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Abstract

Lung segmentation in computerized tomography (CT) images plays an im-
portant role in various lung disease diagnosis. Most of the current lung
segmentation approaches are performed through a series of procedures with
manually empirical parameter adjustments in each step. Pursuing an au-
tomatic segmentation method with fewer steps, we propose a novel deep
learning Generative Adversarial Network (GAN)-based lung segmentation
schema, which we denote as LGAN. The proposed schema can be gener-
alized to different kinds of neural networks for lung segmentation in CT
images. We evaluated the proposed LGAN schema on datasets from Lung
Image Database Consortium image collection (LIDC-IDRI) and Quantitative
Imaging Network (QIN) collection with two metrics: segmentation quality
and shape similarity. Also, we compared our work with current state-of-
the-art methods. The experimental results demonstrated that the proposed
LGAN schema can be used as a promising tool for automatic lung segmenta-
tion due to its simplified procedure as well as its improved performance and
efficiency.
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1. Introduction

Computerized tomography (CT) is a clinical imaging modality, that is key
to, and sometimes the first step in, the diagnosis of various lung diseases,
including lung cancer, which has been the leading cause of cancer-related
deaths in the United States with the overall five-year survival rate of 17%
[1], but the survival rate could be increased to 55% if localized, where usually
performed by CT scan analysis. Lung CT scan images allow a physician to
confirm the presence of a tumor, measure its size, identify its precise location
and determine the extent of its involvement with other nearby tissue. With
an increasing use of C'T imaging for clinical studies, it has become almost
compulsory to use computers to assist radiologists in clinical diagnosis and
treatment planning (2], [3], [4], [5], [6], [7].

Among all the Lung CT computer aided detection/diagnosis applications,
lung segmentation is an initial step in analyzing medical images obtained to
assess lung disease. Researchers proposed a number of lung segmentation
methods which fall into two categories: hand-crafted feature-based methods
and deep learning-based methods. Compared to the hand-crafted feature-
based methods, such as region growing [8], active contour model [9], and
morphological-based models [10], deep neural network based methods [11],
[12], [13] could automatically learn representative features [14] without man-
ually empirical parameter adjustments.

Existing hand-crafted feature-based lung segmentation methods are usu-
ally performed through a series of procedures with manual empirical pa-
rameter adjustments. However, these traditional segmentation techniques
are designed for specific applications, imaging modalities, and even datasets.
They are difficult to be generalized for different types of CT images or various
datasets since different kinds of features and different parameter /threshold
values are extracted from different datasets. Moreover, the feature extrac-
tion procedure is monitored by users to manually and interactively adjust
the features/parameters. Compared to the hand-crafted methods, the deep
learning-based methods [10], [15], require less data-specific hyper-parameters
and generally perform better than the hand-crafted methods.

In this paper, we propose an end-to-end deep learning Generative Ad-
versarial Network based lung segmentation schema, LGAN, where the input
is a slice of lung CT scan and the output is a pixel-wise mask showing the
position of the lungs by identifying whether each pixel belongs to lung or
not. Furthermore, the proposed schema can be generalized to different kinds



of networks with improved performance.

Recently, several deep learning-based pixel-wise classification methods
have been proposed in computer vision area and some of them have been
successfully applied in medical imaging. Early deep learning-based methods
are based on bounding box [16]. The task is to predict the class label of the
central pixel(s) via a patch including its neighbors. Kallenberg et al. [17] de-
signed a bounding box based deep learning method to perform breast density
segmentation and scoring of mammographic texture. Shin et al. [18] com-
pared several networks on the performance of computer-aided detection and
proposed a transfer learning method by utilizing models trained in computer
vision domain for medical imaging problem. Instead of running a pixel-wise
classification with a bounding box, Long et al. [19] proposed a fully con-
volutional network (FCN) for semantic segmentation by replacing the fully
connected layers with convolutional layers. An Auto-Encoder alike structure
has been used by Noh et al. [20] to improve the quality of the segmented
objects. Later, Ronneberger et al. [21] proposed a U-net model for segmen-
tation, which consists of a contracting part as an encoder to analyze the
whole image and an expanding part as a decoder to produce a full-resolution
segmentation. The U-net architecture is different from [19] in that, at each
level of the decoder, a concatenation is performed with the correspondingly
cropped feature maps from the encoder. This design has been widely used
and proved to be successful in many medical imaging applications such as
Lumbar Surgery [22] and gland segmentation [23]. Most recently, Lalonde
et al. [12] designed a convolutional-deconvolutional capsule network, called
SegCaps, to perform lung segmentation, where they proposed the concept of
deconvolutional capsules.

