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a b s t r a c t 

Materials discovery via machine learning has become an in- 

creasingly popular method due to its ability to rapidly predict 

materials properties in a time-efficient and low-cost manner. 

However, one limitation in this field is the lack of benchmark 

datasets, particularly those that encompass the size, tasks, 

material systems, and data modalities present in the mate- 

rials informatics literature. This makes it difficult to identify 

optimal machine learning model choices including algorithm, 

model architecture, data splitting, and data featurization for 

a given task. Here, we attempt to address this lack of bench- 

mark datasets by assembling a unique repository of 50 differ- 

ent datasets for materials properties. The data contains both 

experimental and computational data, data suited for regres- 

sion as well as classification, sizes ranging from 12 to 6354 

samples, and materials systems spanning the diversity of ma- 

terials research. Data were extracted from 16 publications. In 

addition to cleaning the data where necessary, each dataset 

was split into train, validation, and test splits. For datasets 

with more than 100 values, train-val-test splits were created, 

either with a 5-fold or 10-fold cross-validation method, de- 

pending on what each respective paper did in their studies. 
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Datasets with less than 100 values had train-test splits cre- 

ated using the Leave-One-Out cross-validation method. These 

benchmark data can serve as a basis for a more diverse 

benchmark dataset in the future to further improve their ef- 

fectiveness in the comparison of machine learning models. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Computational Materials Science 

Specific subject area Machine learning models for materials informatics 

Type of data Table 

How data were acquired Gathered data from past literature 

Data format Analyzed, Filtered 

Parameters for data collection Data were gathered from papers that had easily accessible data, had been 

published relatively recently (since 2013), and had used either a regression or 

classification machine learning model on any kind of material property. Any 

kind of material system, data type (experimental vs calculated), data size, and 

organic/inorganic materials were selected if said data fit the above parameters. 

Description of data collection The data collected were taken from past material science machine learning 

model papers whose data were either publicly available or were provided 

when one contacted the corresponding author. Each dataset was downloaded 

and analyzed using Python’s seaborn.distplot and subsequently cleaned if 

needed. The specific papers that were used for this dataset are described in 

the Data Source Location section below. 

Data source location Primary data sources: See Table 1 

Data accessibility Repository name: GitHub 

http://doi.org/10.5281/zenodo.4903958 

Direct URL to data: https://github.com/anhender/mse _ ML _ datasets/tree/v1.0 

Instructions for accessing these data: 

It is recommended that one accesses the GitHub repository using the direct 

URL provided, where further instructions for accessing these data are provided. 

alue of the Data 

• Because these data are from past literature, they include a variety of materials properties,

as well as both experimental and calculated values. Therefore, this collection of data acts as

a unique benchmark dataset that can be used to accurately and efficiently compare differ-

ent machine learning models for materials informatics, which can aid in improving current

practices in the field of Computational Materials Science. 

• Beyond the merits of the data themselves, as described in their respective publications, the

aggregation of these benchmark data brings researchers closer to having a single unified col-

lection of materials data for machine learning and statistical methods. As such, these bench-

mark data allow researchers to effectively compare machine learning models to one another,

which will ultimately aid the process of finding the most efficient method for materials

discovery. 

• These benchmark data can be used as a basis for creating a more diverse benchmark dataset

in the future. Larger, more diverse datasets will allow researchers to explore the generaliz-

ability of machine learning models. The MatBench project [1] could also benefit by incorpo-

rating some of these data to improve the diversity and types of learning problems on which

they test various machine learning approaches. 

• For 2 of the 16 papers, the data that was collected and presented here was not previously

available publicly. Therefore, this dataset constitutes the first public repository which can be

easily accessed for subsequent learning. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://doi.org/10.5281/zenodo.4903958
https://github.com/anhender/mse_ML_datasets/tree/v1.0
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1. Data Description 

The current dataset is a compilation of 50 datasets that were collected from 16 previous

machine learning materials informatics papers, which were published between the years 2013

to 2019. Table 1 lists the papers used for this collection of benchmark data. 

