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Self-supervised Visual Feature Learning with
Deep Neural Networks: A Survey
Longlong Jing, Student Member, IEEE and Yingli Tian∗, Fellow, IEEE

Abstract—Large-scale labeled data are generally required to train deep neural networks in order to obtain better performance in visual
feature learning from images or videos for computer vision applications. To avoid extensive cost of collecting and annotating
large-scale datasets, as a subset of unsupervised learning methods, self-supervised learning methods are proposed to learn general
image and video features from large-scale unlabeled data without using any human-annotated labels. This paper provides an extensive
review of deep learning-based self-supervised general visual feature learning methods from images or videos. First, the motivation,
general pipeline, and terminologies of this field are described. Then the common deep neural network architectures that used for
self-supervised learning are summarized. Next, the schema and evaluation metrics of self-supervised learning methods are reviewed
followed by the commonly used datasets for images, videos, audios, and 3D data, as well as the existing self-supervised visual feature
learning methods. Finally, quantitative performance comparisons of the reviewed methods on benchmark datasets are summarized
and discussed for both image and video feature learning. At last, this paper is concluded and lists a set of promising future directions
for self-supervised visual feature learning.

Index Terms—Self-supervised Learning, Unsupervised Learning, Convolutional Neural Network, Transfer Learning, Deep Learning.
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1 INTRODUCTION

1.1 Motivation

DUE to the powerful ability to learn different levels of
general visual features, deep neural networks have

been used as the basic structure to many computer vision
applications such as object detection [1], [2], [3], semantic
segmentation [4], [5], [6], image captioning [7], etc. The mod-
els trained from large-scale image datasets like ImageNet
are widely used as the pre-trained models and fine-tuned
for other tasks for two main reasons: (1) the parameters
learned from large-scale diverse datasets provide a good
starting point, therefore, networks training on other tasks
can converge faster [8], (2) the network trained on large-
scale datasets already learned the hierarchy features which
can help to reduce over-fitting problem during the training
of other tasks, especially when datasets of other tasks are
small or training labels are scarce.

The performance of deep convolutional neural networks
(ConvNets) greatly depends on their capability and the
amount of training data. Different kinds of network ar-
chitectures were developed to increase the capacity of net-
work models, and larger and larger datasets were collected
these days. Various networks including AlexNet [9], VGG
[10], GoogLeNet [11], ResNet [12], and DenseNet [13] and
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large scale datasets such as ImageNet [14], OpenImage [15]
have been proposed to train very deep ConvNets. With
the sophisticated architectures and large-scale datasets, the
performance of ConvNets keeps breaking the state-of-the-
arts for many computer vision tasks [1], [4], [7], [16], [17],
[18].

However, collection and annotation of large-scale
datasets are time-consuming and expensive. As one of the
most widely used datasets for pre-training very deep 2D
convolutional neural networks (2DConvNets), ImageNet
[14] contains about 1.3 million labeled images covering
1, 000 classes while each image is labeled by human workers
with one class label. Compared to image datasets, collection
and annotation of video datasets are more expensive due
to the temporal dimension. The Kinetics dataset [19], which
is mainly used to train ConvNets for video human action
recognition, consists of 500, 000 videos belonging to 600
categories and each video lasts around 10 seconds. It took
many Amazon Turk workers a lot of time to collect and
annotate a dataset at such a large scale.

To avoid time-consuming and expensive data annota-
tions, many self-supervised methods were proposed to learn
visual features from large-scale unlabeled images or videos
without using any human annotations. A popular solution is
to propose various pretext tasks for networks to solve, while
the networks can be trained by learning objective functions
of the pretext tasks and the features are learned through this
process. Various pretext tasks have been proposed for self-
supervised learning including colorizing grayscale images
[20], image inpainting [21], playing image jigsaw puzzle
[22], etc. The pretext tasks share two common properties:
(1) visual features of images or videos need to be captured
by ConvNets to solve the pretext tasks, (2) the supervisory
signal is generated from the data itself (self-supervision) by
leveraging its structure.
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Fig. 3: Categories of pretext tasks for self-supervised visual feature learning: generation-based, context-based, free semantic
label-based, and cross modal-based.

and cross modal-based. Most of the methods belong to one
category. However, some methods may belong to more than
one category.

Generation-based Methods: This type of methods learn
visual features by solving pretext tasks that involve image
or video generation.

• Image Generation: Visual features are learned
through the process of image generation tasks. This
type of methods includes image colorization [20],
image super resolution [16], image inpainting [21],
image generation with Generative Adversarial Net-
works (GANs) [35], [36].

• Video Generation: Visual features are learned
through the process of video generation tasks. This
type of methods includes video generation with
GANs [37], [38] and video prediction [39].

Context-based pretext tasks: The design of context-
based pretext tasks mainly employ the context features of
images or videos such as context similarity, spatial structure,
temporal structure, etc.

• Context Similarity: Pretext tasks are designed based
on the context similarity between image patches.
This type of methods includes image clustering-
based methods [31], [40], and graph constraint-based
methods [41].

• Spatial Context Structure: Pretext tasks are used to
train ConvNets are based on the spatial relations
among image patches. This type of methods includes
image jigsaw puzzle [22], [42], [43], [44], context
prediction [45], and geometric transformation recog-
nition [46], [47], etc.

• Temporal Context Structure: The temporal order
from videos is used as supervision signal. The Con-
vNet is trained to verify whether the input frame
sequence in correct order [33], [48] or to recognize
the order of the frame sequence [49], [50].

Free Semantic Label-based Methods: This type of pre-
text tasks train networks with automatically generated se-
mantic labels. The labels are generated by traditional hard-
code algorithms [51], [52] or by game engines [53]. As long
as no human-annotations are involved through the design
of hard-code algorithms, the detectors can be used to gen-
erate labels for self-supervised training. Strictly speaking,
the methods based on data generated by game engines do
not belong to the self-supervised learning methods since
human intervention is needed during the data generation
process. However, some recent work treat them as self-
supervised learning methods [53], [54]. To make this survey
paper extensive without missing important work, we also
include this type of methods here such as moving object
segmentation [30], [55], contour detection [53], [56], relative
depth prediction [57], and etc.
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Cross Modal-based Methods: This type of pretext tasks
trains ConvNets to verify whether two different channels
of input data are corresponding to each other such as
Visual-Audio Correspondence Verification [34], [58], RGB-
Flow Correspondence Verification [59], Contrasting [60],
and egomotion [61], [62].

3.3 Commonly Used Downstream Tasks for Evaluation
To evaluate the quality of the learned image or video fea-
tures by self-supervised methods, the learned parameters by
self-supervised learning are employed as pre-trained mod-
els and then fine-tuned on downstream tasks such as im-
age classification, semantic segmentation, object detection,
and action recognition etc. The performance of the transfer
learning on these high-level vision tasks demonstrates the
generalizability of the learned features. If ConvNets of self-
supervised learning can learn general features, then the pre-
trained models can be used as a good starting point for
other vision tasks that require capturing similar features
from images or videos.

Image classification, semantic segmentation, and object
detection usually are used as the tasks to evaluate the gen-
eralizability of the learned image features by self-supervised
learning methods, while human action recognition in videos
is used to evaluate the quality of video features obtained
from self-supervised learning methods. Below are brief in-
troductions of the commonly used high-level tasks for visual
feature evaluation.

3.3.1 Semantic Segmentation
Semantic segmentation, the task of assigning semantic labels
to each pixel in images, is of great importance in many
applications such as autonomous driving, human-machine
interaction, and robotics. The community has recently made
promising progress and various networks have been pro-
posed such as Fully Convolutional Network (FCN) [4],
DeepLab [5], PSPNet [6] and datasets such as PASCAL VOC
[63], CityScape [64], ADE20K [65]. Among all these meth-
ods, FCN [4] is a milestone work for semantic segmentation
since it started the era of applying fully convolution network
(FCN) to solve this task. 2DConvNet such as AlexNet, VGG,
ResNet is used as the base network for feature extraction
while the fully connected layer is replaced by transposed
convolution layer to obtain the dense prediction. The net-
work is trained end-to-end with pixel-wise annotations.

When using semantic segmentation as downstream task
to evaluate the quality of image features learned by self-
supervised learning methods, the FCN is initialized with the
parameters trained with the pretext task and fine-tuned on
the semantic segmentation dataset, then the performance on
the semantic segmentation task is evaluated and compared
with that of other self-supervised methods.

3.3.2 Object Detection
Object Detection, a task of localizing the position of objects
in images and recognizing the category of the objects, is also
very import for many computer vision applications such
as autonomous driving, robotics, scene text detection and
so on. Recently, many datasets such as MSCOCO [66] and
OpenImage [15] have been proposed for object detection

and many ConvNet-based models [1], [2], [3], [67], [68],
[69], [70], [71] have been proposed and obtained great per-
formance. Fast-RCNN [2] is a two-stage network for object
detection. Object proposals are firstly generated based on
feature maps produced by a convolution neural network,
then these proposals are fed to several fully connected layers
to generate the bounding box of objects and the categories
of these objects.

When using object detection as downstream task to
evaluate the quality of the self-supervised image features,
networks that trained with the pretext task on unlabeled
large data are served as the pre-trained model for the Fast-
RCNN [2] and then fine-tuned on object detection datasets,
then the performance on the object detection task is evalu-
ated to demonstrate the generalizability of self-supervised
learned features.

3.3.3 Image Classification

Image Classification is a task of recognizing the category of
objects in each image. Many networks have been designed
for this task such as AlexNet [9], VGG [10], ResNet [12],
GoogLeNet [11], DenseNet [13], etc. Usually, only one class
label is available for each image although the image may
contains different classes of objects.

When choosing image classification as a downstream
task to evaluate the quality of image features learned
from self-supervised learning methods, the self-supervised
learned model is applied on each image to extract features
which then are used to train a classifier such as Support Vec-
tor Machine (SVM) [72]. The classification performance on
testing data is compared with other self-supervised models
to evaluate the quality of the learned features.

3.3.4 Human Action Recognition

Human action recognition is a task of identifying what peo-
ple doing in videos for a list of pre-defined action classes.
Generally, videos in human action recognition datasets con-
tain only one action in each video [19], [29], [73]. Both the
spatial and temporal features are needed to accomplish this
task.

The action recognition task is often used to evaluate the
quality of video features learned by self-supervised learning
methods. The network is first trained on unlabeled video
data with pretext tasks, then it is fine-tuned on action recog-
nition datasets with human annotations to recognize the
actions. The testing performance on action recognition task
is compared with other self-supervised learning methods to
evaluate the quality of the learned features.

3.3.5 Qualitative Evaluation

In addition to these quantitative evaluations of the learned
features, there are also some qualitative visualization meth-
ods to evaluate the quality of self-supervised learning fea-
tures. Three methods are often used for this purpose: kernel
visualization, feature map visualization, and image retrieval
visualization [31], [45], [46], [47].

Kernel Visualization: Qualitatively visualize the kernels
of the first convolution layer learned with the pretext tasks
and compare the kernels from supervised models. The
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TABLE 1: Summary of commonly used datasets of images, videos, audios, and 3D object data. Note that video datasets can
be used to learn both image and video features.