After the emergence of Generative Adversarial Network GAN-based mod-
els [24], which have shown a better efficiency in leveraging the inconsistency
of the generated image and ground truth in the task of image generation,
Luc et al. [25] proposed a GAN-based semantic segmentation model. The
motivation is to apply GAN to detect and correct the high-order inconsis-
tencies between ground truth segmentation maps and the generated results.
The model trains a segmentation network along with an adversarial net-
work that discriminates segmentation maps coming either from the ground
truth or from the segmentation network. Following this idea, Zhao et al.
[13] proposed to use adversary loss to perform lung segmentation, where the
segmentor is a fully convolutional neural network. Both of their models em-
ploy the original GAN structure, which, however, due to its loss function



design, original GAN suffers from the problem of learning instability such as
mode collapse, which means all or most of the generator outputs are identical
(126],[27]).

To avoid this problem, Arjovsky et al. [26] proposed an optimized GAN
structure which uses a new loss function based on the Earth Mover (EM)
distance and in the literature is denoted as WGAN. It should be noted that
WGAN is designed to solve the same problem as the original GAN, which is
to leverage the inconsistency of the generated image and ground truth in the
task of image reconstruction instead of generating an accurate segmentation
from a given type of images.

In this paper, to solve the medical image segmentation problem, espe-
cially the problem of lung segmentation in CT scan images, we propose
LGAN schema which is a general deep learning model for segmentation of
lungs from CT images based on a Generative Adversarial Network structure
combining the EM distance-based loss function. In the proposed schema,
a Deep Deconvnet Network is trained to generate the lung mask while an
Adversarial Network is trained to discriminate segmentation maps from the
ground truth and the generator, which, in turn, helps the generator to learn
an accurate and realistic lung segmentation of the input CT scans. The per-
formance analysis on LIDC-IDRI and QIN datasets shows the effectiveness
and stability of this new approach. A very preliminary version of this work
has been reported [28]. The main contributions of this paper include:

1. We propose a novel end-to-end Generative Adversarial Network-based
lung segmentation schema with EM distance to perform pixel-wised
lung segmentation.

2. We apply the LGAN schema to five different GAN structures for lung
segmentation and compare them with different metrics including seg-
mentation quality and shape similarity.

3. We perform experiments and evaluate our five LGAN segmentation
algorithms as well as the baseline U-net model using LIDC-IDRI and
QIN datasets with ground truth masks generated by transitional lung
segmentation method with further corrections from our radiologists.

4. Our experimental results show that the proposed LGAN schema out-
performs current state-of-the-art methods and debuts itself as a promis-
ing tool for automatic lung segmentation.



2. The Proposed Method

In this section, we first introduce the background knowledge of Generative
Adversarial Network and then present the proposed LGAN schema.

2.1. Generative Adversarial Networks

Generative Adversarial Network is a deep generative model initially pro-
posed in [24], and later improved by DCGAN [29] and WGAN [26]. A general
GAN model consists of two kinds of networks named as the generator network
and the discriminator network. The generator network is trained to gener-
ate an image similar to the ground-truth and meanwhile the discriminator
network is trained to distinguish the generated image from the ground-truth
image. By playing this two-player game, the results from the discriminator
network help the generator network to generate more similar images and si-
multaneously the generated images as the input data help the discriminator
network to improve its differentiation ability. Therefore, the generator net-
work and the discriminator network are competing against each other while
at the same time make each other stronger.

