Unambiguous Text Localization, Retrieval, and
Recognition for Cluttered Scenes

Xuejian Rong, Member, IEEE, Chucai Yi, Member, IEEE, and Yingli Tian!, Fellow, IEEE

Abstract—Text instance as one category of self-described objects provides valuable information for understanding and describing
cluttered scenes. The rich and precise high-level semantics embodied in the text could drastically benefit the understanding of the
world around us. While most recent visual phrase grounding approaches focus on general objects, this paper explores extracting
designated texts and predicting unambiguous scene text information, i.e., to accurately localize and recognize a specific targeted text
instance in a cluttered image from natural language descriptions (referring expressions). To address this issue, first a novel recurrent
Dense Text Localization Network (DTLN) is proposed to sequentially decode the intermediate convolutional representations of a
cluttered scene image into a set of distinct text instance detections. Our approach avoids repeated text detections at multiple scales by
recurrently memorizing previous detections, and effectively tackles crowded text instances in close proximity. Second, we propose a
Context Reasoning Text Retrieval (CRTR) model, which jointly encodes text instances and their context information through a recurrent
network, and ranks localized text bounding boxes by a scoring function of context compatibility. Third, a recurrent text recognition
module is introduced to extend the applicability of aforementioned DTLN and CRTR models, via text verification or transcription.
Quantitative evaluations on standard scene text extraction benchmarks and a newly collected scene text retrieval dataset demonstrate
the effectiveness and advantages of our models for the joint scene text localization, retrieval, and recognition task.

Index Terms—Natural Language Description, Text Detection, Text Retrieval, Text Recognition, Deep Neural Network, Referring

Expression

1 INTRODUCTION

TEXT instances such as characters, words and strings in
a scene image provide the most concise and accurate
natural language expressions to understand and explain
the scene. Reading text information from camera-based
natural scenes, named as scene text extraction, plays a
significant role in scene understanding and its associated
applications, such as navigation, geo-localization, context
retrieval, end-to-end machine translation, and way-finding
for visually impaired. However, most existing scene text
extraction approaches regard text instances as a generic
category of objects, and attempt to encode text instances
into separable feature representations from other categories
of objects, and then assign all text instances existing in the
scene to predefined prediction labels. It means that text
instance could not contribute more than other objects to the
understanding and description of a scene, even though the
text information is more related to context environment and
semantically self-described.

Precisely, for a text instance in a natural scene image,
current mainstream text extraction methods could generate
their locations and sequential character codes, to which we
refer as spatial and literal information afterward. However,
to comprehensively describe and interpret a highly cluttered
natural scene, higher level clues such as semantic and contex-
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tual information are necessary. There has been a lot of work
exploring practical applications of scene text extraction such
as shopping assistants in grocery stores [1], [2], especially
for people who are blind or visually impaired. But text
information would help scene understanding only if the
user perceives where the text instances are from and related.
For example, when people with visual impairments are
using scene text extraction in grocery stores or supermarkets
to help find the price of a product, they would usually prefer
a shopping aid to generate natural language descriptions
like {large words on a red sign saying “unbeatable price” above a
basket of red apples at the right side}, rather than a list of discrete
and unordered words from text extraction, as shown in
Figure 1. Moreover, in daily life it is more natural for a
human to refer to objects and scene text instances based
on their attributes, appearances, and spatial configurations,
since the fine recognition process usually occurs in the brain
after rough localization [3].

To better utilize text information in natural scenes, the
relationships between text instances and their contexts are
explored in this paper. We propose a new framework of text-
based scene understanding, which combines the localization
of text instances from a scene with the informative and
unambiguous natural language description of the localized
text instances. This kind of natural language descriptions
is known as referring expression [4], [5], [6]. We know that
contextual descriptions of text instances are effective on the
understanding and description of the entire scene if the text
instances are accurately localized.

High-quality and user-specific scene text detection from
referring expressions can underpin many vision-language
applications which rely on natural language interfaces, such
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Fig. 1: An example of unambiguous text localization, re-
trieval, and recognition. Given a cluttered scene image and
candidate text bounding boxes (in white, detected by the
proposed DTLN), the proposed CRTR model is applied to
retrieve a specific text instance (in color) based on a natural
language description, which can be further transcribed to
machine-readable character codes. The CRTR model scores
and ranks candidate boxes based on text attributes, spatial
configurations, and context information.

as controlling a robot (e.g., {Alexa, please read me the green
note beside the fridge}, or {Alexa, please read me the price of non-
fat CHOBANI Greek yogurt on the top shelf}), or interacting
with photo editing software (e.g., {Picasa, please blur the
white door numbers on the grey front door}, or {Premiere, please
transcribe/mosaic all the identity information if photo IDs or credit
cards appear in this video}). In addition, it provides a valuable
testbed for research on vision and language systems. The
proposed framework could also help dramatically boost the
efficiency of the whole scene text reading process while
avoiding the exhaustive search and recognition of all text
instances which are very time-consuming.

This paper extends our earlier work [7] by integrating a
scene text recognition module into the unambiguous text
extraction pipeline for text transcription and verification.
To our best knowledge, the proposed approach is the first
solution of jointly modeling image-based scene text local-
ization with a language-based description of the localized
text instances, and still the state-of-the-art as indicated in
[8]. It significantly extends the conventional scene text re-
trieval task, and can be applied to understand and describe
cluttered scenes. The same CNN-RNN encoder-decoder ar-
chitecture is naturally employed for text recognition along
with preceding text localization and retrieval modules to
handle text sequences in arbitrary lengths, involving no
character segmentation or horizontal scale normalization.
More analysis and more results are also presented.

The contributions of this paper have four aspects. First,
we propose a text-based framework of scene understanding,
which combines the localization of text bounding boxes
with the retrieval of text instances from the contextual
description, and the recognition process afterward. Second,
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we propose the relationship modeling between scene text
instances and their context concepts in scene images. Third,
a recurrent text recognition model is introduced to extend
the text detection and retrieval approach through further
transcription and verification. Last, a new large-scale dataset
is constructed to evaluate the performance of unambiguous
text instance retrieval. Our framework could retrieve tar-
geted scene text instances according to their contextual de-
scriptions, and generate contextual descriptions to uniquely
pinpoint the text instances in the scene images in a CNN-
RNN encoder-decoder manner.

In our proposed framework, spatial information and
contextual descriptions of scene text instances benefit from
each other. The scene text locations could provide pivotal
and precise information for contextual descriptions of the
entire or a region of the scene image, while contextual
description could provide a more user-friendly way to in-
corporate the extracted text information and its context into
practical applications.

