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Towards Participant-Independent Stress
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Abstract—Methods to measure w ork stress generally rely on subjective measures fromquestionnaires or require dedicated
sensors that are cumbersome to w ear and interfere with the task. To address this problem, w e propose a method to detect
stress unobtrusively using commodity devices (keyboards, mice) instrumented w ith pressure sensors. We propose a minimalist
design that can be easily replicated by other researchers using off-the-shelf and low -cost hardw are. We validate the designin a
laboratory experiment that simulates office tasks and mild stressors while avoiding methodological limitations of previous
studies. We compare stress-detection performance when using conventional features reported in the literature (keystroke
dynamics, mouse trajectories) augmented w ith information frompressure sensors. Our results indicate that pressure provides
additional information for stress discrimination; adding pressure information to keystroke dynamics and mouse trajectories
improves classification performance by 6% and 3%, respectively. These results show how devices that are already part of the
modern w orkplace may be used and enhanced to automatically and unobtrusively detect stress.

Index Terms— Stress detection; pressure-sensitive keyboard; pressure-sensitive mouse; keystroke dynamics; mouse

dynamics; affective computing

1 INTRODUCTION

Work stress is dramatically increasing as a result of
rising competitiveness, more intense workloads, and
longer and harder working hours [1, 2]. Although stress
can help people stay focused and motivated, severe stress
puts employeesata higher risk for health problems [3]. For
example, acute stress exacerbates negative coping
behaviors, such as smoking [4] and substance abuse [5],
and can alsolead to depression [6]. Monitoring stress levels
throughout the day may allow employees to identify stress
triggers and stressful episodes early on and develop
healthier coping strategies [7]. The gold standard for
monitoring stress objectively is stress hormones (e.g.,
cortisol, alpha-amylase) [8]. However, this method is
impractical in the workplace and only provides a single-
point measurement rather than a continuous measure.
Self-report instruments can also be used [9, 10], but these
instruments are sensitive to subjective biasesand also only
providesingle point measurements. Wearable sensors can
also be used to measure physiological correlates of stress,
such as heart rate variability and skin conductance [11, 12].
However, the most commonamong these measures (wrist-
based heart rate and skin conductivity) are sensitive to
motion artifacts from physical activity (e.g., walking) or
even subtlebehaviors (e.g., typing). Contactless measures,
such as facial expression analysis from webcams [13], can
also be used but are subject to changes in illumination,
differences in skin tones,among others.
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Several studies have explored the possibility of
monitoring stress indirectly by analyzing keyboard and
mouse use patterns [14-16]. Keystroke and mouse
dynamics havelongbeen used for user authentication [17,
18] and recently to infer emotional state [15, 19, 20]. Most
of these studiesuse timing andlatency information, which
can be easily obtained from off-the-shelf devices. Studies
havealsoexplored the use of experimental keyboards and
mice to predict stress. For example, Hernandez et al. [21]
found greater typing pressure and mouse grip pressure
when subjectively-rated stress and electrodermal activity
levels were higher. This suggests that additional stress-
related information may be obtained by instrumenting
keyboards and mice with sensors.

This study presents two low-cost designs to measure
typing pressure and mouse-grip pressure from off-the-
shelf devices. Our designs use force-sensitive resistors
placed on keyboards and mice to record changes in
pressure. To evaluate our design, we conducted a user
study aimed at detecting stress while participants
completed two conventional tasks in knowledge work:
typing textsand filling out multiple-choice questionnaires.
Then, we trained binary classifiers to discriminate stress
vs. neutral states using features derived from keystroke
and mouse dynamics, and from our pressure
measurements. We obtained higher classification accuracy
when combining keystroke and mouse dynamics with
their corresponding pressure features.

The rest of the paper is organized as follows. First, we
discuss related work on using keystroke and mouse
information to recognize emotion. Next, we present our
keyboard and mouse designs, as well as the experimental
protocol. Finally, we presentresults from the user studies,
followed by a discussion of findings and conclusions.
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2 RELATED WORK

Various sensing modalities have been used for emotion
recognition, including facial expression and speech [22],
physiological sensors [23], and thermaland visual imaging
[11, 24]. Other approaches have relied on measuring
changes in behavior, especially keyboard and mouse usage
[25], thatmay be affected by the user’s emotional state. In
an early study, Zimmermanet al. [26] provided a rationale
for assessing user affect using keyboard and mouse.
Following this seminal work, dozens of publications have
investigated how these commodity devices can be used to
infer user affect, as wereview next.

2.1 Emotion Detection with Keystroke and Mouse
Dynamics

A number of features from keystroke dynamicshave been
explored to detect emotions, including typing speed,
latency, and pause frequency, to mention a few. Banerjee
et al. [27] found that individual keystroke patterns are
affected by the user’s emotional and cognitive states (e.g,
reduced typing speed whenin a negative emotional state).
Tsihrintzis et al. [28] used keystroke features to improve
visual-facial emotion recognition. They showed that
recognition of anger and sadness was greatly improved by
addingkeystroke features.

In most of the emotion-detection literature, the studies
were conducted in a laboratory setting, but a few studies
sought to capture natural behaviors while participants
performed daily tasksin the wild [19, 29]. As an example
of an in-situ experiment, Epp et al. [19] used keystroke
dynamics features to model data collected from 15
different emotional states. The authorslogged keystroke
information from 26 participants for anaverage of 4 weeks.
For each sample logged, participants also rated their
emotion using self-reports. The authors reported 77-88%
correct classification of confidence, hesitance, nervousness,
relaxation, sadness, and tiredness.

While in-situ studies can capture more realistic
interactions, they are subject to uncontrolled external
factors. For this reason, most of the emotion-detection
literature has relied on lab studies. Khanna and Sasikumar
[30] used keystroke features to differentiate between
positive, negative, and neutral emotional states. They
found that most people tend to type more slowly whenin
a negative emotional state and faster while in a positive
emotional state. In a related study on typing patterns,
Bixler and D'Mello [31] used task appraisals and stable
traits to differentiate bored, engaged, and neutral
emotionalstates. Their model achieved 56 % accuracy.

Several studies have focused on differentiating between
low and high cognitiveload conditionsbased on keystroke
and mouse dynamics[32-38]. Asanexample, Lim et al. [25]
used both keystroke and mouse features to detect cognitive
load induced by time pressure and mental-arithmetic
problems. They found that when problem difficulty
increases, task error, task duration, stress perception, and
mouse idle duration also increase, whereas mouse speed,
left mouseclickrate, and typing speed decrease. Brizan et
al. [34] have explored the use of keystroke dynamics
combined with linguistics to predict cognitive load levels.
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In their experiments, participants were asked to type freely
when asked to answer questions that elicited six different
levels of cognitive load. Their models were able to
differentiate the six cognitive load levels with above-
chance accuracy, and their best performing models
achieved 72% classification accuracy when differentiating
behavior elicited by the more extreme cognitive load
inducing prompts (level onevs.level six).

A good number of studies on cognitive load have
focused exclusively on mouse dynamics [33, 35, 36]. For
example, Chen et al. [33] studied the effects of cognitive
load while participants performed the primary task of
screening participants for a fictitious human resource
department. Cognitive load was elicited by a secondary
task, which popped-upon theuser’s screenand required a
classificationaction. They reported that, when under high
cognitive load, participants presented more frequent
contemplation (i.e., from 1-5 sec) and hesitation (i.e., from
0.5-1 sec) pauses in mouse activity, which was attributed
to hesitant/cautious behavior. Grimes and Valacich [36]
used mouse dynamicsto detect various levels of cognitive
load, elicited using N-back lag tasks. They observed higher
mouse distance traveled, more frequent direction changes,
and lower mouse speed during tasks performed under
higher cognitiveloads.