Mathematically, the goal of the generator network G is to learn a distri-
bution p, matching the ground-truth data in order to generate the similar
data, while the goal of discriminator network D is also to learn the distribu-
tion of the ground-truth data but for distinguishing the real data (i.e. from
the real distribution py) from the generated data from G. The adversarial
comes from the min-max game between G and D, and is formulated as:

N MAX Eypy (@)liogD(w)] + Eanp. (5)log(1-D(G(2)) )] (1)
where, for a given real data x and the corresponding generated data G(z), the
adversarial discriminator is trained to maximize the probability output for
the real data x (that is, Eqyp,(2)j1ogD(x)]) and minimize the probability output
for the generated data (that is, Eqep,(2)0gD(G(2)))) Which is equivalent to max-
imizing E..,.z)og(1—-D(G(2))), and on the other side, the generator network
is trained to generate G(z) as similar as possible to x so that the discrim-
inator outputs the bigger probability value for G(z), that is, to maximize
Emwpd(m)[logD(G(z))] and equivalently to minimize ]Ez~pz(z)[log(1—D(G(z)))}-

Luc et al. [25] employed GAN model to perform segmentation task, where
the role of the generator has been changed from generating synthetic images
to generating segmentation masks for the original images, which has been



proved to be effective on the task of lung segmentation by Zhao et al. [13].
The details of GAN-based segmentation design will be specified in the next
section.

As illustrated in [26], the original GAN structure, which although achieves
a great performance in various tasks, including replicating images, human
language, and image segmentation, suffers from a mode collapse problem
due to its loss design. To make the training process more stable, Arjovsky
et al. proposed WGAN using Earth Mover (EM) distance to measure the
divergence between the real distribution and the learned distribution [26].
Specifically, given the two distributions, p; and P,, with samples x ~ p; and
y ~ P., the EM distance is defined as:

(pd ) eTlpupe) (z,y) 7[” y”] ( )

where [](pg,p.) represents the set of all joint distributions v(x,y) whose
marginals are respectively py and p,, and the term v(x, y) represents the cost
from x to y in order to transform the distributions p, into the distribution
p.. The EM loss actually indicates optimal transport cost. In this design,
the loss for the generator network is:

Lo = ~Eany. [D(@)] 3)
And the loss for the discriminator network is:
Lp = Euup. [D(G(2))] — Egnp,.., [D(2)]. (4)

With the EM distance-based loss, the GAN model becomes more powerful
in generating high-quality realistic images and outperforms other generative
models. While the WGAN is designed for image reconstruction, here we take
advantage of the basic idea of WGAN, and design an efficient and enhanced
deep learning GAN-based lung segmentation schema.

2.2. Our LGAN Schema

Our LGAN schema is designed to force the generated lung segmentation
mask to be more consistent and close to the ground truth mask and its
architecture is illustrated in Fig. 1.

LGAN consists of two networks: a generator network (G) and a discrimi-
nator network (D), and both of them are convolutional neural networks. The
generator network is trained to predict the lung masks based on the grayscale
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Figure 1: The pipeline of the proposed LGAN schema which includes a generator network
(G) and a discriminator network (D). A Deep Fully Convolutional Network is trained to
generate the lung mask while an Adversarial Network is trained to discriminate segmen-
tation maps from the ground truth and the generator, which, in turn, helps the generator
to learn an accurate and realistic lung segmentation of the input CT scans.

input CT slices, while the discriminator computes the EM distance between
the predicted masks and the ground truth masks to help the generator to
learn accurate and realistic lung segmentation masks.

During the training, the LGAN schema takes a slice of the lung CT
scan [; as input, then the generator predicts a mask M; to illustrate the
pixels belong to the lung. The quality of the lung segmentation is judged
by how well M; fools the discriminator network. In the rest of this section,
we describe the three main components of our LGAN schema: Generator
Network, Discriminator Network, and Training Loss.

2.2.1. Generator Network

The generator network is designed to generate the segmented mask of the
input lung CT scan image. The mask labels all the pixels belonging to the
lung. This segmentation task can be addressed as a pixel-wise classification
problem to identify whether a pixel belongs to the lung area or not. Given
an input CT slice I;, the generator will predict the category of each pixel and
generate a corresponding mask M; based on the classification result.

