed global 550 

responses as a measure of error or prediction performance metric. Thus, raw fitness scores (i.e., 551 

the inverse of error) are given by 552 

𝑅(𝐚) =
1
2
45max∀Y𝑭* −max∀Y𝑭)5 + 5min∀Y𝑭* −min∀Y𝑭)57 (25) 553 

where 𝑭* and 𝑭) are the nonlinear force responses from real experiment and simulation prediction, 554 

respectively. The adjusted fitness scores ℱK are calculated by 555 

ℱK =
1

41 + 𝑅(𝐚)7
(26) 556 

Lastly, the normalized fitness scores ℱ can be calculated by 557 

ℱ =
ℱK

∑ ℱK∀,
(27) 558 

The uncertainty behind the GA-driven LF’s and subsequent computational predictions can be 559 

carried by the standard deviation of absolute values of relative errors of all organisms in the best 560 

so far generation, which termed as 𝜎Z* 561 

𝜎Z* = ©𝑉𝑎𝑟(|𝐸𝑟𝑟|) = ø𝑛,=8C |Γ(𝑠)|; − ±𝑛,=8C |Γ(𝑠)|
∀,

≤
;

∀,
(28) 562 

where 563 

Γ(𝑠) =
1
2c
5max∀Y𝑭* −max∀Y𝑭)5

|max∀Y𝑭*|
+
5min∀Y𝑭* −min∀Y𝑭)5

|min∀Y𝑭*|
g (29) 564 
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where s and 𝑛, are an organism and the total organisms in the generation, respectively. 565 

 566 
6.2. Diverse large-scale specimens for feasibility test 567 

Table 4, Fig. 16, and Fig. 17 summarize material properties, geometric, and reinforcement 568 

information of various walls used to train the glass-box framework.  The five rectangular walls 569 

(named WSH 1-5) were experimented by Dazio et al. [48]. The U-shaped wall (named TUB) was 570 

investigated by Beyer et al. [49]. 571 

 572 
Table 4. Material properties of specimen walls. 573 

Description WSH1 WSH2 WSH3 WSH4 WSH5 TUB 
Width (mm) 2000 2000 2000 2000 2000 1300 
Length (mm) 150 150 150 150 150 1050 
Height (mm) 4560 4560 4560 4560 4560 3350 
Axial load (KN) 689 691 686 695 1474 780 

Compressive strength (MPa) 45 45 45 45 45 55 
Module of elasticity (MPa) 31529 31529 31529 31529 31529 34856 
Strain at compressive strength 0.002 0.002 0.002 0.002 0.002 0.002 
Tensile strength (MPa) 4.5 4.5 4.5 4.5 4.5 5.5 
Strain at tensile 0.000143 0.000143 0.000143 0.000143 0.000143 0.000158 

D (Diameter in mm) 
Yielding stress (MPa) 

D3.5(656) D4.2(526) D4.2(562) D6(519) D4.2(562) D6(518) 
D6(590) D6(515) D6(489) D8(650) D6(550) D12(471) 
D10(600) D10(671) D8(680) D12(600) D8(700)  

  D12(700)    

D (Diameter in mm) 
Ultimate stress (MPa) 

D3.5(662) D4.2(583) D4.2(615) D6(559) D4.2(615) D6(681) 
D6(600) D6(535) D6(552) D8(714) D6(559) D12(574) 
D10(620) D10(747) D8(700) D12(675) D8(714)  

  D12(726)    
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 574 

 575 
Fig. 16. Plan view for rectangular and U-shaped wall: (a) Rectangular wall named as WSH 1~5; 576 
(b) U-shaped wall named as TUB. Black lines are actual reinforceing steel bars’ layouts which are 577 
all modeled in the full-scale computational simulation with space truss elements.  578 

 579 
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 580 
Fig. 17. Displacement history for each wall. 581 

 582 
6.3. Set-up of evolutionary algorithm and initial material coefficients 583 

The main settings for GA are as follows. The mutation rate is fixed to be 0.02 to control the random 584 

“jump” in the location of the generated solution. Four genes and four alleles encode the real 585 

variable. The LF parameter ranges are set based on each material coefficient range. For example, 586 

𝜇 = 0.4 has been well-proven by Walraven [50], so the range is set to be [0,1] to search for enough 587 

range. 𝑐8 = 0.2 is the minimum value based on experimental results of a single bar without 588 

surrounding concrete recommended by Dhakal and Maekawa [37], while 𝑐8 = 1.0 is the maximum 589 

possible residual strength, which is the same as the yield strength of steel, so the range is set to be 590 
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[0,1]. Moreover, 𝑐; = −0.02 is the minimum degradation rate recommended by Dhakal and 591 

Maekawa [37], which is reasonable on a single bar without any surrounding concrete, but the range 592 

of 𝑐; is set to be [−0.02,0], where 𝑐; = −0.005 shows a large enough ultimate strain of steel bar. 593 

In addition, 𝜅 = 1.0 is the minimum value recommended by (Dhakal and Maekawa [37]) to predict 594 

the onset of buckling on a single bar without surrounding concrete, while 𝜅 = 2.0 is the maximum 595 

possible value that can delay the onset of buckling since the bar steel is surrounded by concrete, 596 

so the range is set to be [0,2]. However, the range of 𝛽 is set to be [0,12] to search for enough 597 

range where default 𝛽 = 1.0. Also, the range for scaling of 𝐶@, (denoted as 𝑆@) is set to be [0,4300] 598 

where the default of 𝑆@ is equal to one. It should be noted here that 𝐶@, = 𝑆@ × 0.0001, so the 599 

range of 𝐶@, can be [0,0.43] based on Cho [26]. Moreover, in order to compare between 600 

exponential and CRS-based LF’s for the paper in the following sections, the range of 𝛼 is set to be 601 

[0, 1] and [0, 4.5] which 𝛼 is an enhancement factor for 𝜀N. Table 5 and Table 6 show the LF 602 

parameter ranges for each material coefficient that has been used in this work. 603 

In addition, two models (called Model I and Model II) were used in the feasibility test. Model I, 604 

which is adopted from Cho [26], and has only two physical targets (𝛽, and	𝐶@,), has been used in 605 

this work to validate and compare between CRS-based and exponential LF (Eq. 30). Model II, 606 

which is proposed in this work, has been used to add more physical targets such as (𝜇, 𝑐8, 𝑐;, 𝜅) 607 

to learn and provide the mathematical expressions for these empirical coefficients, so it has been 608 

using 6-coefficients in this model (Eq. 30 and Eq. 31).  609 

é
𝛽(𝐼𝐼() = ℒ[4𝐼𝐼( ; 𝐚[7

𝐶@,(𝐼𝐼() = ℒF-4𝐼𝐼( ; 𝐚F-7 × 0.0001
(30) 610 
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⎣
⎢
⎢
⎢
⎡ 𝜇(𝐼𝐼() = ℒ\(𝐼𝐼( ; 𝐚\)
𝜅(𝐼𝐼( , 𝐼𝐼(G , 𝑡) = ℒ](𝐼𝐼( , 𝐼𝐼(G , 𝑡; 𝐚])
𝑐8(𝐼𝐼( , 𝐼𝐼(G , 𝑡) = ℒ@,(𝐼𝐼( , 𝐼𝐼(G , 𝑡; 𝐚@,)
𝑐;(𝐼𝐼( , 𝐼𝐼(G , 𝑡) = ℒ@'(𝐼𝐼( , 𝐼𝐼(G , 𝑡; 𝐚@')