2 RELATED WORK

Generally, text detection and recognition, word image re-
trieval, image captioning and description, generation and
comprehension of referring expressions can be seen as dif-
ferent subfields of the same Visual-Linguistic super-task,
which jointly models the natural language information and
image content. We first summarize the connections between
most recent work and our earlier work on this task, and then
discuss these related areas as follows.

Connections of later work with our preceding approach.
As discussed before, our earlier work [7] is the first frame-
work of jointly modeling scene text detection with corre-
sponding language-based descriptions, and still the state-
of-the-art as indicated in [8]. Our proposed approach in this
manuscript comprises three modules (scene text detection,
retrieval, and recognition), and more approaches have re-
cently emerged especially for detection [9], [10], [11], [12],
[13], [14], [15], [16] and recognition [17], [18], [19], [20].
Theoretically, many of these latest developments in scene
text detection and recognition areas can be adopted in our
proposed framework to boost the final performance without
requiring a significant modification of the network architec-
tures. However, some original designs such as sequential
recurrent localization in [7] are still advantageous in terms
of flexibility. Several recent follow-up tasks such as scene
text visual question answering (VQA) [21], unambiguous
scene text segmentation [22], and object assisted scene text
spotting [23], are conceptually similar to the proposed task
in [7] but introduced different evaluation metrics and testing
data. We further introduce the recent work in detail in the
rest subsections to provide a better context for our proposed
framework in this manuscript.

Text extraction in the wild. Scene text extraction consists of
text localization and text recognition. As the state-of-the-art
text recognition accuracy on cropped word image has been
over 98% [24], the performance of text localization is the
main bottleneck of text extraction in natural scenes. Most
existing text localization methods [25], [26], [27], [28], [29]
usually employed a bottom-up pipeline based on sliding
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Fig. 2: The architecture of the proposed Dense Text Localization Network (DTLN) and Context Reasoning Text Retrieval
(CRTR) Models. For an input image, the DTLN model directly decodes the CNN features into a variable length set of text
instance candidates. The CRTR model pools the information from three different LSTM models, and jointly scores and
ranks the candidate text regions which are generated by DTLN. The rightmost recurrent text recognition module helps
further extend the applicability of DTLN and CRTR models, by transcribing the retrieved text regions to precise literal

character codes for verification.

window or connected components, which was usually hard-
coded with less robustness and reliability, and their perfor-
mance heavily relied on the low-level image filtering. Even
though Convolutional Neural Networks (CNN) substan-
tially improved generic object detections, text localization
from cluttered scene image was still a challenging problem,
due to the highly variant and undefined appearance and
structure of scene text instances [30], [31], [32]. Recently, a
new synthetic text dataset was proposed in [33] for training
a fully convolutional regression network for text localization
similar to YOLO [34], and achieved decent results on several
popular datasets, though failures often occur on tiny or
crowded text instances. Moreover, YOLO-alike approaches
cannot predict more than two instances from one grid cell,
while our proposed model is able to generate sets of predic-
tions in variable lengths from a small region and handle the
crowded instances in a high density. [35] aimed to connect
sequential fine-scale text proposals horizontally using LSTM
which achieved top performance on text localization. How-
ever, the strong assumption of horizontal text lines could be
easily violated in practice applications.

Many deep neural networks [36], [37], [38] were pro-
posed to effectively encode scene images or their sub-
regions into feature representations for classification tasks,
and these networks could be applied for scene text ex-
traction. However, they ignored the relationships between
text instances and their surrounding objects in cluttered
scene images. In our proposed DTLN network, CNN is
still employed to obtain deep convolutional representations
of scene images, but we adopt Long Short Term Memory
(LSTM) [39] based decoders to jointly model text instances
and their context. This architecture worked very well on the

generation of image captions [40] and machine translations
[41]. With the LSTM network, DTLN could memorize pre-
viously generated text bounding boxes and avoid repeated
detection at multiple scales of the same target.

Recently, [7], [10], [11], [12], [42] further boost the scene
text detection performances, which are either based on
direct regression or text segmentation. [?] proposed a multi-
scale shape regression network that is capable of locating
text lines of different lengths, shapes, and curvatures in
scenes. [11] proposed to model cross-domain shifts with
adversarial training for both text detection and recognition
tasks. [10] is able to effectively detect text areas by exploring
each character region and affinity between characters, which
results in finer bounding boxes. In comparison, DTLN still
demonstrates more potentiality and controllability as a se-
quential localization model.

In the recognition process, the diversity of scene text
instances (e.g., different colors, scales, orientations, fonts,
and languages) usually makes text recognition a challenging
problem. The complexity of background (cluttered elements
like signs, fences, bricks often have similar textures and
structures to true text) and various interference factors (e.g.,
noise, blur, uneven illumination, low resolution, and par-
tial occlusion) also drastically degrade the performance of
final recognition results. To address these problems, some
attempts have been made in the last decade. For instance,
it was proposed in [43], [44] to first detect and segment
individual characters, and then recognize them with CNN
models trained on labeled character images. Such methods
often heavily rely on the performance of accurate character
segmentation, and are prone to be affected by common
degradation. Other approaches such as [24], [30] were pro-



posed to treat scene text recognition as an overcomplete
image classification problem, and assign a class label to an
entire input text region as an English word from a dictionary
(90,000 predefined classes in total). This kind of methods
usually results in a large trained model and is difficult to be
generalized to text instances with various appearances. Sev-
eral pioneering work such as [45], [46], [47] further verified
the effectiveness of text recognition with recurrent networks.
In our proposed framework, text recognition module consis-
tently follows the CNN-RNN encoder-decoder architecture
associated with DTLN and CRTR modules. It naturally
deals with text sequences in arbitrary lengths, involving no
character segmentation or horizontal scale normalization.

For a more comprehensive view and knowledge about
the history of the scene text detection and recognition ap-
proaches emerging in the deep learning era, we also refer
readers to the recent survey [8].

Alignment of images with language. Learning correspon-
dences between sentence structural semantics and image re-
gions has been explored with the visual-semantic alignment.
This architecture has been used for applications in image re-
trieval and caption generation [48], [49]. With new datasets
proposed which provide bounding box-level natural lan-
guage annotations [5], recent work has also investigated
region-wise image captioning and description for the tasks
of natural language object retrieval [50], dense captioning
[51], scene graph parsing [52], and visual common sense rea-
soning [53]. Our proposed framework has a similar idea that
aligns a language triplet with regions of pixels in the image.
Typically, existing approaches do not explicitly represent
relations between noun phrases in a sentence to improve
visual-semantic alignment. We believe that understanding
these relations will lead to better scene understanding in-
cluding phrase grounding and comprehension, as well as
scene graph generation and reasoning.

