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Materials discovery via machine learning has become an in-
creasingly popular method due to its ability to rapidly predict
materials properties in a time-efficient and low-cost manner.
However, one limitation in this field is the lack of benchmark
datasets, particularly those that encompass the size, tasks,
material systems, and data modalities present in the mate-
rials informatics literature. This makes it difficult to identify
optimal machine learning model choices including algorithm,
model architecture, data splitting, and data featurization for
a given task. Here, we attempt to address this lack of bench-
mark datasets by assembling a unique repository of 50 differ-
ent datasets for materials properties. The data contains both
experimental and computational data, data suited for regres-
sion as well as classification, sizes ranging from 12 to 6354
samples, and materials systems spanning the diversity of ma-
terials research. Data were extracted from 16 publications. In
addition to cleaning the data where necessary, each dataset
was split into train, validation, and test splits. For datasets
with more than 100 values, train-val-test splits were created,
either with a 5-fold or 10-fold cross-validation method, de-
pending on what each respective paper did in their studies.

* Given his role as Section Editor of this journal, Taylor D. Sparks had no involvement in the peer-review of this article
and has no access to information regarding its peer-review.
DOI of original article: 10.1016/j.jjantimicag.2020.105949

* Corresponding author.

E-mail address: sparks@eng.utah.edu (T.D. Sparks).

https://doi.org/10.1016/j.dib.2021.107262

2352-3409/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.dib.2021.107262
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2021.107262&domain=pdf
https://doi.org/10.1016/j.ijantimicag.2020.105949
mailto:sparks@eng.utah.edu
https://doi.org/10.1016/j.dib.2021.107262
http://creativecommons.org/licenses/by-nc-nd/4.0/

A.N. Henderson, S.K. Kauwe and T.D. Sparks/Data in Brief 37 (2021) 107262

Datasets with less than 100 values had train-test splits cre-
ated using the Leave-One-Out cross-validation method. These
benchmark data can serve as a basis for a more diverse
benchmark dataset in the future to further improve their ef-
fectiveness in the comparison of machine learning models.
© 2021 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject Computational Materials Science

Specific subject area Machine learning models for materials informatics

Type of data Table

How data were acquired Gathered data from past literature

Data format Analyzed, Filtered

Parameters for data collection Data were gathered from papers that had easily accessible data, had been

published relatively recently (since 2013), and had used either a regression or
classification machine learning model on any kind of material property. Any

kind of material system, data type (experimental vs calculated), data size, and
organic/inorganic materials were selected if said data fit the above parameters.

Description of data collection The data collected were taken from past material science machine learning

model papers whose data were either publicly available or were provided
when one contacted the corresponding author. Each dataset was downloaded
and analyzed using Python’s seaborn.distplot and subsequently cleaned if
needed. The specific papers that were used for this dataset are described in
the Data Source Location section below.

Data source location Primary data sources: See Table 1
Data accessibility Repository name: GitHub

http://doi.org/10.5281/zenod0.4903958

Direct URL to data: https://github.com/anhender/mse_ML_datasets/tree/v1.0
Instructions for accessing these data:

It is recommended that one accesses the GitHub repository using the direct
URL provided, where further instructions for accessing these data are provided.

Value of the Data

Because these data are from past literature, they include a variety of materials properties,
as well as both experimental and calculated values. Therefore, this collection of data acts as
a unique benchmark dataset that can be used to accurately and efficiently compare differ-
ent machine learning models for materials informatics, which can aid in improving current
practices in the field of Computational Materials Science.

Beyond the merits of the data themselves, as described in their respective publications, the
aggregation of these benchmark data brings researchers closer to having a single unified col-
lection of materials data for machine learning and statistical methods. As such, these bench-
mark data allow researchers to effectively compare machine learning models to one another,
which will ultimately aid the process of finding the most efficient method for materials
discovery.