(31) 611 

where ℒ[ is the LF of beta; 𝐚[ is a free parameter vector of ℒ[ to be determined by the evolutionary 612 

algorithm; 𝑡 is the time step since 𝐼𝐼(G is dependent on current damage. 613 

It should be noted that 𝛽, 𝐶@,, and 𝜇 are material coefficients that affect the strength of the brittle 614 

material; hence, convolved II has been used to unravel the hidden relationship between these 615 

material coefficients and II. However, 𝜅, 𝑐8, and 𝑐; are material coefficients that affect the buckling 616 

of the reinforcement steel, in which it is dependent on the current damage of the surrounding 617 

material at the time step t and the adjacent information of the brittle material; hence, 𝐼𝐼(G has been 618 

used for these material coefficients.  619 

 620 
Table 5. The initial ranges for the LF free parameters of the new physical targets. 621 

 CRS-based LF 
Parameters 𝜇 ∈ [0,1] 𝑐. ∈ [0, 1] 𝑐/ ∈ [−0.2, 0] 𝜅 ∈ [0, 2] 

a1 [0, 0.5] [0, 0.5] [-0.05, 0] [0, 1] 
a2 [0, 0.5] [0, 0.5] [-0.05, 0] [0, 1] 
a3 [0, 288] [0, 288] [-29, 0] [0, 576] 
a4 [0, 288] [0, 288] [-29, 0] [0, 576] 
a5 [0, 120] [0, 120] [-12, 0] [0, 240] 
z1 [0, 0.333] 
z2 [0.333, 0.6667] 
z3 [0.6667, 1] 

 622 
Table 6. The setting used for feasibility tests.  623 

 Exponential LF 
Parameters 𝛼 ∈ [0, 1] 𝛼 ∈ [0, 4.5] 𝛽 ∈ [0, 12] 𝑆0 ∈ [0,4300] 

a1 [-100, 0] [0, 1.5] [0, 2.52] [0, 8.39] 
a2 [-1, 0] [0, 10] [0, 10] [0, 10] 
 CRS-based LF 
a1 [0, 1E-6] [0, 2.25] [0, 5] [0, 10] 
a2 [0, 1E-6] [0, 2.25] [0, 5] [0, 2000] 
a3 [0, 1E-6] [0, 756] [0, 1000] [0, 1E+6] 
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a4 [0, 1E-6] [0, 756] [0, 1000] [0, 1E+6] 
a5 [0, 1E-6] [0, 540] [0, 1000] [0, 1E+6] 
z1 [0, 0.333] 
z2 [0.333, 0.6667] 
z3 [0.6667, 1] 

 624 
7.   Discussion on feasibility test results 625 

7.1. Interpretation of the identified rules 626 

The main goal of the glass-box framework is to learn the hidden physical rules by providing 627 

mathematical expressions about the target material coefficients and the convolved II through LF. 628 

From the statistical angle, (Eq. 7) shows that each convolved II can be considered as marginal 629 

likelihood with the Gaussian conditional probability 𝒩(𝐱(!), 𝐿;): 630 

𝐼𝐼(4𝐱(!)7 = 𝔼𝒩(𝐱(+),T')(𝐼𝐼) = « 4𝐿√2𝜋7
=>
expc−

|𝒙(!) − 𝝃|;

2𝐿;
g 4𝐼𝐼(𝝃)7𝑑𝝃

4
(32) 631 

where the dimension 𝑁 = 3; the spatial influence range 𝐿 = 0.001 m; 𝐱(!) ∈ 𝑉 is ith material point 632 

(or integration point) in the domain 𝑉. An explicit form of the best-so-far LF can help to explain 633 

and show the hidden relationships. For instance, the identified physical rule about 𝛽	 and the II in 634 

a clear CRS form is given by   635 

𝛽4𝐱(!)7 = 𝑎8 + 𝑎; × 𝐼𝐼(4𝐱(!)7 + ∑ 𝑎#:; × 𝑏#:;𝐼𝐼(4𝐱(!)76
#78

= 𝑎8 + 𝑎; × 𝔼𝒩(𝐱(+),T')(𝐼𝐼) + ∑ 𝑎#:; × 𝑏#:; ±𝔼𝒩(𝐱(+),T')(𝐼𝐼)≤
6
#78 (33)

 636 

where 𝐚 is presented in Table 7, and plots of the above bases are shown in Fig. 18. Similarly, 637 

with different 𝐚, the identified rule of 𝐶@, and the convolved II is given by  638 

𝐶@,(𝐱(!)) = 𝑎8 + 𝑎; × 𝔼𝒩(𝐱(+),T')
(𝐼𝐼) +C𝑎#:; × 𝑏#:; ±𝔼𝒩(𝐱(+),T')

(𝐼𝐼)≤
6

#78

(34) 639 

where 𝐚 is presented in Table 7, and plots of the above bases are shown in Fig. 19. These physical 640 

rules about 𝛽 and 𝐶@, are not fixed, nor unique. Instead, these rules propose the best-so-far, 641 
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approximate expressions regarding the target phenomena. Still, compared to the “black-box” style 642 

prediction of traditional ML methods, the identified rules are meant for future investigations using 643 

domain-knowledge.  644 

In general, the feasibility test with micro-physical material models showed the capability of the 645 

framework in obtaining reasonable expressions for the role of material coefficients in the material 646 

mechanisms. By the flexibility and transparency of LF, the discovered physical rule may lead to 647 

numerous possible rules.  648 

 649 
Table 7. The best-so-far free parameters of CRS-based LF. 650 

  𝛽 𝐶01 𝜇 𝑐. 𝑐/ 𝜅 

a1 4.00 0.00031 0.33 0.41 -0.02 0.4 

a2 3.61 0.027 0.22 0.2 -0.025 0.64 

a3 263 77.25 22.59 253 -20.36 368.19 

a4 580 70.59 214.69 45.18 -10.46 350.12 

a5 502 87.84 89.88 106.35 -11.06 74.35 

z1 0.12 0.31 0.15 0.2 0.28 0.08 

z2 0.56 0.58 0.43 0.45 0.6 0.36 

z3 0.78 0.71 0.91 0.9 0.94 0.98 

 651 

 652 
Fig. 18. The decomposed five bases and the final weighted summation of the smooth function 653 
𝛽(𝐼𝐼() at the right bottom. Each box shows the parameter ai of each basis bi(x). 654 

 655 
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 656 
Fig. 19. The decomposed five bases and the final weighted summation of the smooth function 657 
𝐶@,(𝐼𝐼() at the right bottom. Each box shows the parameter ai of each basis bi(x). 658 

 659 
7.2. CRS-based LF’s versus manually calibrated high-fidelity simulation 660 

As shown in Fig. 20 and Table 8, the best-so-far result for each wall compares the prediction in 661 

terms of force and displacements using the glass-box framework and a parallel multi-scale finite 662 

element analysis (FEA) platform named VEEL (Cho [38]; Cho and Porter [39]). The training set 663 

starts with WSH 1, which has the least minimum error, and because of that, the prior best for WSH 664 

1 is reserved for other walls. The glass-box framework with CRS-based LF shows less error than 665 

the default VEEL. Furthermore, as the GA learns the hidden relationship between 𝐼𝐼(  and  (𝛽, 𝐶@,), 666 

the framework can provide a mathematical expression between the II and the coefficients through 667 

LF using a single target LF, as shown in Fig. 21.  668 



39 
 

 669 

 670 
Fig. 20. Comparison of the accuracy of the adopted framework and default VEEL in terms of force 671 
and displacement: (a) the best-so-far results for WSH 1 with least minimum error; (b)~(e) the best-672 
so-far results of different specimens WSH 2 ~ WSH 5 for strengthening the glass-box framework; 673 
(f) the best-so-far results of north-south (NS) direction loading for the last specimen TUB used in 674 
the framework; (g) the best-so-far results of  East-West (EW) direction loading for TUB; (h) 675 
summary of the comparison between glass-box framework (EV-VEEL) and default VEEL. 676 

 677 
 678 
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Table 8. Summary of glass-box framework results. 679 
Wall 
Type 

Finished 
(Minutes) 

Max. 
Gen. 

