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Abstract—Methods to measure w ork stress generally rely on subjective measures from questionnaires or require dedicated 

sensors that are cumbersome to w ear and interfere with the task. To address this problem, w e propose a method to detect 

stress unobtrusively using commodity devices (keyboards, mice) instrumented w ith pressure sensors. We propose a minimalist 

design that can be easily replicated by other researchers using off-the-shelf and low -cost hardware. We validate the design in a 

laboratory experiment that simulates off ice tasks and mild stressors while avoiding methodological limitations of previous 

studies. We compare stress-detection performance when using conventional features reported in the literature (keystroke 

dynamics, mouse trajectories) augmented w ith information from pressure sensors. Our results indicate that pressure provides 

additional information for stress discrimination; adding pressure information to keystroke dynamics and mouse trajectories 

improves classif ication performance by 6% and 3%, respectively. These results show how devices that are already part of the 

modern w orkplace may be used and enhanced to automatically and unobtrusively detect stress. 

Index Terms— Stress detection; pressure-sensitive keyboard; pressure-sensitive mouse; keystroke dynamics; mouse 

dynamics; affective computing 

——————————   ◆   —————————— 

1 INTRODUCTION

ork stress is dramatically increasing as a result of 
rising competitiveness, more intense workloads, and 

longer and harder working hours [1, 2]. Although stress 
can help people stay focused and motivated, severe stress 
puts employees at a higher risk for health problems [3]. For 
example, acute stress exacerbates negative coping 
behaviors, such as smoking [4] and substance abuse [5], 
and can also lead to depression [6]. Monitoring stress levels 
throughout the day may allow employees to identify stress 
triggers and stressful episodes early on and develop 
healthier coping strategies [7]. The gold standard for 
monitoring stress objectively is stress hormones (e.g., 
cortisol, alpha-amylase) [8]. However, this method is 
impractical in the workplace and only provides a single-
point measurement rather than a continuous measure. 
Self-report instruments can also be used [9, 10], but these 
instruments are sensitive to subjective biases and also only 
provide single point measurements. Wearable sensors can 
also be used to measure physiological correlates of stress, 
such as heart rate variability and skin conductance [11, 12]. 
However, the most common among these measures (wrist-
based heart rate and skin conductivity) are sensitive to 
motion artifacts from physical activity (e.g., walking) or 
even subtle behaviors (e.g., typing). Contactless measures, 
such as facial expression analysis from webcams [13], can 
also be used but are subject to changes in illumination, 
differences in skin tones, among others.  

Several studies have explored the possibility of 
monitoring stress indirectly by analyzing keyboard and 
mouse use patterns [14-16]. Keystroke and mouse 
dynamics have long been used for user authentication [17, 
18] and recently to infer emotional state [15, 19, 20]. Most 
of these studies use timing and latency information, which 
can be easily obtained from off-the-shelf devices. Studies 
have also explored the use of experimental keyboards and 
mice to predict stress. For example, Hernandez et al. [21] 
found greater typing pressure and mouse grip pressure 
when subjectively-rated stress and electrodermal activity 
levels were higher. This suggests that additional stress-
related information may be obtained by instrumenting 
keyboards and mice with sensors.  

This study presents two low-cost designs to measure 
typing pressure and mouse-grip pressure from off-the-
shelf devices. Our designs use force-sensitive resistors 
placed on keyboards and mice to record changes in 
pressure. To evaluate our design, we conducted a user 
study aimed at detecting stress while participants 
completed two conventional tasks in knowledge work: 
typing texts and filling out multiple-choice questionnaires. 
Then, we trained binary classifiers to discriminate stress 
vs. neutral states using features derived from keystroke 
and mouse dynamics, and from our pressure 
measurements. We obtained higher classification accuracy 
when combining keystroke and mouse dynamics with 
their corresponding pressure features. 

The rest of the paper is organized as follows. First, we 
discuss related work on using keystroke and mouse 
information to recognize emotion. Next, we present our 
keyboard and mouse designs, as well as the experimental 
protocol. Finally, we present results from the user studies, 
followed by a discussion of findings and conclusions. 
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2 RELATED WORK 

Various sensing modalities have been used for emotion 
recognition, including facial expression and speech [22], 
physiological sensors [23], and thermal and visual imaging 
[11, 24]. Other approaches have relied on measuring 
changes in behavior, especially keyboard and mouse usage 
[25], that may be affected by the user’s emotional state. In 
an early study, Zimmerman et al. [26] provided a rationale 
for assessing user affect using keyboard and mouse. 
Following this seminal work, dozens of publications have 
investigated how these commodity devices can be used to 
infer user affect, as we review next. 

2.1 Emotion Detection with Keystroke and Mouse 
Dynamics 

A number of features from keystroke dynamics have been 
explored to detect emotions, including typing speed, 
latency, and pause frequency, to mention a few. Banerjee 
et al. [27] found that individual keystroke patterns are 
affected by the user’s emotional and cognitive states (e.g., 
reduced typing speed when in a negative emotional state). 
Tsihrintzis et al. [28] used keystroke features to improve 
visual-facial emotion recognition. They showed that 
recognition of anger and sadness was greatly improved by 
adding keystroke features. 

In most of the emotion-detection literature, the studies 
were conducted in a laboratory setting, but a few studies 
sought to capture natural behaviors while participants 
performed daily tasks in the wild [19, 29]. As an example 
of an in-situ experiment, Epp et al. [19] used keystroke 
dynamics features to model data collected from 15 
different emotional states. The authors logged keystroke 
information from 26 participants for an average of 4 weeks. 
For each sample logged, participants also rated their 
emotion using self-reports. The authors reported 77-88% 
correct classification of confidence, hesitance, nervousness, 
relaxation, sadness, and tiredness. 

While in-situ studies can capture more realistic 
interactions, they are subject to uncontrolled external 
factors. For this reason, most of the emotion-detection 
literature has relied on lab studies. Khanna and Sasikumar 
[30] used keystroke features to differentiate between 
positive, negative, and neutral emotional states. They 
found that most people tend to type more slowly when in 
a negative emotional state and faster while in a positive 
emotional state. In a related study on typing patterns, 
Bixler and D’Mello [31] used task appraisals and stable 
traits to differentiate bored, engaged, and neutral 
emotional states. Their model achieved 56% accuracy.  

Several studies have focused on differentiating between 
low and high cognitive load conditions based on keystroke 
and mouse dynamics [32-38]. As an example, Lim et al. [25] 
used both keystroke and mouse features to detect cognitive 
load induced by time pressure and mental-arithmetic 
problems. They found that when problem difficulty 
increases, task error, task duration, stress perception, and 
mouse idle duration also increase, whereas mouse speed, 
left mouse click rate, and typing speed decrease. Brizan et 
al. [34] have explored the use of keystroke dynamics 
combined with linguistics to predict cognitive load levels. 

In their experiments, participants were asked to type freely 
when asked to answer questions that elicited six different 
levels of cognitive load. Their models were able to 
differentiate the six cognitive load levels with above-
chance accuracy, and their best performing models 
achieved 72% classification accuracy when differentiating 
behavior elicited by the more extreme cognitive load 
inducing prompts (level one vs. level six). 

A good number of studies on cognitive load have 
focused exclusively on mouse dynamics [33, 35, 36]. For 
example, Chen et al. [33] studied the effects of cognitive 
load while participants performed the primary task of 
screening participants for a fictitious human resource 
department. Cognitive load was elicited by a secondary 
task, which popped-up on the user’s screen and required a 
classification action. They reported that, when under high 
cognitive load, participants presented more frequent 
contemplation (i.e., from 1-5 sec) and hesitation (i.e., from 
0.5-1 sec) pauses in mouse activity, which was attributed 
to hesitant/cautious behavior. Grimes and Valacich [36] 
used mouse dynamics to detect various levels of cognitive 
load, elicited using N-back lag tasks. They observed higher 
mouse distance traveled, more frequent direction changes, 
and lower mouse speed during tasks performed under 
higher cognitive loads.  