Fig. 1 provides a general overview of the kinds of datasets that were collected for this bench-

mark data. This figure gives information about the kind of material systems, data sizes, organic

nature of material, data types, and task types that exist in this new benchmark data. Each cate-

gory and respective specifications will be briefly described below. 

The Material System category describes the kind of materials that each dataset studied. From

Fig. 1 , it can be seen that the majority of these datasets studied either polymers or superlattice

materials. The Misc. subcategory is comprised of composite materials, component solids, semi-

conductors, metal alloys, glass, and MXenes. While some of these are considered inorganic solids,

they were placed in the Misc. subcategory because the respective papers specifically described

the kind of inorganic solid that was studied. 
Table 1 

A list of the 16 primary sources that were used to create this collection of benchmark data. The sources are listed in 

alphabetical order. 

Balachandran, Prasanna V., et al. “Experimental search for high-temperature ferroelectric perovskites guided by 

two-step machine learning.” Nature communications 9.1 (2018): 1–9. 

https://doi.org/10.1038/s41467 –018 –03821 –9 

Carrete, Jesús, et al. “Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via 

high-throughput materials modeling.” Physical Review X 4.1 (2014): 011,019. 

https://doi.org/10.1103/PhysRevX.4.011019 

Lee, Joohwi, et al. “Prediction model of band gap for inorganic compounds by combination of density functional 

theory calculations and machine learning techniques.” Physical Review B 93.11 (2016): 115,104. 

https://doi.org/10.1103/PhysRevB.93.115104 

Li, Wei, Ryan Jacobs, and Dane Morgan. “Predicting the thermodynamic stability of perovskite oxides using machine 

learning models.” Computational Materials Science 150 (2018): 454–463. 

https://doi.org/10.1016/j.commatsci.2018.04.033 

Liu, Yue, et al. “The onset temperature (Tg) of AsxSe1-x glasses transition prediction: A comparison of topological 

and regression analysis methods.” Computational Materials Science 140 (2017): 315–321. 

https://doi.org/10.1016/j.commatsci.2017.09.008 

Mannodi-Kanakkithodi, Arun, et al. “Machine learning strategy for accelerated design of polymer dielectrics.”

Scientific reports 6 (2016): 20,952. https://doi.org/10.1038/srep20952 

Pilania, Ghanshyam, et al. “Accelerating materials property predictions using machine learning.” Scientific reports 

3.1 (2013): 1–6. https://doi.org/10.1038/srep02810 

Pilania, Ghanshyam, et al. “Machine learning bandgaps of double perovskites.” Scientific reports 6 (2016): 19,375. 

https://doi.org/10.1038/srep19375 

Pilania, Ghanshyam, and X-Y. Liu. “Machine learning properties of binary wurtzite superlattices.” Journal of 

materials science 53.9 (2018): 6652–6664. https://doi.org/10.1007/s10853 –018 –1987-z 

Rajan, Arunkumar Chitteth, et al. “Machine-learning-assisted accurate band gap predictions of functionalized 

MXene.” Chemistry of Materials 30.12 (2018): 4031–4038. https://doi.org/10.1021/acs.chemmater.8b00686 

Seko, Atsuto, et al. “Machine learning with systematic density-functional theory calculations: Application to melting 

temperatures of single-and binary-component solids.” Physical Review B 89.5 (2014): 054,303. 

https://doi.org/10.1103/PhysRevB.89.054303 

Wei, Han, et al. “Predicting the effective thermal conductivities of composite materials and porous media by 

machine learning methods.” International Journal of Heat and Mass Transfer 127 (2018): 908–916. 

https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082 

Wu, K., et al. “Prediction of polymer properties using infinite chain descriptors (ICD) and machine learning: Toward 

optimized dielectric polymeric materials.” Journal of Polymer Science Part B: Polymer Physics 54.20 (2016): 