Max. 
Org. 

Best 
Generation 

Best 
Organism 

Max. 
Group CPU Min. 

Err (%) 
WSH 1 2524 3 100 0 58 10 160 0. 2 
WSH 2 4560 3 100 1 91 20 320 1.9 
WSH 3 4323 10 1000 2 761 20 320 0. 6 
WSH 4 3381 3 100 1 76 20 320 5.9 
WSH 5 6332 3 100 1 25 10 160 0. 6 
TUB 7227 2 50 0 47 10 160 2.3 

680 
 681 

 682 
Fig. 21. Collecting coefficients through an LF: (a) 𝛽 through convolved II; (b) Ccs for different 683 
walls. 684 

 685 
7.3. CRS-based versus exponential LF’s 686 

In this section, two-parameter exponential LF and CRS-based LF have been used on WSH4 to 687 

compare the flexibility of the LF and ensure the accuracy of the proposed framework. As shown 688 

in Fig. 22, the minimum error in WSH 4 of exponential LF has changed slightly with the change 689 

of the 𝛼 range. However, CRS-based LF, which contains less error than exponential LF, showed 690 
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more sensitivity to 𝛼 range. Thus, it can be more applicable in delivering the material coefficients' 691 

mathematical relations due to the CRS form's multiple-parameter relationship. 692 

 693 

 694 
Fig. 22. Force-displacement of WSH 4 using different search ranges for 𝛼: (a) exponential LF with 695 
𝛼 ∈ [0, 1]; (b) exponential LF with 𝛼 ∈ [0, 4.5]; (c) CRS-based LF with 𝛼 ∈ [0, 1]; (d) CRS-based 696 
LF with 𝛼 ∈ [0, 4.5]. 697 

 698 
7.4. Generalization to 6 material models coefficients 699 

The notable strength of the proposed glass-box framework lies in its expandability. It is highly 700 

facile to expand the learning core to include more new material coefficients. The glass-box 701 

framework's evolutionary algorithm is long gene-based storage that can be easily extended by 702 

adding more gene expressions for more material models (Fig. 23). 703 

 704 

 705 
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Fig. 23. Schematic of expandable gene-based storage of the evolutionary algorithm of the 706 
proposed glass-box framework. 707 

 708 
To demonstrate the favorable expandability, this section extended the glass-box framework by 709 

including the 6-coefficients model (Model II) and comparing the accuracy to the default VEEL 710 

and 2-coefficients model (Model I). Then, each wall's prior best has been used to test a U-shaped 711 

wall, TUB (Fig. 24, Fig. 25, Table 9). First, WSH5 results show that the minimum error of the 712 

best-so-far generation of WSH5 in Model II, which is 0.6%, is less than the default VEEL (4.3%) 713 

and Model I (0.73%). Also, using the prior best of WSH5 for testing TUB shows better accuracy 714 

in Model II than using Model I and default VEEL, in which the minimum error using Model II is 715 

3.1% while it is 6.5% and 3.9% with using default VEEL and Model I, respectively. However, the 716 

results of WSH3 show less accuracy, which the minimum error of the best-so-far generation is 717 

2.3% with using 10 generations and 500 organisms, while the default VEEL (4.0%) and Model I 718 

are 4.0% and 2.13%, respectively. Also, the test of TUB using the prior best of WSH3 shows 719 

promising results in using Model II, in which the minimum error is 4.3% using Model II while it 720 

is 3.9% in Model I. Generally, it should be noted that increasing generations and organisms 721 

increase the accuracy, but it costs more computational time and computing memory. 722 
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 723 
Fig. 24. Comparison between the accuracy of Model II: 6- coefficients (left column), Model I: 2- 724 
coefficients (right column), and default VEEL for the walls WSH5 and TUB in terms of force and 725 
displacement: (a) the best-so-far results for WSH 5 with the least minimum error; (b) the best-so-726 
far results of north-south (NS) direction loading for TUB; (c) the best-so-far results of east-west 727 
(EW) direction loading for TUB. 728 

 729 
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 730 
Fig. 25. Comparison between the accuracy of Model II: 6- coefficients (left column), Model I: 2- 731 
coefficients (right column), and default VEEL for the walls WSH3 and TUB in terms of force and 732 
displacement: (a) the best-so-far results for WSH 3 with the least minimum error; (b) the best-so-733 
far results of north-south (NS) direction loading for TUB; (c) the best-so-far results of east-west 734 
(EW) direction loading for TUB. 735 

 736 
Table 9. Validation results using default VEEL, Model I, and Model II. 737 

Wall name Max. 
Generations 

Max 
Organisms 

default 
VEEL Err 
[%] 

Model I: 2-Coeffs Model II: 6-Coeffs 

Min. Err [%] Min. Err [%] 

WSH3 10 500 4.0 2.13 2.2 
WSH5 3 100 4.3 0.73 0.6 

TUB (best WSH3) 
1 10 6.5 

5.4 4.3 
TUB (best WSH5) 3.9 3.1 
 738 
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Another important aspect of the proposed approach is the accessibility to detailed nonlinear 739 

damage behaviors of complex composite structures. As shown in Fig. 26, the proposed framework 740 

can directly access the microscopic nonlinear damage phenomena by capturing the compressive 741 

buckling of longitudinal reinforcing bars associated with concrete crushing and spalling. Such 742 

detailed damage responses are hard to capture by conventional computational analyses. 743 

Progressive buckling occurs (Fig. 26 d-g) in the combined effects of damages of surrounding 744 

quasi-brittle materials (Fig. 26 b-c; a large portion is spalled out or crushed out). The progressive 745 

buckling behavior is captured by the proposed approach by integrating all the damage information 746 

of surrounding materials and steel materials’ current hysteretic stress-strain history.  747 
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 748 
Fig. 26. The predicted responses of longitudinal steel bars depending on their locations: (a) cross-749 
section of TUB (all dimensions are in mm); (b) concrete damage state at the north face of TUB; 750 
(c) concrete damage state at the south face (b and c are cited from Beyer et al. [49]); (d) stress-751 
strain of steel bar A, (e) of steel bar C, (f) of steel bar B, and (g) of steel bar D. 752 
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 753 
7.5. Gradual Evolution Confirmed by a Simple Column Experiment 754 

In this section, a composite hollow column (experimented by Cho [51]) has been analyzed to 755 

quantitatively demonstrate the gradual evolution. The material properties and geometric details 756 

are given in Table 10 and Fig. 27a. The hollow column (denoted as H40-300) is loaded by 757 

horizontal cyclic displacement loadings at the top and subjected to a constant axial force 758 

equivalent to 10% of the cross-sectional strength. As shown in Fig. 27b, the evolution via a 759 

combination of the Bayesian update and the genetic algorithm gradually improves the learning of 760 

the best-so-far rules for the material parameters of the mechanisms: i.e., gloal error decreases from 761 

1.42% to 0.27%.  762 

 763 

 764 
Fig. 27. The hollow column denoted as H40-300: (a) the geometry and details of the hollow 765 
column; (b) the best result of each generation to show the gradual evolution. 766 

 767 
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Table 10. Material properties of the hollow column (H40-300). 768 
Concrete Longitudinal bar Hoop 

Compressive 
strength 
(MPa) 

Module of 
elasticity 
(MPa) 

Strain at 
compressive 
strength 

Tensile 
strength 
(MPa) 

Strain 
at 

tensile 

Diameter 
(mm) 

Yielding 
stress 
(MPa) 

Diameter 
(mm) 

Spacing 
(mm) 

Yielding 
stress 
(MPa) 