The architecture of our designed generator is illustrated in Fig. 2. The
generator model consists of encoder and decoder parts. The encoder ex-
tracts multi-scale features from gray input CT scans by a bunch of convolu-
tion blocks, while the decoder predicts masks from the multi-scale features
extracted by the encoder. Both encoder and decoder are composed of con-
volution blocks, and the feature map for each block is represented as blue
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Figure 2: The architecture of the generator network in the proposed framework. Each blue
box represents the feature map generated by convolution block. The number of channels
is denoted on the bottom of the box. The lines on the top of the boxes indicate the
concatenation operation of the feature map.

boxes in the figure. In the encoder part, each block has two convolution
layers, both of which have the same number of filters with filter size 3 x 3
followed by a max-pooling layer, which performs a 2 x 2 down-pooling on the
feature map. In the decoder part, each block consists of one deconvolution
layer and two convolution layers. For the convolution layers, similarly, each
has the same number of filters with filter size 3 x 3. Instead of an up-pooling
layer, we use the deconvolution layer with stride 2.

Following DCGAN [29], we employ LeakRelu as the activation function
for the convolution layers which is first proposed in [30]. As shown below,
to alleviate potential problems caused by ReLLU, which sets 0 to all negative
values, LeakyReLU set a small non-zero gradient NegativeSlope, which is
user pre-defined, to negative values. In the equation below, we represent this
negative slope as «.

LeakyReLU (z, a) = max(z,0) + a x min(x,0). (5)

At the final layer, a 1 x 1 convolution is performed to map each component
feature vector to the final segmentation mask.

2.2.2. Discriminative Network

The task of the discriminative network is to distinguish the ground truth
mask from the generated segmentation mask. The EM distance is employed
to measure the difference between the real and the learned distributions as
it has been proved to be a smooth metric [26].

Given a generator, the discriminator approximates E[-] function such

that the EM loss E,p, [t] — Eyep,..,[2] is approximated by D,.,.(G(z)) —
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Table 1: The list of all the proposed five LGAN structures and their corresponding de-
scriptions.

Network Input of the Discriminator Network

LGANBgsic Generated mask, one at a time.

LGANproduct Segmented original image based on the predicted mask.
LGANgp Mask and original image are combined as one input with two channels.
LGANLF Mask and original image as two inputs.

LGANRegression | Approximate EM loss based on prediction and ground truth directly.

Dyop,...(x). Compared to the discriminator in the vanilla GAN, which per-
forms a classification task, the new discriminator is actually performing a
regression task (approximating the function E(-)).

Based on the different assumptions that could help improve the perfor-
mance of the discriminator network, we propose five different designs for
the discriminator network, which thus yield five different LGAN structures
as listed in Table 1. We discuss these five designs one by one in the next
section.

2.2.83. Training Loss

As the original WGAN is designed for image generation tasks, here we
modify the training loss to fit for the segmentation task. Specifically, we
modify the loss of generator G by adding a Binary Cross Entropy (BCE)
loss which calculates the cross-entropy between the generated lung mask and
ground truth lung mask. Therefore, the loss of the generator network is:

BCE[G(x), Real] — E,,, [D(x)), (6)

where p, is the learned distribution from the ground-truth mask by G.

For the training loss of the discriminator D, different designs for the
discriminator network may have different training loss functions which are
described in the next section.

3. The Proposed LGAN Structures

In GAN-based image generation tasks, the generated images and the real
images are very similar. However, for the lung segmentation task, the pixel
intensity in the predicted mask is in [0, 1] while the value in the ground truth



mask is binary, that is, either 0 or 1. This fact may mislead the discriminator
to distinguish the generated mask and the ground truth mask by simply
detecting if the mask consists of only zeros and ones (one-hot coding of
ground truth), or the values between zero and one (output of segmentation
network).

With this observation, we explore all possible discriminator designs for
lung segmentation task based on various assumptions, and provide five dif-
ferent LGAN structures: LGAN with Basic Network (LGANpggsi.), LGAN
with Product Network (LGANpoquet), LGAN with Early Fusion Network
(LGANgr), LGAN with Late Fusion Network (LGANr), and LGAN with
Regression Network (LG ANpgegression)- Their corresponding architectures are
illustrated in Fig. 3, where the structure of each network is optimized based
on a structural search. In the rest of this section, we introduce them accord-

ingly.