Image captioning and referring expression. Many ap-
proaches have been proposed to explore the descriptions
and explanations of scene images with natural language
[54]. In the recent work [4], the image content was repre-
sented by hidden activations of a CNN, and then fed as
input into LSTM framework for caption generation. How-
ever, these image captioning methods aimed to describe the
entire image, without modeling spatial localization of text
instances or some generic objects and their context. Our ap-
proach employs a similar network architecture to generate
contextual descriptions of the localized text regions.

The contextual description is tightly related to the con-
cept referring expression in the visual-linguistic research area.
Referring expression generation had been a classic natural
language processing problem. There were several important
issues with this problem. It explored what types of attributes
people typically used to describe visual objects, and also
dealt with the usage of higher-order relationships (e.g.,
spatial comparison) [5]. However, referring expression for
text instances of a scene image still remains unexplored, and
our framework utilizes contextual descriptions of scene text
instances as their referring expression to retrieve targeted
text information from cluttered scene images.

Visual relationship detection Visual relationship detection,
as a classic research topic, has been investigated by numer-
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ous studies in the last decade. In the early days, researchers
mainly focused on specific types of phrases [55], [56] or
couple visual phrases with other vision tasks for better
performance [57], [58]. Recently, more attention are paid
to general visual relationship detection [56], [59], [60], [61],
[62], [63], [64]. Lu et al. [65] utilized the language prior in the
relationship detection between the targets and related com-
ponents. Li et al. [59] model the dependencies among sub-
ject, predicate, and object branches with the message pass-
ing structure. Xu et al. [60] built up a fully-connected graph
to iteratively pass messages along the scene graph. Liang
et al. [66] aimed to detect the relationship between objects
and their attributes by reinforcement learning. However, the
relations between text instances and the surrounding back-
ground objects have not yet been specifically studied. Also,
existing approaches do not scale well to a large number of
relations as such visual explanations grow combinatorially.
And our proposed methods can significantly alleviate this
problem.

Triplet learning has been addressed in various tasks
such as mining typical relations (knowledge extraction) [67],
reasoning [68], object detection [69], or image retrieval [70].
In this work, we address the task of relationship modeling in
scene text segmentation from language-based explanations.
Early work on human-object interactions [71] models the
triplet in the form (person,action,object). Recently, the
work in [65] tried to generalize the similar setting to non-
human subjects by developing a language model sharing
knowledge among visual detections related to each other.
Inspired by the idea but different from these approaches, we
restrict the subject to be a text instance and cover a broader
class of predicates that include prepositions and compar-
atives. In our work this combinatorial challenge can be ad-
dressed by developing a new visual representation with bet-
ter generalization into unseen triplets {text-predicate-object}
and without depending on a strong language model.

Grounding visual explanations. Our proposed framework
is an innovative combination of the recent work on object
localization and segmentation from natural language de-
scriptions, i.e., referring expression comprehension. In those
work, the task is to localize/segment a target object in a
scene based on its natural language referring expression (by
drawing a bounding box over it, or pixel wisely assigning
the foreground label to it).

The methods of [50] and [5] are built upon image cap-
tioning frameworks such as LRCN [72] or mRNN [73],
and localize objects by selecting the bounding box where
the expression has the highest probability. The authors of
[7] firstly proposed a natural language-based scene text
extraction method, but the framework is not trained end-to-
end and cannot output pixel-wise text annotations. In [74],
the authors proposed a model to localize a textual phrase by
attending to a region on which the phrase can be best recon-
structed. In [75], a joint embedding space of visual features
and words is learned to localize target object by searching
the closest region in the joint embedding space. [76] pro-
poses an end-to-end training method for generating object
segmentation mask from natural language descriptions. The
proposed model encodes the given expression into a real-
valued vector using LSTM networks [39], and extracts a



spatial feature map from the image using a Convolutional
Network. Then it performs pixel-wise classification based
on the encoded referring expression and feature map to
output an image mask covering the visual entity described
by the expression. Liu et al. [77] further propose to learn
the word-to-image interaction instead of modeling image
and sentence features independently. The proposed method
achieves top results on general object segmentation with
language explanations, and also shows that the combination
of visual and linguistic features for scene text segmentation
is worth exploring.

To the best of our knowledge, all previous methods

of natural language-based detection and retrieval can only
return a bounding box or segmentation mask of the generic
objects, and no prior work has learned to directly localize
text instances given a natural language description as a
query. Our previous work [7] pioneered the task of natural
language-based scene text detection and retrieval, and we
expect to further improve the framework by integrating
the text recognition capability to make it a unified end-
to-end scene text extraction pipeline (scene image in, text
transcription out).
The rest of the paper is organized as follows: Section 3
presents our proposed deep neural networks for dense scene
text localization from image-based feature and scene text re-
trieval from the language-based contextual description, and
the newly introduced scene text recognition module. Section
4 describes the experiments of localizing text instances on
standard benchmark datasets, the experiments of retrieving
target text instances through their contextual descriptions
on a self-constructed dataset, and the experiments of the
scene text recognition along with the detection results. Sec-
tion 5 concludes this paper.

3 PROPOSED FRAMEWORK

3.1 Convolutional Encoding Network

Given an image with scene text instances, an informative
and discriminative feature representation plays a significant
role in unambiguous text localization. The feature represen-
tation should preserve the spatial layout of the objects into
this image to enable the correct spatial prediction for text
instances. This can be accomplished through a fully convo-
lutional network model similar to FCN-32s [78], where the
image is fed into a series of convolutional (and pooling)
layers to obtain a feature map as an output containing
encoded spatial information.

In our work, the network is further modified to encode
region information into a better feature representation for
varieties of text instances. Given an input scene text image of
size W x H, a w X h spatial feature map (where w = 20 and
h = 15) is obtained with adaptive pooling in each position
of the feature map containing D;,, channels (D;,, dimen-
sional local descriptors). The grid setting is heuristically
determined by common image ratios and can be changed
accordingly. For each position on the spatial feature map,
in order to obtain a more robust feature representation,
L2-normalization is applied to the D;,, dimensional local
descriptor. In this way, a w X h X D, spatial feature map is
extracted as the representation of each image.
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To enable the model to reason about spatial relationships
as shown in Figure 2, two extra channels are concatenated
with the feature maps: the x and y coordinates of each
spatial location. In this coordinate system, the top-left corner
and the bottom-right corner of a feature map are represented
as (—1,—1) and (+1,41), respectively. In this way, we
obtain a w x h x (D;,, + 2) representation containing both
local image descriptors and spatial coordinates.