42.2 27,300 0.002 4.2 0.00014 10 350 6 50 or 100 350 
 769 

8.  Conclusion 770 

This paper describes how to generalize the glass-box computational material framework by 771 

proposing a new material-oriented convolved information index (denoted as 𝐼𝐼(G) and highly 772 

flexible cubic regression spline (CRS)-based link function (LF), and the conclusion can be 773 

summarized as follow. 774 

• The proposed framework can honor and leverage the existing material models by 775 

selectively replacing the decisive material coefficients by LF and the convolved II. 776 

• The new convolved information index (II) introduced for nonlinear shear and progressive 777 

bar buckling mechanisms demonstrates the successful expandability of the proposed 778 

framework. 779 

• Virtual stress-based convolved II helps the proposed framework to leverage complex 780 

internal material heterogeneity and diverse BC’s inside the large-scale structures.  781 

• CRS-based LFs appear more flexible and accurate than exponential LF. In particular, CRS-782 

based LFs are able to describe the hidden rules behind the six target mechanisms’ decisive 783 

material coefficients: i.e., the confinement-induced strength enhancement (𝛽), three-784 

dimensional interlocking-based nonlinear shear strength (𝐶@, and 𝜇), the progressive 785 

compressive buckling of reinforcing bars (𝑐8, 𝑐;, 𝜅).  786 

• A variety of feasibility tests with large-scale reinforced composite structures confirmed 787 

that CRS-based LFs can outperform the manually calibrated high-fidelity simulations. 788 
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The next steps should include in-depth mathematical, analytical, and computational 789 

investigations. It shall be about the impact of flexible CRS bases on the adopted evolutionary 790 

algorithms and the favorable settings of the hyper-parameters (i.e., parameters related to the global 791 

learning algorithm’s settings) of glass-box learning cores. Also, there should be a study on the 792 

effect of the sequence of the training specimens (i.e., complex specimen to the simple one, or 793 

independent of the complexity of specimens) on the context of the Bayesian update. Another 794 

important issue may be the inclusion of many advanced physical mechanisms at other scientific 795 

domains or diverse length scales from macro, micro, and even nano-scale (Cho et al. [52]). 796 

 797 
Appendix 798 

A. Introduction to the Convolutional Neural Network 799 

The convolutional neural network (CNN) is a class of artificial neural networks that can be highly 800 

successful in practical applications such as image processing, learning and predicting continuous 801 

signals, and data classification (Oord et al. [53]; Raissi et al. [54]; Lee and Carlberg [55]). The 802 

structure of CNN is similar to the standard neural network, in which it includes convolutional 803 

layers, pooling layers, and fully connected layers (Fig. 2). First, the convolutional layer can obtain 804 

a set of feature maps which is the output of a mathematical operation between two inputs: an 805 

image matrix and a feature detector called a filter that can extract the optimum features from the 806 

input data. Then, the pooling layers simplify the information passed from the convolutional layer 807 

and reduce the scale of feature maps; hence, these layers can reduce computation and overfitting 808 

as there are only some parameters. In the pooling layers, many operations can be used, such as 809 

max-pooling, average-pooling, and min-pooling. Finally, the output of the previous procedures is 810 

fed into the fully connected layers, which contain the activation functions and the neurons, to 811 

classify and form the final output. The output of each neuron can be obtained by 812 
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𝑎(𝑙+1) = 𝑓æC𝑊𝑖,𝑗
(𝑙)𝑥𝑗 + 𝑏𝑖

(𝑙)

𝑛𝑙

𝑗=1

¿ (A. 1) 813 

where 𝑎(%:8) is the output of the neuron; 𝑊!,#
(%) is the weight in layer (l) from neuron j to i;	𝑥# is the 814 

input of the neuron j; 𝑏!
(%) is the bias term; 𝑓(. ) is an activation function.  815 

For measuring the performance of the model, a cost/loss function is applied to compare the 816 

predicted output to the target output, which can be defined as 817 

𝐽(𝐖, 𝐛) = 𝐸𝑟𝑟 + 𝜆𝑔(𝐖) (A. 2) 818 

where 𝐽(𝐖, 𝐛) is the cost function that can return the error between predicted results compared 819 

with the actual results; Err is a prediction error; 𝜆 is a weight decay term for a function of W; 820 

𝑔(𝐖) can be squared sum of 𝑊!,# to prevent overfitting. 821 

Then, the backpropagation process can feed the cost value backward to minimize the cost value 822 

iteratively. For the minimization, the cost gradient ∇𝐖(2)𝐽 can be defined as 823 

∇𝐖(𝑙)𝐽 = 𝜹(𝑙+1)𝒂(𝑙) (A. 3) 824 

where 𝜹	and	𝒂 are the terminal error term and the activation at the associated layer. This leads to 825 

a gradient ∆𝐖(%) = ∆𝐖(%) + ∇𝐖(2)𝐽, and ultimately leads to update 𝐖(%) = 𝐖(%) − 𝛼–∆𝐖(%) +826 

𝜆𝐖(%)— where 𝛼 controls learning speed. 827 

 828 
B. Literature review of ML-based RC structure applications 829 

There are many attempts to apply ML methods to the global structural level. Mangalathu et al. 830 

[56] used Naive Bayes, K-Nearest Neighbors, Decision Tree, and Random Forest to determine the 831 

failure mode of shear walls. Lee and Lee [57] presented an artificial neural network (ANN) to 832 

predict the shear strength of slender fiber-reinforced polymer reinforced concrete flexural 833 

members without stirrups. Abuodeh et al. [58] used ML techniques to predict and study the 834 
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behavior of shear-deficient reinforced concrete beams strengthened in shear. Arslan [59] used 835 

ANN algorithms to determine the influence of the structural parameters observed in earthquakes. 836 

Luo and Paal [60] presented an ML model to predict backbone curves used to evaluate the force-837 

deformation behavior subjected to cyclic loading. Tsai and Hsu [61] used the backpropagation 838 

neural network technique to detect the RC structural damages. Jeng and Mo [62] presented a 839 

methodology to predict the early seismic response of prestressed concrete bridges by using ANN. 840 

 841 
Table B.1. Literature summary of ML-based RC structure analyses. 842 

Authors Samples variables Target Accuracy Comments 
Mangalathu 
et al. [56] 

393 Shear 
walls 

14 The failure mode of 
shear walls 

*P.A. = 86% The target is four categories of failure mode (Shear '1', flexure 
'2', flexure-shear '3', sliding '4'). 
 
𝑃. 𝐴.= 𝑛&

𝑁( , where 𝑛& is the number of correct failure mode 
predictions, and 𝑁 is the total failure mode predictions. 
  

S. Lee, 
C. Lee [57] 

106 RC 
members 

6 Shear strength 𝑅$ = 0.95 The authors used real experiment data of beams without 
stirrups to predict 𝑉%&	and then compare the results with 
empirical equations. 
 

Abuodeh 
et al. [58] 

120 RC 
Beams 

15 Shear strength 𝑅$ = 0.89 The authors used real experimental data of beams to predict the 
shear strength of FRP 𝑉& and then compare the results with 
design standards. 
 

Arslan [59] 256 RC 
buildings 

8 Displacement drift 
Capacity 

𝑅$ = 0.98 Authors used pushover analysis results of real buildings to 
predict values for the global drift capacities at three 
performance levels (Immediate Occupancy 'IO', Life Safety 
'LS', Collapse Prevention 'CP'). 
 

Luo and Paal 
[60] 

262 
Columns 

15 Yield and maximum 
Shear force, drift 

values 

𝑅$ = 0.99 Authors used real experimental data of columns to predict yield 
shear force 𝑉', drift ratio at yield shear 𝛿', maximum shear 
force 𝑉(, and drift ratio at maximum shear 𝛿(. 
 