Dataset Data Type Size Synthetic # classes Groundtruth Labeling
CIFAR10 [74] Image 60, 000 Images No 10 Object category label
ImageNet [14] Image 1.3 million images No 1, 000 Object category label

MNIST [75] Image 70, 000 images No 10 Digit class label
PASCAL VOC [63] Image 2, 913 images No 20 Category label, bounding box, segmentation mask

Places [76] Image 2.5 million images No 205 scene categories label
Places365 [77] Image 10 million images No 434 scene categories label

STL-10 [78] Image 101, 300 Images No 10 Object category label
SUNCG [79] Image 150, 000 images Yes 84 depth, volumetric data
SVHN [80] Image 600, 000 Images No 10 Digit class label

AudioSet [81] Video/Audio 2 million 10-second videos No 632 Audio event class
HMDB51 [73] Video 6, 766 videos No 51 Human action class
Kinetics [19] Video 0.5 million 10-second videos No 600 Human action class
KITTI [82] Video 28 videos No — Data captured by various sensors are available

Moment-in-Time [83] Video 1 million 3-second videos No 339 Video category class
SceneNet RGB-D [84] Video 5 million images Yes 13 Depth, Instance Segmentation, Optical Flow

UCF101 [29] Video 10, 031 videos No 101 Human action class
YFCC100M [85] Image/Video 100 million media data No — Hashtags
ModelNet40 [86] Mesh 12, 311 mesh objects Yes 40 Object category label

ShapeNet [87] Mesh 57, 447 mesh objects Yes 55 Object category label
ShapeNet-PartSeg [88] Point Cloud 12, 137 point cloud objects Yes 16 Object category label and point level part label

DCASE [89] Audio 100 audio clips No 10 Audio category label
ESC50 [90] Audio 2, 000 audio clips No 50 Audio category label

similarity of the kernels learned by supervised and self-
supervised models are compared to indicate the effective-
ness of self-supervised methods [31], [47].

Feature Map Visualization: Feature maps are visual-
ized to show the attention of networks. Larger activation
represents the neural network pays more attention to the
corresponding region in the image. Feature maps are usually
qualitatively visualized and compared with that of super-
vised models [46], [47].

Nearest Neighbor Retrieval: In general, images with
similar appearance usually are closer in the feature space.
The nearest neighbor method is used to find the top K
nearest neighbors from the feature space of the features
learned by the self-supervised learned model [33], [41], [45],
[50].

3.4 Beyond 2D Self-supervised Learning
Self-supervised learning methods have shown great poten-
tial in image and video domain, and some of these methods
can be easily extended to other modalities of data like audio,
natural language, and 3D vision data. As an important
aspect of computer vision research, now more and more
researchers attempt to apply self-supervised learning meth-
ods on 3D data including point cloud, mesh, and multi-view
images [91]. Since some of the methods designed for images
and videos can be directly applied to 3D self-supervised
learning and there is a significant overlap between different
mythologies, we only compare the performance of 3D self-
supervised learning (see Section 7.3) to show the potential of
self-supervised learning to different domains or modalities.

4 DATASETS

This section summarizes the commonly used datasets for
training and evaluating self-supervised visual feature learn-
ing methods. Datasets collected for supervised learning
can be used for self-supervised training without using
their human-annotated labels. Evaluations of the quality

of learned features are usually conducted by fine-tuned on
high-level vision tasks with relatively small datasets (nor-
mally with accurate labels) such as video action recognition,
object detection, semantic segmentation, etc. It is worth
noting that networks use these synthetic datasets for visual
feature learning are included as self-supervised learning
methods in this paper since labels of synthetic datasets are
automatically generated by game engines and no human
annotations are involved.

Commonly used image datasets include ImageNet [14],
Places [76], Places365 [77], SUNCG [79], MNIST [75],
SVHN [80], CIFAR10 [74], STL-10 [78], PASCAL VOC [63],
commonly used video datasets include YFCC100M [85],
SceneNet RGB-D [84], Moment-in-Time [83], Kinetics [19],
AudioSet [81], KITTI [82], UCF101 [29], HMDB51 [73], com-
monly used audio datasets include AudioSet [81] ESC50
[90], DCASE [89], and commonly used 3D object datasets
include ShapeNet [87], ModelNet40 [86], and ShapeNet-
PartSeg [88]. Table 1 summarizes the commonly used image,
video, audio, and 3D object datasets, and detailed descrip-
tions of these datasets can be found in Section 3 of the
Appendix.

5 IMAGE FEATURE LEARNING

In this section, three groups of self-supervised image feature
learning methods are reviewed including generation-based
methods, context-based methods, and free semantic label-
based methods. A list of the image feature self-supervised
learning methods can be found in Table 2. Since the cross
modal-based methods mainly learn features from videos
and most methods of this type can be used for both image
and video feature learning, so cross modal-based methods
are reviewed in the video feature learning section.

5.1 Generation-based Image Feature Learning
Generation-based self-supervised methods for learning im-
age features involve the process of generating images in-
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TABLE 2: Summary of self-supervised image feature learning methods based on the category of pretext tasks. ”Multiple”
means the method explicitly or implicitly uses multiple pretext tasks for image feature learning.

Method Category Code Contribution
AutoColor [92] Generation Yes Training ConvNet to predict per-pixel color histograms

BiGAN [93] Generation Yes Bidirectional GAN to project data into latent space
ColorfulColorization [20] Generation Yes Posing image colorization as a classification task

Colorization [32] Generation Yes Using image colorization as the pretext task
CompletNet [94] Generation Yes Employing two discriminators to guarantee local and global consistent

Context Encoder [21] Generation Yes Employing ConvNet to solve image inpainting
DCGAN [95] Generation Yes Deep convolutional GAN for image generation

GAN [35] Generation Yes Forerunner of GAN
SelfGAN [96] Multiple No Use rotation recognition and GAN for self-supervised learning

Split-Brain [97] Generation Yes Using split-brain auto-encoder as the pretext task
SpotArtifacts [98] Generation Yes Learning by recognizing synthetic artifacts in images

SRGAN [16] Generation Yes Employing GAN for single image super-resolution
WGAN [99] Generation Yes Proposed WGAN which makes the training of GAN more stable

Arbitrary Jigsaw [43] Context No Learning with jigsaw puzzles with arbitrary grid size and dimension
Boosting [40] Multiple No Using clustering to boost the self-supervised learning methods

ClusterEmbegging [100] Context Yes Deep embedded clustering for self-supervised learning
CMC [101] Context Yes Learning by contrasting multi-views of the data

Context Prediction [45] Context Yes Learning by predicting the relative position of two patches from an image
CPC [102] Context Yes Learning features by predicting the future in latent space with autoregressive models

Damaged Jigsaw [44] Multiple No Learning by solving jigsaw puzzle, inpainting, and colorization together
DeepCluster [31] Context Yes Using clustering as the pretext

DeepPermNet [103] Context Yes A new method to solve image patch jigsaw puzzle
GraphConstraint [41] Context Yes Learning with image pairs mined with Fisher Vector
ImproveContext [104] Context No Techniques to improve context based self-supervised learning methods

Jigsaw [22] Context Yes Image patch Jigsaw puzzle as the pretext task for self-supervised learning
JointCluster [105] Context Yes Jointly learning of deep representations and image clusters

Learning2Count [106] Context Yes Learning by counting visual primitive
MoCo [107] Context Yes Contrastive learning of visual representations with a memory bank

MultiTask [108] Multiple Yes Using multiple pretext tasks for self-supervised feature learning
PredictNoise [109] Context Yes Learning by mapping images to a uniform distribution over a manifold

Ranking [110] Context Yes Learning by ranking video frames with a triplet loss
RotNet [46] Context Yes Learning by recognizing rotations of images

SimCLR [60] Context Yes Contrastive learning of visual representations
CrossDomain [53] Free Semantic Label Yes Utilizing synthetic data and its labels rendered by game engines
EdgeDetection [56] Free Semantic Label Yes Learning by detecting edges
WatchingMove [30] Free Semantic Label Yes Learning by grouping pixels of moving objects in videos

cluding image generation with GAN (to generate fake im-
ages), super-resolution (to generate high-resolution images),
image inpainting (to predict missing image regions), and im-
age colorization (to colorize gray-scale images into colorful
images). For these tasks, pseudo training labels P usually
are the images themselves and no human-annotated labels
are needed during training, therefore, these methods belong
to self-supervised learning methods.

The pioneer work about the image generation-based
methods is the Autoencoder [111] which learns to compress
an image into a low-dimension vector and then is uncom-
pressed into the image that closes to the original image
with a bunch of layers. With an auto-encoder, networks can
reduce the dimension of an image into a lower-dimensional
vector that contains the main information of the origi-
nal image. Variational Autoencoder (VAE) is an improved
version of Autoencoder which estimates the Probability
Density Function (PDF) of the training data. The current
image generation-based methods follow a similar idea but
with different pipelines to learn visual features through the
process of image generation.

5.1.1 Image Generation with GAN

Generative Adversarial Network (GAN) is a type of deep
generative model that was proposed by Goodfellow et al.
[35]. A GAN model generally consists of two kinds of
networks: a generator which is to generate images from

latent vectors and a discriminator which is to distinguish
whether the input image is generated by the generator. By
playing the two-player game, the discriminator forces the
generator to generate realistic images, while the generator
forces the discriminator to improve its differentiation ability.
During the training, the two networks are competing against
with each other and make each other stronger.

The common architecture for the image generation from
a latent variable task is shown in Fig. 4. The generator is
trained to map any latent vector sampled from latent space
into an image, while the discriminator is forced to distin-
guish whether the image from the real data distribution or
generated data distribution. Therefore, the discriminator is
required to capture the semantic features from images to
accomplish the task. The parameters of the discriminator
can server as the pre-trained model for other computer
vision tasks.

Most of the methods for image generation from random
variables do not need any human-annotated labels. How-
ever, the main purpose of this type of task is to generate
realistic images instead of obtaining better performance on
downstream applications. Generally, the inception scores of
the generated images are used to evaluate the quality of the
generated images [112], [113]. And only a few methods eval-
uated the quality of the feature learned by the discriminator
on the high-level tasks and compared with others [93], [95],
[96].
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5.1.4 Image Generation with Colorization

Fig. 6: The architecture of image colorization proposed in
[20]. The figure is from [20] with author’s permission.

Image colorization is a task of predicting a plausible
color version of the photograph given a gray-scale pho-
tograph as input. A qualitative illustration of the image
colorization task is shown in Fig. 6. To correctly colorize
each pixel, networks need to recognize objects and to group
pixels of the same part together. Therefore, visual features
can be learned in the process of accomplishing this task.

Many deep learning-based colorization methods have
been proposed in recent years [20], [117], [118]. A straight-
forward idea would be to employ a fully convolution neural
network which consists of an encoder for feature extraction
and a decoder for the color hallucination to colorization. The
network can be optimized with L2 loss between the pre-
dicted color and its original color. Zhang et al. proposed to
handle the uncertainty by posting the task as a classification
task and used class-rebalancing to increase the diversity of
predicted colors [20]. The framework for image colorization
proposed by Zhang et al. is shown in Fig. 6. Trained in large-
scale image collections, the method shows great results and
fools human on 32% of the trials during the colorization test.

Some work specifically employs the image colorization
task as the pretext for self-supervised image representation
learning [20], [32], [92], [97]. After the image colorization
training is finished, the features learned through the col-
orization process are specifically evaluated on other down-
stream high-level tasks with transfer learning.

5.2 Context-Based Image Feature Learning
The context-based pretext tasks mainly employ the con-
text features of images including context similarity, spatial
structure, and temporal structure as the supervision signal.
Features are learned by ConvNet through the process of
solving the pretext tasks designed based on attributes of the
context of images.

5.2.1 Learning with Context Similarity
There are two ways of utilizing context similarity as super-
vision signals for self-supervised learning: formulating it as
a predictive task or a contrastive task. For both methods,
the data are firstly clustered into different groups under
assumptions of the data from the same group have high
context similarity, while data from different groups have
low context similarity. The predictive tasks involve training
networks to predict the group ID of the data and usually
with cross entropy loss [31]. The contrastive tasks involve
training networks to directly minimize feature distances
from the same group and maximize feature distances from
different groups with triplet loss or contrastive loss [60].