Some studies have also explored the use of keystroke 
dynamics to differentiate stressed from non-stressed 
behavior. For example, Gunawardhane et al. [14] collected 
non-stress behaviors when participants (college students) 
had no exam pressure, and during exam week. In their 
study, keystroke features were extracted while 
participants solved arithmetic problems. The authors 
found significant differences in several features, such as 
the duration of certain bigraphs and trigraphs, when 
comparing stressed and non-stressed emotional states. In 
a recent work, Lau [20] compared the efficacy of 
personalized and generic models to predict stress from 
keystroke dynamics. The author used a baseline-stressor-
recovery design, where stress was elicited using multi-
tasking and social evaluative threats. The personalized 
models obtained accuracies in the range of 83-92%, while 
the generic models achieved chance-level accuracy. 

Although most of the studies reported in the literature 
employ a single-day experimental procedure, a few works 
analyzed how keystroke features generalize over multiple 
sessions [15, 39]. For example, Vizer and Sears [39] 
compared personalized and generic models to 
discriminate high and low cognitive demand using 
keystroke and linguistic features. In their study, 
participants were asked to write freely about any topic 
either in the presence of a stressor (N-back lag tasks) or 
without it. Participants completed four baseline sessions 
(used for normalization purposes) and two experimental 
sessions, where high and low cognitive demand behavior 
was collected. A subset of the participants completed 13 
additional experimental sessions, which allowed for the 
development of their personalized models. Their generic 
model achieved 66% accuracy while their personalized 
models reached accuracies in the range of 65-93%. 

Some studies have focused exclusively on mouse 
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dynamics to perform emotion recognition. Yamauchi [40] 
investigated the relation between mouse activity and state 
anxiety. In the study, participants performed a task where 
they had to select and click geometric figures based on 
their similarities. The author extracted mouse features 
such as velocity and directional change, and fed them to a 
support-vector-regression model to predict state anxiety 
scores measured from questionnaires. He found that 
correlation coefficients between predicted and observed 
state anxiety scores were significantly higher than zero. 
Sun et al. [16] modeled the arm-hand dynamics as a mass-
spring-damper system to study muscle stiffness during 
mouse movement. Their participants performed a set of 
abstract mouse tasks that involved pointing and clicking, 
dragging and dropping, and steering the mouse cursor 
through a tunnel. The authors used mental arithmetic to 
induce stress and mindfulness meditation to induce 
relaxation. They found higher damping frequency and 
lower damping ratio when participants were stressed. 
More recently, Hibbeln et al. [41] studied the relationship 
between mouse movement and negative emotion. They 
induced negative emotion by introducing delays and 
errors into time-limited tasks. The authors found that 
mouse movement distance increased and mouse speed 
decreased during the tasks. They explained this 
phenomenon in terms of attentional control theory, which 
suggests that negative emotion decreases attention control, 
shifting cognitive resources from goals to distractions. 

2.2 Emotion Detection with Instrumented Devices 

Keystroke and mouse dynamics features are easy to extract 
and require no specialized hardware. For this reason, they 
have been used extensively in emotion recognition, and 
show promise as an approach to measure stress in the 
workplace. However, researchers have found that the 
pressure the user applies to the keyboard and mouse can 
provide additional emotion-related information. In a study 
by Tsihrintzis et al. [28], 65% of the participants reported 
typing harder when angry, whereas Karunaratne et al. [42] 
found that 15% of participants reported an increase in 
typing pressure when under stress. A few works have also 
observed variations in mouse grip pressure when 
experiencing different emotions. Picard et al. [43], for 
example, observed an increase in mouse grip pressure 
when participants were frustrated.  Prior studies have also 
found that mental stress increases arm muscle activity and 
muscle tension [44, 45]. As such, pressure sensors could 
capture these changes and provide additional features to 
assist with automatic emotion detection. However, to the 
best of our knowledge, there are currently no keyboards or 
mice embedded with pressure sensors available on the 
market and little research has been reported regarding this 
type of device. 

To our knowledge, the first work on instrumenting a 
computer mouse with pressure sensors dates back to 1993 
[46]. In this work, the authors built a force-sensing mouse 
to investigate injuries related to intensive mouse use. The 
authors used foil strain gauges to measure finger forces 
applied to the mouse sides and buttons. They analyzed the 
applied force to distinguish between different activities, 

such as holding, moving, and dragging. In a later study 
[47], the authors recruited 16 subjects to test their proposed 
force-sensing mouse. They collected mouse data while 
participants performed their daily work in a field setting, 
and standardized tasks (e.g., pointing, dragging) in a lab 
setting. The authors observed that changes in applied force 
were task- and setting-dependent, but not time-dependent. 
In a subsequent study [48], the authors delivered stress by 
using time pressure and verbal provocation during a text 
editing task. They collected finger forces with their mouse, 
and physiological measures and subjective ratings of 
stress. They found higher forces applied to mouse buttons 
and more repetitive wrist movements during stress 
compared to a control condition. In 2001, Qi et al. [43] 
instrumented a computer mouse with eight pressure 
sensors. They asked participants to fill out a web form and 
delivered a fictitious data-loss problem at submission time 
by erasing all the content they had filled out, with the goal 
of inducing frustration. Since participants had limited time 
to complete the task, they also experienced time pressure 
the second time they filled out the form. Initial tests on a 
limited number of participants were promising, achieving 
88% classification accuracy. 

In 2009, Dietz et al. [49] proposed an experimental 
keyboard design capable of sensing the force level at every 
depressed key by means of a pressure-sensitive 
membrane. In subsequent work, Hernandez et al. [21] used 
that experimental keyboard as well as a Microsoft Touch 
Mouse (a mouse with capacitance sensors on its surface) to 
analyze how typing pressure and mouse grip pressure 
change under stress. The authors collected data from 24 
participants performing typing tasks and mouse-clicking 
tasks under relaxed and stressed conditions. They 
observed significantly higher typing pressure when 
comparing the stressful condition to the relaxed condition, 
for around 85% percent of participants. They also found 
increased capacitance value on the mouse for 75% of the 
participants, which indicates an increased hand contact 
area on the mouse surface. However, they did not report 
how these results compare to using traditional keystroke 
analysis for stress detection. 

2.3 Emotion Detection with Mobile Devices 

Mobile devices have become an integral part of modern 
life, with an estimated 3.5B people using smartphones [50]. 
Accordingly, a number of studies have investigated how 
typing behavior on mobile devices can be used to 
recognize emotions [51, 52]. In a field study, Ghosh et al. 
[51] recorded participants’ keystrokes on their 
smartphones during daily activities. Participants used 
typing-intensive apps (e.g., instant messaging, email) and 
self-reported their affect right after each typing session. 
The authors obtained a classification accuracy of 73% when 
differentiating between stressed, happy, sad, and relaxed 
states. Lee et al. [52] developed a Twitter-like application 
that logged participants’ keystrokes and additional 
contextual information such as illuminance, location, and 
weather. Their models obtained 68% classification 
accuracy when differentiating happiness, surprise, anger, 
disgust, sadness, fear, and neutral emotions. Sarsenbayeva 
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et al. [53] investigated the effects of stress on several daily 
life-like tasks, including a text entry task in which 
participants were asked to type both easy and difficult 
texts, under neutral and stressed states. Mental stress was 
elicited utilizing the Trier Social Stress Test (TSST) [54] and 
mental arithmetic tasks. The authors found that 
participants tended to make more errors when under stress 
(though the effect was not significant) and a significant 
effect between text difficulty and number of errors. 