3.1. LGAN with Basic Discriminator

The basic discriminator is to evaluate the generated mask and the ground
truth mask separately and minimize the distance between the two distribu-
tions. The architecture of the discriminator network for this design is illus-
trated as (a) in Fig. 3. We denote the LGAN with this basic discriminator
as LGANpg,si. and it has a single channel with the network input size of
224 x 224.

In LGANRyse, the training loss of G is the same as we described in
Section 2.2.3 and the training loss of D is the following:

Eorop. [D(G(2))] = Egnp, 0 [D(2)]- (7)

Based on LGANpgsi., we conjecture that the discriminator network may have
a more precise evaluation if the original image is also provided as additional
information. Under this assumption, we examine three strategies and design

the LGANpoguct, LGANEr, and LGANr structures.

3.2. LGAN with Product Network

Different from the basic discriminator where the inputs are the segmented
mask and the ground-truth mask with only binary value, the product network
takes, as the inputs, the lung volume images which are mapped out from
the original CT scan image by the segmented mask and the ground-truth
mask respectively. That is, given the segmentation mask, we obtain the lung
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Figure 3: The architectures of three different discriminator networks, where Conv stands
for convolution layer, FC' stands for fully-connected layer, BN stands for Batch Normal-
ization and LR stands for LeakyReLU. For each convolution layer, the numbers represent
kernel size, (down) pooling stride and number of kernels accordingly. Feature concatena-
tion layer concatenates feature maps from different branches and feed the concatenated
features to its next layer.
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volume image by modifying the original image such that the values within
the segmented lung area are kept as they are but the values in the rest of the
area are set to be 0. This design is motivated by the work of Luc et al. [25].

With this input, the discriminator network might be biased by the value
distribution. Although in [25] the deep learning model with the product net-
work is not designed based on WGAN, we observe that the product network
could still be used in our LGAN model and we define this LGAN structure
as LGANp,oguet- The discriminator in LG ANp,oquer differs from LG ANBgsic
only in the number of channels in inputs, so the discriminator in LG AN p,oduet
shares the same architecture as LGANp,si. shown in (a) of Fig. 3.

In LGANp,oquct, the loss of GG is the same as we described in Section 2.2.3
and the training loss of D, which is product network, is the following:

Eyep. [D(G(2) 0 1)) By, [D(2)], (8)

where o is an operation such that z o y represents pixel-wise multiplication
of matrices x and y.

3.3. LGAN with Early Fusion Network

Instead of taking only the mask as inputs, early fusion network takes
both the whole original CT scan image and the segmentation/ground-truth
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mask as an input. To keep the design of single input, we concatenate the
original image and the mask as one single image with two channels, where
one channel is the original CT scan and the other is the mask. We denote
LG AN with this early fusion discriminator network as LGANgp.

The architecture of the discriminator network in LGANEgr is shown in
(a) of Fig. 3. Different from LGANp.sic and LGANproguet, LGANEr has
the input size of 224 x 224 with 2 channels which are the concatenation of
the original CT scan and its mask. In LGANgpg, the training loss of G is
the same as we described in Section 2.2.3 and the loss of the discriminator

network is:

Eonp. [D(G(2) D 1)) = Eomp,,[D(2) D T, 9)
where @ is an operation such that z € y represents concatenation of matri-
ces ¢ and y into a single matrix with 2 channels.

3.4. LGAN with Late Fusion Network

Another way of taking both the original image and the mask as an input in
the discriminator network is to employ the late fusion technique. Specifically,
the input of the discriminator is the concatenation of the high-level feature of
the CT scan and the mask. We denote LGAN with this type of discriminator
as LGAN .

The corresponding architecture of the discriminator network in LGAN
is shown in (b) of Fig. 3. There are two branches of convolution layers in the
discriminator network while one branch is for the CT slices and the other
branch is for lung masks. The two inputs first pass the two parallel branches
separately, and then their features are fused by a concatenate layer and pass
through several convolution layers and down-sampling layers before they pass
through the fully-connected layers to reach the final result. As the CT scan is
more complicated and provides more information than masks, we let the CT
scan pass through more convolution layers before the feature concatenation
layer.