Some studies have also explored the use of keystroke
dynamics to differentiate stressed from non-stressed
behavior. For example, Gunawardhane et al. [14] collected
non-stress behaviors when participants (college students)
had no exam pressure, and during exam week. In their
study, keystroke features were extracted while
participants solved arithmetic problems. The authors
found significant differences in several features, such as
the duration of certain bigraphs and trigraphs, when
comparing stressed and non-stressed emotional states. In
a recent work, Lau [20] compared the efficacy of
personalized and generic models to predict stress from
keystroke dynamics. The author used a baseline-stressor-
recovery design, where stress was elicited using multi-
tasking and social evaluative threats. The personalized
models obtained accuracies in the range of 83-92%, while
the generic models achieved chance-level accuracy.

Although most of the studies reported in the literature
employ a single-day experimental procedure, a few works
analyzed how keystroke features generalize over multiple
sessions [15, 39]. For example, Vizer and Sears [39]
compared personalized and generic models to
discriminate high and low cognitive demand using
keystroke and linguistic features. In their study,
participants were asked to write freely about any topic
either in the presence of a stressor (N-back lag tasks) or
without it. Participants completed four baseline sessions
(used for normalization purposes) and tw o experimental
sessions, where high and low cognitive demand behavior
was collected. A subset of the participants completed 13
additional experimental sessions, which allowed for the
development of their personalized models. Their generic
model achieved 66% accuracy while their personalized
models reached accuracies in the range of 65-93%.

Some studies have focused exclusively on mouse
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dynamics to perform emotion recognition. Yamauchi [40]
investigated therelationbetween mouse activity and state
anxiety. In the study, participants performed a task where
they had to select and click geometric figures based on
their similarities. The author extracted mouse features
such as velocity and directional change, and fed them toa
support-vector-regression model to predict state anxiety
scores measured from questionnaires. He found that
correlation coefficients between predicted and observed
state anxiety scores were significantly higher than zero.
Sun et al. [16] modeled the arm-hand dynamics as a mass-
spring-damper system to study muscle stiffness during
mouse movement. Their participants performed a set of
abstract mouse tasks that involved pointing and clicking,
dragging and dropping, and steering the mouse cursor
through a tunnel. The authors used mental arithmetic to
induce stress and mindfulness meditation to induce
relaxation. They found higher damping frequency and
lower damping ratio when participants were stressed.
More recently, Hibbeln et al. [41] studied the relationship
between mouse movement and negative emotion. They
induced negative emotion by introducing delays and
errors into time-limited tasks. The authors found that
mouse movement distance increased and mouse speed
decreased during the tasks. They explained this
phenomenon in terms of attentional control theory, which
suggests that negative emotion decreases attention control,
shifting cognitive resources from goals to distractions.

2.2 Emotion Detection with Instrumented Devices
Keystroke and mouse dynamics features are easy to extract
and requirenospecialized hardware. For this reason, they
have been used extensively in emotion recognition, and
show promise as an approach to measure stress in the
workplace. However, researchers have found that the
pressure the user applies to the keyboard and mouse can
provide additionalemotion-related information. In a study
by Tsihrintzis et al. [28], 65% of the participants reported
typing harder whenangry, whereas Karunaratne et al. [42]
found that 15% of participants reported an increase in
typing pressure whenunder stress. A few workshave also
observed variations in mouse grip pressure when
experiencing different emotions. Picard et al. [43], for
example, observed an increase in mouse grip pressure
when participants were frustrated. Prior studies have also
found that mental stress increases arm muscle activity and
muscle tension [44, 45]. As such, pressure sensors could
capture these changes and provide additional features to
assist with automatic emotion detection. How ever, to the
best of our knowledge, there are currently no keyboards or
mice embedded with pressure sensors available on the
market and littleresearch has beenreported regarding this
typeofdevice.

To our knowledge, the first work on instrumenting a
computer mouse with pressure sensors dates back to 1993
[46].In this work, the authors built a for ce-sensing mouse
to investigate injuries related to intensive mouse use. The
authors used foil strain gauges to measure finger forces
applied to the mouse sidesandbuttons. They analyzed the
applied force to distinguish between different activities,

such as holding, moving, and dragging. In a later study
[47], the authors recruited 16 subjects to test their proposed
force-sensing mouse. They collected mouse data while
participants performed their daily work in a field setting,
and standardized tasks (e.g., pointing, dragging) in a lab
setting. The authors observed that changesin applied force
were task-and setting-dependent, but not time-dependent.
In a subsequent study [48], the authors delivered stress by
using time pressure and verbal provocation during a text
editing task. They collected finger forces with their mouse,
and physiological measures and subjective ratings of
stress. They found higher forces applied to mouse buttons
and more repetitive wrist movements during stress
compared to a control condition. In 2001, Qi et al. [43]
instrumented a computer mouse with eight pressure
sensors. They asked participantsto fill out a web form and
delivered a fictitious data-loss problem at submission time
by erasingall the content they had filled out, with the goal
of inducing frustration. Since participantshadlimited time
to complete the task, they also experienced time pressure
the second time they filled out the form. Initial tests on a
limited number of participants were promising, achieving
88% classification accuracy.

In 2009, Dietz et al. [49] proposed an experimental
keyboard designcapable of sensing the forcelevel atevery
depressed key by means of a pressure-sensitive
membrane. In subsequent work, Hernandez et al. [21] used
that experimental keyboard as well as a Microsoft Touch
Mouse (a mouse with capacitance sensors on its surface) to
analyze how typing pressure and mouse grip pressure
change under stress. The authors collected data from 24
participants performing typing tasks and mouse-clicking
tasks under relaxed and stressed conditions. They
observed significantly higher typing pressure when
comparing the stressful condition tothe relaxed condition,
for around 85% percent of participants. They also found
increased capacitance value on the mouse for 75% of the
participants, which indicates an increased hand contact
area on the mouse surface. However, they did not report
how these results compare to using traditional keystroke
analysisfor stress detection.

2.3 Emotion Detection with Mobile Devices

Mobile devices have become an integral part of modern
life, with an estimated 3.5B people using smartphones[50].
Accordingly, a number of studies have investigated how
typing behavior on mobile devices can be used to
recognize emotions [51, 52]. In a field study, Ghosh et al.
[51] recorded participants’ keystrokes on their
smartphones during daily activities. Participants used
typing-intensive apps (e.g., instant messaging, email) and
self-reported their affect right after each typing session.
The authorsobtained a classificationaccuracy of 73 %when
differentiating between stressed, happy, sad, and relaxed
states. Lee et al. [52] developed a Twitter-like application
that logged participants’ keystrokes and additional
contextual information such as illuminance, location, and
weather. Their models obtained 68% classification
accuracy when differentiating happiness, surprise, anger,
disgust, sadness, fear, and neutral emotions. Sarsenbayeva



et al.[53] investigated the effects of stress on several daily
life-like tasks, including a text entry task in which
participants were asked to type both easy and difficult
texts, under neutral and stressed states. Mental stresswas
elicited utilizing the Trier Social Stress Test (TSST) [54] and
mental arithmetic tasks. The authors found that
participants tended to make more errors when under stress
(though the effect was not significant) and a significant
effect between text difficulty and number of errors.