In our implementation, the VGG-16 architecture [38] is
adopted as a fully convolutional network by converting
fully-connected layers fc6, £c7 and fc8 to fully convolu-
tional layers. This design helps aggregate the information of
context concepts from neighboring regions of text instances,
and reason about the interaction between visual text entities
and context concepts.

3.2 Dense Sequential Text Localization

Scene text instances are distinguished from generic ob-
jects by their high variant appearances and scales, and
self-descriptive attributes, even though they were usually
treated as one special category of generic object in detec-
tion task. A strided region of the scene image is encoded
into a 512 dimensional feature vector by the convolutional
encoding network as described above. According to the
recent development of LSTM-based language model [41],
[72], we build a recurrent decoder to make joint predictions
in sequence for all potential target objects, which are scene
text instances in our framework. The combination of a CNN-
based encoder with LSTM-based decoder plays a critical
role in our framework. It enables the generation of coherent
sets of predictions in variable lengths. These properties have
been leveraged successfully to generate image captions [40],
machine translation [41], and people detection [79]. The
method in [79] works well on people detection, but is not
involved in the detection of objects with highly irregular and
variant spatial configurations. Also, this method is mainly to
solve the occlusion problems which rarely happen to scene
text instances.

The ability to generate coherent sets is critically impor-
tant in our task because there is no prior knowledge of
how many text instances would appear in a local region,
and our system needs to memorize previously generated
text predictions and avoid repeated predictions of the same
target.

Decoding process. The content of a strided region, includ-
ing the sizes, positions, and categories of objects inside
that region, is summarized by the 512 dimensional fea-
ture descriptor. An LSTM-based decoder smartly extracts
target scene text instances from the CNN encoded feature
descriptors. The LSTM-based decoder sequentially outputs
new bounding boxes and their corresponding confidence
scores. This score indicates the probability that a previously
undetected text instance could be found at the location of
the bounding box. The bounding boxes are produced in
the ordering of descending confidence scores. When the
LSTM-based decoder is unable to find more bounding boxes
with higher confidence scores in the strided region, a stop
symbol is produced to end the entire decoding process.
All the output bounding boxes and confidence scores from



all strided regions of the scene image are collected as the
predictions of scene text instances.

Implementation details. According to the convolutional en-
coding network, there are M x N strided regions at a scene
image, so the same number of M x N LSTM controllers run
in parallel on 1 x 1 x 512 grid cells. In our framework, we
set M = 15 and N = 20 based on experimental results.
The LSTM units have 500 memory states, no bias terms,
and no output nonlinearities. At each step, we concatenate
the VGG-16 feature maps with the output of the previous
LSTM unit, and feed the result into the next LSTM unit.
This network learns to regress exactly on bounding boxes of
text instances through the LSTM decoder.

In training process, the LSTM-based decoder is tending
to output an overcomplete set of bounding boxes along
with their confidence scores. Bounding boxes with higher
confidence score are preferred during matching with the
ground truth. For the COCO-TextRef dataset, we limit the
overcomplete set to be the top 5 predictions. In our experi-
ments, more predictions largely increase the computational
complexity, but not obtain obvious performance improve-
ment.

Also during training, hypotheses of text bounding boxes
are generated in sequence. A text bounding box output
by LSTM is represented by a 6 dimensional vector b =
{bpos, b}, where by, = [be, b bu bo bubi) o RS g
the relative position, width, height, and area size of the
bounding box, and b, € [0, 1] is a real-valued confidence. In
LSTM, all hypotheses of text bounding boxes are associated
with previous counterparts via the memory states.

Confidence scores lower than a pre-specified threshold
are interpreted as a stop symbol at the testing phase. The
higher confidence score b, indicates that the bounding box is
more likely to cover a true positive text instance. In practice,
we use a Hungarian loss term for the output bounding
boxes as in [79]. Typical detection errors such as false
positives, missed detections, and repeated predictions of the
same ground-truth instance are penalized in the training
process.

Text region refinement. There are multiple bounding boxes
predicted by our proposed localization method within each
cell of the 15 x 20 grid, and then the predictions from
successive and neighboring cells are recursively stitched
and merged. Specifically, for the current set of all accepted
bounding box predictions, some of the new bounding
box predictions may correspond to previous predictions.
Therefore, any new boxes having nonzero intersection with
accepted boxes are removed to avoid adding false posi-
tives, conditioned on the constraint that previously accepted
boxes may destroy at most one new box. Therefore, the
proposed method can handle the dense and cluttered tiny
text instances while still capturing large-size text instance
that occupies a big area of the scene image.

3.3 Unambiguous Retrieval of Text Instances

This subsection presents our context reasoning text retrieval
model (CRTR) which retrieves scene text instances by nat-
ural language descriptions. In the testing phase, given an
image along with a natural language query and a set of
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candidate text bounding boxes (ground truth or generated
by the proposed DTLN), the CRTR selects a subset of text
bounding boxes from the outputs of DTLN that match the
query context description.

Visual relationship modeling. Text instances in scene image
are usually embedded in complex background with all sorts
of contextual outliers and noises, so it is difficult to model
informative and unambiguous descriptions of the text in-
stances if not take into account their relationships with the
generic objects in context. This makes sense intuitively: text
instances in natural scenes are usually composed of printed
or handwritten characters appearing on the surface of cer-
tain objects, and their visual relationships usually dominate
the holistic interpretation of a natural scene image.

Since the set of relationships between text instances and
context concepts (e.g., objects, stuff, persons) is tremendous
and permutationally growing, we focus on the context con-
cepts that are directly associated and interactive with text
instances. However, it is still uneasy to obtain sufficient
training examples to cover all this kind of relationship pairs.
To simplify this problem and work out a minimum viable
solution, we reduce the semantic space to contain only the
relationships between single text instance and single context
object, because the semantic space of all possible relation-
ship pairs is much larger than that of individual text in-
stance and context object. Visual relationship is represented
as a language query as {text-relationship-context},
where relationship could be spatial, preposition, compara-
tive or other possible categories (e.g., no action and interaction
for text instances as the subject) [65] for text instances.