These benchmark data can be used as a basis for creating a more diverse benchmark dataset
in the future. Larger, more diverse datasets will allow researchers to explore the generaliz-
ability of machine learning models. The MatBench project [1] could also benefit by incorpo-
rating some of these data to improve the diversity and types of learning problems on which
they test various machine learning approaches.

For 2 of the 16 papers, the data that was collected and presented here was not previously
available publicly. Therefore, this dataset constitutes the first public repository which can be
easily accessed for subsequent learning.
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1. Data Description

The current dataset is a compilation of 50 datasets that were collected from 16 previous
machine learning materials informatics papers, which were published between the years 2013
to 2019. Table 1 lists the papers used for this collection of benchmark data.

Fig. 1 provides a general overview of the kinds of datasets that were collected for this bench-
mark data. This figure gives information about the kind of material systems, data sizes, organic
nature of material, data types, and task types that exist in this new benchmark data. Each cate-
gory and respective specifications will be briefly described below.

The Material System category describes the kind of materials that each dataset studied. From
Fig. 1, it can be seen that the majority of these datasets studied either polymers or superlattice
materials. The Misc. subcategory is comprised of composite materials, component solids, semi-
conductors, metal alloys, glass, and MXenes. While some of these are considered inorganic solids,
they were placed in the Misc. subcategory because the respective papers specifically described
the kind of inorganic solid that was studied.

Table 1
A list of the 16 primary sources that were used to create this collection of benchmark data. The sources are listed in
alphabetical order.

Balachandran, Prasanna V., et al. “Experimental search for high-temperature ferroelectric perovskites guided by
two-step machine learning.” Nature communications 9.1 (2018): 1-9.
https://doi.org/10.1038/s41467-018-03821-9

Carrete, Jests, et al. “Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via
high-throughput materials modeling.” Physical Review X 4.1 (2014): 011,019.
https://doi.org/10.1103/PhysRevX.4.011019

Lee, Joohwi, et al. “Prediction model of band gap for inorganic compounds by combination of density functional
theory calculations and machine learning techniques.” Physical Review B 93.11 (2016): 115,104.
https://doi.org/10.1103/PhysRevB.93.115104

Li, Wei, Ryan Jacobs, and Dane Morgan. “Predicting the thermodynamic stability of perovskite oxides using machine
learning models.” Computational Materials Science 150 (2018): 454-463.
https://doi.org/10.1016/j.commatsci.2018.04.033

Liu, Yue, et al. “The onset temperature (Tg) of AsxSel-x glasses transition prediction: A comparison of topological
and regression analysis methods.” Computational Materials Science 140 (2017): 315-321.
https://doi.org/10.1016/j.commatsci.2017.09.008

Mannodi-Kanakkithodi, Arun, et al. “Machine learning strategy for accelerated design of polymer dielectrics.”
Scientific reports 6 (2016): 20,952. https://doi.org/10.1038/srep20952

Pilania, Ghanshyam, et al. “Accelerating materials property predictions using machine learning.” Scientific reports
3.1 (2013): 1-6. https://doi.org/10.1038/srep02810

Pilania, Ghanshyam, et al. “Machine learning bandgaps of double perovskites.” Scientific reports 6 (2016): 19,375.
https://doi.org/10.1038/srep19375

Pilania, Ghanshyam, and X-Y. Liu. “Machine learning properties of binary wurtzite superlattices.” Journal of
materials science 53.9 (2018): 6652-6664. https://doi.org/10.1007/s10853-018-1987-z

Rajan, Arunkumar Chitteth, et al. “Machine-learning-assisted accurate band gap predictions of functionalized
MXene.” Chemistry of Materials 30.12 (2018): 4031-4038. https://doi.org/10.1021/acs.chemmater.8b00686

Seko, Atsuto, et al. “Machine learning with systematic density-functional theory calculations: Application to melting
temperatures of single-and binary-component solids.” Physical Review B 89.5 (2014): 054,303.
https://doi.org/10.1103/PhysRevB.89.054303