Other studies have taken advantage of additional built-
in sensing capabilities (e.g., accelerometer, pressure-
sensing screen) when recognizing emotion on mobile
devices. As an example, Carneiro et al. [55] collected a
multimodal dataset while participants performed tasks
under neutral and stressed mental states, elicited by means
of time pressure, sounds, and vibration. The dataset
included accelerometer data, touchintensity and duration,
video recordings, and others. The authors performed
participant-specific statistical analysis and observed
significant differences in at least one feature group when
comparing stressed and unstressed behavior. They
reported thatacceleration, and mean and maximum touch
intensity were the most successful features for recognizing
stressed behavior. In recent work, Exposito et al. [56]
investigated how stress is manifested in touchintensity. In
their user studies, participants performed expressive
writing, where they were asked to write about neutral and
stressful memories. The authors observed a significant
positive correlationbetween the increase in touch intensity
and self-reported stressacross the two conditions.

2.4 Limitations of Previous Work

A number of the above studies have reported high
accuracies, even when performing multi-emotion
classification. We believe that some of these results are
optimistic, owing to their experimental design and data
analysis, whichwe discuss below.

One of most common type of stressor in the above
studies is time pressure (e.g., [21, 32, 44, 47, 57]). Time
pressure is an effective stressor, but its use is problematic
when combined with keystroke and mouse timing
features. Since time pressure is confounded with stress, it
is not clear whether an algorithm is predicting stress or
simply detecting the natural changes in behavior caused
by the time pressure, since the analysesrely on timing and
latency features. A second problem is thelack of multi-day
protocols. In some cases [43, 58], classification results were
obtained by splitting data from the same session into a
training setand a testing set. This inevitably overestimates
theaccuracy of the classification models due to the highly
correlated nature of the time-series data. To demonstrate
that themodelsare robust, we feel that they mustbe tested
across different sessions. As noted by Lau [20], several
works lack a vetted emotion-induction procedure. For
example, some studies elicited emotions by asking
participants to read a text [58] or watch a video clip [26],
but these emotion-elicitation methods were not validated
with physiological measures or subjective ratings. Another
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problem in prior studies is the lack of sufficient details
about the experimental procedures, which can make it
difficult to replicate a study or compare results across
studies [28,30, 58, 59].

To our knowledge, only two studies [15, 39] have
employed multiday protocol with a vetted stressinduction
procedure. However, these studies only involved
keystroke and linguistic feature analysis. Our paper aims
toaddress all the limitations discussed here.

3 DESIGN OF THE PRESSURE-SENSITIVE
DEVICES

Due to thelack of pressure-sensitive keyboards or mice on
themarket, we proposea simple and low-cost design that
researchers may adopt to measure pressure with off-the-
shelfkeyboards and mice.

3.1 Keyboard Design
Our experimental keyboard uses an array of force-
sensitive resistors (FSRs) to measure typing pressure. FSRs
can be used to detect physical pressure, squeezing, and
weight. This type of sensor is easy to use and is low cost,
makingitideal for our design. However, most FSRssuffer
from signal drift, i.e., a monotonic decrease in resistance
when they are subject to a static load. Drifting is especially
problematic in our design because, when a keyboard is
standing on a surface, its weight naturally applies pressure
to the sensors, causing drift. To address this issue, our
design wuses ShuntMode FSRs manufactured by
Sensitronics!, shown in Fig. 1.a, which have low-drift
characteristics. The FSRs are arranged in a voltage-divider
configuration, withone terminal connected toa 5V power
source and the other connected to an analog input to a
microcontroller, as well as to ground by means of a 10kQ2
pull-down resistor. To stream data, we use an HC-06
Bluetooth module manufactured by KEDSUM, which is
also connected to the microcontroller. Wiring is shown in
Fig. 1.b. The HC-06’s RX pin expects a 3.3V input, so we
used a voltage divider to reduce the input voltage from the
microcontroller from 5Vto03.3V.

Our design uses an off-the-shelf keyboard (Dell model
KB212-B). We chose this specific keyboard becauseit hasa
flat underside, most of its feet are close to corners of the

Microcontroller —f I1LJ_TI
@@=
YesR 10k0f

t Bluetooth
module

Fig. 1. Schematic of the circuit used in our instrumented keyboard.
(a) Size of the pressure sensor relative to a quarter dollar. (b)
Connecting the pressure sensor to an Arduino microcontroller, w hich
streams data to any Bluetooth device.
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case, and it has enough room to route the sensors to the
microcontroller. In addition, the keyboard is comfortable
and low-cost (note, though, that our design could be easily
adapted to many other keyboard models, including
laptops). We placed four FSRs on the underside of the
keyboard, near the four corners, and connected them to
analoginputs on the microcontroller, as shown in Fig. 2.

No changes were made to the upper side of the
keyboard. In addition, we attached gel bumpers to the
FSRs to distribute the pressure more efficiently across the
sensor surface. Whenthe user types, pressureis applied to
the keyboard, which in turn presses the bumpers that
apply pressure to the FSRs, generating a response. We
attached the FSRs to the keyboard using their built-in
adhesive tape, secured the cables with duct tape, and
connected them to the microcontroller. Finally, we
connected the keyboard’s internal ground and 5V pins to
themicrocontroller and Bluetoothmodule, eliminating the
need for an external battery. The sensors’ sampled
pressuredataat 100 Hz.

3.2 Mouse Design

Duringtheearly stages of the mouse design, we compared
two choices: capacitive sensors and FSRs. Capacditive
sensorshavebeen used to detectand measure positionand
force because of capacitance coupling [60]. In our first
prototype (Fig. 3.a), we used copper tape to build a
conductive surface as a capacitive sensor. We attached
copper tape to the mouse shell surface and covered it with
electrical tape to protect the sensor from abrasion and
prevent signal saturation. The sensors were placed on the
mouse buttons (one sensor for each button) and on either
side of the mouse. We used the same microcontrollers asin
the keyboard design. The entire circuit (except for the

Fig. 2. Top and back view of the instrumented keyboard. Four FSRs
(indicated by the yellow arrows) are placed on the back of the
keyboard and are connected to the analog inputs of an Arduino
micro-controller, w hich is used to interface with a computer.

sensor itself) is invisible to the users as it fits inside a
regular computer mouse and is powered from the mouse’s
own power line. We drilled four holes in the mouse shell
to connect the sensors placed on the outer part of the
mouse to the microcontroller inside the mouse shell.

Our second prototype (Fig. 3.b) also used capacitive
sensors. This time, however, we replaced the copper tape
with conductive paint, which has the advantage that the
sensor can be of any shape and can be placed inside the
mouse, underneath its shell, hiding it completely from the
user. We tested these two prototypes and found that both
sensors behaved similarly: capacitance values increased as
the user made more skin contact with the mouse. However,
wecould only observe anincrease in capacitance when the
users held the mouse unrealistically tightly.

This result led us to investigate the use of FSRs to
measure grip pressure. We compared FSR and conductive
paint by applying different weights to the sensors and re-
cording the corresponding responses. Results in Fig. 4
show a linear relationship between weight and FSR
response, w hereas the capacitance sensor saturates rather
quickly.Based on these results, we decided touse FSRs for
our final mouse design. Namely, we used an Interlink 408
FSR, a 0.6-inchwidestrip that canbe cut tolength.

As with the two capacitive prototypes, w e attached four
sensors, two on the L/R buttons and two on the sides of the
mouse. Microcontrollersand circuits were able to fit inside
the mouse shell, and sensors were connected to the
microcontrollers through four holes drilled in the plastic
shell. The measurement circuit for these sensors is the
same as the one proposed for the pressure keyboard (Fig.
1.b). An example of the FSR-based prototype is shown in
Fig.3.c. During pilot studies, we observed that people used
a variety of grip patterns (e.g., palm grip, claw grip, tip grip)
with this mouse, which introduced undesired variability
into the sensor data. To overcome this issue, we created a
fourth design using a vertical mouse (Anker Ergonomic).
The ergonomic design of this mouse encourages users to
grip the mouse consistently, thus reducing variability.