To avoid ambiguities in the evaluations of the contextual
descriptions of scene text instances, we focus on the predic-
tion of their spatial relationships and text attributes, similar
to the scheme in [5], as shown in Figure 2. This setting
helps alleviate two problems in the visual relation modeling.
First, the appearances of objects could significantly vary
due to the interactions with other objects. However, text
instances usually keep stable appearance in most cases,
and they rarely change status relative to surrounding ob-
jects. Second, it is usually difficult and time-consuming to
build the exhaustive explanation annotations for the object
interactions (i.e., the combinatorial challenge). Fixating the
text instances as the subject of the pair-wise relationship
explanations significantly narrows down the query space.

Context reasoning text retrieval. Inspired by the architec-
ture of LRCN [72] and SCRC [50], our Context Reason-
ing Text Retrieval (CRTR) model, for scene text instance
retrieval from natural language descriptions, consists of
several components as illustrated in Figure 2. The model
has three LSTM units denoted by LSTM;4ng, LSTM;oca
and LSTMgjopqi, @ local and a global CNN, and word
embedding and prediction layers, concurrent with [72] and
[50]. In testing process, given an image I, a query text
sequence S and a set of candidate text bounding boxes
{bpos} in I, the network outputs a score s; for the i-th
candidate box b,,s based on local image descriptors Zyo,
on by,s, spatial configuration b,,s of the box with respect
to the scene, and global contextual feature Zcontest- The
local descriptor ., is extracted by CNNjpeq; from local
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TABLE 1: Performance comparison between our proposed framework with previous scene text localization approaches

on ICDAR 2013 [80] and SVT datasets [

] in terms of the measures of PASCAL Eval [

] and DetEval [83]. Precision

(P) and Recall (R) at maximum F-measure (F) and the average computation time (T) are reported. Bold number indicates
the best performance for each measure metric. Average time spent on these scene text localization approaches (the last
column) demonstrates that the proposed DTLN achieves state-of-the-art F-measure while running in comparable speed as

competing approaches.

PASCAL Eval DetEval Time
ICDAR13 SVT ICDAR13 SVT Avg.
F P R F P R F P R F P R T/s
TH-TextLoc [80] - - - - - - 10.67 0.70 0.65 - - - -
Text Spotter [20] - - - - - - 10.74 0.88 0.65 - - - 0.3
Yin et al. [27] - - - - - - 1076 0.88 0.66 - - - 0.43
Lu et al. [84] - - - - - - 10.78 0.89 0.70 - - - -
Jaderberg [30] 0.76 0.87 0.68 0.54 0.63 0.47|0.77 0.89 0.68 0.25 0.28 0.23| 7.3
Zhang et al. [85] - - - - - - 1080 0.88 0.74 - - - 60.0
FCN [31] - - - - - - 10.83 0.88 0.78 - - - 2.1
FCRNall+filts [33] [ 0.84 0.94 0.76 0.63 0.65 0.60|0.83 094 0.77 0.27 0.29 0.26| 1.27
Tian et al. [35] 0.88 0.93 0.83 0.66 0.68 0.65| - - - - - - 0.14
Liao et al. [86] 0.85 0.88 0.83 - - - 1086 0.89 0.83 - - - 0.73
CRAFTetal [10] | - - - - - - 1095097 093 - - - | 012
DTLN (ours) 0.85 092 0.79 0.64 0.65 0.63|0.85 0.92 0.78 0.28 0.29 0.27| 0.35

region Iy, on byos (ie., Ipoy is the cropped image patch
based on b,,5), and the feature extracted by another network
CNNyiobar on the whole image I;,, is employed as scene-
level contextual feature Zcontest- The spatial configuration
of bpos = [bWT, bﬁy, I’Ww, by l{,}jl};] € R® is an 5-dimensional
representation similar to the one in DTLN.

In the query text sequence S, the words {w;} are repre-
sented as one-hot vectors and embedded through a linear
word embedding matrix, and processed by LSTM4,, as
the input time sequence. The word embedding module
is pretrained from general image captioning task on MS-
COCO dataset, and two additional symbols are added
as start word and stop word in the query sentence. At

each time step t, LSTM,¢q takes in [hl(fl)ng, Tbow» Dpos), and

LSTMgioba takes in [hl(z)n e Zcontext)- Here hygpng represented
the encoded feature of the query sentence. The words in
the query text sequence are encoded as one-hot vectors
and embedded through a linear word embedding matrix.

Finally, based on hl(z)cal and h;tl)obal, a word prediction layer
predicts the conditional probability distribution of the next
word based on local image region Iy,,, whole image I;y,,
spatial configuration b,,; and all previous input words.
Specifically, the word prediction layer indicates a Softmax
layer for predicting the conditional probability distribution
of the next word based on all current and previously pre-
dicted information.

For the other training settings, we follow [72] and [50].
VGG-16 net [38] trained on ImageNet dataset [87] is still
used as the CNN architecture for CNNjycq: and CNNgiopal
and we extract 1000-dimensional fc8 outputs as 2o, and
Zeontext, and use the same LSTM implementation as in [72]
and [50]. Each of the three LSTM units has 1000-dimensional
state h;. It is worth noting that the CNNg;opq; can share
the features from the DTLN model. Specifically, CN Njcqi

(the local convolutional network which tackles the localized
word patches) and and C'N Ng;opq; (the global convolutional
network which tackles the whole image) are both initialized
from the fully convolutional VGG network [38]. We actually
found that the model could achieve a better result if we use
a variant of the VGG architecture for C'N Ncq: (using more
convolutional filters), but keep the current design to make
the whole approach more unified.

In testing phase, given an input image I, a query text
S and a set of candidate text bounding boxes {bp,s}, the
query text S is scored on i-th candidate box using the
likelihood of S conditioned on the local image region, the
whole image and the spatial configuration of the box, which
can be computed as s = p(S|Iyoz, Lim, {bec, bpos}) and the
candidate box with the highest score is retrieved (b, = 1
for ground truth input, and b. € [0, 1] for text localization
input).

In training phase, each instance is an {image-bounding
box-description} tuple, which is constructed from the
ground truth annotations as training instances (multiple
tuples are constructed if there are multiple descriptions for
the same text instance, or same description for multiple text
instances in close proximity) in experiments. During train-
ing, the model parameters are initialized from the pretrained
network, and fine-tuned using SGD with a smaller learning
rate, allowing the network to adapt to natural language
text retrieval domain. The training objective for CRTR is to
minimize the sum of negative log-likelihood of conditional
probability (the {image-bounding box-description} tu-
ple w.rt. Iyor, Iim, and bpos). The whole CRTR network is
trained end-to-end via back propagation.
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Fig. 3: Example results of scene text localization. The green bounding boxes contain correct detections; The red bounding
boxes contain false positives; The yellow bounding boxes contain false negatives.