*P.A. is the prediction Accuracy. 843 
 844 
C. Calculation procedure of virtual stress-based information index 845 

This paper adopted the virtual stress-based information index (Cho [26]). Here, we summarize the 846 

key procedure to calculate the information index using virtual excitation, and further details can 847 

be found in Cho [26]. Every material point at 𝐱 ∈ Ω, where Ω is the target structure’s domain, is 848 

involved by virtual stress 𝛔𝐕 = ⟨𝐈 𝟎⟩H, where 𝐈 ∈ ℝ6 is the unity vector and 𝟎 ∈ ℝ6 is zero 849 
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vector. A separate finite element analysis denoted as virtual FEA and eigenvalue analysis are 850 

performed to generate two virtual principal strain vectors. 851 

The first virtual principal strain vector 𝛆aC,bc
(3) ∈ ℝ6, where 𝑚 = 1,… , 𝑛.%, and 𝑛.% is the total finite 852 

elements, can carry realistic deformation under the virtual stress 𝛔𝐕 for the real constraints, and it 853 

can be obtained by eigenvalue analysis of strains from the virtual FEA. Within the system, a finite 854 

element’s integration point at location 𝛏 ∈ ℝ6 and virtual force vector 𝐑𝐕 ∈ ℝ>345, where  𝑁def 855 

is the total degree of freedom of the system, and it is assumed to be virtually provided by the virtual 856 

stress vector. 𝐑𝐕 can be calculated by a typical FE procedure as 857 

𝐑𝐕 = C « ⁄𝐁(3)‹D𝛔𝐕	𝑑𝑉(3)
a($)

E62

378

(C. 1) 858 

where 𝐁(3) is the typical matrix of derivatives of shape functions. After that, a virtual FEA of the 859 

real system subjected to only 𝐑𝐕 with no other external forces is performed to obtain the virtual 860 

displacement vector 𝐔𝐕 ∈ ℝ>345 and the element-wise displacement vector 𝐔𝐕(3). Then, at every 861 

integration point at location 𝛏 of an element (m), the virtual initial strain vector under the realistic 862 

constraints 𝛆aC
(3)(𝛏) ∈ ℝg can be calculated as 863 

𝛆aC
(3)(𝛏) = 𝐁(3)(𝛏)𝐔𝐕(3) (C. 2) 864 

After that, by performing the eigenvalue analysis with 𝛆aC
(3)(𝛏), the principal strain vector 865 

𝛆aC,bc
(3) (𝛏) ∈ ℝ6 and the associated transformation matrix 𝐓aC,bc

(3) (𝛏) ∈ ℝ6 can be obtained. 866 

The second virtual principal strain vector 𝛆h,bc
(3) ∈ ℝ6, can carry the amount of free deformation 867 

under the virtual stress 𝛔𝐕 and it can be obtained by transforming ®4𝐃(3)7
=8: 𝛔𝐕™ where 𝐃(3) is 868 

the linear elastic material matrix. As the counterpart of 𝛔𝐕, we have the virtual strain vector 869 

𝛆a
(3)(𝛏) ∈ ℝg that can be calculated with a linear elastic material matrix 𝐃(3)(𝛏) as  870 
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𝛆a
(3)(𝛏) = xû𝐃(3)(𝛏)ü

=8
‚ 𝛔𝐕 (C. 3) 871 

Hence, the second principal strain can be obtained by 872 

𝐓aC,bc
(3) (𝛏)𝛆a

(3)(𝛏) = ®𝛆h,bc
(3) (𝛏), 𝜸h,bc

(3)(𝛏)™ (C. 4) 873 

where 𝜸h,bc
(3)(𝛏) ∈ ℝ6 is the shear strain vector, which is negligible. 874 

 875 
D. Calculation procedure of monotonic increasing link function 876 

The range of the parameters of ℒ' in monotonic increasing can be obtained by applying the general 877 

mathematical condition to find the maximum of a linear function. 878 

𝑑ℒ'
𝑑𝑥 °L$()78.N

≥ 0 ⇒ 𝑎; + 𝑎6𝑏6£ (𝑥3KL) + 𝑎<𝑏<£ (𝑥3KL) + 𝑎O𝑏O£ (𝑥3KL) ≥ 0 (D. 1) 879 

where 𝑏P£ (𝑥3KL) is the first derivative of the basis functions that can be calculated. The other 880 

equation that can be used to obtain LF parameters is the general equation of LF ℒ'(𝑥3KL = 1.0) =881 

ℒ'3KL, where ℒ'3KL is the maximum target LF that can be given by domain knowledge. It is not 882 

easy to solve these two equations with five unknowns; therefore, three more equations can be 883 

suggested from trial and error and the properties of basis functions individually. First, because 884 

𝑎8and 𝑎; correspond to global shifting and linear increasing of LF, they are assumed to be 885 

equivalently dominant. 886 

𝑎8 =
ℒ'3KL
2

;	𝑎; =
ℒ'3KL
2

(D. 2) 887 

The other suggested equation is assuming 𝑎O to be equal to the maximum target. Since the fifth 888 

basis function 𝑏O locates the maximum at 𝑥 = 1	or	0 (see Fig. 11a). Hence, 𝑎O can be obtained as  889 

𝑎O =
ℒ'3KL
𝑏O(1.0)

(D. 3) 890 
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By solving the equation of ℒ'(𝑥3KL) for 𝑎6 and solving Eq. D.1 for 𝑎<, we can have the maximum 891 

initial range of 𝑎6 and 𝑎< as 892 

𝑎6 =
−ℒ'3KL
𝑏6(1.0)

−
𝑏<(1.0)
𝑏6(1.0)

𝑎<; 	𝑎< ≤
−𝐴88
𝐵88

(D. 4) 893 

where 𝐴88 and 𝐵88 are constants that can be calculated as 894 

𝐴88 = c
ℒ'3KL
2

g + c𝑏6£ (1.0)
−ℒ'3KL
𝑏6(1.0)

g + c
𝑏O£ (1.0)ℒ'3KL

𝑏O(1.0)
g (D. 5) 895 

𝐵88 = 𝑏<£ (1.0) −
𝑏<(1.0)
𝑏6(1.0)

𝑏6£ (1.0) (C. 6) 896 

 897 
E. Calculation procedure of convex link function 898 

The conditions are slightly changed when the maximum target is located at the middle (𝑥Á = 0.5). 899 

Herein, the range of the parameters of ℒ' can be obtained by applying the first and second 900 

derivatives to find the local maximum where the slope is zero. 901 

𝑑ℒ'
𝑑𝑥

°
Li7N.O

= 0 ⇒ 𝑎; + 𝑎6𝑏6£ (𝑥Á) 	+ 𝑎<𝑏<£ (𝑥Á) + 𝑎O𝑏O£ (𝑥Á) = 0 (E. 1) 902 

𝑑;ℒ'
𝑑𝑥;

Ë
Li7N.O

< 0 ⇒ 𝑎6𝑏6"(𝑥Á) 	+ 𝑎<𝑏<"(𝑥Á) 	+ 𝑎O𝑏O"(𝑥Á) 	< 0 (E. 2) 903 

where 𝑏P£ (𝑥) = 𝑑𝑏!(𝑥) 𝑑𝑥⁄ , and 𝑏!"(𝑥) = 𝑑;𝑏!(𝑥) 𝑑𝑥;⁄ , as shown in Fig. 11b and Fig. 11c. Still, 904 

there are three equations with five unknowns. As before, being equivalently dominant, 𝑎8 and 𝑎; 905 

are assumed to be equal at 𝑥Á = 0.5, and they can be obtained as 906 

𝑎8 =
ℒ'3KL
4

;	𝑎; =
ℒ'3KL
2

(E. 3) 907 

Substituting Eq. E.3 into Equations E.1, E.2 and ℒ'(𝑥Á) to obtain 𝑎6, 𝑎<, and 𝑎O as 908 