Fig. 3. Various pressure-sensitive mice prototyped. (a) Mouse w ith
copper tape on the surface. (b) Mouse with conductive paint
underneath the shell. (c) Regular mouse w ith four FSRs. (d) Vertica
mouse w ith four FSRs covered by black tape.
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Fig. 4. Weight vs. FSR sensor response (blue curve) and
conductance response (red curve) in arbitrary units (a.u.).

After attaching the FSRs and protecting them with duct
tape, we obtained the final design of the proposed
pressure-sensitive mouse shown in Fig. 3.d. As in the
keyboard design, we setthe FSRs” sampling rate to 100 Hz.

4 EXPERIMENTAL PROTOCOL

We conducted a user study to investigate whether the
proposed pressure devices could be used to detect stress.
We were particularly interested in determining how
features extracted from the pressure signals compared to
traditional keystroke and mouse dynamics analysis.
During the experiment, software running in the
background logged the typing pressure, mouse pressure,
keystrokes, and mouse event-related information.

In this work, we adhere to Lazarus and Folkman’s
definition of stress [61], which states that stress is
experienced when a person perceives that the “demands
exceed the personal and social resources the individual is able to
mobilize.” Thus, mental distress (i.e., negative stress) is
caused when the mental resources cannot appropriately
deal with the demands posed. In our experiments, the
demands we impose upon our participants are delivered
by means of cognitive interference, cognitive load, and
rapid decision making — explained in more detail
throughout this section. As such, we sought to elicit and
capture changes in behavior when participants experience
mental distress, whichis often assodated with an increase
of arousal and decrease of valence.

4.1 Overview

The user study consisted of four sessions, each session
performed on a different day. Fig. 5 shows the structure of
each session. First, we asked participants to fill out a
questionnaire about their arousal and valence at that
moment. Ifit was their first session, w e also asked them to
provide information about computer use (how long they
have been using computers and how frequently they use
them). After filling out the pre-experiment questionnaire,
weinstructed participants to proceed to the study desk and
start the experiment. Next, participants started either the
control or experimental block (counterbalanced). In each
block, participants performed a priming task for 5 minutes,
followed by a 10-minute writing task. After completing the
priming and writing tasks, participants reported their
perceived valence, arousal, and workload by filling out a
questionnaire using the mouse (details to follow). During
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Pre-Survey

Control Block

Congruent CWT .
7-point SAM
- NASA TLX
Writing Task 7-point SAM
NASA TLX
Calming Video Blocks were

counterbalanced
)

Experimental Block

Incongruent CWT
! 7-point SAM

>
Wiriting Task + NASA TLX
MATs 7-point SAM
NASA TLX

Fig. 5. Procedure of the experiment. The order of control and
experimental blocks w ere counterbalanced.

the control block, participants performed the tasks in an
easier mode, while in the experimental block they
performed a more challenging version of the tasks
designed toinduce stress. We provide details of both tasks
in the next section. Once participants finished the first
block, they were asked to watch a 3-minute transitional
video with images from nature and calming background
music. Next, participants started the second block (either
the control or experimental block, depending on the first
block completed), whichalso lasted 15minutes. At the end
of each session, we thanked and dismissed participants. At
the end of the last session on day 4, participants were
debriefed and compensated with a $30 gift card.

4.2 Priming Task: Stroop Color-Word Test

The priming task was designed to influence the
participants’ behavior during the subsequent
questionnaire and writing task. Namely, participants were
asked to complete the Stroop Color-Word Test (CWT), a
cognitive task commonly used to elicit stress via cognitive
interference and rapid decision making [62-64]. In
particular, Tulen et al. [64] have shown that the CWT
simultaneously induces four types of reactions that are
required for a suitable stress test: 1) psychological changes
that indicate increased distress, 2) physiological changes
that indicate sympathoadrenal activation, 3) muscular
exertion as partof the fight-flight defense reaction, and 4)
hormonal changes, reflected in plasma and urinary
catecholamines, and plasma cortisol and prolactin.

For our study, we developed a version of the CWT
which randomly prompted participants to either choose
the correct font color or text of the word. An example is
shown in Fig. 6. In this particular trial, the font color
(orange) does not match the text (blue) and the instructions
ask the participant to choose word (i.e., blue). If the
instructions had asked to select color, the correct choice
would have been orange. We implemented two versions
of the CWT: difficult and easy. In the difficult mode,
participants were presented with incongruent stimuli in
which the font color did not match the text, asin Fig. 6, and
had to select the correct answer from four options, which
were shown in white font color. In the easy mode
participants were presented with congruent stimuli, i.e.,
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Score: 2

Choose

Fig. 6. Stroop Color-Word test variant used in our experiments. Every
round, the participants must select their choices using the mouse.
The four options are positioned on the corners of the screen.

thetargetword’s font color and its textalways matched. In
addition, the four options were shown with their
respective font colors. In either mode, whenever the
participant selected the wrong option or took more than5
seconds, the CWT played a loud buzzer sound and
displayed a visual message as an extra stressor. Note that
thesole purpose of this task wasto elicit stress prior to the
subsequent tasks, whichare described next.

4.3 Writing Task

In this task, participants were presented with various
classical paintings and were asked to describe them (i.e,
how characters are dressed, what activities they are
performing). We also encouraged participants to come up
with a storybehind that picture. Fig. 7.a shows an example
of a description for the Story of Golden Locks painting by
Seymour Joseph Guy [65]. For each painting, participants
had towriteat least200 wordsbefore they were allowed to
move to thenext painting. Withineach block, we presented
up to three paintings to participants, depending on how
fast they completed each description. The task completed
when they finished describing three paintings or when
time ran out after 10 minutes, whichever came first. In
total, weused 24 paintings in our experiments, which were
never repeated for a participant.

To make the writing task more stressful, participants
had to perform mental arithmetictasks (MATs) during the
experimental block. MATs have been extensively used to
create stress by inducing high cognitive load, intensive
mental demand, andrapid decision making [44, 63, 66, 67].
It has been shown that performing MATs leads to higher
self-reported stress, systolic and diastolic blood pressure,
heart rate, urinary catecholamines, salivary cortisol, and
electromyogram activity [44].

Our interfaceis shownin Fig.7.b. While describing the
paintings, our software prompted MATs at intervals
specified by sampling a Poisson distribution with a mean
of 30 sec. When answering a MAT, the participant had to
choose one of the four provided options within5 sec. If the
participant failed to select the correct option or ran out of
time, aloud buzzer was played.

4.4 Self-Reported Emotional State and Workload

All participants were asked to complete a questionnaire, in
which they reported their perceived valence, arousal, and

In this painting, there are three girls in a room. Two of them
are tucked in and the other one is sitting on the bed reading
a story from a book for the two little girls. Based on their
clothes and on the furniture inside the room, this painting
seems to be from the mid 1800s. There’s a large window on
the wall behind the bed and some clothes hanging in some
sort of clothes rack. The older girl is wearing a fancy brown
dress and boots, what makes me think they are part of an
upper class family. | believe they are siblings, and the older
girl helps taking care of the little ones. Based on the look of
the little girls, they are not sleepy at all... | guess they just
want to get up and play!