3.4 Recurrent Text Recognition

After the targeted text region has been retrieved, we in-
tend to further transcribe it into a sequence of computer-
readable characters, namely, text recognition. Recognizing
the retrieved text instance can facilitate more real-world ap-
plications, and the transcribed literal information can further
assist the understanding of natural scenes along with the
semantic and contextual information obtained in the previous
stages. The text recognizer is able to provide extra recogni-
tion outputs, and also regularizes the text localization and
retrieval process with precise literal-level awareness.

However, even if we have already significantly facili-
tated the recognition process by focusing on the retrieved
text region instead of all potential ones within a natural
scene image, a successful transcription is still very chal-
lenging. To solve these problems, we consistently follow
the CNN-RNN encoder-decoder architecture for text recog-
nition along with previous text localization and retrieval
modules. It naturally handles text sequences in arbitrary
lengths, involving no character segmentation or horizon-
tal scale normalization. The main components, including
a convolutional sequence feature encoder and a recurrent
sequence feature decoder similar to CRNN [88], are de-
scribed in detail at the rest of this section. The verification
and filtering of text detection and retrieval results can also
benefit from the text recognition module.

Convolutional sequence feature encoder. Given a retrieved
text region as input, the VGG-16 architecture is employed
to obtain a feature map from which a sequence of feature
vectors is extracted as the input for the following recurrent
decoder. Specifically, feature vectors are sampled from each
column of the feature maps for decoding. Since all the
convolutional layers are translation invariant, each column
of the feature map corresponds to a rectangle region of the
original image, i.e., receptive field. And the rectangle regions
are in the same order of their corresponding columns on the
feature maps from left to right. Therefore, each vector in the
feature sequence is associated with a receptive field, and can
be considered as the descriptor of that region.

Different from general CNN encoders which tend to ex-
tract one whole holistic representation from an image patch
containing the text string, the sequence feature encoder con-
veys deep features into sequential representation, which is
invariant to the large length variation of text instances, and
compatible with the recurrent sequence decoding process
afterward.

Recurrent sequence modeling and transcription. After the
sequential feature vectors have been generated, a stacked bi-
directional LSTM is adopted to traverse the sequence feature
and decode them into distributions which correspond to
all vectors in the feature sequence. The recurrent layers
in LSTM are capable of capturing contextual information



within a sequence, which are more effective and stable
than dividing a text sequence into individual characters for
independent processing. For instance, wide characters may
require several successive vectors to fully describe. In ad-
dition, some ambiguous characters are easier to distinguish
when observing their contexts, e.g., it is easier to recognize
“il” by contrasting the character heights than recognizing
each of them separately. At the bottom of the recurrent
layers, the sequence of propagated differentials are con-
catenated into maps, inverting the operation of converting
feature maps into feature sequences, and fed back to the
convolutional layers for unified training.

With the predicted distributions over the set of all labels,
a transcription process is applied for converting the per-
vector predictions made by RNN into a computer read-
able character sequence. Mathematically, transcription is to
find the character sequence with the highest probability
conditioned on the per-vector predictions. These sequences
are further corrected and refined based on the pre-defined
dictionary to generate the final recognition output. The
whole encoding-decoding process for text recognition on the
retrieved text instance is illustrated in Figure 2.

Localization boosting with recognition results. The text
recognition output is further adopted to help eliminate false-
positive localization results that are unlikely to be meaning-
ful words, i.e. localization boosting with recognition. Partic-
ularly, when a lexicon is present, the recurrent recognizer is
capable of removing irrelevant and non-matching bounding
boxes (w.r.t given words) effectively.

In practice, the number of output bounding boxes of
DTLN has been enough to produce a redundant set of word
candidates. The compatibility of each bounding box patch
to a particular word is measured, resulting in generating a
probability-based matching score for filtering.

4 EXPERIMENTS

In Sections 4.1 and 4.2, we introduce the details of the
text localization and recognition datasets, and the newly
collected scene text retrieval dataset. Experimental results
and corresponding discussions are presented in Sections 4.3,
4.4, and 4.5.

4.1 Datasets for Text Localization and Recognition

First, the proposed dense text localization method is trained
and evaluated on standard benchmarks, including Synth-
Text dataset [33], ICDAR 2013 dataset [80], and the Street
View Text dataset [81]. Then the whole unambiguous text
localization framework is evaluated on a newly collected
COCO-TextRef dataset.

SynthText in the wild dataset [33]. This is a dataset contain-
ing 800,000 synthetic training images, which were generated
in [33]. Each image has word instances annotated with
character and word-level bounding boxes.

ICDAR 2013 dataset [80]. ICDAR (International Confer-
ence on Document Analysis and Recognition) 2013 dataset
contains real-world images of text on sign boards, books,
posters and other objects with world-level axis-aligned
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bounding box annotations. It consists of 229 training images
and 233 testing images.

ICDAR 2015 dataset [89]. ICDAR 2015 dataset was used
in the Robust Reading Competition under ICDAR 2015. It
contains incidental scene text images that are captured with-
out preparation before capturing. 2077 text image patches
are cropped from the dataset for the text recognition task,
where a large amount of cropped scene texts suffer from
perspective and curvature distortions.

Street View Text (SVT) dataset [81]. This dataset consists
of images harvested from Google Street View annotated
with word-level axis-aligned bounding boxes. SVT is more
challenging than the ICDAR data as it contains smaller
and lower resolution text which exhibits high variability. It
consists of 100 training images and 249 testing images.
COCO-Text dataset [90]. COCO-Text is a large-scale dataset
for text detection and recognition in natural images, based
on MS-COCO dataset. It contains more than 63,000 images
and 173,000 text instances. However, there exist many anno-
tated text instances are illegible for transcription and recog-
nition, due to too small text height or too much occlusion.
Our dataset ignores these kinds of illegible text samples.