Other studies have taken advantage of additional built-
in sensing capabilities (e.g., accelerometer, pressure-
sensing screen) when recognizing emotion on mobile 
devices. As an example, Carneiro et al. [55] collected a 
multimodal dataset while participants performed tasks 
under neutral and stressed mental states, elicited by means 
of time pressure, sounds, and vibration. The dataset 
included accelerometer data, touch intensity and duration, 
video recordings, and others. The authors performed 
participant-specific statistical analysis and observed 
significant differences in at least one feature group when 
comparing stressed and unstressed behavior. They 
reported that acceleration, and mean and maximum touch 
intensity were the most successful features for recognizing 
stressed behavior. In recent work, Exposito et al. [56] 
investigated how stress is manifested in touch intensity. In 
their user studies, participants performed expressive 
writing, where they were asked to write about neutral and 
stressful memories. The authors observed a significant 
positive correlation between the increase in touch intensity 
and self-reported stress across the two conditions. 

2.4 Limitations of Previous Work 

A number of the above studies have reported high 
accuracies, even when performing multi-emotion 
classification. We believe that some of these results are 
optimistic, owing to their experimental design and data 
analysis, which we discuss below. 

One of most common type of stressor in the above 
studies is time pressure (e.g., [21, 32, 44, 47, 57]). Time 
pressure is an effective stressor, but its use is problematic 
when combined with keystroke and mouse timing 
features. Since time pressure is confounded with stress, it 
is not clear whether an algorithm is predicting stress or 
simply detecting the natural changes in behavior caused 
by the time pressure, since the analyses rely on timing and 
latency features. A second problem is the lack of multi-day 
protocols. In some cases [43, 58], classification results were 
obtained by splitting data from the same session into a 
training set and a testing set. This inevitably overestimates 
the accuracy of the classification models due to the highly 
correlated nature of the time-series data. To demonstrate 
that the models are robust, we feel that they must be tested 
across different sessions. As noted by Lau [20], several 
works lack a vetted emotion-induction procedure. For 
example, some studies elicited emotions by asking 
participants to read a text [58] or watch a video clip [26], 
but these emotion-elicitation methods were not validated 
with physiological measures or subjective ratings. Another 
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problem in prior studies is the lack of sufficient details 
about the experimental procedures, which can make it 
difficult to replicate a study or compare results across 
studies [28, 30, 58, 59].  

To our knowledge, only two studies [15, 39] have 
employed multiday protocol with a vetted stress induction 
procedure. However, these studies only involved 
keystroke and linguistic feature analysis. Our paper aims 
to address all the limitations discussed here.  

3 DESIGN OF THE PRESSURE-SENSITIVE 

DEVICES  

Due to the lack of pressure-sensitive keyboards or mice on 
the market, we propose a simple and low-cost design that 
researchers may adopt to measure pressure with off-the-
shelf keyboards and mice. 

3.1 Keyboard Design 

Our experimental keyboard uses an array of force-
sensitive resistors (FSRs) to measure typing pressure. FSRs 
can be used to detect physical pressure, squeezing, and 
weight. This type of sensor is easy to use and is low cost, 
making it ideal for our design. However, most FSRs suffer 
from signal drift, i.e., a monotonic decrease in resistance 
when they are subject to a static load. Drifting is especially 
problematic in our design because, when a keyboard is 
standing on a surface, its weight naturally applies pressure 
to the sensors, causing drift. To address this issue, our 
design uses ShuntMode FSRs manufactured by 
Sensitronics 1 , shown in Fig. 1.a, which have low-drift 
characteristics. The FSRs are arranged in a voltage-divider 
configuration, with one terminal connected to a 5V power  
source and the other connected to an analog input to a 
microcontroller, as well as to ground by means of a 10kΩ 
pull-down resistor. To stream data, we use an HC-06 
Bluetooth module manufactured by KEDSUM, which is 
also connected to the microcontroller. Wiring is shown in 
Fig. 1.b. The HC-06’s RX pin expects a 3.3V input, so we 
used a voltage divider to reduce the input voltage from the 
microcontroller from 5V to 3.3V. 

Our design uses an off-the-shelf keyboard (Dell model 
KB212-B). We chose this specific keyboard because it has a 
flat underside, most of its feet are close to corners of the 

 

Fig. 1. Schematic of the circuit used in our instrumented keyboard. 
(a) Size of the pressure sensor relative to a quarter dollar. (b) 
Connecting the pressure sensor to an Arduino microcontroller, which 
streams data to any Bluetooth device. 

(a) (b)

FSR

Bluetooth
module

Microcontroller
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case, and it has enough room to route the sensors to the 
microcontroller. In addition, the keyboard is comfortable 
and low-cost (note, though, that our design could be easily 
adapted to many other keyboard models, including 
laptops). We placed four FSRs on the underside of the 
keyboard, near the four corners, and connected them to 
analog inputs on the microcontroller, as shown in Fig. 2. 

No changes were made to the upper side of the 
keyboard. In addition, we attached gel bumpers to the 
FSRs to distribute the pressure more efficiently across the 
sensor surface. When the user types, pressure is applied to 
the keyboard, which in turn presses the bumpers that 
apply pressure to the FSRs, generating a response. We 
attached the FSRs to the keyboard using their built-in 
adhesive tape, secured the cables with duct tape, and 
connected them to the microcontroller. Finally, we 
connected the keyboard’s internal ground and 5V pins to 
the microcontroller and Bluetooth module, eliminating the 
need for an external battery. The sensors’ sampled 
pressure data at 100 Hz. 

3.2 Mouse Design 

During the early stages of the mouse design, we compared 
two choices: capacitive sensors and FSRs. Capacitive 
sensors have been used to detect and measure position and 
force because of capacitance coupling [60]. In our first 
prototype (Fig. 3.a), we used copper tape to build a 
conductive surface as a capacitive sensor. We attached 
copper tape to the mouse shell surface and covered it with 
electrical tape to protect the sensor from abrasion and 
prevent signal saturation. The sensors were placed on the 
mouse buttons (one sensor for each button) and on either 
side of the mouse. We used the same microcontrollers as in 
the keyboard design. The entire circuit (except for the 

sensor itself) is invisible to the users as it fits inside a 
regular computer mouse and is powered from the mouse’s 
own power line. We drilled four holes in the mouse shell 
to connect the sensors placed on the outer part of the 
mouse to the microcontroller inside the mouse shell. 

Our second prototype (Fig. 3.b) also used capacitive 
sensors. This time, however, we replaced the copper tape 
with conductive paint, which has the advantage that the 
sensor can be of any shape and can be placed inside the 
mouse, underneath its shell, hiding it completely from the 
user. We tested these two prototypes and found that both 
sensors behaved similarly: capacitance values increased as 
the user made more skin contact with the mouse. However, 
we could only observe an increase in capacitance when the 
users held the mouse unrealistically tightly. 

This result led us to investigate the use of FSRs to 
measure grip pressure. We compared FSR and conductive 
paint by applying different weights to the sensors and re-
cording the corresponding responses. Results in Fig. 4 
show a linear relationship between weight and FSR 
response, whereas the capacitance sensor saturates rather  
quickly. Based on these results, we decided to use FSRs for 
our final mouse design.  Namely, we used an Interlink 408 
FSR, a 0.6-inch wide strip that can be cut to length. 

As with the two capacitive prototypes, we attached four 
sensors, two on the L/R buttons and two on the sides of the 
mouse. Microcontrollers and circuits were able to fit inside 
the mouse shell, and sensors were connected to the 
microcontrollers through four holes drilled in the plastic 
shell. The measurement circuit for these sensors is the 
same as the one proposed for the pressure keyboard (Fig. 
1.b). An example of the FSR-based prototype is shown in 
Fig. 3.c. During pilot studies, we observed that people used 
a variety of grip patterns (e.g., palm grip, claw grip, tip grip) 
with this mouse, which introduced undesired variability 
into the sensor data. To overcome this issue, we created a 
fourth design using a vertical mouse (Anker Ergonomic). 
The ergonomic design of this mouse encourages users to 
grip the mouse consistently, thus reducing variability. 