Wei, Han, et al. “Predicting the effective thermal conductivities of composite materials and porous media by
machine learning methods.” International Journal of Heat and Mass Transfer 127 (2018): 908-916.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082

Wu, K, et al. “Prediction of polymer properties using infinite chain descriptors (ICD) and machine learning: Toward
optimized dielectric polymeric materials.” Journal of Polymer Science Part B: Polymer Physics 54.20 (2016):
2082-2091. https://doi.org/10.1002/polb.24117

Xue, Dezhen, et al. “Accelerated search for materials with targeted properties by adaptive design.” Nature
communications 7.1 (2016): 1-9. https://doi.org/10.1038/ncomms11241

Zeng, Shuming, et al. “Machine learning-aided design of materials with target elastic properties.” The Journal of
Physical Chemistry C 123.8 (2019): 5042-5047. https://doi.org/10.1021/acs.jpcc.9b01045

Zhuo, Ya, Aria Mansouri Tehrani, and Jakoah Brgoch. “Predicting the band gaps of inorganic solids by machine
learning.” The journal of physical chemistry letters 9.7 (2018): 1668-1673.
https://doi.org/10.1021/acs.jpclett.8b00124
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Perovskites
Polymers Superlattice Inorg. Solids Misc.
Material System 19 10 9 5 7
<100 0.1-1k 1k -5k Sk+
Num. Samples 7 28 8 7
Inorganic Organic
Org/Inorg. 31 19
Both
Calculated Experimental |
Data Type 39 9 2
Regression Classification
Task Type 44 6
Total datasets
50

Dataset distribution

Fig. 1. A categorial dataset distribution of the 50 datasets compiled from 16 previous machine learning materials in-
formatics papers. The categorization methods used are listed on the left and specific descriptors are listed above each
colored bar of the graph. The number in each bar describes the number of datasets that fit that specification (e.g., 44 of
the 50 datasets are regression tasks).

The Num. Samples category describes the sizes of the datasets. The size range is from below
100 values to over 5000, with the smallest dataset having a size of 12 and the largest dataset
with a size of 6354. The majority of datasets are between 100 and 1000 samples.

The Org/Inorg. category describes whether a dataset studied organic or inorganic materials.
31 of the 50 total datasets studied inorganic materials while the other 19 studied organic mate-
rials.

The Data Type category describes if a dataset used calculated or experimental data for its
tasks. The majority of datasets used calculated data (39 of 50). It should be noted that two
datasets (Zhuo_classification_data and Liu_Tg_AsSe_glass) used calculated and experimental data
together.

Finally, the Task Type category describes the machine learning task type of a dataset. Forty-
four of the datasets are regression tasks and the remaining six are classification tasks.

After all of the 50 datasets were gathered and cleaned (when necessary), they were split into
train-val-test splits or train-test splits, depending on their size. Three different methods were
used: 5-Fold cross-validation, 10-Fold cross-validation, or Leave-One-Out cross-validation. Fig. 2
gives specific information of the datasets that had train-val-test splits created using the 5-Fold
method, while Fig. 3 gives information about the datasets whose train-val-test splits were cre-
ated with the 10-Fold method and Fig. 4 describes the datasets that had train-test splits created
using the Leave-One-Out method. For all three of these figures, the information given for each
dataset includes: its respective paper, its name as given in the repository, the specific material
system studied, the organic nature of said material, the kind of material property, the size of the
dataset, the type of data, and the task type.