2082–2091. https://doi.org/10.1002/polb.24117 

Xue, Dezhen, et al. “Accelerated search for materials with targeted properties by adaptive design.” Nature 

communications 7.1 (2016): 1–9. https://doi.org/10.1038/ncomms11241 

Zeng, Shuming, et al. “Machine learning-aided design of materials with target elastic properties.” The Journal of 

Physical Chemistry C 123.8 (2019): 5042–5047. https://doi.org/10.1021/acs.jpcc.9b01045 

Zhuo, Ya, Aria Mansouri Tehrani, and Jakoah Brgoch. “Predicting the band gaps of inorganic solids by machine 

learning.” The journal of physical chemistry letters 9.7 (2018): 1668–1673. 

https://doi.org/10.1021/acs.jpclett.8b00124 

https://doi.org/10.1038/s41467-018-03821-9
https://doi.org/10.1103/PhysRevX.4.011019
https://doi.org/10.1103/PhysRevB.93.115104
https://doi.org/10.1016/j.commatsci.2018.04.033
https://doi.org/10.1016/j.commatsci.2017.09.008
https://doi.org/10.1038/srep20952
https://doi.org/10.1038/srep02810
https://doi.org/10.1038/srep19375
https://doi.org/10.1007/s10853-018-1987-z
https://doi.org/10.1021/acs.chemmater.8b00686
https://doi.org/10.1103/PhysRevB.89.054303
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082
https://doi.org/10.1002/polb.24117
https://doi.org/10.1038/ncomms11241
https://doi.org/10.1021/acs.jpcc.9b01045
https://doi.org/10.1021/acs.jpclett.8b00124
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Fig. 1. A categorial dataset distribution of the 50 datasets compiled from 16 previous machine learning materials in- 

formatics papers. The categorization methods used are listed on the left and specific descriptors are listed above each 

colored bar of the graph. The number in each bar describes the number of datasets that fit that specification (e.g., 44 of 

the 50 datasets are regression tasks). 
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The Num. Samples category describes the sizes of the datasets. The size range is from below

00 values to over 50 0 0, with the smallest dataset having a size of 12 and the largest dataset

ith a size of 6354. The majority of datasets are between 100 and 10 0 0 samples. 

The Org/Inorg. category describes whether a dataset studied organic or inorganic materials.

1 of the 50 total datasets studied inorganic materials while the other 19 studied organic mate-

ials. 

The Data Type category describes if a dataset used calculated or experimental data for its

asks. The majority of datasets used calculated data (39 of 50). It should be noted that two

atasets (Zhuo_classification_data and Liu_Tg_AsSe_glass) used calculated and experimental data

ogether. 

Finally, the Task Type category describes the machine learning task type of a dataset. Forty-

our of the datasets are regression tasks and the remaining six are classification tasks. 

After all of the 50 datasets were gathered and cleaned (when necessary), they were split into

rain-val-test splits or train-test splits, depending on their size. Three different methods were

sed: 5-Fold cross-validation, 10-Fold cross-validation, or Leave-One-Out cross-validation. Fig. 2

ives specific information of the datasets that had train-val-test splits created using the 5-Fold

ethod, while Fig. 3 gives information about the datasets whose train-val-test splits were cre-

ted with the 10-Fold method and Fig. 4 describes the datasets that had train-test splits created

sing the Leave-One-Out method. For all three of these figures, the information given for each

ataset includes: its respective paper, its name as given in the repository, the specific material

ystem studied, the organic nature of said material, the kind of material property, the size of the

ataset, the type of data, and the task type. 

The method of how the Dataset Name column is set up will be briefly described here. If

ultiple datasets originated from the same paper, their names are organized in two different

ays, depending on whether or not a dataset was cleaned. 
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Fig. 2. Information about the datasets that had train-val-test splits created using the 5-Fold cross-validation method. 

Each dataset is described by its name, material system, organic nature, material property, dataset size, data type, and 

task type. The paper of each respective dataset is provided as well in the left-most column. 