𝑎6 = (𝐶88 − 𝐷88𝐸88) − (𝐷88𝐹88)𝑎O (E. 4) 909 

𝑎< = 𝐸88 − 𝐹88𝑎O (E. 5) 910 
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𝑎O >
(𝐶88 − 𝐷88𝐸88)𝑏6"(𝑥Á) + 𝐸88𝑏<"(𝑥Á)
4𝑏O"(𝑥Á) − 𝐷88𝐹88𝑏6"(𝑥Á) − 𝐹88𝑏<"(𝑥Á)7

(E. 6) 911 

where 𝐶88~𝐹88 are constants that can be defined as  912 

𝐶88 = −
ℒ'3KL

4𝑏;(𝑥Á)𝑏6£ (𝑥Á)
;	𝐷88 =

𝑏<£ (𝑥Á)
𝑏6£ (𝑥Á)

(E. 7) 913 

𝐸88 =
ℒ'3KL𝑏6(𝑥Á) − 2ℒ'3KL𝑏;(𝑥Á)𝑏6£ (𝑥Á)
4𝑏;(𝑥Á)–𝑏6(𝑥Á)𝑏<£ (𝑥Á) − 𝑏6£ (𝑥Á)𝑏<(𝑥Á)—

; 	𝐹88 =
–𝑏O£ (𝑥Á)𝑏6(𝑥Á)— − –𝑏6£ (𝑥Á)𝑏O(𝑥Á)—
𝑏6(𝑥Á)𝑏<£ (𝑥Á) − 𝑏6£ (𝑥Á)𝑏<(𝑥Á)

(E. 8) 914 

 915 
F. Scalability of the Adopted Parallel Grouping Algorithm  916 

The proposed framework requires many organisms, along with high-precision computational 917 

material models, to perform reliable learning and evolution. However, a full GA has a global 918 

iteration for many organisms, which is an “embarrassingly parallelizable” process. To handle 919 

many organisms concurrently, we apply a CPU group technique for a separate parallel multi-scale 920 

FEA. 921 

Let 𝑆𝐺! , 𝑖 = 1,… , 𝑛Fk  be a subgroup of CPUs, which performs the computation of a portion of 922 

organisms. Each CPU group has 𝑀+*0
(Fk+) such that 923 

𝑀+*0 =C𝑀+*0
(Fk+)

E78

!78

; 																𝐺lmX =∪!78
E78 𝑆𝐺! (F. 1) 924 

where 𝐺lmX = {𝑃N, 𝑃8, … , 𝑃E=8} in size of 𝑝 is the set of all available processors, and 𝑆𝐺! =925 

®𝑃N
(Fk+), 𝑃8

(Fk+), … , 𝑃)(+)=8
(Fk+) ™ is the 𝑖-A subgroup of processors in size of 𝑝(!). 926 

𝑝(!) = ∑
𝑝K20 								(𝑖 < 𝑛Fk)
𝑝 − 𝑝K20 (𝑖 = 𝑛Fk)

(F. 2) 927 

where 𝑖 = 1,… , 𝑛Fk  and 𝑝K20 = 𝑓𝑙𝑜𝑜𝑟 û )
E78
ü − 1; The authors’ dedicated work in large and 928 

complex parallel multi-scale FEAs (Cho and Porter [39]; Cho and Hall [40]; Cho [26]) proved the 929 
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power of multi-layered CPU grouping parallelism.  As shown in Fig. F.1a, it briefly illustrates the 930 

architecture of the multi-layered parallelism.  In general, each CPU subgroup handles 𝑀+*0/𝑛Fk  931 

organisms. The platform used in the paper for all the parallel computers is Condo 2017 of Iowa 932 

State University, consisting of 192 SuperMicro nodes. Each node has two 8-core Intel Haswell 933 

processors, 128GB of memory, and a 2.5 TB local disk. 934 

 935 

 936 
Fig. F.1. (a) the architecture of hierarchical and multi-layered CPU grouping techniques. The 937 
global master only communicates with the hierarchical group masters in the pipeline; (b) super 938 
speedup of CPU grouping technique based on wall-clock time for learning one generation of 80 939 
organisms by varying number of groups 𝑛Fk . Running time is normalized by that of 4 subgroups 940 
(i.e., 26722 seconds). 941 

 942 
In Fig. F.1b, the CPU grouping technique appears to exhibit a seemingly ‘super speedup’ (i.e., 943 

faster than the ideal linear speedup) by distributing the expensive computational cost of individual 944 

parallel multi-scale FEA. The authors’ dedicated work in Cho and Porter [39] theoretically 945 

explains the seemingly super-linear speedup of the present multi-layered parallel multi-scale 946 

analysis. In Table F.1, each subgroup has a fewer number of CPUs as the number of groups 947 

increases. One of the reasons for this promising performance is communication reduction due to 948 

the Condo cluster system's shared memory since the intra-node transfer cost is typically smaller 949 

than the inter-node transfer cost.  950 

 951 

 



57 
 

Table F.1. The number of CPUs (i.e., 𝑝(!)) in the 𝑖𝑡ℎ subgroup of CPUs by a varying number of 952 
groups 𝑛Fk . The total number of CPUs (i.e., 𝑝) is fixed as 320. 953 

 𝑛9: = 4 𝑛9: = 8 𝑛9: = 16 𝑛9: = 20 
𝑝(;) 80 40 20 16 

Time (sec) 26,722 7,489 2,747 2,287 
 954 
Suppose we have access to the cloud computing environment. In that case, the proposed program 955 

can handle many organisms to optimize the link function between the computational material 956 

models and the information index.  957 

 958 
G. Statistical Application Examples using Generalized Additive Model 959 

Previous researchers applied genetic programming to find a functional relationship between the 960 

features in data to the target (e.g., Solhmirzaei et al. [14]). In a similar fashion, researchers can 961 

derive a statistical prediction model of a target behavior by coupling the best-so-far evolving 962 

VEEL with an advanced statistical method. As a practical example, a generalized additive model 963 

(GAM) is used to derive a statistical model of the maximum shear force of rectangular walls using 964 

CRS. In general, GAM is a non-parametric regression model that can depend on the sum of 965 

undetermined smooth functions (Hastie and Tibshirani [27]; Wood [28]; Song et al. [63]), and the 966 

general form of GAM is given by Eq. 14. In this example, the statistical prediction is performed 967 

on training data, containing 283 instances, seven descriptive variables, and one target variable. 968 

These 283 instances are generated by the evolving VEEL with the best-so-far setting as of the date 969 

of simulation. The training was performed on the training dataset (70% of the full data, 198 970 

instances). The final identified statistical model based on GAM can be written in the open-source 971 

statistics program R as 972 

F<=> = gam(FS~s(L, bs = "cr", k = 7) + s(Th, bs = "cr", k = 7) + s(H, bs = "cr", k = 7)973 

+ s(AFR, bs = "cr", k = 7) + s(Fc, bs = "cr", k = 7) + s(Fy, bs = "cr", k = 7)974 

+ s(D, bs = "cr", k = 7), family = Gamma(link = "log"), data = trainset) 975 

(G.1) 
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where this study uses the Gamma distribution which is suitable for the nature of data (real and 976 

positive values), and we use the logarithmic link of GAM. In addition, the number of basis 977 

dimensions in smooth functions (k) has been chosen to be seven as recommended by literature 978 

(e.g., Wood [28]). The instances of concrete shear walls can be described by different variables 979 

(Table G.1). The results of the statistical training is shown in Fig. G.1.  980 

 981 
Table G.1. Variable Characteristics 982 
Variables Detail 
L Length of shear wall 
Th Thickness of shear wall 
H Height of shear wall 
AFR Axial force ratio 
Fc Concrete compressive strength 
Fy Yield strength of longitudinal reinforcement 
D Diameter of boundary longitudinal reinforcement 
FS Maximum shear force 