The method of how the Dataset Name column is set up will be briefly described here. If
multiple datasets originated from the same paper, their names are organized in two different
ways, depending on whether or not a dataset was cleaned.
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Paper Title/Author Dataset Name Material System | Organic/Inorganic| Material Property | Dataset Size Data Type Task Type
"Machine learning bandgaps of
double perovskites." (2016) Doubl
ouble
Pilania_double_perovskites_clean N Inorganic Bandgap (Eg) 1306 DFT-Calculated | Regression
Primary Author: Ghanshyam Perovskites
Pilania
"Accelerating materials
Pilania_Polymers_data
property - v - Atomization Energy
predictions using machine ->Atomization Eng. Bandgap
learning." (2013) ->Bandgap Flectron Affinity
->Electron Affinity 4-block Polymers Organic ; 175 DFT-Calculated Regression
. Formation Energy
Primary Author: Ghanshyam ~>Formation Eng. Lattice Parameter
Pilania ~>c llattice param] Electronic Dielec
-->elec. Dielec. Const
Const
P"Ia"‘afpt"ymersfda‘afs"”"g*c""“ 4-block Polymers Organic Spring Constant 174 DFT-Calculated | Regression
_clean
Pilania_Polymers data_total Dielec_| o\ 1 ooy mers Organic Total Dielec Const 174 DFT-Calculated | Regression
Const_clean
"Machine learning properties of
N N Ly .. |Pilania_superlattices :
binary wurtzite superlattices. N Interfacial Energy
(2018) = IMGAEEE HEE) Binary Wurtzite Lattice Paramet
--> Lattice Parameter o Inorganic attice Parameter | 1750 | DFT-Calculated | Regression
N | Superlattices Formation Energy
Primary Author: Ghanshyam -->Formation_E_clean
Pilania
Pilania_superlattices_GGA_Band_| Binary Wurtzite . N
. Inorganic GGA Bandgap 1249 DFT-Calculated | Regression
Gap_clean Superlattices
Pilania_superlattices_HSE_Band_ | Binary Wurtzite . N
. Inorganic HSE Bandgap 121 DFT-Calculated | Regression
Gap_clean Superlattices
Pilania_superlattices_elastic_cons ke G
- - - Binary Wurtzite c11, c12, c13, ¢33, .
ts su Zrlattices Inorganic 4s 987 DFT-Calculated | Regression
> cl1, c12, c13, 33, c44 s
"Predicting the effective
thermal conductivities of
composite materials and porous Composite 720
i i i Effective Thermal
media by machine learning Wei_composite_materials Materials Inorganic L Calculated Regression
methods." (2018) Conductivity
Primary Author: Han Wei
Effective Thermal
Wei_porous_media Porous Media Inorganic L 374 Calculated Regression
Conductivity
"Machine learning-aided design
of materials with target elastic . . .
properties.” (2019) Zeng_elastic_prop Elastic Moduli:
--> G_Reuss, G_VRH, G_Voigt Inorganic Solids Inorganic Shear Modulus (G) 5518 DFT-Calculated | Regression
Primary Author: ShumingZeng |--> K_Ress, K_VRH, K_voigt Bulk Modulus (K)

Fig. 2. Information about the datasets that had train-val-test splits created using the 5-Fold cross-validation method.
Each dataset is described by its name, material system, organic nature, material property, dataset size, data type, and
task type. The paper of each respective dataset is provided as well in the left-most column.

(1) If a dataset did not need cleaning, it is listed under its parent name within a single cell.

For example, reference the second paper from the top of Fig. 2 (“Accelerating materi-
als property predictions using machine learning”). In the first cell of the Dataset Name
column, there are multiple datasets listed, each designated with an arrow (—) below
the parent name, ‘Pilania_Polymers_data’. This notation means that there are six separate
datasets (Atomization Eng., Bandgap, Electron Affinity, Formation Eng., c [lattice param],
and elec. Dielec. Const) of the same size that came from the same paper.

If a dataset needed cleaning, it is given its own separate row and its full name is writ-
ten out, including the parent name. The second paper of Fig. 2 will be used again as an
example. The second cell of the Dataset Name column shows how this is written: ‘Pi-
lania_Polymers_data_Spring_Const_clean’. All in all, it can be seen that this paper con-
tributed eight datasets in total to this benchmark data.

(2

—

All datasets can be accessed at https://github.com/anhender/mse_ML_datasets/tree/v1.0 [2].