In LGAN[r, the training loss of G is the same as we described in Section
2.2.3 and the loss of the discriminator network is:

Eonp. [D(G(2), 11)] = Bop,,.,, [D(, )] (10)

3.5. LGAN with Regression Network

As we addressed in Section 2.2.2, in WGAN, the EM loss E[X] — E[Y] is
approximated by D(G(z)) — D(Real) where D(G(z)) and D(Real) are eval-
uated separately and independently. Differently, we design the discriminator
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network as a regression network to approximate the E[D(G(z))]—E[D(Real)]
where D(G(z)) and D(Real) are evaluated together in the same network set-
ting. The regression discriminator network takes two inputs, the ground
truth lung mask and the mask generated by the generator network. The
output of the network is the approximated EM distance, and the network is
optimized by minimizing the distance. We denote LGAN with this regression
discriminator network as LG ANRegression-

The architecture of the discriminative network in LG AN gegression is shown
in (c¢) of Figure 3. Similar to the previous networks, the inputs in the re-
gression discriminator network first separately pass through their own con-
volution branches and down-sampling layers before their features are con-
catenated together. And then the concatenated features pass through more
convolution layers before getting into the fully-connected layer. In this dis-
criminator network, the convolution branch consists of a long set of individual
convolution layers.

In LGANRegression, the loss of G is the same as we described in Section
2.2.3 and the loss of the discriminator network is:

El’l"/pz;l?"’preal [D<G($1)7$2)] (11)

By playing the min-max game, the generator prevents the distance com-
puted by discriminator from going to positive infinity while the discriminator
network prevents it from going to negative infinity. The generator and the
discriminator networks play this min-max game for several rounds until a tie
is reached.

4. Experiments

4.1. Datasets

We evaluated our proposed methods on two datasets, LIDC-IDRI [31]
and QIN Lung CT datasets [32]. The LIDC-IDRI dataset are selected Lung
CT scans from the public database founded by the Lung Image Database
Consortium and Image Database Resource Initiative, which contains 220
patients with more than 130 slices per scan. Each CT slice has a size of
512 x 512 pixels. We randomly select 180 patients’ scans as the training
data and the other 40 patients’ scans as the testing data for experiments.
The mask for each CT scans is generated by vector quantization-based lung
segmentation method [33] and then corrected by radiologists.
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The QIN Lung CT dataset contains 47 CT scans obtained on patients
diagnosed with Non-Small Cell Lung Cancer (NSCLC) with mixed stage and
histology from the H. Lee Moffitt Cancer Center and Research Institute.
Each CT slice has a size of 512 x 512 pixels. The ground-truth lung masks
are generated by first applying a watershed-based lung segmentation [34] and
then cleaned by radiologists. The CT slices that have low quality of masks
are removed from the dataset. Around 30% of the slices from removed from
the original QIN dataset. We use 35 patients’ data for training and the rest
12 patients for testing.

4.2. Experiment Design

Our proposed methods of five different LGAN structures are validated
and compared on both LIDC-IDRI and QIN datasets. The comparison on
structures are described in Section 3 and are listed in TABLE 1. Furthermore,
our best model is compared with the state-of-the-arts for lung segmentation
task on LIDC-IDRI dataset following the same settings and evaluation met-
rics. At last, as our method could serve as a pre-processing step for nodule
detection. Therefore, three cases with lung nodules located close to the lung
boundary are investigated to understand if our generated masks could include
those nodules.

All the models are trained from scratch with Adam [35] optimizer. The
learning rate is set to 107°, momentum to 0.9, and weight decay to 0.0005.
The network is initialized with a Gaussian distribution. During testing, only
the Segmentor network is employed to generate the final mask. The source
code will be made publicly available on the project website following the
acceptance of the paper.

4.8. Fvaluation Metrics
We take two metrics to evaluate the performance of the networks: seg-
mentation quality and shape similarity.

4.8.1. Segmentation Quality

Intersection over Union (IOU) score is a commonly used for semantic
segmentation. Given two images X and Y, where X is the predicted mask
and Y is the ground truth. The IOU score is calculated as:

XNy
Xuy’
which is the proportion of the overlapped area to the combined area.