 

Fig. 2. Top and back view  of the instrumented keyboard. Four FSRs 
(indicated by the yellow  arrows) are placed on the back of the 
keyboard and are connected to the analog inputs of an Arduino 
micro-controller, w hich is used to interface with a computer.  

 

Fig. 3. Various pressure-sensitive mice prototyped. (a) Mouse w ith 
copper tape on the surface. (b) Mouse w ith conductive paint 
underneath the shell. (c) Regular mouse w ith four FSRs. (d) Vertical 
mouse w ith four FSRs covered by black tape. 
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After attaching the FSRs and protecting them w ith duct 
tape, we obtained the final design of the proposed 
pressure-sensitive mouse shown in Fig. 3.d. As in the 
keyboard design, we set the FSRs’ sampling rate to 100 Hz. 

4 EXPERIMENTAL PROTOCOL 

We conducted a user study to investigate whether the 
proposed pressure devices could be used to detect stress. 
We were particularly interested in determining how 
features extracted from the pressure signals compared to 
traditional keystroke and mouse dynamics analysis. 
During the experiment, software running in the 
background logged the typing pressure, mouse pressure, 
keystrokes, and mouse event-related information.  

In this work, we adhere to Lazarus and Folkman’s 
definition of stress [61], which states that stress is 
experienced when a person perceives that the “demands 
exceed the personal and social resources the individual is able to 
mobilize.” Thus, mental distress (i.e., negative stress) is 
caused when the mental resources cannot appropriately 
deal with the demands posed. In our  experiments, the 
demands we impose upon our participants are delivered 
by means of cognitive interference, cognitive load, and 
rapid decision making – explained in more detail 
throughout this section. As such, we sought to elicit and 
capture changes in behavior when participants experience 
mental distress, which is often associated with an increase 
of arousal and decrease of valence. 

4.1 Overview  

The user study consisted of four sessions, each session 
performed on a different day. Fig. 5 shows the structure of 
each session. First, we asked participants to fill out a 
questionnaire about their arousal and valence at that 
moment. If it was their first session, we also asked them to 
provide information about computer use (how long they 
have been using computers and how frequently they use 
them). After filling out the pre-experiment questionnaire, 
we instructed participants to proceed to the study desk and 
start the experiment. Next, participants started either the 
control or experimental block (counterbalanced). In each 
block, participants performed a priming task for 5 minutes, 
followed by a 10-minute writing task. After completing the 
priming and writing tasks, participants reported their 
perceived valence, arousal, and workload by filling out a 
questionnaire using the mouse (details to follow). During 

the control block, participants performed the tasks in an 
easier mode, while in the experimental block they 
performed a more challenging version of the tasks 
designed to induce stress. We provide details of both tasks 
in the next section. Once participants finished the first 
block, they were asked to watch a 3-minute transitional 
video with images from nature and calming background 
music. Next, participants started the second block (either 
the control or experimental block, depending on the first 
block completed), which also lasted 15 minutes. At the end 
of each session, we thanked and dismissed participants. At 
the end of the last session on day 4, participants were 
debriefed and compensated with a $30 gift card. 

4.2 Priming Task: Stroop Color-Word Test  

The priming task was designed to influence the 
participants’ behavior during the subsequent 
questionnaire and writing task. Namely, participants were 
asked to complete the Stroop Color-Word Test (CWT), a 
cognitive task commonly used to elicit stress via cognitive 
interference and rapid decision making [62-64]. In 
particular, Tulen et al. [64] have shown that the CWT 
simultaneously induces four types of reactions that are 
required for a suitable stress test: 1) psychological changes 
that indicate increased distress, 2) physiological changes 
that indicate sympathoadrenal activation, 3) muscular 
exertion as part of the fight-flight defense reaction, and 4) 
hormonal changes, reflected in plasma and urinary 
catecholamines, and plasma cortisol and prolactin.  

For our study, we developed a version of the CWT 
which randomly prompted participants to either choose 
the correct font color or text of the word. An example is 
shown in Fig. 6. In this particular trial, the font color 
(orange) does not match the text (blue) and the instructions 
ask the participant to choose word (i.e., blue). If the 
instructions had asked to select color, the correct choice 
would have been orange.  We implemented two versions 
of the CWT: difficult and easy. In the difficult mode, 
participants were presented with incongruent stimuli in 
which the font color did not match the text, as in Fig. 6, and 
had to select the correct answer from four options, which 
were shown in white font color. In the easy mode, 
participants were presented with congruent stimuli, i.e., 

 

Fig. 4. Weight vs. FSR sensor response (blue curve) and 
conductance response (red curve) in arbitrary units (a.u.).  

 

Fig. 5. Procedure of the experiment. The order of control and 
experimental blocks w ere counterbalanced.  
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the target word’s font color and its text always matched. In 
addition, the four options were shown with their 
respective font colors. In either mode, whenever the 
participant selected the wrong option or took more than 5 
seconds, the CWT played a loud buzzer sound and 
displayed a visual message as an extra stressor. Note that 
the sole purpose of this task was to elicit stress prior to the 
subsequent tasks, which are described next. 

4.3 Writing Task 

In this task, participants were presented with various 
classical paintings and were asked to describe them (i.e., 
how characters are dressed, what activities they are 
performing). We also encouraged participants to come up 
with a story behind that picture. Fig. 7.a shows an example 
of a description for the Story of Golden Locks painting, by 
Seymour Joseph Guy [65]. For each painting, participants 
had to write at least 200 words before they were allowed to 
move to the next painting. Within each block, we presented 
up to three paintings to participants, depending on how 
fast they completed each description. The task completed 
when they finished describing three paintings or when 
time ran out after 10 minutes, whichever came first. In 
total, we used 24 paintings in our experiments, which were 
never repeated for a participant. 

To make the writing task more stressful, participants 
had to perform mental arithmetic tasks (MATs) during the 
experimental block. MATs have been extensively used to 
create stress by inducing high cognitive load, intensive 
mental demand, and rapid decision making [44, 63, 66, 67].  
It has been shown that performing MATs leads to higher 
self-reported stress, systolic and diastolic blood pressure, 
heart rate, urinary catecholamines, salivary cortisol, and 
electromyogram activity [44].  

Our interface is shown in Fig. 7.b. While describing the 
paintings, our software prompted MATs at intervals 
specified by sampling a Poisson distribution with a mean 
of 30 sec. When answering a MAT, the participant had to 
choose one of the four provided options within 5 sec. If the 
participant failed to select the correct option or ran out of 
time, a loud buzzer was played. 

4.4 Self-Reported Emotional State and Workload 

All participants were asked to complete a questionnaire, in 
which they reported their perceived valence, arousal, and 

perceived workload after finishing each task in both the 
control and experimental blocks. The questionnaire served 
two purposes. First, it allowed us to determine whether the 
stressors delivered were successful. Second, it provides an 
opportunity to analyze changes in mouse behavior elicited 
by the prior priming task. To do so, we compared the 
mouse data logged during the questionnaire after the easy 
(control) CWT and after the difficult (experimental) CWT. 
We expected changes in mouse behavior after the CWT to 
be more pronounced than those after the writing task. 

Fig. 8 shows the user interface of the self-reported 
questionnaire. For self-reported valence and arousal, we 
used the 7-Point Self-Assessment Manikin [68], which has 
been extensively used for self-reporting arousal and 
valence. We expected participants to report lower valence 
and higher arousal scores in the tasks performed during 
the experimental block, as compared to the control block. 

To assess task workload, we used the NASA Task Load 
Index (NASA-TLX), a survey instrument that asks 
participants to report their perceived mental demand, 
physical demand, temporal demand, frustration, effort, 
and performance on the tasks they just finished [69]. We 
expected higher values of mental demand, physical 
demand, temporal demand, frustration, and effort, and 
lower values of performance reported for the experimental 
block when compared to those of the control block. 