The data is provided in both its raw format (before the creation of train-val-test splits) and its
processed format (in which train-val-test splits were created). In general, there are two ways
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Dataset Name

Material System

Organic/Inorganic

“"Experimental search for
high-temperature
ferroelectric perovskites
guided by two-step machine
learning." (2018)

Primary Author: Prasanna
Balachandran

Bala_classification_dataset

Bala_regression_dataset

Perovskites

Perovskites

Inorganic

Inorganic

Material Property

Dataset Size

Data Type

Task Type

Curie Temperature (Tc)

Curie Temperature (Tc)

192

132

Experimental

Experimental

Classification

Regression

"Prediction model of band

gap for inorganic compounds
by combination of density
functional theory calculations
and machine learning
techniques." (2016)

Primary Author: Joohwi Lee

Lee_band_gaps

Inorganic
Compounds

Inorganic

Bandgap (GoWo)

270

PBE, mBJ Calculated

Regression

“Predicting the
thermodynamic

stability of perovskite oxides
using machine learning
models." (2018)

Primary Author: Wei Li

Li_DFT_and_features_clean

and Li_DFT_dataset_clean

Perovskite Oxides

Inorganic

Ehull

1925

DFT-Calculated

Classification

"Machine learning strategy
for accelerated design of
polymer dielectrics.” (2016)

Primary Author: Arun
Mannodi-
Kanakkithodi

Mannodi_polymer_dielec
--> Electronic Dielectric Constant
--> HSE Band Gap

--> lonic Dielectric Constant

--> Total Dielectric Constant

4-block Polymers

Organic

Electric Dielec. Const.
Bandgap
lonic Dielec. Const.
Total Dielec. Const.

284

DFT-Calculated

Regression

"Machine learning with
systematic density-
functional theory
calculations: Application to
melting temperatures of
single-and binary-component
solids."

(2014)

Primary Author: Atsuto Seko

Seko_melt_temps

Component Solids

Inorganic

Melting Temperature (Tm)

248

Experimental

Regression

“Prediction of polymer
properties using infinite
chain descriptors (ICD) and
machine learning: Toward
optimized dielectric
polymeric materials." (2016)

Primary Author: K. Wu

Wu_DFT_Eg_dielec_consts
> GAP

--> epsilon_e

--> epsilon_i

Wu_Exp_Tg

Polymers

Polymers

Organic

Organic

Bandgap
Electric Dielec. Const.
lonic Dielec Const.

Glass Transition Temp (Tg)

155

262

DFT-Calculated

Experimental

Regression

Regression

"Predicting the band gaps of
inorganic solids by machine
learning." (2018)

Primary Author: Ya Zhuo

Zhuo_classification_data

Zhuo_regression_data

Inorganic Solids

Inorganic Solids

Inorganic

Inorganic

Bandgap (E;)

Bandgap (E;)

6354

3896

Experimental (non-
zero values)
DFT-Calculated (zero
values)

Experimental

Classification

Regression

Fig. 3. Information about the datasets that had train-val-test splits created using the 10-Fold cross-validation method.
Each dataset is described by its name, material system, organic nature, material property, dataset size, data type, and
task type. The paper of each respective dataset is provided as well in the left-most column.

data is provided, either with features or without. Table 2 lists the datasets that do not contain
any features, while Table 3 lists the datasets that contain features.

Datasets with no features (see Table 2) only have two or three columns, which describe ma-
terial compositions, material property values, and (when a third column exists) the Materials
Project ID for the corresponding compositions. The first ten lines of the Zhuo_classification_data
dataset are shown in Fig. 5 as an example of what a typical Table 2 dataset looks like. It can
be seen that only two columns exist, where each composition given in column one has a corre-
sponding band gap value in column two.
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Paper Title/Author Dataset Name Material System | Organic/Inorganic Material Property Dataset Size Data Type Task Type
“Finding unprecedentedly low-
thermal-conductivity half-
Heusler semiconductorsvia

high-throughput materials Carrete_therm_conduct_train_clean
modeling.” (2014) Semiconductors