Clustering is a method of grouping sets of similar data
in the same clusters [119]. In the self-supervised scenario,
the clustering methods mainly employed as a tool to cluster
image data. A naive method would be to cluster the image
data based on the hand-designed feature such as HOG [120],
SIFT [121], or Fisher Vector [122]. After the clustering, sev-
eral clusters are obtained while the image within one cluster
has a smaller distance in feature space and images from
different clusters have a larger distance in feature space. The
smaller the distance in feature space, the more similar the
image in the appearance in the RGB space. Then a ConvNet
can be trained to classify the data by using the cluster
assignment as the pseudo class label. To accomplish this
task, the ConvNet needs to learn the invariance within one
class and the variance among different classes. Therefore,
the ConvNet is able to learn semantic meaning of images.

The existing methods about using the clustering variants
as the pretext task follow these principals [31], [40], [41],
[100], [105]. Firstly, the image is clustered into different
clusters which the images from the same cluster have
smaller distance and images from different clusters have
larger distance. Then a ConvNet is trained to recognize the
cluster assignment [31], [40] or to recognize whether two
imaged are from same cluster [41]. Since the clustering and
self-supervised training are two separated steps, various
clustering methods can be used to generate reliable clusters.

Another way of leveraging context similarly for self-
supervised image feature learning is by contrasting [60],
[101], [102], [107]. The general idea of the contrastive self-
supervised learning is to train networks to maximum agree-
ment of different views of same scene while minimizing
agreement of views from different scenes. The recent state-
of-the-art method is SimCLR proposed by Chen et al. which
learns features by contrasting images after a composition of
data augmentations [60]. The positive pairs are constructed
by sampling two images after applying different augmenta-
tion techniques for the same image, while negative pairs
include two different images. This method significantly
outperforms other self-supervised learning methods on Im-
ageNet dataset. It has been extended to other modalities of
data [123], [124].

5.2.2 Learning with Spatial Context Structure
Images contain rich spatial context information such as the
relative positions among different patches from an image
which can be used to design the pretext task for self-
supervised learning. The pretext task can be to predict the
relative positions of two patches from same image [45], or
to recognize the order of the shuffled a sequence of patches
from same image [22], [43], [44]. The context of full images
can also be used as a supervision signal to design pretext
tasks such as to recognize the rotating angles of the whole
images [46]. To accomplish these pretext tasks, ConvNets
need to learn spatial context information such as the shape
of the objects and the relative positions of different parts of
an object.

The method proposed by Doersch et al. is one of the pi-
oneer work of using spatial context cues for self-supervised
visual feature learning [45]. Random pairs of image patches
are extracted from each image, then a ConvNet is trained
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(a) (c) (b) 

Fig. 7: The visualization of the Jigsaw Image Puzzle [22]. (a)
is an image with 9 sampled image patches, (b) is an example
of shuffled image patches, and (c) shows the correct order of
the sampled 9 patches. Figure is reproduced based on [22].

to recognize the relative positions of the two image patches.
To solve this puzzle, ConvNets need to recognize objects in
images and learn the relationships among different parts of
objects. To avoid the network learns trivial solutions such as
simply using edges in patches to accomplish the task, heavy
data augmentation is applied during the training phase.

Following this idea, more methods are proposed to learn
image features by solving more difficult spatial puzzles [22],
[42], [43], [44], [125]. As illustrated in Fig. 7, one typical work
proposed by Noroozi et al. attempted to solve an image
Jigsaw puzzle with ConvNet [22]. Fig. 7(a) is an image with
9 sampled image patches, Fig. 7(b) is an example of shuffled
image patches, and Fig. 7(c) shows the correct order of the
sampled 9 patches. The shuffled image patches are fed to
the network which trained to recognize the correct spatial
locations of the input patches by learning spatial context
structures of images such as object color, structure, and high-
level semantic information.

Given 9 image patches from an image, there are 362, 880
(9!) possible permutations and a network is very unlikely to
recognize all of them because of the ambiguity of the task.
To limit the number of permutations, usually, hamming
distance is employed to choose only a subset of permuta-
tions among all the permutations that with relative large
hamming distance. Only the selected permutations are used
to train ConvNet to recognize the permutation of shuffled
image patches [22], [43], [44], [126], [127].

The main principle of designing puzzle tasks is to find a
suitable task which is not too difficult and not too easy for
a network to solve. If it is too difficult, the network may not
converge due to the ambiguity of the task or can easily learn
trivial solutions if it is too easy. Therefore, a reduction in the
search space is usually employed to reduce the difficulty of
the task.

5.3 Free Semantic Label-based Image Feature Learn-
ing
The free semantic label refers to labels with semantic mean-
ings that obtained without involving any human annota-
tions. Generally, the free semantic labels such as segmenta-
tion masks, depth images, optic flows, and surface normal
images can be rendered by game engine or generated by
hard-code methods. Since these semantic labels are automat-
ically generated, the methods using the synthetic datasets
or using them in conjunction with a large unlabeled image
or video datasets are considered as self-supervised learning
methods.

5.3.1 Learning with Labels Generated by Game Engines
Given models of various objects and layouts of environ-
ments, game engines are able to render realistic images
and provide accurate pixel-level labels. Since game engines
can generate large-scale datasets with negligible cost, var-
ious game engines such as Airsim [128] and Carla [129]
have been used to generate large-scale synthetic datasets
with high-level semantic labels including depth, contours,
surface normal, segmentation mask, and optical flow for
training deep networks. An example of an RGB image with
its generated accurate labels is shown in Fig. 8.

Instance SegmentationSynthetic Image Depth Optical Flow

Fig. 8: An example of an indoor scene generated by a game
engine [84]. For each synthetic image, the corresponding
depth, instance segmentation, and optical flow can be au-
tomatically generated by the engine.

Game engines can generate realistic images with accu-
rate pixel-level labels with very low cost. However, due to
the domain gap between synthetic and real-world images,
the ConvNet purely trained on synthetic images cannot be
directly applied to real-world images. To utilize synthetic
datasets for self-supervised feature learning, the domain
gap needs to be explicitly bridged. In this way, the ConvNet
trained with the semantic labels of the synthetic dataset can
be effectively applied to real-world images.

To overcome the problem, Ren and Lee proposed an un-
supervised feature space domain adaptation method based
on adversarial learning [53]. As shown in Fig. 9, the net-
work predicts surface normal, depth, and instance contour
for the synthetic images and a discriminator network D
is employed to minimize the difference of feature space
domains between real-world and synthetic data. Helped
with adversarial training and accurate semantic labels of
synthetic images, the network is able to capture visual
features for real-world images.

Compared to other pretext tasks in which the pretext
tasks implicitly force ConvNets to learn semantic features,
this type of methods are trained with accurate semantic
labels which explicitly force ConvNets to learn features that
highly related to the objects in images.

5.3.2 Learning with Labels Generated by Hard-code pro-
grams
Applying hard-code programs is another way to automati-
cally generate semantic labels such as salience, foreground
masks, contours, depth for images and videos. With these
methods, very large-scale datasets with generated semantic
labels can be used for self-supervised feature learning. This
type of methods generally has two steps: (1) label generation
by employing hard-code programs on images or videos to
obtain labels, (2) train ConvNets with the generated labels.

Various hard-code programs have been applied to gen-
erate labels for self-supervised learning methods include
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TABLE 3: Summary of self-supervised video feature learning methods based on the category of pretext tasks.

Mehtod SubCategory Code Contribution
ConvLSTM [130] Generation Yes Employing Convolutional LSTM for video prediction

DPC [131] Generation Yes Learning by recurrently predicting representations of future frames
LSTMDynamics [132] Generation No Learning by predicting long-term temporal dynamic in videos

MCNet [133] Generation Yes Disentangling motion and content for video future prediction
MocoGAN [38] Generation Yes Decomposing motion and content for video generation with GAN

TemporalGAN [134] Generation Yes Decomposing temporal and image generator for video generation
Un-LSTM [39] Generation Yes Forerunner of video prediction with LSTM

Video Colorization [135] Generation Yes Employing video colorization as the pretext task
VideoGAN [37] Generation Yes Forerunner of video generation with GAN

AOT [48] Context Yes Learning by recognizing the arrow of time in videos
CubicPuzzles [125] Context No Learning by solving video cubic puzzles
LSTMPermute [136] Context Yes Learning by temporal order verification with LSTM

OPN [49] Context Yes Using frame sequence order recognition as the pretext task
O3N [137] Context No Learning by identifying odd video sequences

ShuffleLearn [33] Context Yes Employing temporal order verification as the pretext task
TemporalCoherence [138] Context No Learning with the temporal coherence of features of frame sequence

Transitive [139] Context No Learning inter and intra instance variations with a Triplet loss
VCOP [50] Context Yes Learning by recognizing the order of video clips with 3DCNN

Video Jigsaw [42] Context No Learning by jointly reasoning about spatial and temporal context
3DRotNet [47] Context No Learning by recognizing rotations of video clips

ActivesStereoNet [140] Cross Modal Yes End-to-end self-supervised learning of depth from active stereo systems
AmbientSound [141] Cross Modal No Predicting a statistical summary of the sound from a video frame

AVTS [34] Cross Modal No Visual and Audio correspondence verification as pretext task
AudioVisual [142] Cross Modal Yes Jointly modeling visual and audio as fused multisensory representation

CrossLearn [59] Cross Modal No Optical flow and RGB correspondence verification as pretext task
CrossPixel [143] Cross Modal No Learning by predicting motion from a single image as the pretext task
DepthFlow [144] Cross Modal Yes Depth and optical flow learning using cross-task consistency from videos
EgoMotion [145] Cross Modal Yes Learning by predicting camera motion and the scene structure from videos

FlowNet [146] Cross Modal Yes Forerunner of optical flow estimation with ConvNet
FlowNet2 [147] Cross Modal Yes Better architecture and better performance on optical flow estimation

GDT [123] Cross Modal No Learning video and audio features by contrasting across modalities and augmentations
GoNet [148] Cross Modal Yes Jointly learning monocular depth, optical flow and ego-motion estimation from videos
L3-Net [58] Cross Modal Yes Forerunner of Audio-Visual Correspondence for self-supervised learning

LearnByMove [61] Cross Modal Yes Learning by predicting the camera transformation from a pairs of images
MotionPred [149] Cross Modal Yes Learning by predicting the appearance and motion statics of video clips

TiedEgoMotion [62] Cross Modal No Learning from ego-motor signals and video sequence
UnFlow [150] Cross Modal Yes An unsupervised loss for optical flow estimation

VisualOdometry [151] Cross Modal Yes An unsupervised paradigm for deep visual odometry learning
XDC [152] Cross Modal No Using clustering in one modality as a supervisory signal for the other modality

colorization models to solve video colorization by learning
to copy colors from a reference frame [135]. Given the
reference RGB frame and a gray-scale image, the network
needs to learn the internal connection between the reference
RGB frame and gray-scale image to colorize it.

Another perspective is to tackle video colorization by
employing a fully convolution neural network. Tran et al.
proposed an U-shape convolution neural network for video
colorization [153]. The network is an encoder-decoder based
3DConvNet. The input of the network is a clip of grayscale
video clip, while the output if a colorful video clip. The
encoder is a bunch of 3D convolution layers to extract
features while the decoder is a bunch of 3D deconvolution
layers to generate colorful video clips from the extracted
feature.

The color coherence in videos is a strong supervision
signal. However, only a few work studied to employ it for
self-supervised video feature learning [135]. More work can
be done by studying using color coherence as a supervision
signal for self-supervised video feature learning.

6.1.3 Learning from Video Prediction
Video future prediction is a task of predicting future frame
sequences [39] or features of future frame sequences [131]
based on a limited number of frames of a video. To predict
future frames, networks must learn dynamic changes in

CONCAT
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Fig. 11: The architecture for video prediction task proposed
by [133]. Figure is reproduced based on [133].

appearance within a given frame sequence and learn to infer
the future.