4.5 Participants 

We invited participants using our institution’s bulk mail 
system, which sends the invitations to student and staff 

 

Fig. 6. Stroop Color-Word test variant used in our experiments. Every 
round, the participants must select their choices using the mouse. 
The four options are positioned on the corners of the screen.  

 

Fig. 7. (a) An example of a painting and its description; (b) the same 
painting and description, overlaid with a mental arithmetic task during 
the w riting task. Here, the submit button w as deactivated because 
the participant has only w ritten 127 w ords.  

In this painting, there are three girls in a room. Two of them 
are tucked in and the other one is sitting on the bed reading 
a story from a book for the two little girls. Based on their 
clothes and on the furniture inside the room, this painting 
seems to be from the mid 1800s. There’s a large window on 
the wall behind the bed and some clothes hanging in some 
sort of clothes rack. The older girl is wearing a fancy brown 
dress and boots, what makes me think they are part of an 
upper class family. I believe they are siblings, and the older 
girl helps taking care of the little ones. Based on the look of 
the little girls, they are not sleepy at all… I guess they just 
want to get up and play!

Roll over the image to zoom in

73 words left

Submit text and load next painting

(a)

In this painting, there are three girls in a room. Two of them 
are tucked in and the other one is sitting on the bed reading 
a story from a book for the two little girls. Based on their 
clothes and on the furniture inside the room, this painting 
seems to be from the mid 1800s. There’s a large window on 
the wall behind the bed and some clothes hanging in some 
sort of clothes rack. The older girl is wearing a fancy brown 
dress and boots, what makes me think they are part of an 
upper class family. I believe they are siblings, and the older 
girl helps taking care of the little ones. Based on the look of 
the little girls, they are not sleepy at all… I guess they just 
want to get up and play!

Roll over the image to zoom in

73 words left

Submit text and load next painting

(b)

210

212

211

214

14x15
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mailing lists. The inclusion criteria were that participants 
should be 18 years or older and fluent in English. We 
received approval from the Texas A&M University 
Institutional Review Board (study #IRB2017-0183D) prior 
to the study. We obtained written consent from each 
participant before the first session started. In total, 25 
participants (9 male and 16 female) participated in the 
study. One of the participants was left-handed, so we 
decided not to consider his data in the mouse analysis. 
Participants had an average age of 22 years (standard 
deviation (SD): 8.1). All participants reported using 
computers for at least 2 years (average: 13 years, SD: 6.8 
years) and at least 5 hours of weekly usage (average: 28 
hours, SD: 15.3 hours). One participant decided to drop out 
after the second session for personal reasons unrelated to 
the experiments, but we were able to use the data from her 
first two sessions in our analysis. 

5 DATA ANALYSIS METHODS 

5.1 Keyboard Features 

We extracted two types of features from the keyboard data: 
keystroke dynamics features 2  and pressure features; see 
Table 1. We chose keystroke dynamics features that have 
been used extensively in the affect-recognition and user-
authentication domains [19, 26, 70]; see Fig. 9 for an 
illustration of these features. To define the set of pressure 
features, we initially referred to the works of Hernandez et 
al. [21], Lv et al. [58], and Carneiro et al. [55]. From these 
works, we used the features mean pressure, maximum 
pressure (referred to as peak pressure), and pressure 
standard deviation, and combined them with additional 
pressure features we designed. As summarized in Table 1, 

 

 
2 In the  keystroke dynamics literature, a key press is called a keydown 

we extracted six features to capture the pressure signature. 
To extract pressure features, we sampled the pressure 

sensor signal only when keydown events occurred. This 
allowed us to discard pressure measurements when there 
was no keyboard activity. In a first step, we subtracted the 
static load (i.e., keyboard weight) from each sensor's raw 
pressure time series, which helped normalize sessions 
from different days and different participants. Then, we 
assigned a pressure measurement to each keypress by 
choosing the maximum pressure value between the 
current and the next keydown event, which we refer to as 
Peak Pressure (PP); see Fig. 10. To compute the features 
Pressure Difference (PD) and Pressure Time Difference 
(PTD), we considered the sampled pressure (PP) as the 
reference value, as described above. The Mean Pressure 
(MP) and Standard Deviation (STD) features represent, 
respectively, the mean and standard deviation of each 
pressure response. Finally, the feature Area Under the 
Curve Difference (AUCD) is obtained by computing the 
AUC of each pressure response, and then calculating the 
difference in AUC between consecutive keys. 

We considered keydown and keyup events only for 
keys in the range A, B, …, Z. Hence, the features 
considered are calculated for either each single key (A, B, 
…, Z) or pairs of keys ([A,A], [A,B], …, [Z,Z]), depending 
on whether the feature involves a single key or a pair of 
keys. For each feature, we used its average value across the 
entire session block. In instances where a key or pair of 

event, and a key release is called a keyup event. 

 

Fig. 8. Self-report questionnaire. Manikin questions are shown on top 
of the questionnaire, and NASA-TLX questions on the bottom.  

 

Fig. 9. Keystroke features computed over consecutive key events. 
𝑲𝑫𝒊 and 𝑲𝑼𝒊 represents the 𝑖-th keydown and keyup events. 

 

Fig. 10. Segment of pressure data along w ith keystroke information. 
Red vertical lines represent keydown events; black arrows point to 
the pressure values chosen to represent the pressure of each 
keystroke, w hich we refer to as the Peak Pressure (PP) feature.  
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keys was not observed during a session, the corresponding 
features were assigned a value of zero. In summary, the 
features KDU, MP, PP, and STD have dimensionality 26 (26 
keys), and the features KDD, KUD, DD, PD, AUCD, and 
PTD have dimensionality 676 (26 keys × 26 keys).  

As mentioned previously, we use MATs during the 
writing task to elicit stress. However, this procedure also 
interrupts the participants’ writing process, so keystroke 
dynamics during this period should not be used. Namely, 
we observed that typing speed decreases to zero while 
participants are answering the MATs (as expected) and 
that, once participants resume typing, it takes an average 
of 2 seconds (or 5 keystrokes) for their typing speed to 
return to its average level. Hence, for stress detection 
purposes we ignore any keystroke logged during the MAT 
and five additional keystrokes after each MAT. Further, 
our analysis showed that the sensor placed at the bottom-
left corner (i.e., close to the Z key) was the most sensitive 
of the four sensors; this was likely because the bottom-left 
sensor was the closest sensor for 60% of the keys examined 
in our study (the 26 alphabetical keys). Therefore, all 
preprocessing methods and data analyses are based on the 
pressure time series obtained by the bottom-left sensor3. 

5.2 Mouse Features 

We extracted two types of features from the mouse data: 

 

 
3 In a separate experiment not reported here, we compared performance 

when using a single sensor vs. using the  four sensors, and the results were 

mouse dynamics and pressure measurements from the 
FSR sensors. As with the keyboard dynamics, we chose 
mouse dynamics features that have been used in the 
related literature [25, 40], with the exception of the 
pressure features, which we needed to design on our own. 
The mouse features are listed in Table 2. We extracted six 
features: two trajectory features (travel distance and 
direction change), two speed features (overall speed and 
moving speed), and two timing features (dwell duration 
and moving duration), calculated across the entire session. 
For example, the Travel Distance (TD) feature is the total 
distance covered by the mouse during a session. We 
extracted four pressure features from the FSR sensors. Two 
of these pressure features were from the FSR on the left 
click button: mean and standard deviation of the click 
forces (since no right-click was required during our 
experiments, we did not extract any features from the FSRs 
on the right-click button). The other two features were the 
mean and standard deviation of the grip force, measured 
from the two FSRs on the sides; see Fig. 3.  

As with typing pressure, we only considered pressure 
values during periods of mouse activity. We used the 
maximum peak value immediately after the click event as 
the clicking force. As for the grip force features, we 
sampled the FSR time series whenever a user interaction 
event occurred (e.g., cursor movement, click). 