 

 

 

 

 

 

 

 

 

 

 

 

(1) If a dataset did not need cleaning, it is listed under its parent name within a single cell.

For example, reference the second paper from the top of Fig. 2 (“Accelerating materi-

als property predictions using machine learning”). In the first cell of the Dataset Name

column, there are multiple datasets listed, each designated with an arrow ( → ) below

the parent name, ‘Pilania_Polymers_data’. This notation means that there are six separate

datasets (Atomization Eng., Bandgap, Electron Affinity, Formation Eng., c [lattice param],

and elec. Dielec. Const) of the same size that came from the same paper. 

(2) If a dataset needed cleaning, it is given its own separate row and its full name is writ-

ten out, including the parent name. The second paper of Fig. 2 will be used again as an

example. The second cell of the Dataset Name column shows how this is written: ‘Pi-

lania_Polymers_data_Spring_Const_clean’. All in all, it can be seen that this paper con-

tributed eight datasets in total to this benchmark data. 

All datasets can be accessed at https://github.com/anhender/mse_ML_datasets/tree/v1.0 [2] . 

The data is provided in both its raw format (before the creation of train-val-test splits) and its

processed format (in which train-val-test splits were created). In general, there are two ways



6 A.N. Henderson, S.K. Kauwe and T.D. Sparks / Data in Brief 37 (2021) 107262 

Fig. 3. Information about the datasets that had train-val-test splits created using the 10-Fold cross-validation method. 

Each dataset is described by its name, material system, organic nature, material property, dataset size, data type, and 

task type. The paper of each respective dataset is provided as well in the left-most column. 
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ata is provided, either with features or without. Table 2 lists the datasets that do not contain

ny features, while Table 3 lists the datasets that contain features. 

Datasets with no features (see Table 2 ) only have two or three columns, which describe ma-

erial compositions, material property values, and (when a third column exists) the Materials

roject ID for the corresponding compositions. The first ten lines of the Zhuo_classification_data

ataset are shown in Fig. 5 as an example of what a typical Table 2 dataset looks like. It can

e seen that only two columns exist, where each composition given in column one has a corre-

ponding band gap value in column two. 
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Fig. 4. Information about the datasets that had train-test splits created using the Leave-One-Out cross-validation 

method. Each dataset is described by its name, material system, organic nature, material property, dataset size, data 

type, and task type. The paper of each respective dataset is provided as well in the left-most column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Datasets that contain features (see Table 3 ) range in their number of columns from 4 to

966, though all but one has 16 columns or less. This wide range is due to the fact that each

dataset considered different material systems and properties, so some features were important

to consider while others were not. The dataset that provides the most robust number of features

is Li_DFT_and_features_clean, which contains 966 columns in total. A slimmed down version of

this dataset is provided as well, Li_DFT_dataset_clean, which has 12 columns. Along with the ex-

tra information the features provide, all of these datasets still contain the material composition

and material property columns as with the Table 2 datasets. 

2. Experimental Design, Materials and Methods 

The datasets were manually gathered from 16 previous materials science machine learning

(ML) model papers. The parameters for this process were briefly explained in the Specifications

Table above, but will be restated here. A dataset was chosen if: 1) its paper was relatively recent

(published in 2013 or later), 2) the data was publicly available or easily attainable by contacting

the corresponding author, and 3) the study used some kind of regression and/or classification

ML model for any kind of material property. Datasets were gathered independent of data type,

data size, and material system as long as the above three parameters were met and the data

itself matched what its respective paper described it to be. 

Once all data had been gathered, the initially collected datasets were split such that data

were separated either by model type (classification or regression) or by data type (experimental

or calculated) for each respective paper, if applicable, which led to the creation of 25 datasets.

This was done manually, without any coding, as many of the initial datasets came in PDF format

and had to be converted to CSV format. Then, if applicable, these data were split further such
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Table 2 

Datasets that contain no features, only information regarding the material property. These datasets contain only two or 

three columns, as described in the text. 