Roll over the image to zoom in

73 words left

(a)

In this painting, there are three girls in a room. Two of them

are tucked in and the other one is sitting on the bed reading

a story from a book for the two little girls. Based on their
i,
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Roll over the image to zoom in

73 words left
(b)

Fig. 7. (a) An example of a painting and its description; (b) the same
painting and description, overlaid with a mental arithmetic task during
the writing task. Here, the submit button w as deactivated because
the participant has only w ritten 127 w ords.

perceived workload after finishing each task in both the
control and experimental blocks. The questionnaire served
two purposes. First, itallowed us to determine whether the
stressors delivered were successful. Second, it providesan
opportunity to analyze changesin mouse behavior elicited
by the prior priming task. To do so, we compared the
mouse datalogged during the questionnaire after the easy
(control) CWT and after the difficult (experimental) CWT.
Weexpected changes in mousebehavior after the CWT to
bemore pronounced thanthose after the writing task.

Fig. 8 shows the user interface of the self-reported
questionnaire. For self-reported valence and arousal, we
used the 7-Point Self- Assessment Manikin [68], which has
been extensively used for self-reporting arousal and
valence. We expected participants to report lower valence
and higher arousal scores in the tasks performed during
the experimental block, as compared to the control block.

To assess task workload, we used the NASA Task Load
Index (NASA-TLX), a survey instrument that asks
participants to report their perceived mental demand,
physical demand, temporal demand, frustration, effort,
and performance on the tasks they just finished [69]. We
expected higher values of mental demand, physical
demand, temporal demand, frustration, and effort, and
lower values of performance reported for the experimental
block when compared to those of the control block.

4.5 Participants
We invited participants using our institution’s bulk mail
system, which sends the invitations to student and staff



How negative (unhappy) or positive (happy) do you feel at the moment?

o £ 5% £ % 7 7 S

How calm or excited do you feel at the moment?

- & % B R

Mental demand: How mentally demanding was the task?

Verytow [T T [ [ T T T [ [ [ [ [ [ [ [ T [ [ [ ] VeryHigh
Physical demand: How physically demanding was the task?

Verytow [T T [T T T T T T T T T T T T T T T 7] VeryHigh
Temporal demand: How hurried or rushed was the pace of the task?

Verylow [ T [T T T T T T T T T T T T T T T[] VeryHigh

Performance: How successful were you in accomplishing what you were asked for?
Verylow [T T T T T T T T T T T T T T T T T 1T
Effort: How hard did you have to work to accomplish your level of performance?
Verylow T T T T T T T T T T T T T T T T T T 1
Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

Verylow [T T T T T T T T T T T T T T T T T T T ] VeryHigh
- Next_________________________|

| Very High

] Very High

Fig. 8. Self-report questionnaire. Manikin questions are shown on top
of the questionnaire, and NASA-TLX questions on the bottom.

mailing lists. The inclusion criteria were that participants
should be 18 years or older and fluent in English. We
received approval from the Texas A&M University
Institutional Review Board (study #IRB2017-0183D) prior
to the study. We obtained written consent from each
participant before the first session started. In total, 25
participants (9 male and 16 female) participated in the
study. One of the participants was left-handed, so we
decided not to consider his data in the mouse analysis.
Participants had an average age of 22 years (standard
deviation (SD): 8.1). All participants reported using
computers for at least 2 years (average: 13 years, SD: 6.8
years) and at least 5 hours of weekly usage (average: 28
hours, SD: 15.3 hours). One participant decided to drop out
after the second session for personal reasons unrelated to
theexperiments, but we wereable to use the data from her
first two sessionsin our analysis.

5 DATA ANALYSIS METHODS

5.1 Keyboard Features

Weextracted two types of features from the keyboard data:
keystroke dynamics features? and pressure features; see
Table 1. We chose keystroke dynamics features that have
been used extensively in the affect-recognition and user-
authentication domains [19, 26, 70]; see Fig. 9 for an
illustration of these features. To define the set of pressure
features, weinitially referred to the works of Hernandez et
al. [21], Lv et al. [58], and Carneiro et al. [55]. From these
works, we used the features mean pressure, maximum
pressure (referred to as peak pressure), and pressure
standard deviation, and combined them with additional
pressure features we designed. As summarized in Table 1,

2 In the keystroke dynamics literature, a key press is called a keydoun
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Fig. 9. Keystroke features computed over consecutive key events.
KD; and KU, represents the i-th keydown and keyup events.

weextracted sixfeatures to capture the pressure signature.

To extract pressure features, we sampled the pressure
sensor signal only when keydown events occurred. This
allowed us to discard pressure measurements when there
wasnokeyboard activity. In a first step, we subtracted the
staticload (i.e., keyboard weight) from each sensor's raw
pressure time series, which helped normalize sessions
from different days and different participants. Then, we
assigned a pressure measurement to each keypress by
choosing the maximum pressure value between the
currentand thenext keydown event, which werefer to as
Peak Pressure (PP); see Fig. 10. To compute the features
Pressure Difference (PD) and Pressure Time Difference
(PTD), we considered the sampled pressure (PP) as the
reference value, as described above. The Mean Pressure
(MP) and Standard Deviation (STD) features represent,
respectively, the mean and standard deviation of each
pressure response. Finally, the feature Area Under the
Curve Difference (AUCD) is obtained by computing the
AUC of each pressure response, and then calculating the
differencein AUCbetween consecutive keys.

We considered keydown and keyup events only for
keys in the range A, B, ..., Z. Hence, the features
considered are calculated for either each single key (A, B,
..., Z) or pairs of keys ([A,A], [AB], ..., [Z,Z]), depending
on whether the feature involves a single key or a pair of
keys. For each feature, we used its average value across the
entire session block. In instances where a key or pair of

550 J
500 /
S 450
& 4
@ 400 p /
2 /
@ 350
a
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>
250
12 14 16 18 20
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Fig. 10. Segment of pressure data along w ith keystroke information.
Red vertical lines represent keydown events; black arrows point to
the pressure values chosen to represent the pressure of each
keystroke, w hich wereferto as the Peak Pressure (PP) feature.

event, and a keyrelease is called a keyup e vent.
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keys wasnotobserved during a session, the corresponding
features were assigned a value of zero. In summary, the
features KDU, MP, PP, and STDhave dimensionality 26 (26
keys), and the features KDD, KUD, DD, PD, AUCD, and
PTDhave dimensionality 676 (26 keys x 26 keys).

As mentioned previously, we use MATs during the
writing task to elicit stress. However, this procedure also
interrupts the participants’ writing process, so keystroke
dynamics during this period should not be used. Namely,
we observed that typing speed decreases to zero while
participants are answering the MATs (as expected) and
that, once participants resume typing, it takes an average
of 2 seconds (or 5 keystrokes) for their typing speed to
return to its average level. Hence, for stress detection
purposes weignore any keystroke logged during the MAT
and five additional keystrokes after each MAT. Further,
our analysis showed that the sensor placed at the bottom-
left corner (i.e., close to the Z key) was the most sensitive
of the four sensors; this was likely because the bottom -left
sensor was the closest sensor for 60% of the keys examined
in our study (the 26 alphabetical keys). Therefore, all
preprocessing methodsand dataanalyses arebased on the

pressure time series obtained by the bottom-left sensor®.

5.2 Mouse Features
We extracted two types of features from the mouse data:

TABLE 1
KEYBOARD FEATURES USED. KD;: KEYDOWNAT TIME i, KU;:
KEYUP AT TIME i, AND K;: KEYSTROKE AT TIME i

mouse dynamics and pressure measurements from the
FSR sensors. As with the keyboard dynamics, we chose
mouse dynamics features that have been used in the
related literature [25, 40], with the exception of the
pressure features, which weneeded to design on our own.
The mouse features are listed in Table 2. We extracted six
features: two trajectory features (travel distance and
direction change), two speed features (overall speed and
moving speed), and two timing features (dwell duration
and moving duration), calculated across the entire session.
For example, the Travel Distance (TD) feature is the total
distance covered by the mouse during a session. We
extracted four pressure features from the FSR sensors. Two
of these pressure features were from the FSR on the left
click button: mean and standard deviation of the click
forces (since no right-click was required during our
experiments, we did not extract any features from the FSRs
on theright-clickbutton). The other two features were the
mean and standard deviation of the grip force, measured
from thetwo FSRs on the sides; see Fig. 3.