10U = (12)
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4.3.2. Shape Similarity

To evaluate the similarity between shapes, the commonly used Hausdorff
distance [36] is employed to measure the similarity between the segmented
lung and the ground truth. In this paper, we use the symmetrical Hausdorff
distance mentioned in [37] as the shape similarity evaluation metric.

Given generated mask 91 and groundtruth &, the symmetrical Hausdorff
distance is calculated as:

HDist(M,®) = max sup inf ||z —y||, sup inf ||z —y]. (13)
zeMmyed e yEM
For all the evaluation metrics, we compute and compare their mean values
as well as their median values.

5. RESULTS

5.1. Comparison results of our proposed different structures

First we compare the performance of the proposed different structures on
LIDC-IDRI dataset, and the experimental results are shown in TABLE 2.
The LGAN models achieve a significant improvement compared with the
baseline U-net, which also serves as the segmentation network. The perfor-
mance of LGAN is more than 20% higher than the baseline U-net, which
demonstrates the effectiveness of the LGAN. All the LGAN designs achieve
better performance than the generator alone, among which the LGANRcgression
obtains the best performance.

The performance comparison results on QIN dataset is shown in TA-
BLE 3. Each of our designs has achieved better performance with LGANRgcgression
obtains the best performance. Since all the slices that have noisy masks are
removed from this dataset and the size of the dataset are very small, there-
fore, the baseline model obtain relative better performance. Our proposed
method is very robust on different CT dataset.

To qualitatively study the performance of the proposed architectures and
demonstrate the strength of our proposed LGAN framework, we compare the
performance of all the models on three CT slices. As shown in Fig. 4, the
significant improvement in predicted lung masks using LGAN structures can
be observed. The regions with red circles indicate where the network fails.
Among all the methods, the baseline method performs worst on all the three
slices, while our proposed LGANRgcgression performs best and obtains masks
that are highly similar to the ground truth.
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Table 2: Performance comparison of different LGAN structures on LIDC-IDRI dataset.
The numbers in bold indicate the best results.

Mean Median
Model IOU | Hausdorff | IOU | Hausdorff
Baseline 0.625 6.106 0.758 5.831

LG ANBgsic 0.902 3.367 0.966 3.162
LGANP,oduct 0.886 3.410 0.964 3.317
LGANEgr 0.902 3.284 0.966 3.162
LGANLF 0.791 3.532 0.944 3.0
LGANRegression | 0.923 3.380 0.972 3.162

Table 3: Performance comparison of different LGAN structures on QIN dataset. The
numbers in bold indicate the best results.

Mean Median
Model IOU | Hausdorff | IOU | Hausdorff
Baseline 0.893 2.787 0.976 2.449

LGANBgsic 0.917 2.758 0.976 2.236
LGANP;oduct 0.919 2.714 0.977 2.449
LGANEgFr 0.913 2.679 0.978 2.236
LGANLF 0.920 2.687 0.978 2.459
LGANRegression | 0.938 2.812 0.978 2.449

One problem of the neural network-based methods is that it is hard to
know what really happened inside the network. Therefore, besides segmen-
tation quality, we would like to attain further insight into the learned con-
volution models. We select the most representative feature maps obtained
by each layer of the generator. The feature maps of LGANs are illustrated
in Fig. 5. The feature maps show that the network can extract the major
information about lung boundary through the contracting part, and then
gradually expanding the extracted highly compressed features into a clear
mask. Obviously, the lung area tends to have a brighter color, which means
higher activation, than the rest parts of the image.
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Figure 4: Segmentation results of different LGAN structures on 3 lung CT slices. Col-
umn (a) is the overlap of the ground truth lung masks and the original CT slices. The
pictures from (b) to (g) correspond to the results of networks of baseline, LGANpgasic,
LGANproduct, LGANgr, LGANLp, and LGANRegression- The region with green color
represents lung areas, while the rest regions are other tissue structures, such as the sur-
rounding soft tissue, muscle, bone, and lung blood vessels.