 983 

 984 
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Fig. G.1. The results of the training dataset. (a) response vs. fitted values; (b) Histogram of 985 
residuals; (c) residuals vs. linear predictor; (d) Q-Q plot. 986 

 987 
With 30% test data set, the coefficient of determination (𝑅;) is calculated as 0.84 (Fig. G.2). It 988 

should be noted that this accuracy may not be the global optimal subject to further improvement 989 

by optimization of GAM itself (e.g., Song et al. [63]). Still, this example demonstrates well that 990 

the proposed evolved framework can be coupled with an advanced statistical method to obtain a 991 

practically useful statistical prediction model.  992 

 993 

 994 
Fig. G.2. Prediction test against test dataset containing 30% of the full data (85 instances), resulting 995 
in 𝑅; = 0.84.  996 

 997 
Acknowledgments 998 

This research is, in part, supported by the research funding of the National Science Foundation 999 

under grant OAC-1931380, and the University of Jeddah-Saudi Arabia. The computational 1000 

simulation reported in this paper is partially supported by the HPC@ISU equipment at Iowa State 1001 

University, some of which have been purchased through funding provided by NSF under MRI 1002 

grant number CNS 1229081and CRI grant number 1205413. 1003 



60 
 

 1004 
References 1005 

[1] Hashash, Y. M. A., Jung, S., & Ghaboussi, J. 2004. "Numerical implementation of a neural 1006 

network based material model in finite element analysis." International Journal for 1007 

numerical methods in engineering, 59(7), 989-1005. 1008 

[2] Koenuma, Kohta, Akinori Yamanaka, Ikumu Watanabe, and Toshihiko Kuwabara. 2020. 1009 

"Estimation of Texture-Dependent Stress-Strain Curve and r-Value of Aluminum Alloy 1010 

Sheet Using Deep Learning." Materials Transactions 61 (12): 2276-2283. 1011 

[3] Vlassis, Nikolaos N., Ran Ma, and WaiChing Sun. 2020. "Geometric deep learning for 1012 

computational mechanics Part I: Anisotropic Hyperelasticity." Computer Methods in 1013 

Applied Mechanics and Engineering 371: 113299. 1014 

[4] Logarzo, Hernan J., German Capuano, and Julian J. Rimoli. 2021. "Smart constitutive laws: 1015 

Inelastic homogenization through machine learning." Computer Methods in Applied 1016 

Mechanics and Engineering 373: 113482. 1017 

[5] Masi, Filippo, Ioannis Stefanou, Paolo Vannucci, and Victor Maffi-Berthier. 2020. 1018 

"Thermodynamics-based Artificial Neural Networks for constitutive modeling." Journal 1019 

of the Mechanics and Physics of Solids 147: 104277. 1020 

[6] Oh, B. K., Y. Park, and H. S. Park. 2020. "Seismic response prediction method for building 1021 

structures using convolutional neural network." Structural Control and Health Monitoring.  1022 

[7] Okazaki, Y., S. Okazaki, S. Asamoto, and P. J. Chun. 2020. "Applicability of machine learning 1023 

to a crack model in concrete bridges." Computer‐Aided Civil and Infrastructure 1024 

Engineering.  1025 



61 
 

[8] Wu, R. T., and M. R. Jahanshahi. 2019. "Deep convolutional neural network for structural 1026 

dynamic response estimation and system identification." Journal of Engineering 1027 

Mechanics 145 (1): 04018125. 1028 

[9] Cladera, A., and A. R. Mari. 2004. "Shear design procedure for reinforced normal and high-1029 

strength concrete beams using artificial neural networks. Part II: beams with stirrups." 1030 

Engineering Structures 26 (7): 927-936. 1031 

[10] Tehranizadeh, M., and M. Safi. 2004. "Application of artificial intelligence for construction 1032 

of design spectra." Engineering structures 26 (6): 707-720. 1033 

[11] Abdalla, J. A., Elsanosi, A., & Abdelwahab, A. 2007. "Modeling and simulation of shear 1034 

resistance of R/C beams using artificial neural network." Journal of the Franklin 1035 

Institute, 344(5), 741-756. 1036 

[12] Abdalla, J. A., Saqan, E. I., & Hawileh, R. A. 2014. "Optimum seismic design of unbonded 1037 

post-tensioned precast concrete walls using ANN." Comput Concrete, 13, 547-567. 1038 

[13] Abuodeh, O. R., Abdalla, J. A., & Hawileh, R. A. 2020. "Prediction of shear strength and 1039 

behavior of RC beams strengthened with externally bonded FRP sheets using machine 1040 

learning techniques." Composite Structures, 234, 111698. 1041 

[14] Solhmirzaei, R., Salehi, H., Kodur, V., & Naser, M. Z. 2020. "Machine learning framework 1042 

for predicting failure mode and shear capacity of ultra high performance concrete 1043 

beams." Engineering structures, 224, 111221. 1044 

[15] Bessa, M. A., Z. Liu Bostanabad, Daniel W. Apley, C. Brinson, W. Chen, and Wing Kam 1045 

Liu. 2017. "A framework for data-driven analysis of materials under uncertainty: 1046 

Countering the curse of dimensionality." Computer methods in applied mechanics and 1047 

engineering 320: 633-667. 1048 



62 
 

[16] Ma, Zhan, and Wenxiao Pan. 2021. "Data-driven nonintrusive reduced order modeling for 1049 

dynamical systems with moving boundaries using Gaussian process regression." Computer 1050 

Methods in Applied Mechanics and Engineering 373: 113495. 1051 

[17] Kirchdoerfer, T., and M. Ortiz. 2016. "Data-driven computational mechanics." Computer 1052 

Methods in Applied Mechanics and Engineering 304: 81-101. 1053 

[18] Eggersmann, R., L. Stainier, M. Ortiz, and S. Reese. 2020. "Model-free data-driven 1054 

computational mechanics enhanced by tensor voting." Computer Methods in Applied 1055 

Mechanics and Engineering 373: 113499. 1056 

[19] Patel, Ravi G., Nathaniel A. Trask, Mitchell A. Wood, and Eric C. Cry. 2020. "A physics-1057 

informed operator regression framework for extracting data-driven continuum models." 1058 

[20] Cheng, M.Y., P.M. Firdausi, and D. Prayogo. 2014. "High-performance concrete compressive 1059 

strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)." 1060 

Engineering Applications of Artificial Intelligence 29: 104-113. 1061 

[21] Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., & Bessa, M. A. 2019. "Deep 1062 

learning predicts path-dependent plasticity." Proceedings of the National Academy of 1063 

Sciences, 116(52), 26414-26420. 1064 

[22] Abueidda, D. W., Koric, S., & Sobh, N. A. 2020. "Topology optimization of 2D structures 1065 

with nonlinearities using deep learning." Computers & Structures, 237, 106283. 1066 

[23] Chen, C. T., & Gu, G. X. 2020. "Generative deep neural networks for inverse materials design 1067 

using backpropagation and active learning." Advanced Science, 7(5), 1902607. 1068 

[24] Abueidda, D. W., Koric, S., Sobh, N. A., & Sehitoglu, H. 2021. "Deep learning for plasticity 1069 

and thermo-viscoplasticity." International Journal of Plasticity, 136, 102852. 1070 



63 
 

[25] Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E., & Sobh, N. A. 2020. "Deep 1071 

learning for topology optimization of 2D metamaterials." Materials & Design, 196, 1072 

109098. 1073 

[26] Cho, I. 2019. "A framework for self-evolving computational material models inspired by deep 1074 

learning." International Journal for Numerical Methods in Engineering 120 (10): 1202-1075 

1226. 1076 

[27] Hastie, T., and R. Tibshirani. 1990. Generalized Additive Models. Chapman & Hall. 1077 

[28] Wood, Simon N. 2006. Generalized additive models: an introduction with R. Boca Raton, 1078 