As with typing pressure, we only considered pressure
values during periods of mouse activity. We used the
maximum peak valueimmediately after the clickevent as
the clicking force. As for the grip force features, we
sampled the FSR time series whenever a user interaction
event occurred (e.g., cursor movement, click).

5.3 Classifier Design
Once the time serieswere preprocessed (as describedin the
previous two sections), the feature extractor module

Feature Acronym Description converts raw data into feature sets, which are then passed
Keystroke Dynamics to a binary classifier trained to discriminate between
Keydown- KDD(KDyKD;,,) Time betweentwo
Keydown consecutive keydown TABLE 2
events Mouse FEATURES USED IN OUR ANALYSES
Keydown-Keyup  KDU(KD,KU;) Durationofkey press Feature Acron.  Description
(a.k.a. dwell time) Mouse trajectories features
Keyup-Keydown  KUD(KU,KD;,,) Time b/w releasing a Dwell duration DD How long the mouse is idle
key and pressing the Moving duration ~ MD How long the mouse moved
next one (a.k.a. flight Travel distance TD Cumulated distance in pixels that
time) the mouse cursor moved
Digraphduration ~ DD(KD, KUy,)  Time between pressing Overall speed 0os 0OS=TD/(DD+MD)
akey andreleasing the Moving speed MS Speedonly during mouse
consecutive one movement. Givenby MS=TD /
Pressure features MD
Mean Pressure MP(K) Pressure value Directionchange DC Cumulative direction change (in
Peak Pressure PP(K;) Peak pressure value rad) that the cursor traveled
Standard STD(K) Standard deviationof Pressure features
Deviation a pressure response Click force mean ~ CFM Mean ofthe click peak values
Pressure PD(K;, Ki11) Difference between from the FSR on the left click
Difference two consecutive button
pressure readings Click force std CFs STD ofthe click peak values from
AUC Difference AUCD(K,K;,,)  Difference between the the FSR on the left click button
AUC oftwo Grip forcemean ~ GFM Mean grip force (gripforce
consecutive pressures defined as the sum ofleft-side
Pressure Time PTD(K, Ky 1) Time difference of two and right-side FSR)
Difference consecutive pressures Grip force std GFS STD ofthe gripforces
3 In a separate experimentnot re ported here, we compared performance  virtually identical.

when usinga single sensor vs. using the four sensors, and the results were
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neutral and stress conditions, as described below. Due to
the large number of features relative to the number of
samples in our dataset, we used linear discriminant
analysis (LDA) [71] to reduce the dimensionality of the
feature vector. LDA projects the features in a way that
maximizes the ratio of between-classscatter to within-class
scatter, leading to more pronounced differences between
neutral and stressed samples. In addition, since we only
have eight samples per participant, we pooled data from
multiple participants to train subject-independent
classifiers (i.e., generic classifiers) using a leave-one-
participant-out procedure. For illustration purposes,
assume we are considering four feature groups in our
keyboard analysis: Keydown-Keydown (676 dimensions:
26 keys x 26 keys), Keydown-Keyup (676 dimensions),
Mean Pressure (26 dimensions), and Pressure Time
Difference (676 dimensions); see Fig. 11. The
dimensionality of this combined set is 2,054. Our
dimensionality-reduction procedure projects each feature
group (i.e, KDD, KDU, MP, PTD) into a single dimension
(i.e, a two-class problem has one LDA projection),
resulting in four projections — one projection per feature
group. The procedure, shown in Fig. 11, is detailed next.
For each run, we split the dataset into a training and a
test set. The test set contains data from a single participant
(8 samples), while the training set contains data of the
remaining participants (180 samples). We use the training
set tocompute an LDA eigenvector for each feature group,
as illustrated in Fig. 11. Then, we use the resulting
eigenvectors to project the testset. As such, the test data is
never used to compute the LDA eigenvectors. Once the
training set and test set are projected into the LDA
subspace, weusea classifier to generate classlabels for the
test samples. Werepeat this procedure for each participant
and report the mean classification accuracy obtained by
each run of the leave-one-participant-out analysis. We

Accuracy
for each

participant

Fig. 11. Generating a low -dimensional projection from four feature
sets (F1-F4; blue block) using Linear Discriminants analysis. The
reduced feature vector (four dimensions; red block) is passed to a
nearest neighbor classifier to generate a class prediction into neutral
vs. stressed states.

* To optimize the number of neighbors (k), we varied k from 1 to 10 and
did the following. In each iteration of the leave-one-participantout
analysis, we randomly selected eight samples from the training data and
used them for validation purposes. W e then trained a k-NN classifier with
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compared three classifiers for this purpose: 5-nearest-
neighbors (5-NN)*, support vector machine (SVM), and
naivebayes (NB), using their corresponding optimized set
of features (see below). On keyboard data, the best-
performing classifier was 5-NN, achieving 74%
classification accuracy, whereas SVM and NB classifiers
achieved 73% and 69% classification accuracy,
respectively. On mouse data, 5-NN also yielded the
highest classification rate (73%), compared to SVM (70%)
and NB (72%). We expand on the resultsachieved by 5-NN
in the following section.

6 RESULTS

In this section, we show how the stressors delivered
affected the participants’ perceived arousal, valence, and
workload with respect to the control block. Then, we
present theresults obtained by the automated classifiers.

6.1 Stress Elicitation (SAM)

As described earlier, we used four questionnaires in each
session to rate the participants’ stress levels at different
time points. We administered a questionnaire after the
easy CWT (Easy CWT Questionnaire, or ECQ for short),
and another after the difficult CWT (DCQ). We also
administered questionnaires for the easy and difficult
typing tasks (ETQ and DTQ, respectively). Fig. 12 shows
boxplots for the arousal and valence ratings, with each
session as one sample. Since each of the 24 participants
completed 4 sessions (except one who only finished two
sessions), we have 94 pairs of samplesin total. We used
paired t-test for statistical purposes.

First, we examined if the perceived stress level was
different between the two versions of the CWT. A
comparison of ECQ to DCQ indicates that arousal ratings
during the difficult CWT were significantly higher (mean
increaseof1.05,t(93)=-7.63, p<<0.01) and valence ratings
were significantly lower (mean decrease of 0.81, t(93) =
6.12, p << 0.01) than those during the easy CWT. This
confirms that the difficult CWT did increase participants’
stress levels, as intended. Next, we examined whether
stresslevels were different between the two versions of the
typing task. A comparison of ETQ to DTQ indicates that
arousal ratings during the difficult typing task were
significantly higher (mean increase of 0.44, t(93) = -423, p
<<0.01), and the valencewassignificantly lower (decreased
by 0.26, t(93) =2.03, p = 0.04) than those during the easy

Arousal Valence
7 T 70T T + T ]
61 T T + 6 T P
5 } : T 5 H m ]
4t ‘ 4 ‘ H :
3 H 3 } € ; ]
2 H T 2p + |
1 1 1 1 1 1 1
ECQ DCQ ETQ DTQ ECQ DCQ ETQ DTQ

Fig. 12. Box plots for self-reported valence and arousal. ECQ: easy
CWT, DCQ: difficult CWT, ETQ: easy typing task, and DTQ: difficut
typing task. * indicates statistically-significant differences.

the specific value of k using the remaining training samples. Next we
evaluated the models trained using the validation data. We re peated this
analysis for each participant and considered the average classification
accuracy obtained with each k to decide the final configuration.
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typing task. These results confirm that the MAT was able
tomanipulate the participants’stresslevels, as intended.