The pioneer of applying deep learning for video pre-
diction is Un-LSTM [39], and many methods have been
proposed afterwards [39], [131], [133], [154], [155], [156],
[157], [158]. Since its superior ability to model temporal
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dynamics, most of them use LSTM or LSTM variant to
encode temporal dynamics in videos or to infer the future
frames [39], [130], [133], [157], [158]. These methods can be
employed for self-supervised feature learning without using
human-annotations.

Most of the frameworks follow the encoder-decoder
pipeline in which the encoder to model spatial and temporal
features from the given video clips and the decoder to
generate future frames or to generate features of the future
frames based on feature extracted by encoder. Fig. 11 shows
a pipeline of MCnet proposed by Villegas et al. in [133].
McNet is built on Encoder-Decoder Convolutional Neural
Network and Convolutional LSTM for video prediction.
It has two encoders, one is Content Encoder to capture
the spatial layout of an image, and the other is Motion
Encoder to model temporal dynamics within video clips.
The spatial features and temporal features are concatenated
to feed to the decoder to generate the next frame, and the
network is optimized by content loss and adversarial loss.
By separately modeling temporal and spatial features, this
model can effectively generate future frames recursively.

Video future prediction is a self-supervised learning task
and the learned features can be transferred to other tasks
[39], [131]. Generally, for video future frame prediction
tasks, Structural Similarity Index (SSIM) and Peak Signal to
Noise Ratio (PSNR) are employed to evaluate the difference
between the generated frame sequence and the ground truth
frame sequence.

6.2 Temporal Context-based Learning

Correct Order

Incorrect Order
share parameter

ConvNet

ConvNet

ConvNet

Fig. 12: The pipeline of Shuffle and Learn [33]. The network
is trained to verify whether the input frames are in correct
temporal order. Figure is reproduced based on [33].

Videos consist of various lengths of frames which have
rich spatial and temporal information. The inherent tempo-
ral information within videos can be used as supervision
signal for self-supervised feature learning. Various pretext
tasks have been proposed by utilizing temporal context re-
lations including temporal order verification [33], [48], [137]
and temporal order recognition [49], [50], [125]. Temporal
order verification is to verify whether a sequence of input
frames is in correct temporal order, while temporal order
recognition is to recognize the order of a sequence of input
frames.

As shown in Fig. 12, Misra et al. proposed to use the
temporal order verification as the pretext task to learn image
features from videos with 2DConvNet [33] which has two

main steps: (1) The frames with significant motions are
sampled from videos according to the magnitude of optical
flow, (2) The sampled frames are shuffled and fed to the
network which is trained to verify whether the input data
is in correct order. To successfully verify the order of the
input frames, the network is required to capture the subtle
difference between the frames such as the movement of the
person. Therefore, semantic features can be learned through
the process of accomplishing this task. The temporal order
recognition tasks use networks of similar architecture.

However, the methods usually suffer from a massive
dataset preparation step. The frame sequences that used
to train the network are selected based on the magnitude
of the optical flow, and the computation process of optical
flow is expensive and slow. Therefore, more straightforward
and time-efficiency methods are needed for self-supervised
video feature learning.

6.3 Cross Modal-based Learning

Cross modal-based learning methods usually learn features
from the correspondence of multiple data streams including
RGB frame sequence, optical flow sequence, audio data, and
camera pose.

In addition to rich temporal and spatial information in
videos, optical flow sequence can be generated to specifi-
cally indicate the motion in videos, and the difference of
frames can be computed with negligible time and space-
time complexity to indicate the boundary of the moving
objects. Similarly, audio data also provide a useful hint
about the content of videos. Based on the type of data used,
these methods fall into three groups: (1) methods that learn
features by using the RGB and optical flow correspondence
[59], [143], (2) methods that learn features by utilizing the
video and audio correspondence [34], [58], (3) ego-motion
that learn by utilizing the correspondence between egocen-
tric video and ego-motor sensor signals [61], [62]. Usually,
the network is trained to recognize if the two kinds of input
data are corresponding to each other [34], [59], or is trained
to learn the transformation between different modalities
[61].

6.3.1 Learning from RGB-Flow Correspondence
Optical flow encodes object motions between adjacent
frames, while RGB frames contain appearance information.
The correspondence of the two types of data can be used to
learn general features [59], [143], [146], [147]. This type of
pretext tasks include optical flow estimation [146], [147] and
RGB and optical flow correspondence verification [143].

Sayed et al. proposed to learn video features by verifying
whether the input RGB frames and the optical flow corre-
sponding to each other. Two networks are employed while
one is for extracting features from RGB input and another
is for extracting features from optical flow input [59]. To
verify whether two input data correspond to each other,
the network needs to capture mutual information between
the two modalities. The mutual information across different
modalities usually has higher semantic meaning compared
to information which is modality specific. Through this pre-
text task, the mutual information that invariant to specific
modality can be captured by ConvNet.
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Optical flow estimation is another type of pretext tasks
that can be used for self-supervised video feature learning.
Fischer et al. proposed FlowNet which is an end-to-end
convolution neural network for optical flow estimation from
two consecutive frames [146], [147]. To correctly estimate
optical flow from two frames, the ConvNet needs to capture
appearance changes of two frames. Optical flow estimation
can be used for self-supervised feature learning because
it can be automatically generated by simulators such as
game engines or by hard-code programs without human
annotation.

6.3.2 Learning from Visual-Audio Correspondence

Recently, some researchers proposed to use the correspon-
dence between visual and audio streams to design Visual-
Audio Correspondence learning task [34], [58], [123], [141],
[142]. Usually, this type of method jointly learns both video
and audio features with heterogeneous networks.

Visual

Data

Audio

Data

Visual Stream ConvNet

Audio Stream ConvNet

Correspond?

Visual Audio Correspondence Network

Fig. 13: The architecture of video and audio correspondence
verification task [58].

The general framework of this type of pretext tasks is
shown in Fig. 13. There are two subnetworks: the vision
subnetwork and the audio subnetwork. The input of vision
subnetwork is a single frame or a stack of image frames and
the vision subnetwork learns to capture visual features of
the input data. The audio network is a 2DConvNet and the
input is the Fast Fourier Transform (FFT) of the audio from
the video. Positive data are sampled by extracting video
frames and audio from the same time of one video, while
negative training data are generated by extracting video
frames and audio from different videos or from different
times of one video. Therefore, networks are trained to dis-
cover the correlation of video and audio data to accomplish
the pretext task which could be verifying whether the input
visual data and audio data are correspondents or not [34]
with cross-entropy loss, or minimizing the distance between
positive pairs while maximizing distances between negative
pairs with contrastive or triplet loss [123]. Since the inputs of
ConvNets are two kinds of data, networks are able to jointly
learn both video and audio features by solving the pretext
task.

Another way to utilize the correspondence of visual
and audio streams is to use cross-modal deep clustering
proposed by Alwassel et al. which leverages unsupervised
clustering in one modality as a supervisory signal for other
modalities [152]. With cross-modal supervision signal, mod-
els can utilize semantic correlations and differences among
different modalities.

In many applications, multiple modalities of data are
usually available such as video, audio, language, depth,
point cloud, mesh, etc. Utilizing cross-modality correspon-
dences as supervision signal for self-supervised learning can
be easily extended to other modalities of data.

6.3.3 Ego-motion
With the self-driving car which usually equipped with
various sensors, the large-scale egocentric video along with
ego-motor signal can be easily collected with very low cost
by driving the car in the street. Recently, some researchers
proposed to use the correspondence between visual signal
and motor signal for self-supervised feature learning [61],
[62], [145].

ConvNet

ConvNet

Camera Pose

TransformationShare Parameters

Fig. 14: The architecture of camera pose transformation
estimation from egocentric videos [61].

The underline intuition of this type of methods is that
a self-driving car can be treated as a camera moving in a
scene and thus the egomotion of the visual data captured
by the camera is as same as that of the car. Therefore, the
correspondence between visual data and egomotion can
be utilized for self-supervised feature learning. A typical
network of using ego-motor signal is shown in Fig. 14
proposed by Agrawal et al. for self-supervised image feature
learning [61]. The inputs to the network are two frames
sampled from an egocentric video within a short time. The
labels for the network indicate the rotation and translation
relation between the two sampled images which can be
derived from the odometry data of the dataset. With this
task, the ConvNet is forced to identify visual elements that
are present in both sampled images.

The ego-motor signal is a type of accurate supervision
signal. In addition to directly applying it for self-supervised
feature learning, it has also been used for unsupervised
learning of depth and ego-motion [145]. All these networks
can be used for self-supervised feature learning and trans-
ferred for downstream tasks.

7 PERFORMANCE COMPARISON

This section compares the performance of image, video,
audio, and 3D feature self-supervised learning methods on
public datasets. For image feature self-supervised learning,
the performance on downstream tasks including image clas-
sification, semantic segmentation, and object detection are
compared. For video feature self-supervised learning, the
performance on a downstream task which is human action
recognition in videos is reported. Since some self-supervised
video feature learning methods jointly learn video and au-
dio features, we also include the performance comparison of
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TABLE 4: Linear classification on ImageNet and Places datasets using activations from the convolutional layers of an
AlexNet as features. ”Convn” means the linear classifier is trained based on the n-th convolution layer of AlexNet. ”Places
Labels” and ”ImageNet Labels” indicate using supervised model trained with human-annotated labels as the pre-trained
model.

ImageNet Places
Method Pretext Tasks conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5
Places labels [9] — — — — — — 22.1 35.1 40.2 43.3 44.6
ImageNet labels [9] — 19.3 36.3 44.2 48.3 50.5 22.7 34.8 38.4 39.4 38.7
Random(Scratch) [9] — 11.6 17.1 16.9 16.3 14.1 15.7 20.3 19.8 19.1 17.5
ColorfulColorization [20] Generation 12.5 24.5 30.4 31.5 30.3 16.0 25.7 29.6 30.3 29.7
BiGAN [93] Generation 17.7 24.5 31.0 29.9 28.0 21.4 26.2 27.1 26.1 24.0
SplitBrain [97] Generation 17.7 29.3 35.4 35.2 32.8 21.3 30.7 34.0 34.1 32.5
ContextEncoder [21] Context 14.1 20.7 21.0 19.8 15.5 18.2 23.2 23.4 21.9 18.4
ContextPrediction [45] Context 16.2 23.3 30.2 31.7 29.6 19.7 26.7 31.9 32.7 30.9
Jigsaw [22] Context 18.2 28.8 34.0 33.9 27.1 23.0 32.1 35.5 34.8 31.3
Learning2Count [106] Context 18.0 30.6 34.3 32.5 25.7 23.3 33.9 36.3 34.7 29.6
DeepClustering [31] Context 13.4 32.3 41.0 39.6 38.2 19.6 33.2 39.2 39.8 34.7

TABLE 5: Comparison of the self-supervised image feature learning methods on classification, detection, and segmentation
on PASCAL VOC dataset. ”ImageNet Labels” indicates using supervised model trained with human-annotated labels as
the pre-trained model.

Method Pretext Tasks Classification (%) Detection (%) Segmentation (%)
ImageNet Labels [9] — 79.9 56.8 48.0
Random(Scratch) [9] — 57.0 44.5 30.1
ContextEncoder [21] Generation 56.5 44.5 29.7
BiGAN [93] Generation 60.1 46.9 35.2
ColorfulColorization [20] Generation 65.9 46.9 35.6
SplitBrain [97] Generation 67.1 46.7 36.0
RankVideo [110] Context 63.1 47.2 35.4†

PredictNoise [109] Context 65.3 49.4 37.1†

JigsawPuzzle [22] Context 67.6 53.2 37.6
ContextPrediction [45] Context 65.3 51.1 —
Learning2Count [106] Context 67.7 51.4 36.6
DeepClustering [31] Context 73.7 55.4 45.1
WatchingVideo [30] Free Semantic Label 61.0 52.2 —
CrossDomain [53] Free Semantic Label 68.0 52.6 —
AmbientSound [141] Cross Modal 61.3 — —
TiedToEgoMotion [62] Cross Modal — 41.7 —
EgoMotion [61] Cross Modal 54.2 43.9 —

audio features on audio event classification benchmark [34],
[123], [152]. For 3D feature learning, 3D object recognition
with different modalities including point cloud, mesh, and
multi-view images usually is used as downstream tasks to
evaluate the quality of learned features.