5.3 Classifier Design 

Once the time series were preprocessed (as described in the 
previous two sections), the feature extractor module 
converts raw data into feature sets, which are then passed 
to a binary classifier trained to discriminate between 

virtually identical.   

TABLE 1 
KEYBOARD FEATURES USED. 𝑲𝑫𝒊: KEYDOWN AT TIME 𝑖, 𝑲𝑼𝒊: 

KEYUP AT TIME 𝑖, AND 𝑲𝒊: KEYSTROKE AT TIME 𝑖 
Feature Acronym Description 

Keystroke Dynamics  

Keydown-

Keydown 

𝐾𝐷𝐷(𝐾𝐷𝑖, 𝐾𝐷𝑖+1) Time between two 

consecutive keydown 

events 

Keydown-Keyup 𝐾𝐷𝑈(𝐾𝐷𝑖, 𝐾𝑈𝑖) Duration of key  press 

(a.k.a. dwell time) 

Keyup-Keydown 𝐾𝑈𝐷(𝐾𝑈𝑖, 𝐾𝐷𝑖+1) Time b/w releasing a 

key and pressing the 

next one (a.k.a. flight 

time) 

Digraph duration 𝐷𝐷(𝐾𝐷𝑖, 𝐾𝑈𝑖+1) Time between pressing 

a key and releasing the 

consecutive one 

Pressure features 

Mean Pressure  𝑀𝑃(𝐾𝑖) Pressure value  

Peak Pressure  𝑃𝑃(𝐾𝑖) Peak pressure value  

Standard 

Deviation 

𝑆𝑇𝐷(𝐾𝑖) Standard deviation of 

a pressure response 

Pressure 

Difference  

𝑃𝐷(𝐾𝑖, 𝐾𝑖+1) Difference between 

two consecutive 

pressure readings 

AUC Difference  𝐴𝑈𝐶𝐷(𝐾𝑖, 𝐾𝑖+1) Difference between the 

AUC of two 

consecutive pressures 

Pressure Time 

Difference  

𝑃𝑇𝐷(𝐾𝑖, 𝐾𝑖+1) Time difference of two 

consecutive pressures  

 

TABLE 2 
MOUSE FEATURES USED IN OUR ANALYSES 

Feature Acron. Description 

Mouse trajectories features 

Dwell duration DD How long the mouse is idle 

Moving duration MD How long the mouse moved 

Travel distance  TD Cumulated distance in pixels that 

the mouse cursor moved 

Overall speed OS  OS = TD / (DD + MD) 

Moving speed MS  Speed only during mouse 

movement. Given by MS = TD / 

MD 

Direction change DC Cumulative direction change (in 

rad) that the cursor traveled 

Pressure features 

Click force mean CFM Mean of the click peak values 

from the FSR on the left c lick 

button 

Click force std CFS  STD of the click peak values from 

the FSR on the left c lick button 

Grip force mean GFM Mean grip force (grip force 

defined as the sum of left-side 

and right-side FSR) 

Grip force std GFS  STD  of the grip forces 
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neutral and stress conditions, as described below. Due to 
the large number of features relative to the number of 
samples in our dataset, we used linear discriminant 
analysis (LDA) [71] to reduce the dimensionality of the 
feature vector. LDA projects the features in a way that 
maximizes the ratio of between-class scatter to within-class 
scatter, leading to more pronounced differences between 
neutral and stressed samples. In addition, since we only 
have eight samples per participant, we pooled data from 
multiple participants to train subject-independent 
classifiers (i.e., generic classifiers) using a leave-one-
participant-out procedure. For illustration purposes, 
assume we are considering four feature groups in our 
keyboard analysis: Keydown-Keydown (676 dimensions: 
26 keys × 26 keys), Keydown-Keyup (676 dimensions), 
Mean Pressure (26 dimensions), and Pressure Time 
Difference (676 dimensions); see Fig. 11. The 
dimensionality of this combined set is 2,054. Our 
dimensionality-reduction procedure projects each feature 
group (i.e., KDD, KDU, MP, PTD) into a single dimension 
(i.e., a two-class problem has one LDA projection), 
resulting in four projections – one projection per feature 
group. The procedure, shown in Fig. 11, is detailed next. 

For each run, we split the dataset into a training and a 
test set. The test set contains data from a single participant 
(8 samples), while the training set contains data of the 
remaining participants (180 samples). We use the training 
set to compute an LDA eigenvector for each feature group, 
as illustrated in Fig. 11. Then, we use the resulting 
eigenvectors to project the test set. As such, the test data is 
never used to compute the LDA eigenvectors. Once the 
training set and test set are projected into the LDA 
subspace, we use a classifier to generate class labels for the 
test samples. We repeat this procedure for each participant 
and report the mean classification accuracy obtained by 
each run of the leave-one-participant-out analysis. We 

 

 
4 To optimize  the  number of ne ighbors (k), we varied k from 1 to 10 and 

did the  following. In each iteration of the  leave -one-participant-out 
analysis, we randomly selected eight samples from the training data and 
used them for validation purposes. We then trained a k-NN classifier with 

compared three classifiers for this purpose: 5-nearest-
neighbors (5-NN)4 , support vector machine (SVM), and 
naïve bayes (NB), using their corresponding optimized set 
of features (see below). On keyboard data, the best-
performing classifier was 5-NN, achieving 74% 
classification accuracy, whereas SVM and NB classifiers 
achieved 73% and 69% classification accuracy, 
respectively. On mouse data, 5-NN also yielded the 
highest classification rate (73%), compared to SVM (70%) 
and NB (72%). We expand on the results achieved by 5-NN 
in the following section. 

6 RESULTS  

In this section, we show how the stressors delivered 
affected the participants’ perceived arousal, valence, and 
workload with respect to the control block. Then, we 
present the results obtained by the automated classifiers. 

6.1 Stress Elicitation (SAM) 

As described earlier, we used four questionnaires in each 
session to rate the participants’ stress levels at different 
time points. We administered a questionnaire after the 
easy CWT (Easy CWT Questionnaire, or ECQ for short), 
and another after the difficult CWT (DCQ). We also 
administered questionnaires for the easy and difficult 
typing tasks (ETQ and DTQ, respectively). Fig. 12 shows 
boxplots for the arousal and valence ratings, with each 
session as one sample. Since each of the 24 participants 
completed 4 sessions (except one who only finished two 
sessions), we have 94 pairs of samples in total. We used 
paired t-test for statistical purposes. 

First, we examined if the perceived stress level was 
different between the two versions of the CWT. A 
comparison of ECQ to DCQ indicates that arousal ratings 
during the difficult CWT were significantly higher (mean 
increase of 1.05, t(93) = -7.63, p << 0.01) and valence ratings 
were significantly lower (mean decrease of 0.81, t(93) = 
6.12, p << 0.01) than those during the easy CWT. This 
confirms that the difficult CWT did increase participants’ 
stress levels, as intended. Next, we examined whether 
stress levels were different between the two versions of the 
typing task. A comparison of ETQ to DTQ indicates that 
arousal ratings during the difficult typing task were 
significantly higher (mean increase of 0.44, t(93) = -4.23, p 
<< 0.01), and the valence was significantly lower (decreased 
by 0.26, t(93) = 2.03, p = 0.04) than those during the easy 

the  specific value  of k using the  remaining training samples. Next, we  
evaluated the  models trained using the  validation data. We repeated this 
analysis for each participant and considered the  average classification 
accuracy obtained with each k to decide the final configuration.  

 

Fig. 11. Generating a low -dimensional projection from four feature 
sets (F1-F4; blue block) using Linear Discriminants analysis. The 
reduced feature vector (four dimensions; red block) is passed to a 
nearest neighbor classif ier to generate a class prediction into neutral 
vs. stressed states.  

 

Fig. 12. Box plots for self -reported valence and arousal.  ECQ: easy 
CWT, DCQ: diff icult CWT, ETQ:  easy typing task, and DTQ: diff icult 
typing task. * indicates statistically-signif icant differences.  
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typing task. These results confirm that the MAT was able 
to manipulate the participants’ stress levels, as intended. 