FL: Chapman & Hall/CRC. 1079 

[29] Wang, S. Y., K. Tai, and M. Y. Wang. 2006. "An enhanced genetic algorithm for structural 1080 

topology optimization." International Journal for Numerical Methods in Engineering 65 1081 

(1): 18-44. 1082 

[30] Tang, W., L. Tong, and Y. Gu. 2005. "Improved genetic algorithm for design optimization of 1083 

truss structures with sizing, shape and topology variables." International Journal for 1084 

Numerical Methods in Engineering 62 (13): 1737-1762. 1085 

[31] Johnson, J. M., and Y. Rahmat-Samii. 1999. "Genetic algorithms and method of moments 1086 

(GA/MOM) for the design of integrated antennas." IEEE Transactions on Antennas and 1087 

Propagation 47 (10): 1606-1614. 1088 

[32] Waisman, H., E. Chatzi, and A. W. Smyth. 2010. "Detection and quantification of flaws in 1089 

structures by the extended finite element method and genetic algorithms." International 1090 

Journal for Numerical Methods in Engineering 82 (3): 303-328. 1091 

[33] Koza, John R. 1992. Genetic Programming: On The Programming of Computers By Means 1092 

of Natural Selection. MIT press. 1093 



64 
 

[34] Cho, I., and J. Hall. 2014. "General confinement model based on nonlocal information." 1094 

Journal of Engineering Mechanics 140 (6). 1095 

[35] Bazant, Z. P., and M. Jirasek. 2001. "Nonlocal integral formulation of plasticity and damage: 1096 

survey of progress." Journal of Engineering Mechanics 128 (11): 1119-1149. 1097 

[36] Rodriguez, M. E., J.C. Botero, and J. Villa. 1999. "Cyclic stress-strain behavior of reinforcing 1098 

steel including effect of buckling." Journal of Structural Engineering 125 (6): 605-612. 1099 

[37] Dhakal, R. P., and K. Maekawa. 2002. "Modeling for postyield buckling of reinforcement." 1100 

Journal of structural engineering 128 (9): 1139-1147. 1101 

[38] Cho, I. 2013. "Virtual earthquake engineering laboratory capturing nonlinear shear, localized 1102 

damage and progressive buckling of bar." Earthquake Spectra 29 (1): 103-126. 1103 

[39] Cho, I., and K. Porter. 2014. "Multi-layered grouping parallel algorithm for multiple-level 1104 

multi-scale analyses." International Journal for Numerical Methods in Engineering 100 1105 

(12): 914-932. 1106 

[40] Cho, I., and F. Hall. 2012. "Parallelized Implicit Nonlinear FEA Program for Real Scale RC 1107 

Structures under Cyclic Loading." Journal of computing in civil engineering 26 (3): 356-1108 

365. 1109 

[41] Thorenfeldt, E. 1987. "Mechanical properties of high-strength concrete and applications in 1110 

design." In Symposium Proceedings, Utilization of High-Strength Concrete.  1111 

[42] Taucer, F., E. Spacone, and F. C. Filippou. 1991. "A fiber beam-column element for seismic 1112 

response analysis of reinforced concrete structures." Earthquake engineering research 1113 

center 91. 1114 

[43] Reinhardt, H. W. 1984. "Fracture mechanics of an elastic softening material like concrete." 1115 

HERON 29 (2). 1116 



65 
 

[44] Bazant, Z. P., and B. H. Oh. 1983. "Crack band theory for fracture of concrete." Materiaux et 1117 

Constructions 16: 155-177. 1118 

[45] Cho, I. 2018. "Deformation Gradient-Based Remedy for Mesh Objective Three-Dimensional 1119 

Interlocking Mechanism." ASCE Journal of Engineering Mechanics 144 (1). 1120 

[46] Jackson, R. L., and I. Green. 2006. "A statistical model of elasto-plastic asperity contact 1121 

between rough surfaces." Tribology International 39 (9): 906-914. 1122 

[47] Schmidt, M., and H. Lipson. 2009. "Distilling free-form natural laws from experimental data." 1123 

science 324: 81-85. 1124 

[48] Dazio, A., K. Beyer, and H. Bachmann. 2009. "Quasi-static cyclic tests and plastic hinge 1125 

analysis of RC structural walls." Engineering Structures 31 (7): 1556-1571. 1126 

[49] Beyer, K., A. Dazio, and M. J. N. Priestly. 2008. "Quasi-static cyclic tests of two U-shaped 1127 

reinforced concrete walls." Journal of earthquake engineering 12 (7): 1023-1053. 1128 

[50] Walraven, J. 1994. "Rough cracks subjected to earthquake loading." Journal of Structural 1129 

Engineering 120 (5): 1510-1524. 1130 

[51] Cho, K. 2004. "An experimental and analytical study on the seismic behavior of RC piers 1131 

using high-strength concrete and high-strength rebars." (Doctoral dissertation, Seoul 1132 

National Univ).  1133 

[52] Cho, I., Li, Q., Biswas, R., and Kim, J., 2020. A Framework for Glass-Box Physics Rule 1134 

Learner and Its Application to Nano-Scale Phenomena, Nature, Communications Physics 1135 

3, Article Number 78 [DOI:10.1038/s42005-020-0339-x]. 1136 

[53] Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, 1137 

Kavukcuoglu K. 2016. "A generative model for raw audio." Sound Mach, Learn. 1138 



66 
 

[54] Raissi, M., Perdikaris, P., & Karniadakis, G. E. 2017. "Physics informed deep learning (part 1139 

i): Data-driven solutions of nonlinear partial differential equations." arXiv preprint 1140 

arXiv:1711.10561.  1141 

[55] Lee, K., & Carlberg, K. T. 2020. "Model reduction of dynamical systems on nonlinear 1142 

manifolds using deep convolutional autoencoders." Journal of Computational 1143 

Physics, 404, 108973.  1144 

 1145 

[56] Mangalathu, S., H. Jang, S.H. Hwang, and J.S. Jeon. 2020. "Data-driven machine-learning-1146 

based seismic failure mode identification of reinforced concrete shear walls." Engineering 1147 

Structures 208: 110331. 1148 

[57] Lee, S., and C. Lee. 2014. "Prediction of shear strength of FRP-reinforced concrete flexural 1149 

members without stirrups using artificial neural networks." Engineering structures 61: 99-1150 

112. 1151 

[58] Abuodeh, Omar R., Jamal A. Abdalla, and Rami A. Hawileh. 2020. "Prediction of shear 1152 

strength and behavior of RC beams strengthened with externally bonded FRP sheets using 1153 

machine learning techniques." Composite Structures 234: 111698. 1154 

[59] Arslan, M. Hakan. 2010. "An evaluation of effective design parameters on earthquake 1155 

performance of RC buildings using neural networks." Engineering Structures 32.7: 1888-1156 

1898. 1157 

[60] Luo, Huan, and S. G. Paal. 2018. "Machine learning-based backbone curve model of 1158 

reinforced concrete columns subjected to cyclic loading reversals." Journal of Computing 1159 

in Civil Engineering 32 (5). 1160 



67 
 

[61] Tsai, C. H., and D. S. Hsu. 2002. "Diagnosis of reinforced concrete structural damage base 1161 

on displacement time history using the backpropagation neural network technique." 1162 

Journal of Computing in Civil Engineering 16 (1): 49-58. 1163 

[62] Jeng, C. H., and Y. L. Mo. 2004. "Quick seismic response estimation of prestressed concrete 1164 

bridges using artificial neural networks." Journal of Computing in Civil Engineering 18 1165 

(4): 360-372. 1166 

[63] Song, I., Cho, I. H., & Wong, R. K. 2020. "An advanced statistical approach to data-driven 1167 

earthquake engineering." Journal of Earthquake Engineering, 24(8), 1245-1269. 1168 