7.1 Performance of Image Feature Learning

As described in Section 4.3, the quality of features learned by
self-supervised learned models is evaluated by fine-tuning
them on downstream tasks such as semantic segmentation,
object detection, and image classification. This section sum-
marizes the performance of the existing image feature self-
supervised learning methods.

Table 4 lists the performance of image classification
performance on ImageNet [14] and Places [76] datasets.
During self-supervised pretext tasks training, most of the
methods are trained on ImageNet dataset with AlexNet as
based network without using the category labels. After self-
supervised training finished, a linear classifier is trained on
top of different frozen convolutional layers of the ConvNet
on the training split of ImageNet and Places datasets. The
classification performances on the two datasets are used to
demonstrate the quality of the learned features.

As shown in Table 4, the overall performance of the self-
supervised models is lower than that of models trained
either with ImageNet labels or with Places labels. Three
conclusions can be drawn based on the performance from
the Table: (1) The features from different layers are always
benefited from the self-supervised pretext task training.
The performance of self-supervised learning methods is
always better than the performance of the model trained
from scratch. (2) All of the self-supervised methods perform
well with the features from conv3 and conv4 layers while
performing worse with the features from conv1, conv2, and
conv5 layers. This is probably because shallow layers cap-
ture general low-level features, while deep layers capture
pretext task-related features. (3) When there is a domain gap
between dataset for pretext task training and the dataset
of downstream task, the self-supervised learning method
is able to reach comparable performance with the model
trained with ImageNet labels.

In addition to image classification, object detection and
semantic segmentation are also used as the downstream
tasks to evaluate the quality of the features learned by
self-supervised learning. Usually, ImageNet is used for self-
supervised pretext task pre-training by discarding category
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TABLE 6: Comparison of existing self-supervised methods
for action recognition on UCF101 and HMDB51 datasets.

Pretraining Evaluation
Method Architecture Dataset UCF HMDB
Fully supervised [159] 3DResNet18 Kinetics 84.4 56.4
Fully supervised [160] R(2+1)D-18 Kinetics 93.1 63.6
ShuffleLearn [33] CaffeNet UCF/HMDB 50.2 18.1
GeometryGuide [161] CaffeNet UCF/HMDB 55.1 23.3
RL [126] CaffeNet UCF/HMDB 58.6 25.0
CMC [101] CaffeNet UCF/HMDB 59.1 26.7
CrossLearn [59] CaffeNet UCF/HMDB 58.7 27.2
OPN [49] VGG UCF/HMDB 59.8 23.8
L3-Net [58] VGG AudioSet 72.3 40.2
MotionPred [149] C3D Kinetics 61.2 33.4
RotNet3D [47] 3D-ResNet18 Kinetics 62.9 33.7
DPC [131] 3D-ResNet18 Kinetics 68.2 34.5
ST-Puzzle [125] 3D-ResNet18 Kinetics 65.8 33.7
DPC [131] 3D-ResNet34 Kinetics 75.7 35.7
AVTS [34] MC3-18 AudioSet 89.0 61.6
VCOP [50] R(2+1)D-18 Kinetics 72.4 30.9
XDC [152] R(2+1)D-18 Kinetics 84.2 47.1
GDT [123] R(2+1)D-18 Kinetics 88.7 57.8
XDC [152] R(2+1)D-18 IG65M 94.2 67.4

labels, while the AlexNet is used as the base network and
fine-tuned on the three tasks. Table 5 lists the performance of
image classification, object detection, and semantic segmen-
tation tasks on the PASCAL VOC dataset. The performance
of classification and detection is obtained by testing the
model on the test split of PASCAL VOC 2007 dataset, while
the performance of semantic segmentation is obtained by
testing the model on the validation split of PASCAL VOC
2012 dataset.

As shown in Table 5, the performance of the self-
supervised models on segmentation and detection dataset
are very close to that of the supervised method which is
trained with ImageNet labels during pre-training. Specif-
ically, the margins of the performance differences on the
object detection and semantic segmentation tasks are less
than 3% which indicate that the learned features by self-
supervised learning have a good generalizability. In general,
context-based methods performance better than other types
of methods.

7.2 Performance of Video Feature Learning

For self-supervised video feature learning methods, human
action recognition task is used to evaluate the quality of
learned features. Various video datasets have been used
for self-supervised pre-training, and different network ar-
chitectures have been used as the base network. Usually
after the pretext task pre-training finished, networks are
fine-tuned and tested on the commonly used UCF101 and
HMDB51 datasets for human action recognition task. Ta-
ble 6 compares the performance of existing self-supervised
video feature learning methods on UCF101 and HMDB51
datasets, while Table 7 shows the performance of existing
self-supervised learning methods on audio event classifica-
tion on DCASE [89] and ESC50 [90] datasets.

As shown in Table 6, different backbone networks and
datasets are used for self-supervised pre-training. In order to
make fair comparisons, we group the methods based on the

TABLE 7: Comparison of existing self-supervised methods
for audio classification task on DCASE and ESC50 datasets.

Method Pretraining Evaluation
Dataset #data DCASE ESC50

Random Forest [90] ESC50 1.6K - 44.3
Piczak ConvNet [162] ESC50 1.6K - 64.5
ConvRBM [163] ESC50 1.6K - 86.5
RNH [164] DCASE 100 72 -
Ensemble [89] DCASE 100 77 -
AVTS [34] Kinetics-400 230K 91 76.7
XDC [152] Kinetics-400 230K - 78.0
GDT [123] Kinetics-400 230K 94 78.6
Autoencoder [111] SoundNet 2M+ - 39.9
SoundNet [165] SoundNet 2M+ 88 74.2
L3-Net [58] SoundNet 2M+ 93 79.3
AVTS [34] SoundNet 2M+ 94 82.3
XDC [152] AudioSet 1.8M 93 84.8

usage of datasets and backbone networks. Two conclusions
can be drawn based on the performance from Table 6: (1)
The performance on downstream tasks significantly de-
pends on the capability of backbone networks. Stronger
backbone networks usually achieve much better perfor-
mance [131]. (2) The performance on downstream tasks can
be significantly boosted up by adding the amount of data
for self-supervised training. By pre-training on 65 million
videos, the cross-modal based method XDC is able to out-
perform the supervised methods (pre-trained on Kinetics
dataset with category labels) on both UCF101 and HMDB51
datasets with a large margin. Table 7 shows that the methods
that jointly learning both video and audio features achieve
relatively high accuracy on the audio classification task,
and some models also benefit from the large-scale dataset
for self-supervised pre-training [152]. This demonstrates
a potential of scaling self-supervised learning methods to
large-scale datasets.

7.3 Beyond 2D Self-supervised Learning
Table 3 lists the 3D self-supervised learning methods. Most
of them learn point cloud features by various auto-encoder
networks, and only a few learn features by designing novel
pretext tasks [91], [124], [174]. For self-supervised 3D fea-
ture learning methods, 3D object recognition task is often
employed as the downstream task to evaluate the quality of
learned features. Usually, ShapeNet [87] or ModelNet40 [86]
dataset is used to train self-supervised learning methods.
After the self-supervised training finished, SVM classifier
for 3D object classification is trained upon on the extracted
features and the classification accuracy is reported to indi-
cate the quality of learned features. Table 9 compares the
performance of existing self-supervised 3D feature learning
methods on ModelNet40 dataset.

As shown in Table 9, self-supervised learning methods
with all modalities on ModelNet40 achieve very close per-
formance as the supervised methods. These results demon-
strate the potential of applying the self-supervised learning
methods to other data modalities or other domains.

7.4 Summary
Based on the results, conclusions can be drawn about
the performance and reproducibility of the self-supervised
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TABLE 8: Summary of self-supervised 3D feature learning methods based on the category of pretext tasks.

Mehtod SubCategory Contribution
3D-GAN [166] Generation Learning features by generating 3D objects from a probabilistic space with 3D-GAN

FoldingNet [167] Generation Proposed an auto-encoder with a graph-based encoder and a novel folding-based decoder
Latent-GAN [168] Generation Learning point cloud features by a deep auto-encoder network

MRTNet [169] Generation Learning point cloud features by a multi-resolution tree-structured VAE network
PointCapsNet [170] Generation Learning point cloud features by using a 3D point-capsule auto-encoder network
T-L Network [171] Generation Learning with TL-embedding network to learn generative and predictive features
VConv-DAE [172] Generation Learning point cloud features with a convolutional volumetric auto-encoder

Contrast-Cluster [173] Context Learning point cloud features by part contrasting and clustering
3DMultiTask [174] Multiple Learning point cloud features with multiple pretext tasks

XMV [91] Multiple Jointly learning point cloud features and image features by exploring cross modalities and views
MVI [124] Multiple Jointly learning modality and view invariant features for 3D objects by contrasting

TABLE 9: The comparison with the state-of-the-art methods
for 3D shape recognition on ModelNet40 dataset. * indicates
the model is trained with human-annotated object category
labels. ’Images’ indicates the method is trained on multi-
view images rendered from mesh objects.

Method Pretext Task Modality Accuracy
PointNet* [18] — Point Cloud 89.2
DGCNN* [175] — Point Cloud 92.2
MeshNet* [176] — Mesh 91.9
MVCNN* [177] — Images 90.1
T-L Network [171] Generation Point Cloud 74.4
VConv-DAE [172] Generation Point Cloud 75.5
3D-GAN [166] Generation Point Cloud 83.3
Latent-GAN [168] Generation Point Cloud 85.7
MRTNet-VAE [169] Generation Point Cloud 86.4
Contrast-Cluster [173] Context Point Cloud 86.8
FoldingNet [167] Generation Point Cloud 88.4
PointCapsNet [170] Generation Point Cloud 88.9
3DMultiTask [174] Multiple Point Cloud 89.1
MVI [124] Multiple Point Cloud 89.3
XMV [91] Multiple Point Cloud 89.8
XMV [91] Multiple Images 87.3
MVI [124] Multiple Image 88.2
MVI [124] Multiple Mesh 87.7

learning methods.
Performance: For image feature self-supervised learn-

ing, due to the well-designed pretext tasks, the performance
of self-supervised methods are comparable to the super-
vised methods on some downstream tasks, especially for
the object detection and semantic segmentation tasks. The
margins of the performance differences on the object detec-
tion and semantic segmentation tasks are less than 3% which
indicate that the learned features by self-supervised learning
have a good generalizability. However, the performance
of self-supervised learning methods for videos greatly de-
pends on the backbone networks and the amount of training
data. And the video self-supervised learning methods usu-
ally are only evaluated on small datasets including UCF101
and HMDB51 for comparison. These two datasets are too
small and may not fully reflect the generalizability and the
full performance of self-supervised video feature learning
methods.

Reproducibility: As we can observe, for the image fea-
ture self-supervised learning methods, most of the networks
use AlexNet as a base network to pre-train on ImageNet
dataset and then evaluate on same downstream tasks for
quality evaluation. Also, the code of most methods are
released which is a great help for reproducing results.

However, for the video self-supervised learning, various
datasets and networks have been used for self-supervised
pre-training, therefore, it is unfair to directly compare dif-
ferent methods. Furthermore, some methods use UCF101
as self-supervised pre-training dataset which is a relatively
small video dataset. With this size of the dataset, the power
of a more powerful model such as 3DCovnNet may not be
fully discovered and may suffer from server over-fitting.
Therefore, larger datasets for video feature self-supervised
pre-training should be used.