Half-Heulser . Lattice Thermal I
Inorganic - 30 Calculated Classification
Conductivity (ku)

Primary Author: Jesus Carrete

"The onset temperature (Tg) of
AsxSe1-x glassestransition
prediction: A comparison of Cé'CU‘ated »
topological and Regressor Liu_Tg_AsSe_glass Glass Inorganic  [Glass Transition Temp (Tg 12 [attributes 1-3] | Regression
analysis methods." (2017) and Experimental
[attributes 4-6]

Primary Author: Yue Liu

"Machine-learning-assisted
accurate band gap predictions

offunctionalized MXene." Mxene [early
(2018) trasition metal

Rajan_Mxene_data . Inorganic Bandgap (Eg) 70 DFT-Calculated | Regression
carbides and/or

Primary Author: Arunkumar nitrides)
Chitteth Rajan

"Prediction of polymer
properties using infinite chain
descriptors (ICD) and machine
learning: Toward optimized
dielectric polymeric Wu_Exp_dielec_const Polymers Organic Dielectric Constant 58 Experimental Regression

materials." (2016)

Primary Author: K. Wu

Wu_loss_tang_100Hz Polymers Organic Dielectric Loss Tangent 48 Experimental | Classification
Wu_loss_tang_1kHz Polymers Organic Dielectric Loss Tangent 44 Experimental | Classification
"Accelerated search for
materials with targeted
properties by adaptive design."
(2016) Xue_thermal_hysteresis NiTiCuFePd Alloys Inorganic Thermal Hystersis (AT) 22 Experimental Regression

Primary Author: Dezhen Xue

Fig. 4. Information about the datasets that had train-test splits created using the Leave-One-Out cross-validation
method. Each dataset is described by its name, material system, organic nature, material property, dataset size, data
type, and task type. The paper of each respective dataset is provided as well in the left-most column.

Datasets that contain features (see Table 3) range in their number of columns from 4 to
966, though all but one has 16 columns or less. This wide range is due to the fact that each
dataset considered different material systems and properties, so some features were important
to consider while others were not. The dataset that provides the most robust number of features
is Li_DFT_and_features_clean, which contains 966 columns in total. A slimmed down version of
this dataset is provided as well, Li_DFT_dataset_clean, which has 12 columns. Along with the ex-
tra information the features provide, all of these datasets still contain the material composition
and material property columns as with the Table 2 datasets.

2. Experimental Design, Materials and Methods

The datasets were manually gathered from 16 previous materials science machine learning
(ML) model papers. The parameters for this process were briefly explained in the Specifications
Table above, but will be restated here. A dataset was chosen if: 1) its paper was relatively recent
(published in 2013 or later), 2) the data was publicly available or easily attainable by contacting
the corresponding author, and 3) the study used some kind of regression and/or classification
ML model for any kind of material property. Datasets were gathered independent of data type,
data size, and material system as long as the above three parameters were met and the data
itself matched what its respective paper described it to be.

Once all data had been gathered, the initially collected datasets were split such that data
were separated either by model type (classification or regression) or by data type (experimental
or calculated) for each respective paper, if applicable, which led to the creation of 25 datasets.
This was done manually, without any coding, as many of the initial datasets came in PDF format
and had to be converted to CSV format. Then, if applicable, these data were split further such
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Table 2

Datasets that contain no features, only information regarding the material property. These datasets contain only two or

three columns, as described in the text.