4.2 New COCO-TextRef Dataset Construction for Text
Instance Retrieval

Although there are many datasets for the evaluations
of scene text detection and recognition, semantic object
retrieval, phrase grounding, and image captioning re-
spectively, no benchmark dataset is available with both
bounding-box level scene text annotations and correspond-
ing natural language descriptions upon we started our
work. Very recently one dataset for Scene Text Visual Ques-
tion Answering (ST-VQA) [21] has emerged for the ICDAR
2019 competition but as a different task this dataset still does
not provide proper information we need for the targeted
task in this manuscript. The Referlt dataset [6] has been
widely used in image captioning and natural language ob-
ject retrieval. However, it does not provide any image-based
annotations or language-based referring expressions for the
scene text instances. The ICDAR datasets [80], [89], [91]
contains real-world images of text on sign boards, books,
posters and other objects. However, most text bounding
boxes from these datasets are in extremely focused view and
rarely contain useful context concept entities.

We aggregate the information from two existing datasets
which benefit from each other, to create a new large-scale
dataset for evaluating the proposed scene text detection,
retrieval, and recognition framework. Specifically, we se-
lect to build our own dataset upon the intersection parts
of COCO-Text and Google Refexp Datasets to establish
a new dataset containing both text instance annotations
and background concept annotations with descriptions. The
images commonly shared by COCO-Text and Google Ref-
exp datasets are first selected as the base to build up the
dataset. In this case, we already have the annotations of
1) Scene text bounding boxes; 2) Scene text transcriptions;
3) Object bounding boxes and corresponding class labels;
4) Object referring expressions, for each image. Then a list
of possible triplet-style ({text-relationship-context})
referring expressions are automatically build based on the
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query = “largest text on the closest object query = “white text around a bench”

query = “largest text left to the right human”

recognition result = “nok” e
3 recognition result = “Vango”

recognition result = “SEATTLE”

query =
“most salient text on the player swinging a bat” query = “largest text on top of a red boat” query = “text on a motorcycle”

recognition result = “RX55” recognition result = “POLICE”
recognition result = “Flying”

B e 2200

\E!

query = “blue text on the largest plane”

query = “digits on the right man” query = “digits on the leftmost man”

recognition result = “DELTA”

recognition result = “21” recognition result = “8”

2

query = “text on the right of a yellow plane’

query = “text on the front of a train”

» o recognition result = “NAVY”
recognition result = “02 query = “white text on a front black motocycle”

recognition result = “TRIUMPT”

Fig. 4: Text region retrieval and recognition results of the proposed Context Reasoning Text Retrieval (CRTR) model on
the COCO-TextRef dataset. At first, red boxes are employed to denote context concepts. Then green boxes are added to
identify the successfully retrieved text regions associated with the context concepts. The remaining text regions are marked
by yellow boxes. The input queries and output recognition results are listed below each image.



relationship between the scene text instances and objects,
and concatenated with existing object-level referring expres-
sions. We finally manually go through all the generated
annotations and remove the unreasonable expressions.

Synthetic text instances are rendered on certain im-
ages through the method in [33] with corresponding de-
scriptions manually labeled, when the number of natu-
ral text instances is much less than the context concepts.
This dataset is referred as COCO-TextRef, which in to-
tal contains 6,638 images with 31,870 expressions (all in
{text-relationship-context} style, and further filter
out with human assessment), referring to 11,342 distinct
objects. It contains 17,355 text instances and their literal
transcriptions.

4.3 Text Localization Experiments

The proposed dense text localization network is trained on
800,000 images from the Synthlext in the Wild dataset. Each
image is resized to 480x640. VGG-16 weights are initialized
with the weights pretrained on ImageNet [87], and fine-
tuned to meet the new demands of the decoding process.
All weights in the decoder are initialized from a uniform
distribution. Training proceeds in parallel on all grid cells
of one image at each iteration. All weights are tied between
regions and LSTM steps. Training on the whole SynthText in
the Wild dataset takes about 15 hours on an NVIDIA Titan X
(Maxwell) GPU for 200,000 iterations.

TABLE 2: This table presents the Top-1 precision of our
method compared with previous methods on annotated
ground truth bounding boxes on the COCO-TextRef dataset.

Method PR1
LRCN [72] 0.264
DenseCap [51] 0.291
SCRC [50] 0.457
CRTR (ours) 0.582

Evaluation protocol. The following criteria are used to
evaluate text localization results. (1) The standard PASCAL
VOC detect criterion: a detection is true positive if the
Intersection over Union (IoU) between its bounding box and
the ground truth exceeds 50%. (2) The DetEval [83] criterion:
an evaluation metric which emphasizes more on detection
quality and has been popularly used in ICDAR competi-
tions. To further improve the performance, we follow the
post-processing routine introduced by [24] to filter out hard
false positives. In detail, first we use a binary text/non-
text random forest classification model to filter out non-text
proposals; second, text region proposals are improved by
CNN-based regression.

Table 1 shows the performance of our DTLN model.
The precision and recall at maximum F-measure, and the
average computation time on both datasets of our basic
model are reported. In conjunction with a simple binary
text/no-text random-forest classifier [24] to further elim-
inate false-positive detections, it outperforms state-of-the-
art methods in terms of recall and achieves comparable
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precision. In addition, text retrieval and recognition results
are shown at Figure 3, demonstrating that the proposed
approach effectively tackles the relatively crowded scene
text instances, and extracts them from the cluttered and
complex background.

TABLE 3: This table presents the Top-1, Top-5 recalls of our
method compared with previous methods with detected
text regions generated by the proposed DTLN method on
the COCO-TextRef dataset.

Method R@1 R@5
LRCN [72] 0.083 0.213
DenseCap [51]0.095  0.229
SCRC [50] 0.135 0.313
CRTR (ours) 0.184 0.394

Based on the analysis of evaluation results and compar-
ison with recent state-of-the-art word-based text detection
methods like [33] and [35], our proposed DTLN performs
equally well on sparse text instances, and performs bet-
ter in detecting relatively dense and crowded ones. How-
ever, it still fails to handle some challenging cases, such
as overexposure and large character spacing. Some failure
cases are indicated by red (false positive) and yellow (false
negative) boxes in Figure 3. Intuitively, these failure cases
are most likely due to the extreme size and challenging
font types/styles. And one main weakness of our proposed
text localization module is that the sequential generation
procedure might not well handle all these various chal-
lenging cases, especially when compared with bottom-up
segmentation-based methods.

The classical evaluation protocols for text detection and
end-to-end recognition all rely on precision (P), recall (R),
and f-measure (F), which are defined as:

TP
P_TP+FP
TP
_ N 1
R TP+ FN &)
PxR
F=2
“P+R

where TP, FP, and FN is the number of hit boxes, incorrectly
identified boxes, and missed boxes, respectively. For text
detection, a detected box b is considered as a hit box if
the IoU between b and a ground truth box is larger than a
given threshold (as mentioned above based on the standard
PASCAL VOC criterion or DetEval criterion). The hit boxes
in end-to-end recognition require not only the same IoU
restriction but also correct recognition results. Since there
is a trade-off between precision and recall, f-measure is the
most commonly adopted measurement for overall perfor-
mance assessment.