Figure 5: Visualization of activations of the generator network. The activation maps from
(b) to (i) correspond to the output maps from lower to higher layers in the generator.
We select the most representative activation in each layer for effective visualization. The
image (a) is the input image and image (j) is the predicted mask. The finer details of
the lung are revealed, as the features are forward-propagated through the layers in the
generator. It shows that the learned filters tend to capture the boundary of the lung.

5.2. Comparison with State-of-the-Arts

We compare the performance of our LGANRegression model with the cur-
rent state-of-the-arts methods for lung segmentation task on LIDC-IDRI
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Table 4: Performance Comparison with the state-of-the-arts methods for lung segmenta-
tion task (3D Dice-score) on LIDC-IDRI dataset.

Model Mean Median
Morph [10] 0.862+2.93 -
U-net [21] 0.970£0.59 | 0.9845

Fusion gNet [13] | 0.983£0.05 | -
Tiramisu [38] - 0.9841
SegCaps [12] - 0.9847
LGANRegression | 0.985£0.03 | 0.9864

dataset, including the traditional method [10], U-net model [21], which serves
as our baseline, Tiramisu Network [38], and SegCaps [12]. For fair compari-
son with others, the commonly used 3D Dice-score metrics and the mean as
well as median values are calculated following the same settings. As shown in
TABLE 4, our model achieves the highest score comparing to current state-
of-the-arts with an average Dice-score of 0.985 and a median Dice-score of
0.9864. Although SegCaps [12] claims to have fewer parameters, the designed
capsule is very memory consuming. Also, our model is much shallower than
the 100-layer Tiramisu model [38] and achieves better performance. Mean-
while, our model outperforms the gNet [13], which utilizes the original GAN
loss. Comparing to the traditional methods, such as Morph, which requires
a series of thresholding, morphological operations, and component analysis,
our end-to-end model provides a one-step solution. Moreover, as mentioned
in gNet [13], due to the high-resolution of the LIDC-IDRI CT volumes, a
better Dice-score with 0.001 improvement indicates that more than 5k pixels
are correctly predicted.

5.8. Case Study

As lung segmentation usually serves as a pre-processing step for many
tasks such as lung nodule detection, we investigate whether the segmented
lung areas by our model include all nodules even when the nodules are very
close to lung boundary. As shown in Fig. 6, our method can include all the
nodules inside the lung area besides achieving high-quality lung mask.
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Figure 6: Examples demonstrate that our models are able to segment nodules which are
close to lung boundary. The images in rows (a) and (b) are the ground truth lung masks
and predicted lung masks by our network. The areas in red represent lung regions and
the green areas are the lung nodules annotated by radiologists.

5.4. Discussion and Future Work

For the proposed LGAN schema, we have designed five different discrim-
inative networks, and evaluated these five structures on lung segmentation
tasks on two public datasets. The experimental results demonstrate that
our proposed LGAN structures significantly outperform current state-of-the-
arts of lung segmentation task on LIDC-IDRI dataset with higher Dice-score.
Furthermore, our work in this paper makes an important step for lung nodule
detection task, especially for detecting the nodules on lung boundary. The
generator network in our LGAN model is designed based on the currently
most widely used baseline method, U-Net. As the task of finding an optimal
network structure is still ongoing, our LGAN schema could also be optimized
correspondingly. For the future work, it would be interesting to evaluate the
quality of our model by other methods such as nonlinear fitting methods, to
employ our method as a pre-processing step for lung nodule detection task,
and to extend the proposed schema to the segmentation for other organs such
as brain.

6. CONCLUSIONS

Lung segmentation is usually performed by methods such as thresholding
and region growing. Such methods, on one hand, require dataset-specific
parameters and require a series of pre- and post-processing to improve the
segmentation quality, and on the other hand, have low generalization ability
to be applied to large-scale diverse datasets. To reduce the processing steps
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for lung segmentation and eliminate the adjustments of empirical-based pa-
rameters, we have proposed LGAN by redesigning the discriminator with
EM loss. The lung segmentation is achieved by the adversarial between the
segmentation mask generator network and the discriminator network which
can differentiate the real mask from the generated mask. Such adversarial
makes the generated mask more realistic and accurate than a single network
for image segmentation. Moreover, our schema can be applied to different
kinds of segmentation networks.
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