Evaluation Metrics: Another fact is that more evaluation
metrics are needed to evaluate the quality of the learned
features in different levels. The current solution is to use the
performance on downstream tasks to indicate the quality
of the features. However, this evaluation metric does not
give insight what the network learned through the self-
supervised pre-training. More evaluation metrics such as
network dissection [23] should be employed to analysis the
interpretability of the self-supervised learned features.

7.5 Discussion
The recent study analyzed the filters learned by various self-
supervised methods and found that these self-supervised
models learned kernels to detect objects, scenes, object parts,
materials, textures, and colors [23]. This demonstrates that
different pretext tasks lead to similar general and semantic
features, and features learned by a well-designed pretext
task [127] should be able to be effectively transferred to
multiple downstream tasks. The self-supervised learning
methods can be used to obtain pre-trained models in cases
that only limited labeled data are available. Here are some
guidelines to choose or design suitable pretext tasks for a
given downstream task:

• The most challenging part of self-supervised learning
is the design of an effective pretext task which can
ensure a network to learn meaningful image/video
features instead of trivial solutions. The design of
the pretext task should balance the convergence and
overfitting.

• In general, context-based self-supervised learning
methods [31], [60], [125] have better performance
than other methods for both image-based and video-
based applications.

• Different pretext tasks provide different supervision
signals which can help the network learn more rep-
resentative features. Therefore, multiple pretext tasks
should be used whenever possible.
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• When the domain gap of the datasets between self-
supervised pre-training and the downstream task is
smaller, the performance on the downstream task is
usually better.

• Recent work [127], [178] showed that increasing the
capacity of ConvNet including the number of fil-
ters, the size of the representation, and the depth
for self-supervised learning can significantly increase
the quality of the learned visual representations.
Therefore, ConvNet with more kernels and larger
dimension of features should be employed.

• Larger dataset for self-supervised pre-training gen-
erally leads to better performance on downstream
tasks [30], [47], [127], [152]. Therefore, larger datasets
should be used whenever possible.

8 FUTURE DIRECTIONS

Self-supervised learning methods have been achieving great
success and obtaining good performance that close to super-
vised models on some computer vision tasks. Here, some
future directions of self-supervised learning are discussed.

Combining Self-supervised Learning Methods With
Other Learning Methods: In real scenarios, the collection
and annotation of data are generally expensive and time-
consuming. Recently many semi-supervised learning and
few-shot learning methods have been proposed to tackle
the problem of only limited labeled data are available. The
self-supervised learning methods can be incorporated into
these methods to boost the performance in two ways: (1) the
pre-trained models obtained by self-supervised pre-training
can server as a start point for these methods, (2) the pretext
task can be added as an auxiliary task for these methods to
add regularization to networks. How to add self-supervised
supervision to other tasks will be a good research direction.

Learning Features from Synthetic Data: A rising trend
of self-supervised learning is to train networks with syn-
thetic data which can be easily rendered by game engines
with very limited human involvement [53], [54], [179], [180].
With the help of game engines, millions of synthetic images
and videos with accuracy pixel-level annotations can be
easily generated. With accurate and detailed annotations,
various pretext tasks can be designed to learn features from
synthetic data. One problem needed to solve is how to
bridge the domain gap between synthetic data and real-
world data. Only a few work explored self-supervised learn-
ing from synthetic data by using GAN to bridge the domain
gap [53], [54]. With more available large-scale synthetic data,
more self-supervised learning methods will be proposed.

Learning from Web Data: Another rising trend is to train
networks with web collected data [181], [182], [183], [184],
[185] based on their existing associated tags. With the search
engine, millions of images and videos can be downloaded
from websites like Flickr and YouTube with negligible cost.
In addition to its raw data, the title, keywords, captions,
and reviews can also be available as part of the data which
can be used as extra information to train networks. With
carefully curated queries, the web data retrieved by reliable
search engines can be relatively clean. With large-scale web
data and their associated metadata, the performance of self-
supervised methods may be boosted up. One open problem

about learning from web data is how to handle the noise in
web data and their associated metadata.

Learning Features from Point Cloud Data: Image and
video related computer vision applications greatly bene-
fit from pre-trained models from large-scale classification
datasets. Recently research studies on 3D draw more and
more attention of the community, it would be a good
research direction to obtain such a pre-trained model for
point cloud data that can be used for tasks such as point
cloud semantic segmentation and detection. Even though
there are several self-supervised learning methods proposed
to extract 3D features, most of them were trained and tested
only on 3D CAD models and their generalizability to real-
world point cloud datasets are not studied. It would be an
interesting and practical direction to explore self-supervised
learning methods on real-world 3D data.

Learning with Data from Different Modalities: Most
existing self-supervised visual feature learning methods
focused on learning features for only one modality. How-
ever, if other modalities of data from different sensors are
available, the constraint between different modalities of data
can be used as additional sources to train networks to
learn features [91], [124], [145]. The self-driving cars usually
are equipped with various sensors including RGB cameras,
gray-scale cameras, 3D laser scanners, and high-precision
GPS measurements and IMU accelerations. Very large-scale
datasets with different modalities can be easily obtained
through the driving, and the correspondence of data cap-
tured by different devices can be used as a supervision
signal for self-supervised feature learning.

Learning with Multiple Pretext Tasks: Most existing
self-supervised visual feature learning methods learn fea-
tures by training ConvNet to solve one pretext tasks. Dif-
ferent pretext tasks provide different supervision signals
which can help the network learn more representative
features. Only a few work explored the multiple pretext
tasks learning for self-supervised feature learning [53], [91],
[108], [174], [186]. More work can be done by studying the
multiple pretext task self-supervised feature learning.

9 CONCLUSION

Self-supervised image and video feature learning with deep
convolutional neural network has obtained great success
and the margin between the performance of self-supervised
methods and that of supervised methods on some down-
stream tasks becomes very small. This paper has exten-
sively reviewed recently deep convolution neural network-
based methods for self-supervised image and video feature
learning from all perspectives including common network
architectures, pretext tasks, algorithms, datasets, perfor-
mance comparison, discussions, and future directions etc.
The comparative summary of the methods, datasets, and
performance in tabular forms clearly demonstrate their
properties which will benefit researchers in the computer
vision community.
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[136] B. Brattoli, U. Büchler, A.-S. Wahl, M. E. Schwab, and B. Ommer,
“Lstm self-supervision for detailed behavior analysis,” in CVPR,
pp. 3747–3756, IEEE, 2017.

[137] B. Fernando, H. Bilen, E. Gavves, and S. Gould, “Self-supervised
video representation learning with odd-one-out networks,” in
CVPR, 2017.

[138] D. Jayaraman and K. Grauman, “Slow and steady feature anal-
ysis: higher order temporal coherence in video,” in CVPR,
pp. 3852–3861, 2016.

[139] X. Wang, K. He, and A. Gupta, “Transitive invariance for self-
supervised visual representation learning,” in ICCV, 2017.

[140] Y. Zhang, S. Khamis, C. Rhemann, J. Valentin, A. Kowdle,
V. Tankovich, M. Schoenberg, S. Izadi, T. Funkhouser, and
S. Fanello, “Activestereonet: End-to-end self-supervised learning
for active stereo systems,” in ECCV, pp. 784–801, 2018.

[141] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Tor-
ralba, “Ambient sound provides supervision for visual learning,”
in ECCV, pp. 801–816, Springer, 2016.

[142] A. Owens and A. A. Efros, “Audio-visual scene analysis with
self-supervised multisensory features,” ECCV, 2018.

[143] A. Mahendran, J. Thewlis, and A. Vedaldi, “Cross pixel optical
flow similarity for self-supervised learning,” ACCV, 2018.

[144] Y. Zou, Z. Luo, and J.-B. Huang, “Df-net: Unsupervised joint
learning of depth and flow using cross-task consistency,” in
ECCV, pp. 38–55, Springer, 2018.

[145] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in CVPR, p. 7,
2017.

[146] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet:
Learning optical flow with convolutional networks,” in ICCV,
pp. 2758–2766, 2015.

[147] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep
networks,” in CVPR, pp. 1647–1655, IEEE, 2017.

[148] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth,
optical flow and camera pose,” in CVPR, 2018.

[149] J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, and W. Liu, “Self-supervised
spatio-temporal representation learning for videos by predicting
motion and appearance statistics,” in CVPR, pp. 4006–4015, 2019.

[150] S. Meister, J. Hur, and S. Roth, “Unflow: Unsupervised learning of
optical flow with a bidirectional census loss,” in AAAI, pp. 7251–
7259, 2018.

[151] G. Iyer, J. K. Murthy, G. Gupta, K. M. Krishna, and L. Paull,
“Geometric consistency for self-supervised end-to-end visual
odometry,” CVPRW, 2018.

[152] H. Alwassel, D. Mahajan, L. Torresani, B. Ghanem, and D. Tran,
“Self-supervised learning by cross-modal audio-video cluster-
ing,” arXiv preprint arXiv:1911.12667, 2019.

[153] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Deep
end2end voxel2voxel prediction,” in CVPRW, pp. 17–24, 2016.

[154] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” in ICLR, 2016.

[155] F. A. Reda, G. Liu, K. J. Shih, R. Kirby, J. Barker, D. Tarjan, A. Tao,
and B. Catanzaro, “Sdc-net: Video prediction using spatially-
displaced convolution,” in ECCV, pp. 718–733, 2018.

[156] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and
S. Levine, “Stochastic variational video prediction,” ICLR, 2018.

[157] X. Liang, L. Lee, W. Dai, and E. P. Xing, “Dual motion gan for
future-flow embedded video prediction,” in ICCV, 2017.

[158] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in NIPS, pp. 64–
72, 2016.

[159] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet,” in CVPR, pp. 18–22,
2018.

[160] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recogni-
tion,” in CVPR, pp. 6450–6459, 2018.

[161] C. Gan, B. Gong, K. Liu, H. Su, and L. J. Guibas, “Geometry
guided convolutional neural networks for self-supervised video
representation learning,” in CVPR, pp. 5589–5597, 2018.

[162] K. J. Piczak, “Environmental sound classification with convolu-
tional neural networks,” in MLSP, pp. 1–6, IEEE, 2015.

[163] H. B. Sailor, D. M. Agrawal, and H. A. Patil, “Unsupervised
filterbank learning using convolutional restricted boltzmann
machine for environmental sound classification.,” in INTER-
SPEECH, pp. 3107–3111, 2017.

[164] G. Roma, W. Nogueira, and P. Herrera, “Recurrence quantifica-
tion analysis features for environmental sound recognition,” in
WASPAA, pp. 1–4, IEEE, 2013.

[165] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning
sound representations from unlabeled video,” in NIPS, pp. 892–
900, 2016.

[166] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learn-
ing a probabilistic latent space of object shapes via 3d generative-
adversarial modeling,” in NIPS, pp. 82–90, 2016.

[167] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud
auto-encoder via deep grid deformation,” in CVPR, pp. 206–215,
2018.

[168] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learn-
ing representations and generative models for 3d point clouds,”
ICLRW, 2018.

[169] M. Gadelha, R. Wang, and S. Maji, “Multiresolution tree networks
for 3d point cloud processing,” in ECCV, pp. 103–118, 2018.

[170] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, “3d point capsule
networks,” in CVPR, pp. 1009–1018, 2019.



22

[171] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, “Learning
a predictable and generative vector representation for objects,” in
ECCV, pp. 484–499, Springer, 2016.

[172] A. Sharma, O. Grau, and M. Fritz, “Vconv-dae: Deep volumetric
shape learning without object labels,” in ECCV, pp. 236–250,
Springer, 2016.

[173] L. Zhang and Z. Zhu, “Unsupervised feature learning for point
cloud understanding by contrasting and clustering using graph
convolutional neural networks,” in 3DV, pp. 395–404, IEEE, 2019.

[174] K. Hassani and M. Haley, “Unsupervised multi-task feature
learning on point clouds,” in ICCV, pp. 8160–8171, 2019.