4.4 Text Retrieval Experiments

Context Reasoning Text Retrieval (CRTR) model is evalu-
ated on the newly collected COCO-TextRef dataset. Since
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TABLE 4: Text recognition results (f-measure value) on ICDAR 2013, ICDAR 2015, and SVT datasets with the recurrent
recognition model. For ICDAR 2013 and ICDAR 2015, a full lexicon (90K words) is adopted for the evaluation. The

bounding box is fixed with ground truth in ICDAR15 rec experiment. The methods marked by

ICDAR 2017 Robust Reading Competition website [91].

%1

are published on the

Methods SVT e2e ICDAR13 rec ICDAR13 e2e ICDARI15 rec
Jaderberg et al. [24] 0.56 0.76 - -
FCRNall+filts [33] 0.53 0.85 - -
Deep2Text II+* - 0.80 0.77 -
SRC-B-TextProcessingLab* - 0.81 0.80 -
Adelaide-ConvLSTMs* - 0.83 0.80 -
TextBoxes (adopting CRNN)  0.64 0.87 0.84 0.681
Busta et al. [92] - - 0.77 0.674
Lietal [15] - - 0.85 0.690
Liu et al. [93] - 091 - 0.742

Shi et al. [94] - 0.92 - 0.761
Proposed 0.65 0.87 0.86 0.694

DenseCap [51] solved a similar problem of region descrip- instances at top-1, where the highest scoring candidate

tion and retrieval where text instances were treated as one
special category of objects and denoted as signs, words, or let-
ters, we fine-tune DenseCap with the COCO-TextRef dataset
and adopt it as our baseline. We compare our method with
LRCN [72] and SCRC [50], which are also fine-tuned on
the COCO-TextRef dataset for the ability to retrieve text
instances.

The CRTR model is evaluated for two scenarios. First,
given a natural scene image and a natural language query,
the model is to retrieve the corresponding text region from
all annotated text regions in that image, which is similar to
an object retrieval problem. And we evaluate our proposed
CRTR model individually in this scenario. Second, as a
more challenging but practical work, given an image and
a natural language query, the model should retrieve a text
region from a set of candidate text regions generated by the
scene text localization methods. In both scenarios, we follow
the standard PASCAL VOC detection criterion: a retrieved
text region is considered as correct if JoU > 50%, otherwise
it is a false positive. This is equivalent to computing the
precision@]1 measure (the percentage of the highest scoring
text region being correct). We then average these scores over
all images.

Table 2 and Table 3 compare the evaluation results of our
proposed CRTR model with previous object retrieval models
tuned for text instance retrieval. We observe that CRTR
outperforms most previous methods in terms of precision@1
measure on individual text retrieval evaluation, and in
terms of recall@] (the percentage of the highest scoring
text bounding box proposals being correct) and recall@5
(the percentage of at least one of top-5 highest scoring text
bounding box proposals is correct) measures on joint text
localization and text retrieval evaluation.

Figure 4 shows examples of successfully retrieved text

region from our CRTR model overlaps with ground truth
annotation by at least 50% IoU. It demonstrates that the
proposed model effectively localizes and retrieves the tar-
geted text region based on the input natural language
queries. Also, the {text-relationship-context} mod-
eling which the SCRC model did not explicitly handle
substantively fills in the gap between image-based scene
text localization and language-based scene understanding
through the localized text instances, and boosts the perfor-
mance.

4.5 Text Recognition Experiments

The performance of text recognition is evaluated by de-
tected results that are refined by recognition, i.e., how much
improvement on detection performance can we obtain by
introducing the text recognition module. And the evalu-
ation of end-to-end performance concerns both detection
and recognition results. The ICDAR 2013 and SVT datasets
are adopted for the evaluation. As shown in Table. 4,
our method outperforms all existing approaches, including
the most recent ICDAR 2017 competition results published
on the ICDAR website [91]. On the SVT dataset, it also
significantly outperforms the leading method [33] by over
12%. Furthermore, when collaborated with a recognition
model, DTLN achieves state-of-the-art performance on IC-
DAR end-to-end recognition benchmarks, w.r.t. the related
top-performing approaches.

Some challenging scene text recognition examples from
COCO-TextRef dataset, as shown in Figure 5, demonstrate
the robustness and effectiveness of the encoder-decoder
based recurrent text recognition model. In summary, the text
recognition module significantly extends the applicability
of the proposed DTLN and CRTR models, by introducing



the flexibility of filtering and verifying the text detection
results before text retrieval, and generating precise literal
information based on the text retrieval results.

TABLE 5: Refined detection results with recognition on
ICDAR 2013 dataset: precision (P), Recall (R), and f-measure
(F). “Det” — DTLN; “Rec” — recognition without lexicon;
“Rec-lex” — recognition with the given strong lexicon.

ICDAR13
Datasets
R|P| F
Det 0.79]0.92|0.850
Det + Rec 0.81/0.93|0.866
Det + Rec-1ex|0.81/0.95/0.874

4.6 Ablation Study on Text Recognition Module

Furthermore, we evaluate how the newly integrated scene
text recognition module helps differentiate the scene text
instances and the backgrounds, resulting in boosting the text
localization performance.

Table 5 presents the results on ICDAR 2013 dataset, for
both scene text recognition and end-to-end scene text extrac-
tion tasks. The recognition module dramatically improves
the detection performance on ICDAR 2013 dataset, espe-
cially when a lexicon is available. Specifically, the detection
precision benefits more from the recognition regularization.
Note that it is still difficult for the current recurrent text
recognizer to transcribe vertical or significantly irregular
text instances, and extra performance improvement can be
expected by integrating a stronger recognition module.

5 CONCLUSION

Our proposed framework combines vision-based localiza-
tion and language-based contextual description to extract
text information from images, helping the deep understand-
ing of image-based natural scenes. Image-based localization
ensures the accurate hit and retrieval of text strings from
language-based description, while contextual description
enables the user-friendly delivery of the localized text in-
stances. The text recognition model further extends the
applicability of the whole text extraction approach.

In future, scene text localization, retrieval, and recogni-
tion will be combined into an end-to-end trainable system.
The detection and recognition performance can also be
further improved with pre-processing techniques such as
image super-resolution [95], [96] and deblurring [97], [98].
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