Carrete_therm_conduct_train_clean Pilania_superlattices_HSE_Band_Gap_clean 

Mannodi_polymer_dielec/Electronic Dielectric Constant Pilania_superlattices/Interfacial Energy (eV-angstrom ̂ 2) 

Mannodi_polymer_dielec/HSE Band Gap (eV) Pilania_superlattices/Lattice Parameter (angstrom) 

Mannodi_polymer_dielec/Ionic Dielectric Constant Seko_melt_temps 

Mannodi_polymer_dielec/Total Dielectric Constant Wu_DFT_Eg_dielec_consts/epsilon_e 

Pilania_Polymers_data_Spring_Const_clean Wu_DFT_Eg_dielec_consts/epsilon_i 

Pilania_Polymers_data_total_Dielec_Const_clean Wu_DFT_Eg_dielec_consts/GAP 

Pilania_Polymers_data/Atomization Eng. (eV) Wu_Exp_dielec_const 

Pilania_Polymers_data/Bandgap (eV) Wu_Exp_Tg 

Pilania_Polymers_data/c [lattice param] (angstrom) Wu_loss_tang_100Hz 

Pilania_Polymers_data/elec. Dielec. Const Wu_loss_tang_1kHz 

Pilania_Polymers_data/Electron Affinity (eV) Zeng_elastic_prop/G_Reuss 

Pilania_Polymers_data/Formation Eng. (eV) Zeng_elastic_prop/G_Voigt 

Pilania_superlattices_elastic_consts/c11 (GPa) Zeng_elastic_prop/G_VRH 

Pilania_superlattices_elastic_consts/c12 (GPa) Zeng_elastic_prop/K_Ress 

Pilania_superlattices_elastic_consts/c13 (GPa) Zeng_elastic_prop/K_voigt 

Pilania_superlattices_elastic_consts/c33 (GPa) Zeng_elastic_prop/K_VRH 

Pilania_superlattices_elastic_consts/c44 (GPa) Zhuo_classification_data 

Pilania_superlattices_Formation_E_clean Zhuo_regression_data 

Pilania_superlattices_GGA_Band_Gap_clean 

Table 3 

Datasets that contain extra features besides only the material property and material composition. The features used in 

each dataset vary due to the different material system and material properties that were studied in each respective 

dataset. 

Bala_classification_dataset Pilania_double_perovskites_clean 

Bala_regression_dataset Rajan_MXene_data 

Lee_band_gaps Wei_composite_materials 

Li_DFT_and_features_clean Wei_porous_media 

Li_DFT_dataset_clean Xue_thermal_hysteresis 

Liu_Tg_AsSe_glass 

Fig. 5. The first ten lines of the Zhuo_classification_data dataset. The left column describes compositions of inorganic 

solids while the right column gives the corresponding band gap values. This is an example of a dataset without features. 
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that, per paper, each material property had its own dataset. This led to a total of 50 datasets.

This process was done in order to make the data as accessible as possible for others, since many

of the papers chosen for this benchmark dataset studied multiple material properties at once. 

Data visualization was then done on each dataset using seaborn.distplot to determine if any

outliers existed. If an outlier was found, it was removed from its respective dataset. From the

50 total datasets, only nine had to be cleaned. The cleaning process entailed the removal of

duplicates, NaN values, and outlier points. Generally, outliers were deemed to be outliers if a

single point excessed several standard deviations away from the mean in clear contradiction

from other datapoints in the dataset. 

After all of the necessary datasets were effectively cleaned, train-val-test or train-test splits

were created, depending on the size of each dataset. For datasets with more than 100 values,

train-val-test splits were created via the scikit-learn K-Fold cross-validation method. The num-

ber of folds, 5 versus 10, was determined by following what each respective paper did in their

studies. For datasets with less than 100 values, test-train sets were created via the scikit-learn

Leave-One-Out cross-validation method. The code for this last step is available in the repository,

as well as the raw data that was used to create the final splits for each dataset. 
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