Carrete_therm_conduct_train_clean

Pilania_superlattices_HSE_Band_Gap_clean

Mannodi_polymer_dielec/Electronic Dielectric Constant
Mannodi_polymer_dielec/HSE Band Gap (eV)
Mannodi_polymer_dielec/lonic Dielectric Constant
Mannodi_polymer_dielec/Total Dielectric Constant
Pilania_Polymers_data_Spring_Const_clean
Pilania_Polymers_data_total_Dielec_Const_clean
Pilania_Polymers_data/Atomization Eng. (eV)
Pilania_Polymers_data/Bandgap (eV)
Pilania_Polymers_data/c [lattice param] (angstrom)
Pilania_Polymers_data/elec. Dielec. Const
Pilania_Polymers_data/Electron Affinity (eV)
Pilania_Polymers_data/Formation Eng. (eV)
Pilania_superlattices_elastic_consts/c11 (GPa)
Pilania_superlattices_elastic_consts/c12 (GPa)
Pilania_superlattices_elastic_consts/c13 (GPa)
Pilania_superlattices_elastic_consts/c33 (GPa)
Pilania_superlattices_elastic_consts/c44 (GPa)
Pilania_superlattices_Formation_E_clean
Pilania_superlattices_GGA_Band_Gap_clean

Pilania_superlattices/Interfacial Energy (eV-angstrom”2)
Pilania_superlattices/Lattice Parameter (angstrom)
Seko_melt_temps
Wu_DFT_Eg_dielec_consts/epsilon_e
Wu_DFT_Eg_dielec_consts/epsilon_i
Wu_DFT_Eg_dielec_consts/GAP
Wu_Exp_dielec_const

Wu_Exp_Tg

Wu_loss_tang_100Hz

Wu_loss_tang_1kHz

Zeng_elastic_prop/G_Reuss
Zeng_elastic_prop/G_Voigt
Zeng_elastic_prop/G_VRH
Zeng_elastic_prop/K_Ress
Zeng_elastic_prop/K_voigt
Zeng_elastic_prop/K_VRH
Zhuo_classification_data

Zhuo_regression_data

Table 3

Datasets that contain extra features besides only the material property and material composition. The features used in
each dataset vary due to the different material system and material properties that were studied in each respective

dataset.

Bala_classification_dataset

Pilania_double_perovskites_clean

Bala_regression_dataset
Lee_band_gaps
Li_DFT_and_features_clean
Li_DFT_dataset_clean
Liu_Tg_AsSe_glass

Rajan_MXene_data
Wei_composite_materials
Wei_porous_media
Xue_thermal_hysteresis

composition
Hg0.7Cd0.3Te
CuBr

LuP
Cu3SbSe4
ZnO

PtSb2
Znin2S4
K2Cd3Ted

K4Sn3Ce3S14

Eg (eV)
0.35
3.08
1.3

0.4
3.44
0.08
2.68
2.26

2.46

Fig. 5. The first ten lines of the Zhuo_classification_data dataset. The left column describes compositions of inorganic
solids while the right column gives the corresponding band gap values. This is an example of a dataset without features.



A.N. Henderson, S.K. Kauwe and T.D. Sparks/Data in Brief 37 (2021) 107262 9

that, per paper, each material property had its own dataset. This led to a total of 50 datasets.
This process was done in order to make the data as accessible as possible for others, since many
of the papers chosen for this benchmark dataset studied multiple material properties at once.

Data visualization was then done on each dataset using seaborn.distplot to determine if any
outliers existed. If an outlier was found, it was removed from its respective dataset. From the
50 total datasets, only nine had to be cleaned. The cleaning process entailed the removal of
duplicates, NaN values, and outlier points. Generally, outliers were deemed to be outliers if a
single point excessed several standard deviations away from the mean in clear contradiction
from other datapoints in the dataset.

After all of the necessary datasets were effectively cleaned, train-val-test or train-test splits
were created, depending on the size of each dataset. For datasets with more than 100 values,
train-val-test splits were created via the scikit-learn K-Fold cross-validation method. The num-
ber of folds, 5 versus 10, was determined by following what each respective paper did in their
studies. For datasets with less than 100 values, test-train sets were created via the scikit-learn
Leave-One-Out cross-validation method. The code for this last step is available in the repository,
as well as the raw data that was used to create the final splits for each dataset.
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