6.2 NASA TLX

Analyzing the TLX results also served as a validity check
to determine whether the nature of the tasks performed
during the experimental block was more difficult than
those during the control block. Indeed, during the difficult
version of the CWT/typing task, participants reported
significantly higher mental demand, higher physical
demand, higher temporal demand, lower performance,
higher effort, and higher frustration than during the easy
version of the CWT/typing task — see Fig. 13. The only
exception was the self-reported physical demand for the
typing task (mean increase of 0.62, t(93) = 1.92, p = 0.056).
However, we still observed a trend towards the expected
direction (difficult typing task leading to higher physical
demand)and a p-value close to significance. These results
suggest thatthe tasks were successful in eliciting stress.

6.3 Keyboard Analysis

In total, we collected 188 samples (a sample contains all
features computed during a block), as every participant
but one went through four control sessions and four
experimental sessions. Given that the number of samples
in the control and experimental sessions are the same, a
random classifier would achieve 50% classification
accuracy. For the remainder of the manuscript, the
classification accuracy obtained by such a random
classifier will bereferred to as a chance-level.

To identify the best subset of features for each type
(keystroke only, pressure only, and keystroke + pressure),
we performed exhaustive search on the feature sets, i.e, we
evaluated our models on every possible combination of
features, for a total of 1023 (210 - 1) feature subsets. Average
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Fig. 13. Box plots for NASA-TLX. * indicates statistical-significance.

® To generate this plot, we adapted our 5NN model to classify a stressed
sample for different minimum number of neighbors (e.g., classify as

classification accuracies are shown in Table 3. Using all
(timing and pressure) features as input performs slightly
worse than selecting a subset of them. When using timing
features alone, the classifier obtained an accuracy of 68%
using the feature groups DD and KDU. Using pressure
features alone, our classifier obtained an accuracy of 71%
using the feature groups PP, MP, AUCD, and PDT. When
both timing and pressure features were combined, the
optimal feature subset contained the feature groups KDD,
KUD, DD, KDU, PP, AUCD, and PTD and achieved 74%
classificationaccuracy. Thus, adding pressure information
to timing features led toa 6% absolute improvement in
classification (i.e., from 68% to 74%). Hence, combining
timing and pressure features provides higher classification
accuracy than using each feature typein isolation.

The confusion matrix for the optimal keyboard feature
set is shown in Table4. Thereis nosignificant correct class
prediction imbalance, as the number of samples correctly
classified do not differ by much (67 vs. 73). The same
happened when the prediction did not agree with the
actual classlabel (21 vs.27). Finally, Fig. 14 shows the ROC
of the optimal keyboard feature set vs. a random classifier’.
The optimal feature subset obtainedan AUC equal to0.77,
outperforming the random classifier (AUC: 0.50).

Results per participant for the optimal feature subset
model are shown in Fig. 15.a. The classifier obtained
accuracies of 60% or higher for all but 3 participants, and
accuracy of 85% or higher for 10 participants. It is
important to note that these classification results were
obtained using a leave-one-participant-out procedure; in
other words, the classifiers are subject independent.
Classification performance would likely increase if the
classifier were to be adapted to match the characteristic
typing patternsofeach user.

6.4 Mouse Analysis

Mouse pressure datawaslost due to Bluetooth connection
problem for three sessions, and as mentioned earlier, one

TABLE 3
ACCURACY FOR DIFFERENT KEYBOARD FEATURE SETS

Feature Set Accuracy
(St. dew)
Keystroke Only
Full: [DD, KDU, KUD, KDD] 65.1%
(16.1 %)
Optimal: [DD, KDU] 67.7 %
(13.7 %)
Pressure Only
Full: [MP, PP, STD, PD, AUCD, PTD] 67.1%
(14.2 %)
Optimal: [PP, MP, AUCD, PTD] 71.3 %
(13.5%)
Keystroke and Pressure
Full:[KDD,KDU,KUD,DD,MP,PPSTD,PD,AUCD,PTD] ~ 72.4 %
(14.2 %)
Optimal: [KDD,KUD,DD,KDU,PP,AUCD,PTD] 74.5 %
(14.7 %)

stressed if atleasttwo outfive neighbors are also stressed).
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Fig. 14. ROC for the optimal feature subset on keyboard data.

participant dropped out after the second session and one
was left-handed. Thus, we ended up with mouse data for
87 sessions, totaling 174 samples (87 sessions x 2 blocks).

It is tempting to compare mouse features between the
easy and difficult CWT. However, this comparison would
yield overly optimistic results since the difficult CWT
Following the procedures outlined for the keyboard
analysis, we perform a leave-one-participant-out analysis
with the mouse data. Then, we computed LDA projections
for three different combinations of features: (1) trajectory
features only, (2) pressure features only, and (3) trajectory
features and pressure features combined. All these features
were projected into a one-dimensionalfeatureandfed toa
classifier.

Classificationresultsare reported in Table 5. Aswith the
keyboard analysis, we used exhaustive search to find the
optimal set of features when building our models.
Trajectory features (70%) outperformed pressure features
(61%), both performing above chance levels. More
importantly, combiningboth types of features into a single
vector yielded higher classification performance (73%)
than either feature alone, a 3% absolute improvement in
classificationaccuracy fromusing trajectory features alone.

Table 6 shows the confusion matrix of the actual vs.
predicted class label for the optimum feature subset
trained using trajectories and pressure features. As in the
keyboard analysis, there is neither significant imbalance
betweenthe elements of the main diagonal nor of the anti-
diagonal. This indicates the best performing classifier did
not obtain the highest classification rate by mainly
predicting one classover the other. Fig. 16 shows the ROC
curves of the classifier trained with the optimum feature
subset using mouse dataand that of the random classifiers.
As in the keyboard analysis, optimum feature set trained

=
o
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Accuracy (%)

o
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Fig. 15. Classification accuracy for each participant using the best-
performing input set from (a) keyboard, and (b) mouse.

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, MANUSCRIPT ID

0.8

0.6

0.4 I

True Positive Rate

0.2
— 5NN. AUC=0.75
— Random. AUC = 0.50

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 16. ROC for the optimum feature seton mouse data.

using mouse data obtained an AUC (0.75) superior to that
of therandom classifier (0.50).

Classification rates per participant are shown in Fig.
15.b. Our models obtained classification accuracies above
60% for all but one participant, and 80% classification
accuracy or higher for seven participants. As with the
keyboard analysis, it is important to note that these
classificationmodels are subject-independent. It is likely that
higher performance may be obtained by adapting a generic
classifier tofit the individual mouse behaviors of eachuser.

7 DISCUSSION

Wehave presented an approach to monitor work stress by
analyzing subtle changes in keyboard and mouse usage
during knowledge work tasks. Our approach involves
instrumenting computer peripherals that are already part
of modern workplace settings with low-cost external
sensors. We developed an experimental protocol to
simulate two typical tasksin knowledge work (completing
questionnaires and writing reports) that require keyboard
and mouse interaction. With our instrumented
peripherals, we are able to detect consistent changes in
behavior caused by mild stressors.

We designed a protocol that addresses the limitations
found in theliterature; see Section 2 .4. First, we used vetted
stressors (Stroop effect and mental arithmetic) in our
emotion-induction procedure and validated their effects
by analyzing changesin arousal and valence through self-
report measures. Second, we carefully avoided
confounding factors that may yield overly optimistic
results, suchas time pressure, one of the most widely used
stressors in affective computing. Third, we carried out a
multiday user study, totaling four sessions for each
participant, and showed that our methodis robust to inter-
session variability. Finally, we provided detailed
instructions about our procedure, to enable other
researchers to replicate our study and compare their
methods against ours.