6.2 NASA TLX 

Analyzing the TLX results also served as a validity check 
to determine whether the nature of the tasks performed 
during the experimental block was more difficult than 
those during the control block. Indeed, during the difficult 
version of the CWT/typing task, participants reported 
significantly higher mental demand, higher physical 
demand, higher temporal demand, lower performance, 
higher effort, and higher frustration than during the easy 
version of the CWT/typing task – see Fig. 13. The only 
exception was the self-reported physical demand for the 
typing task (mean increase of 0.62, t(93) = 1.92, p = 0.056). 
However, we still observed a trend towards the expected 
direction (difficult typing task leading to higher physical 
demand) and a p-value close to significance. These results 
suggest that the tasks were successful in eliciting stress. 

6.3 Keyboard Analysis 

In total, we collected 188 samples (a sample contains all 
features computed during a block), as every participant 
but one went through four control sessions and four 
experimental sessions. Given that the number of samples 
in the control and experimental sessions are the same, a 
random classifier would achieve 50% classification 
accuracy. For the remainder of the manuscript, the 
classification accuracy obtained by such a random 
classifier will be referred to as a chance-level. 

To identify the best subset of features for each type 
(keystroke only, pressure only, and keystroke + pressure), 
we performed exhaustive search on the feature sets, i.e., we 
evaluated our models on every possible combination of 
features, for a total of 1023 (210 – 1) feature subsets. Average 

 

 
5 To generate this plot, we adapted our 5NN model to classify a stressed 

sample  for different minimum number of ne ighbors (e .g., classify as 

classification accuracies are shown in Table 3. Using all 
(timing and pressure) features as input performs slightly 
worse than selecting a subset of them. When using timing 
features alone, the classifier obtained an accuracy of 68% 
using the feature groups DD and KDU. Using pressure 
features alone, our classifier obtained an accuracy of 71% 
using the feature groups PP, MP, AUCD, and PDT. When 
both timing and pressure features were combined, the 
optimal feature subset contained the feature groups KDD, 
KUD, DD, KDU, PP, AUCD, and PTD and achieved 74% 
classification accuracy. Thus, adding pressure information 
to timing features led to a 6% absolute improvement in 
classification (i.e., from 68% to 74%). Hence, combining 
timing and pressure features provides higher classification 
accuracy than using each feature type in isolation. 

The confusion matrix for the optimal keyboard feature 
set is shown in Table 4. There is no significant correct class 
prediction imbalance, as the number of samples correctly 
classified do not differ by much (67 vs. 73). The same 
happened when the prediction did not agree with the 
actual class label (21 vs. 27). Finally, Fig. 14 shows the ROC 
of the optimal keyboard feature set vs. a random classifier5. 
The optimal feature subset obtained an AUC equal to 0.77, 
outperforming the random classifier (AUC: 0.50).   

Results per participant for the optimal feature subset 
model are shown in Fig. 15.a. The classifier obtained 
accuracies of 60% or higher for all but 3 participants, and 
accuracy of 85% or higher for 10 participants. It is 
important to note that these classification results were 
obtained using a leave-one-participant-out procedure; in 
other words, the classifiers are subject independent. 
Classification performance would likely increase if the 
classifier were to be adapted to match the characteristic 
typing patterns of each user. 

6.4 Mouse Analysis 

Mouse pressure data was lost due to Bluetooth connection 
problem for three sessions, and as mentioned earlier, one 

stressed if at least two out five  ne ighbors are also stressed).  

 

Fig. 13. Box plots for NASA-TLX. * indicates statistical-signif icance. 

TABLE 3 
ACCURACY FOR DIFFERENT KEYBOARD FEATURE SETS 

Feature Set Accuracy 

(St. dev) 

Keystroke Only 

Full: [DD, KDU, KUD, KDD] 65.1 % 

(16.1 %) 

Optimal: [DD, KDU] 67.7 % 

(13.7 %) 

Pressure Only 

Full: [MP, PP, STD, PD, AUCD, PTD] 67.1 % 

(14.2 %) 

Optimal: [PP, MP, AUCD, PTD] 71.3 % 

(13.5%) 

Keystroke and Pressure  

Full:[KDD,KDU,KUD,DD,MP,PP,STD,PD,AUCD,PTD] 72.4 % 

(14.2 %) 

Optimal: [KDD,KUD,DD,KDU,PP,AUCD,PTD] 74.5 % 

(14.7 %) 
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participant dropped out after the second session and one 
was left-handed. Thus, we ended up with mouse data for 
87 sessions, totaling 174 samples (87 sessions x 2 blocks). 

It is tempting to compare mouse features between the 
easy and difficult CWT. However, this comparison would 
yield overly optimistic results since the difficult CWT 
Following the procedures outlined for the keyboard 
analysis, we perform a leave-one-participant-out analysis 
with the mouse data. Then, we computed LDA projections 
for three different combinations of features: (1) trajectory 
features only, (2) pressure features only, and (3) trajectory 
features and pressure features combined. All these features 
were projected into a one-dimensional feature and fed to a 
classifier. 

Classification results are reported in Table 5. As with the 
keyboard analysis, we used exhaustive search to find the 
optimal set of features when building our models. 
Trajectory features (70%) outperformed pressure features 
(61%), both performing above chance levels. More 
importantly, combining both types of features into a single 
vector yielded higher classification performance (73%) 
than either feature alone, a 3% absolute improvement in 
classification accuracy from using trajectory features alone. 

Table 6 shows the confusion matrix of the actual vs. 
predicted class label for the optimum feature subset 
trained using trajectories and pressure features. As in the 
keyboard analysis, there is neither significant imbalance 
between the elements of the main diagonal nor of the anti-
diagonal. This indicates the best performing classifier did 
not obtain the highest classification rate by mainly 
predicting one class over the other. Fig. 16 shows the ROC 
curves of the classifier trained with the optimum feature 
subset using mouse data and that of the random classifiers. 
As in the keyboard analysis, optimum feature set trained 

using mouse data obtained an AUC (0.75) superior to that 
of the random classifier (0.50).  

Classification rates per participant are shown in Fig. 
15.b. Our models obtained classification accuracies above 
60% for all but one participant, and 80% classification 
accuracy or higher for seven participants. As with the 
keyboard analysis, it is important to note that these 
classification models are subject-independent. It is likely that 
higher performance may be obtained by adapting a generic 
classifier to fit the individual mouse behaviors of each user. 

7 DISCUSSION 

We have presented an approach to monitor work stress by 
analyzing subtle changes in keyboard and mouse usage 
during knowledge work tasks. Our approach involves 
instrumenting computer peripherals that are already part 
of modern workplace settings with low-cost external 
sensors. We developed an experimental protocol to 
simulate two typical tasks in knowledge work (completing 
questionnaires and writing reports) that require keyboard 
and mouse interaction. With our instrumented 
peripherals, we are able to detect consistent changes in 
behavior caused by mild stressors. 

We designed a protocol that addresses the limitations 
found in the literature; see Section 2.4. First, we used vetted 
stressors (Stroop effect and mental arithmetic) in our 
emotion-induction procedure and validated their effects 
by analyzing changes in arousal and valence through self-
report measures. Second, we carefully avoided 
confounding factors that may yield overly optimistic 
results, such as time pressure, one of the most widely used 
stressors in affective computing. Third, we carried out a 
multiday user study, totaling four sessions for each 
participant, and showed that our method is robust to inter-
session variability. Finally, we provided detailed 
instructions about our procedure, to enable other 
researchers to replicate our study and compare their 
methods against ours. 

To analyze whether we could correctly discriminate 
between neutral and stress conditions, we designed 
participant-independent models and trained them with 
keystroke or mouse dynamics and pressure features from 
the respective devices. We believe that classification 
accuracies could have been even higher if we had trained 

 

Fig. 14. ROC for the optimal feature subset on keyboard data. 