[175] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,”
TOG, pp. 1–12, 2019.

[176] Y. Feng, Y. Feng, H. You, X. Zhao, and Y. Gao, “Meshnet: mesh
neural network for 3d shape representation,” in AAAI, pp. 8279–
8286, 2019.

[177] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, “Multi-
view convolutional neural networks for 3d shape recognition,”
in ICCV, 2015.

[178] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised
visual representation learning,” in CVPR, June 2019.

[179] W. Hong, Z. Wang, M. Yang, and J. Yuan, “Conditional generative
adversarial network for structured domain adaptation,” in CVPR,
pp. 1335–1344, 2018.

[180] Y. Cai, L. Ge, J. Cai, and J. Yuan, “Weakly-supervised 3d hand
pose estimation from monocular rgb images,” in ECCV, pp. 666–
682, 2018.

[181] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, and S. Vijayanarasimhan, “Youtube-8m: A
large-scale video classification benchmark,” arXiv preprint
arXiv:1609.08675, 2016.

[182] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “Webvision
database: Visual learning and understanding from web data,”
arXiv preprint arXiv:1708.02862, 2017.

[183] L. Gomez, Y. Patel, M. Rusiñol, D. Karatzas, and C. Jawahar,
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Appendix
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Abstract—Large-scale labeled data are generally required to train deep neural networks in order to obtain better performance in visual
feature learning from images or videos for computer vision applications. To avoid extensive cost of collecting and annotating
large-scale datasets, as a subset of unsupervised learning methods, self-supervised learning methods are proposed to learn general
image and video features from large-scale unlabeled data without using any human-annotated labels. This paper provides an extensive
review of deep learning-based self-supervised general visual feature learning methods from images or videos. First, the motivation,
general pipeline, and terminologies of this field are described. Then the common deep neural network architectures that used for
self-supervised learning are summarized. Next, the schema and evaluation metrics of self-supervised learning methods are reviewed
followed by the commonly used datasets for images, videos, audios, and 3D data, as well as the existing self-supervised visual feature
learning methods. Finally, quantitative performance comparisons of the reviewed methods on benchmark datasets are summarized
and discussed for both image and video feature learning. At last, this paper is concluded and lists a set of promising future directions
for self-supervised visual feature learning.

Index Terms—Self-supervised Learning, Unsupervised Learning, Convolutional Neural Network, Transfer Learning, Deep Learning.

F

1 FORMULATION OF DIFFERENT LEARNING
SCHEMAS

Based on the training labels, visual feature learning methods
can be grouped into the following four categories: super-
vised, semi-supervised, weakly supervised, and unsuper-
vised. In this section, the four types of learning methods are
compared and key terminologies are defined.

1.1 Supervised Learning Formulation

For supervised learning, given a dataset X, for each data
Xi in X, there is a corresponding human-annotated label
Yi. For a set of N labeled training data D = {Xi}Ni=0, the
training loss function is defined as:

loss(D) = min
θ

1

N

N∑
i=1

loss(Xi, Yi). (1)

Trained with accurate human-annotated labels, the su-
pervised learning methods obtained break-through results
on different computer vision applications [1], [2], [3], [4].
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Center, the City University of New York, NY, 10031. E-mail:
ytian@ccny.cuny.edu
∗Corresponding author

This material is based upon work supported by the National Science Founda-
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However, data collection and annotation usually are ex-
pensive and may require special skills. Therefore, semi-
supervised, weakly supervised, and unsupervised learning
methods were proposed to reduce the cost.

1.2 Semi-Supervised Learning Formulation
For semi-supervised visual feature learning, given a small
labeled dataset X and a large unlabeled dataset Z, for each
data Xi in X, there is a corresponding human-annotated
label Yi. For a set of N labeled training data D1 = {Xi}Ni=0

and M unlabeled training data D2 = {Zi}Mi=0, the training
loss function is defined as:

loss(D1, D2) = min
θ

1

N

N∑
i=1

loss(Xi, Yi)+
1

M

M∑
i=1

loss(Zi, R(Zi, X)),

(2)
where the R(Zi, X) is a task-specific function to represent
the relation between each unlabeled training data Zi with
the labeled dataset X .

1.3 Weakly Supervised Learning Formulation
For weakly supervised visual feature learning, given a
dataset X, for each data Xi in X, there is a correspond-
ing coarse-grained label Ci. For a set of N training data
D = {Xi}Ni=0, the training loss function is defined as:

loss(D) = min
θ

1

N

N∑
i=1

loss(Xi, Ci). (3)

Since the cost of weak supervision is much lower than
the fine-grained label for supervised methods, large-scale
datasets are relatively easier to obtain. Recently, many
weakly supervised learning methods were proposed for



2

different tasks and achieved promising results [5], [6], [7],
[8].

1.4 Unsupervised/Self-supervised Learning Formula-
tion

Unsupervised learning refers to learning methods that
do not need any human-annotated labels. This type of
methods including fully unsupervised learning methods
in which the methods do not need any labels at all, as
well as self-supervised learning methods in which networks
are explicitly trained with automatically generated pseudo
labels without involving any human annotation.

Recently, many self-supervised learning methods for vi-
sual feature learning have been developed without using
any human-annotated labels [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [19], [20], [21]. Some papers refer to
this type of learning methods as unsupervised learning [?],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33].
Compared to supervised learning methods which require a
data pair Xi and Yi while Yi is annotated by human labors,
self-supervised learning also trained with data Xi along
with its pseudo label Pi while Pi is automatically gener-
ated for a pre-defined pretext task without involving any
human annotation. The pseudo label Pi can be generated by
using attributes of images or videos such as the context of
images [22], [34], [35], [36], or by traditional hand-designed
methods [37], [38], [39].

Given a set of N training data D = {Pi}Ni=0, the training
loss function is defined as:

loss(D) = min
θ

1

N

N∑
i=1

loss(Xi, Pi). (4)

As long as the pseudo labels P are automatically gen-
erated without involving human annotations, then the
methods belong to self-supervised learning. Recently, self-
supervised learning methods have achieved great progress.
This paper focuses on the self-supervised learning methods
that mainly designed for visual feature learning, while the
features have the ability to be transferred to multiple visual
tasks and to perform new tasks by learning from limited
labeled data. This paper summarizes these self-supervised
feature learning methods from different perspectives includ-
ing network architectures, commonly used pretext tasks,
datasets, and applications, etc.

2 COMMON DEEP NETWORK ARCHITECTURES

No matter the categories of learning methods, they share
similar network architectures. This section reviews common
architectures for learning both image and video features.

2.1 Architectures for Learning Image Features

Various 2DConvNets have been designed for image fea-
ture learning [1], [40], [41], [42], [43], [44], [45]. Here, five
milestone architectures for image feature learning including
AlexNet [1], VGG [40], GoogLeNet [41], ResNet [42], and
DenseNet [43] are reviewed.

2.1.1 AlexNet
AlexNet obtained a big improvement in the performance of
image classification on ImageNet dataset compared to the
previous state-of-the-art methods [1]. With the support of
powerful GPUs, AlexNet which has 62.4 million parameters
were trained on ImageNet with 1.3 million images. As
shown in Fig. 1, the architecture of AlexNet has 8 layers in
which 5 are convolutional layers and 3 are fully connected
layers. The ReLU is applied after each convolutional layer.
94% of the network parameters come from the fully con-
nected layers. With this scale of parameters, the network
can easily be over-fitting. Therefore, different kinds of tech-
niques are applied to avoid over-fitting problem including
data augmentation, dropout, and normalization.

96

256
384 384 384

4096 4096 1000

Fig. 1. The architecture of AlexNet [1]. The numbers indicate the number
of channels of each feature map. Figure is reproduced based on AlexNet
[1].

2.1.2 VGG
VGG is proposed by Simonyan and Zisserman and won
the first place for ILSVRC 2013 competition [40]. Simonyan
and Zisserman proposed various depths of networks, while
the 16-layer VGG is the most widely used one due to its
moderate model size and its superior performance. The
architecture of VGG-16 is shown in Fig. 2. It has 16 convo-
lutional layers belong to five convolution blocks. The main
difference between VGG and AlexNet is that AlexNet has
large convolution stride and large kernel size while all the
convolution kernels in VGG have same small size (3×3) and
small convolution stride (1×1). The large kernel size leads to
too many parameters and large model size, while the large
convolution stride may cause the network to miss some
fine features in the lower layers. The smaller kernel size
makes the training of very deep convolution neural network
feasible while still reserving the fine-grained information in
the network.

2.1.3 ResNet
VGG demonstrated that deeper networks are possible to
obtain better performance. However, deeper networks are
more difficult to train due to two problems: gradient van-
ishing and gradient explosion. ResNet is proposed by He
et al. to use the skip connection in convolution blocks by
sending the previous feature map to the next convolution
block to overcome the gradient vanishing and gradient
explosion [42]. The details of the skip connection are shown
in Fig. 3. With the skip connection, training of very deep
neural networks on GPUs becomes feasible.
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64

256
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1000

128
256 512 512

Max pooling
Convolution + Relu
Fully connect + Relu
Softmax

Fig. 2. The architecture of VGG [40]. Figure is reproduced based on
VGG [40].

weight layer

weight layer

x

F(x)

F(x) + x

x 

Identity

relu

relu

Fig. 3. The architecture of Residual block [42]. The identity mapping
can effectively reduce gradient vanishing and explosion which make the
training of very deep network feasible. Figure is reproduced based on
ResNet [42].

In ResNet [42], He et al. also evaluated networks with
different depths for image classification. Due to its smaller
model size and superior performance, ResNet is often used
as the base network for other computer vision tasks. The
convolution blocks with skip connection also widely used
as the basic building blocks.

2.1.4 GoogLeNet

1x1convolution 1x1 convolution

3x3 convolution 5x5 convolution

3x3 convolution

1x1convolution1x1 convolution

Previous Layer

Filter  
Concatenation

Fig. 4. The architecture of Inception block [41]. Figure is reproduced
based on GoogLeNet [41].

GoogLeNet, a 22-layer deep network, is proposed by
Szegedy et al. which won ILSVRC-2014 challenge with a top-
5 test accuracy of 93.3% [41]. Compared to previous work

that to build a deeper network, Szegedy et al. explored to
build a wider network in which each layer has multiple
parallel convolution layers. The basic block of GoogLeNet
is inception block which consists of 4 parallel convolution
layers with different kernel sizes and followed by 1× 1 con-
volution for dimension reduction purpose. The architecture
for the inception block of GoogLeNet is shown in Fig. 4.
With a carefully crafted design, they increased the depth
and width of the network while keeping the computational
cost constant.

2.1.5 DenseNet

C C C C

Fig. 5. The architecture of the Dense Block proposed in DenseNet [43].
Figure is reproduced based on [43].

Most of the networks including AlexNet, VGG, and
ResNet follow a hierarchy architecture. The images are fed
to the network and features are extracted by different layers.
The shallow layers extract low-level general features, while
the deep layers extract high-level task-specific features [46].
However, when a network goes deeper, the deeper layers
may suffer from memorizing the low-level features needed
by the network to accomplish the task.

To alleviate this problem, Huang et al. proposed the
dense connection to send all the features before a convolu-
tion block as the input to the next convolution block in the
neural network [43]. As shown in Fig. 5, the output features
of all the previous convolution blocks serve as the input to
the current block. In this way, the shallower blocks focus on
the low-level general features while the deeper blocks can
focus on the high-level task-specific features.

2.2 Architectures for Learning Video Features
To extract both spatial and temporal information from
videos, several architectures have been designed for video
feature learning including 2DConvNet-based methods [47],
3DConvNet-based methods [4], and LSTM-based methods
[48]. The 2DConvNet-based methods apply 2DConvNet
on every single frame and the image features of multiple
frames are fused as video features. The 3DConvNet-based
methods employ 3D convolution operation to simultane-
ously extract both spatial and temporal features from mul-
tiple frames. The LSTM-based methods employ LSTM to
model long term dynamics within a video. This section
briefly summarizes these three types of architectures of
video feature learning.