To analyze whether we could correctly discriminate
between neutral and stress conditions, we designed
participant-independent models and trained them with
keystroke or mouse dynamics and pressure features from
the respective devices. We believe that classification
accuracies could have been even higher if we had trained
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TABLE 4
CONFUSION MATRIX FOR THE OPTIMUM FEATURE SET ON
KEYBOARD DATA
- Actual
f;f Neutral Stressed
T  Neutral 67 27
& Stressed 21 73

participant-specific classifiers, but the limited number of
samples per participant was not sufficient to successfully
build a model and testit. Although the recent literature [21,
29, 59] suggests personalized models can lead to higher
performance, we showed how participant-independent
classifiers using simple and robust methods can also
perform well. Participant-independent classifiers are more
practical for workplace settings since they can be trained
with a much larger number of samples and can bereadily
available for new workers.

A major challenge when building participant-
independent classifiersis how to account for individual
differences. For example, when under stress some people
move the mouse cursor faster; others more slowly. In our
analysis, we did not explicitly apply any type of feature
normalizationto account for these individual differences®.
Instead, our classification approach projects the features
onto the LDA subspace to minimize within-class scatter
(i.e, intra and inter-individual differences) while
maximizing between-class scatter (i.e., due to the stress
manipulation). This step makes the classifier more robust
againstindividualdifferences.

Our results indicate that combining keyboard and
mouse dynamics with their respective pressure features
improves discrimination between neutral and stressed
states. This suggests that features extracted from the two
modalities (i.e., time vs. pressure) provide complementary
information. However, since using all features during
training is not necessarily beneficial, we used exhaustive

TABLE 5
ACCURACY FOR DIFFERENT MOUSE FEATURE SETS

Feature Set Accuracy
(St. dev.)

Trajectories Only

Full: [DD, MD, TD, OS, MS, DC] 64.1%
(12.1 %)

Optimal: [MD, TD, OS] 70.2 %
(17.8 %)

Pressure Only

Full: [CFM, CFS, GFM, GFS] 56.5 %
(15.2 %)

Optimal: [CEFM] 61.1%
(19.8 %)

Trajectories and Pressure

Full: [DD,MD, TD,0S,MS,DC,CFM, CFS,GFM, GFS] 70.1%
(16.1 %)

Optimal: [DD, OS, DC, CFM, CFS, GFS] 73.3 %
(15.5 %)

¢ In an early stage of our analysis, we tried normalizing the data for each
subjectby computing the z-score of each feature across the eight samples,

TABLE 6
CONFUSION MATRIX FOR THE OPTIMUM FEATURE SET ON
MOUSE DATA
3 Actual
° Neutral Stressed
g Neutral 62 21
& Stressed 25 66

search to find theset of features that provided the highest
discrimination power for the trained classifiers. Exhaustive
search was helpful in both the keyboard and mouse
analysis, where we obtained the highest classification rates
when usinga reduced set of features.

7.1 Limitations of our Work

One of the challenges in affective computing research
consists of labeling behavioral data with the proper
emotional state. In our work, our classification models
weretrained on the tasks’labels (i.e., the intended effect of
the tasks), rather than on the participants” actual stress
levels. While the questionnaires we administered confirm
that our experiments were successful in manipulating the
participants’ stress levels, objective measures of stress by
means of physiological stress responses would have
provided additional validation. How ever, gathering these
measurements is difficult using existing technology. The
most reliable physiological measure of stress,
electrodermal activity (EDA), requires placing electrodes
at the fingers or the palms, which interferes with typing
tasks. While measuring EDA from the wrist or the sole/feet
is possible, it also has drawbacks; see Tsiamyrtziset al. [72]
for a recent guide comparing the accuracy of different EDA
sensors and measurement configurations. Alternatively,
perinasal perspiration, a measure known to correlate with
EDA, canbe captured from thermal imaging[73], but this
requires specialized cameras.

Even though our experimental protocol was designed
to be realistic (filling out questionnaires and writing
descriptions), performing tasks in a laboratory setting can
still cause participants to behave differently than when
they are in their usual work environments. Thus, our
findings must be replicated with field studies where
participants perform their daily computer tasks at work,
using ecological momentary assessment (EMA) to provide
the ground truth emotional state at the time of work [19].
Field studies would also allow collecting more data per
participant, which could helpbuild more robust prediction
models or adapt generic models to each user.

One potential limitation of our work was the use of
desktop computers as opposed to mobile devices, such as
laptops and tablets. Projections show that by 2023 there
will beapproximately four times asmany new laptops and
tablets as desktops [74]. However, these projections also
show 80 million desktop shipmentsby the same year, a
number thatis far from negligible [74]. More importantly,
there is nothing inherent to our approach that would

but the results were largely identical when compared to the ones
presented.
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prevent it from being used in laptop keyboards and
touchpads, other than we would need to design new
features (e.g., specific to touchpads) and adjust the
classification models accordingly. Yet, the rise of
popularity of laptops and tablets cannotbe ignored and we
strongly recommend future efforts on the detection of
stressusing these devices—some of which already provide
touch intensity [55,56,75].

7.2 Future Work

Our work may find application in the domain of user
authentication [17, 18], where instrumented devices could
be used to gather additional biometric information to
differentiate between valid users and imposters. One
situation where current user authentication methods
might fall short is when changes in keyboard and mouse
due to stress are recognized as an anomaly (i.e., potential
imposter). To address this shortcoming, user
authentication algorithms would require training on both
unstressed and stressed data from multiple users.

Most office tasks are computer-based and involve
significant mouse and keyboard usage (e.g., writing an e-
mail, filling out a spreadsheet). As such, future work on
stress detection could benefit from considering tasks
which use the keyboard and mouse simultaneously, and
build stress detection models thatuse both sets of features.
This may improve the accuracy of the stress detection
models, since complementary information canbe extracted
from both mouse and keyboardusage.

The goal of his researchis to help people suffering from
stress. Thus, ultimately we envision deploying our system
in alive workplace, where a software gathers data to detect
moments of stress and then recommends just-in-time
relaxation interventions to employees (e.g., perform deep
breathing exercises, go for a walk, play a relaxation game)
to help them better cope with acute stress. Whileit can be
difficult to deploy our systemata large scale since pressure-
sensing peripherals are rare, we think the simplicity and
low-cost of our design would notbebarriers.

8 CONCLUSIONS

In this paper, we investigated whether keyboard and
mouse pressure, combined with keystroke dynamics and
mouse dynamics, could be used to predict users’ stress
levels. We designed a simple and cost-effective pressure-
sensitive augmentation for keyboard and mouse using
force-sensitive resistors and low-cost microcontrollers. To
test our approach, werecruited 25 participants to perform
twosetsoftasks under neutral and stressed conditions. We
built a generic classifier by projecting keyboard and mouse
features with LDA and fed into a nearest neighbor
classifier. Our leave-one-participant-out analysis showed
that combining pressure features with keystroke and
mouse dynamics improves classification rates. We
achieved a subject-independent classification rate of 74%
with thekeyboard deviceand 73% withthe mouse device,
an average absolute improvement of 6% and 3%,
respectively, when adding pressure information to the set
of keystroke and mouse dynamics. This w ork presents the
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first attempt to build a subject-independent classifier to
predict stress with realistic tasks using a pressure-sensitive
keyboard and mouse. This is especially important because
it is a step closer to providing ways to automatically,
continuously, and non-intrusively detect stress in the
workplace.
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