 

Fig. 15. Classif ication accuracy for each participant using the best-
performing input set from (a) keyboard, and (b) mouse.  

 

Fig. 16. ROC for the optimum feature set on mouse data. 
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participant-specific classifiers, but the limited number of 
samples per participant was not sufficient to successfully 
build a model and test it. Although the recent literature [21, 
29, 59] suggests personalized models can lead to higher 
performance, we showed how participant-independent 
classifiers using simple and robust methods can also 
perform well. Participant-independent classifiers are more 
practical for workplace settings since they can be trained 
with a much larger number of samples and can be readily 
available for new workers. 

A major challenge when building participant-
independent classifiers is how to account for individual 
differences. For example, when under stress some people 
move the mouse cursor faster; others more slowly. In our 
analysis, we did not explicitly apply any type of feature 
normalization to account for these individual differences6. 
Instead, our classification approach projects the features 
onto the LDA subspace to minimize within-class scatter 
(i.e., intra and inter-individual differences) while 
maximizing between-class scatter (i.e., due to the stress 
manipulation). This step makes the classifier more robust 
against individual differences. 

Our results indicate that combining keyboard and 
mouse dynamics with their respective pressure features 
improves discrimination between neutral and stressed 
states. This suggests that features extracted from the two 
modalities (i.e., time vs. pressure) provide complementary 
information. However, since using all features during 
training is not necessarily beneficial, we used exhaustive 

 

 
6 In an early stage of our analysis, we tried normalizing the  data for each 

subject by computing the  z-score  of each feature across the  eight samples, 

search to find the set of features that provided the highest 
discrimination power for the trained classifiers. Exhaustive 
search was helpful in both the keyboard and mouse 
analysis, where we obtained the highest classification rates 
when using a reduced set of features.  

7.1 Limitations of our Work 

One of the challenges in affective computing research 
consists of labeling behavioral data with the proper 
emotional state. In our work, our classification models 
were trained on the tasks’ labels (i.e., the intended effect of 
the tasks), rather than on the participants’ actual stress 
levels. While the questionnaires we administered confirm 
that our experiments were successful in manipulating the 
participants’ stress levels, objective measures of stress by 
means of physiological stress responses would have 
provided additional validation. However, gathering these 
measurements is difficult using existing technology. The 
most reliable physiological measure of stress, 
electrodermal activity (EDA), requires placing electrodes 
at the fingers or the palms, which interferes with typing 
tasks. While measuring EDA from the wrist or the sole/feet 
is possible, it also has drawbacks; see Tsiamyrtzis et al. [72] 
for a recent guide comparing the accuracy of different EDA 
sensors and measurement configurations. Alternatively, 
perinasal perspiration, a measure known to correlate with 
EDA, can be captured from thermal imaging [73], but this 
requires specialized cameras.  

Even though our experimental protocol was designed 
to be realistic (filling out questionnaires and writing 
descriptions), performing tasks in a laboratory setting can 
still cause participants to behave differently than when 
they are in their usual work environments. Thus, our 
findings must be replicated with field studies where 
participants perform their daily computer tasks at work, 
using ecological momentary assessment (EMA) to provide 
the ground truth emotional state at the time of work [19]. 
Field studies would also allow collecting more data per 
participant, which could help build more robust prediction 
models or adapt generic models to each user. 

One potential limitation of our work was the use of 
desktop computers as opposed to mobile devices, such as 
laptops and tablets. Projections show that by 2023 there 
will be approximately four times as many new laptops and 
tablets as desktops [74]. However, these projections also 
show 80 million desktop shipments by the same year, a 
number that is far from negligible [74]. More importantly, 
there is nothing inherent to our approach that would 

but the  results were large ly identical when compared to the  ones 
presented. 

TABLE 4 
CONFUSION MATRIX FOR THE OPTIMUM FEATURE SET ON 

KEYBOARD DATA 

P
re

d
ic

te
d

  Actual 
 Neutral Stressed 

Neutral 67 27 

Stressed 21 73 

 

TABLE 5 
ACCURACY FOR DIFFERENT MOUSE FEATURE SETS 

Feature Set Accuracy 

(St. dev.) 

Trajectories Only 

Full: [DD, MD, TD, OS, MS, DC] 64.1 % 

(12.1 %) 

Optimal: [MD, TD, OS] 70.2 % 

(17.8 %) 

Pressure Only 

Full: [CFM, CFS, GFM, GFS] 56.5 % 

(15.2 %) 

Optimal: [CFM] 61.1 % 

(19.8 %) 

Trajectories and Pressure  

Full: [DD,MD,TD,OS,MS,DC,CFM,CFS,GFM,GFS]  70.1 % 

(16.1 %) 

Optimal: [DD, OS, DC, CFM, CFS, GFS] 73.3 % 

(15.5 %) 

 

TABLE 6 
CONFUSION MATRIX FOR THE OPTIMUM FEATURE SET ON 

MOUSE DATA 

P
re
d
ic
te
d

  Actual 
 Neutral Stressed 

Neutral 62 21 

Stressed 25 66 
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prevent it from being used in laptop keyboards and 
touchpads, other than we would need to design new 
features (e.g., specific to touchpads) and adjust the 
classification models accordingly. Yet, the rise of 
popularity of laptops and tablets cannot be ignored and we 
strongly recommend future efforts on the detection of 
stress using these devices – some of which already provide 
touch intensity [55, 56, 75]. 

7.2 Future Work 

Our work may find application in the domain of user 
authentication [17, 18], where instrumented devices could 
be used to gather additional biometric information to 
differentiate between valid users and imposters. One 
situation where current user authentication methods 
might fall short is when changes in keyboard and mouse 
due to stress are recognized as an anomaly (i.e., potential 
imposter). To address this shortcoming, user 
authentication algorithms would require training on both 
unstressed and stressed data from multiple users.  

Most office tasks are computer-based and involve 
significant mouse and keyboard usage (e.g., writing an e-
mail, filling out a spreadsheet). As such, future work on 
stress detection could benefit from considering tasks 
which use the keyboard and mouse simultaneously, and 
build stress detection models that use both sets of features. 
This may improve the accuracy of the stress detection 
models, since complementary information can be extracted 
from both mouse and keyboard usage.  

The goal of his research is to help people suffering from 
stress. Thus, ultimately we envision deploying our system 
in a live workplace, where a software gathers data to detect 
moments of stress and then recommends just-in-time 
relaxation interventions to employees (e.g., perform deep 
breathing exercises, go for a walk, play a relaxation game) 
to help them better cope with acute stress. While it can be 
difficult to deploy our system at a large scale since pressure-
sensing peripherals are rare, we think the simplicity and 
low-cost of our design would not be barriers. 

8 CONCLUSIONS 

In this paper, we investigated whether keyboard and 
mouse pressure, combined with keystroke dynamics and 
mouse dynamics, could be used to predict users’ stress 
levels. We designed a simple and cost-effective pressure-
sensitive augmentation for keyboard and mouse using 
force-sensitive resistors and low-cost microcontrollers. To 
test our approach, we recruited 25 participants to perform 
two sets of tasks under neutral and stressed conditions. We 
built a generic classifier by projecting keyboard and mouse 
features with LDA and fed into a nearest neighbor 
classifier. Our leave-one-participant-out analysis showed 
that combining pressure features with keystroke and 
mouse dynamics improves classification rates. We 
achieved a subject-independent classification rate of 74% 
with the keyboard device and 73% with the mouse device, 
an average absolute improvement of 6% and 3%, 
respectively, when adding pressure information to the set 
of keystroke and mouse dynamics. This work presents the 

first attempt to build a subject-independent classifier to 
predict stress with realistic tasks using a pressure-sensitive 
keyboard and mouse. This is especially important because 
it is a step closer to providing ways to automatically, 
continuously, and non-intrusively detect stress in the 
workplace. 
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