2.2.1 Two-Stream Network
Videos generally are composed of various numbers of
frames. To recognize actions in a video, networks are re-
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Spatial Stream ContNet

Temporal Stream ContNet

Prediction

Archery

Eye Makeup

Bowling
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RGB Frame

Fusion

Optical Flow

Inputs

Fig. 6. The general architecture of the two-stream network which includ-
ing one spatial stream and one temporal stream. Figure is reproduced
based on [47].

quired to capture appearance features as well as tempo-
ral dynamics from frame sequences. As shown in Fig. 6,
a two-stream 2DConvNet-based network is proposed by
Simonyan and Zisserman for human action recognition,
while using a 2DConvNet to capture spatial features from
RGB stream and another 2DConvNet to capture temporal
features from optical flow stream [47]. Optical flow encodes
boundary of moving objects, therefore, the temporal stream
ConvNet is relatively easier to capture the motion informa-
tion within the frames.

Experiments showed that the fusion of the two streams
can significantly improve action recognition accuracy. Later,
this work has been extended to multi-stream network [49],
[50], [51], [52], [53] to fuse features from different types of
inputs such as dynamic images [54] and difference of frames
[55].

2.2.2 Spatiotemporal Convolutional Neural Network
3D convolution operation was first proposed in 3DNet
[56] for human action recognition. Compared to 2DCon-
vNets which individually extract the spatial information of
each frame and then fuse them together as video features,
3DConvNets are able to simultaneously extract both spatial
and temporal features from multiple frames.

C3D [4] is a VGG-like 11-layer 3DConvNet designed for
human action recognition. The network contains 8 convolu-
tional layers, and 3 fully connected layers. All the kernels
have the size of 3 × 3 × 3, the convolution stride is fixed
to 1 pixel. Due to its powerful ability of simultaneously
extracting both spatial and temporal features from multiple
frames, the network achieved state-of-the-art on several
video analysis tasks including human action recognition
[57], action similarity labeling [58], scene classification [59],
and object recognition in videos [60].

The input of C3D is 16 consecutive RGB frames where
the appearance and temporal cues from 16-frame clips are
extracted. However, the paper of long-term temporal convo-
lutions (LTC) [61] argues that, for the long-lasting actions, 16
frames are insufficient to represent whole actions which last
longer. Therefore, larger numbers of frames are employed
to train 3DConvNets and achieved better performance than
C3D [61], [62].

With the success of applying 3D convolution on video
analysis tasks, various 3DConvNet architectures have been
proposed [63], [64], [65]. Hara et al. proposed 3DResNet

by replacing all the 2D convolution layers in ResNet with
3D convolution layers and showed comparable performance
with the state-of-the-art performance on action recognition
task on several datasets [64].

2.2.3 Recurrent Neural Network
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Average Fusion

LSTM LSTM LSTM LSTM
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vN
et

C
on

vN
et

C
on

vN
et

C
on

vN
et

Fig. 7. The architecture of long-term recurrent convolutional networks
(LRCN) [48]. LSTM is employed to model the long term temporal infor-
mation within a frame sequence. Figure is reproduced based on [48].

Due to the ability to model the temporal dynamics
within a sequence, recurrent neural networks (RNN) are
often applied to videos as ordered frame sequences. Com-
pared to standard RNN [66], long short term memory
(LSTM) uses memory cells to store, modify, and access
internal states, to better model the long-term temporal re-
lationships within video frames [67].

Based on the advantage of the LSTM, Donahue et al. pro-
posed long-term recurrent convolutional networks (LRCN)
for human action recognition [48]. The framework of the
LRCN is shown in Fig. 7. The LSTM is sequentially applied
to the features extracted by ConvNets to model the temporal
dynamics in the frame sequence. With the LSTM to model a
video as frame sequences, this model is able to explicitly
model the long-term temporal dynamics within a video.
Later on, this model is extended to a deeper LSTM for action
recognition [68], [69], video captioning [70], and gesture
recognition tasks [71].

3 DATASETS

This section summarizes the commonly used image, video,
audio, and 3D object datasets for training and evaluating of
self-supervised visual feature learning methods.

3.1 Image Datasets
• CIFAR10: The CIFAR10 dataset is a collection of tiny

images for image classification task [72]. It consists of
60, 000 images of size 32×32 that covers 10 different
classes. The 10 classes include airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. The
dataset is balanced and there are 6, 000 images of
each class.

• ImageNet: The ImageNet dataset [73] contains 1.3
million images uniformly distributed into 1, 000
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classes and is organized according to the WordNet
hierarchy. Each image is assigned with only one class
label. ImageNet is the most widely used dataset for
self-supervised image feature learning.

• MNIST: The MNIST is a dataset of handwritten dig-
its consisting of 70, 000 images while 60, 000 images
belong to training set and the rest 10, 000 images are
for testing [74]. All digits have been size-normalized
and centered in fixed-size images.

• PASCAL Visual Object Classes (VOC): The VOC
2,012 dataset [75] contains 20 object categories in-
cluding vehicles, household, animals, and other:
aeroplane, bicycle, boat, bus, car, motorbike, train,
bottle, chair, dining table, potted plant, sofa,
TV/monitor, bird, cat, cow, dog, horse, sheep, and
person. Each image in this dataset has pixel-level seg-
mentation annotations, bounding box annotations,
and object class annotations. This dataset has been
widely used as a benchmark for object detection,
semantic segmentation, and classification tasks. The
PASCAL VOC dataset is split into three subsets:
1, 464 images for training, 1, 449 images for valida-
tion and a private testing [75]. All the self-supervised
image representation learning methods are evaluated
on this dataset with the three tasks.

• Places: The Places dataset [76] is proposed for scene
recognition and contains more than 2.5 million im-
ages covering more than 205 scene categories with
more than 5, 000 images per category.

• Places365: The Places365 is the 2nd generation of
the Places database which is built for high-level
visual understanding tasks, such as scene context,
object recognition, action and event prediction, and
theory-of-mind inference [77]. There are more than
10 million images covering more than 400 classes
and 5, 000 to 30, 000 training images per class.

• STL-10: The STL-10 dataset is specifically designed
for developing unsupervised feature learning [78]. It
consists of 500 labeled training images, 800 testing
images, and 100, 000 unlabeled images covering 10
classes which include airplane, bird, car, cat, deer,
dog, horse, monkey, ship, and truck.

• SUNCG: The SUNCG dataset is a large synthetic
3D scene repository for indoor scenes which consists
of over 45, 000 different scenes with manually cre-
ated realistic room and furniture layouts [79]. The
synthetic depth, object level semantic labels, and
volumetric ground truth are available.

• SVHN: SVHN is a dataset for recognizing digits
and numbers in natural scene images which ob-
tained from house numbers from Google Street View
images [80]. The dataset consists of over 600, 000
images and all digits have been resized to a fixed
resolution of 32× 32 pixels.

3.2 Video Datasets

• AudioSet: The AudioSet consists of 2, 084, 320
human-labeled 10-second sound clips drawn from
YouTube videos covers ontology of 632 audio event
classes [81]. The event classes cover a wide range

of human and animal sounds, musical instruments
and genres, and common everyday environmental
sounds. This dataset is mainly used for the self-
supervised learning from video and audio consis-
tence [12].

• HMDB51: Compared to other datasets, the HMDB51
dataset is a smaller video dataset for human action
recognition. There are around 7, 000 video clips in
this dataset belong to 51 human action categories
[82]. The videos in HMDB51 dataset have 320 × 240
pixels spatial resolution and 30 FPS frame rate. In the
self-supervised sensorial, the self-supervised models
are fine-tuned on the dataset to evaluate the quality
of the learned video features.

• Kinetics: The Kinetics dataset is a large-scale, high-
quality dataset for human action recognition in
videos [83]. The dataset consists of around 500, 000
video clips covering 600 human action classes with at
least 600 video clips for each action class. Each video
clip lasts around 10 seconds and is labeled with a
single action class.

• KITTI: The KITTI dataset is collected from driving
a car around a city which equipped with various
sensors including high-resolution RGB camera, gray-
scale stereo camera, a 3D laser scanner, and high-
precision GPS measurements and IMU accelerations
from a combined GPS/IMU system [84]. Videos with
various modalities captured by these sensors are
available in this dataset.

• Moment in Time: The Moment-in-Time dataset is a
large balanced and diverse dataset for video under-
standing [85]. The dataset consists of 1 million video
clips that cover 339 classes, and each video lasts
around 3 seconds. The average number of video clips
for each class is 1, 757 with a median of 2, 775. The
video in this dataset contains videos that capturing
visual and/or audible actions, produced by humans,
animals, objects or nature [85].

• SceneNet RGB-D: The SceneNet RGB-D dataset is a
large indoor synthetic video dataset which consists of
5 million rendered RGB-D images from over 15K tra-
jectories in synthetic layouts with random but phys-
ically simulated object poses [86]. It provides pixel-
level annotations for scene understanding problems
such as semantic segmentation, instance segmenta-
tion, and object detection, and also for geometric
computer vision problems such as optical flow, depth
estimation, camera pose estimation, and 3D recon-
struction [86].

• UCF101: The UCF101 is a widely used video dataset
for human action recognition [57]. The dataset con-
sists of 13, 370 video clips with more than 27 hours
belonging to 101 categories in this dataset. The
videos in this dataset have a spatial resolution of
320× 240 pixels and 25 FPS frame rate. This dataset
has been widely used for evaluating the performance
of human action recognition. In the self-supervised
sensorial, the self-supervised models are fine-tuned
on the dataset and the accuracy of the action recog-
nition are reported to evaluate the quality of the
features.
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• YFCC100M: The Yahoo Flickr Creative Commons
100 Million Dataset (YFCC100M) is a large public
multimedia collection from Flickr, consisting of 100
million media data, of which around 99.2 million are
images and 0.8 million are videos [87]. The statistics
on hashtags used in the YFCC100M dataset show
that the data distribution is severely unbalanced [88].

3.3 Audio Datasets

• ESC50: The ESC50 (Environmental Sound Classifi-
cation) dataset consists of 2, 000 recordings. Each
recording is about 5 seconds duration [89] and be-
longs to one of the five groups: animal sounds,
natural soundscapes and water sounds, human (non-
speech) sounds, interior/domestic sounds, and ex-
terior/urban noises. This dataset is mainly used to
evaluate the learned audio features.

• DCASE: The DCASE (Detection and Classification of
Acoustic Scenes and Events) dataset consists of 100
training clips of 10 different audio classes (i.e. bus,
busy street, office, open-air market, park, quiet street,
restaurant, supermarket, tube, and tube station) [90].
This dataset is mainly used to evaluate the learned
audio features.

3.4 3D Object Datasets

• ModelNet40: The ModelNet40 dataset consists of
12, 311 3D CAD models belonging to 40 object
classes [91]. The training split has 9, 843 objects and
testing splits has 2, 468 objects. Different modalities
like point cloud and multi-view images can be gen-
erated for each object, and all of these modalities
can be used for training. This dataset is mainly used
as an evaluation benchmark for 3D self-supervised
learning methods.

• ShapeNet: The ShapeNet dataset consists of 57, 445
3D CAD models belonging to 55 object classes [92].
Different modalities like point cloud and multi-view
images can be generated for each object. This dataset
is mainly used to pre-trained 3D self-supervised
learning methods.

• ShapeNet-PartSeg: The ShapeNet-PartSeg contains
12, 137 3D point cloud models belonging to 16 cat-
egories with part semantic segmentation labels [93].
In the self-supervised learning, this dataset usually
is used to evaluate the generalizability of point cloud
networks on part-segmentation task.
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