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Abstract

Our ability to produce and transform engineered materials over the past 150 years is responsible for our high 
standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our
addiction to creating and using materials at this fast rate will have on the future generations. The way we currently 
make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It
affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point 
where something must drastically change, and it must change NOW. We must create more sustainable materials 
alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important 
resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic
materials and create a circular materials economy where reuse and recycle are priorities. We must develop 
sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole
materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable 
and relevant data to quantify sustainability.

We need to seriously start thinking of where our future materials will come from and how could we track them,
given that we are confronted with resource scarcity and geographical constrains. This is particularly important for
the development of new and sustainable energy technologies, key to our transition to net zero. Currently “critical 
materials” are central components of sustainable energy systems because they are the best performing. A few 
examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and 
Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials 
are classified as “critical” by the EU and DoE. Except in sustainable energy, materials are also key components in
packaging, construction, and textile industry along with many other industrial sectors.

This Roadmap authored by prominent researchers working across disciplines in the very important field of 
sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight 
into the pathways towards solving them adopted by the sustainable materials community. In compiling this 
Roadmap, we hope to aid the development of the wider sustainable materials research community, providing a 
guide for academia, industry, government, and funding agencies in this critically important and rapidly developing 
research space which is key to future sustainability.
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Section 01 – Forward
Magda Titirici

Department of Chemical Engineering, Imperial College London, UK. 

Taking the EU as an example, the advanced materials sector generates more than 2.5 million direct jobs and a GDP 
of over 650 billion euros. The biggest challenge we are facing now is how to sustain such a materials heavy
economy without continuing to harm the planet and destroy its ecosystems.

Sustainable materials are materials that can be produced at scale without depleting non-renewable resources and 
without disrupting the environment. Manufacturing and using truly sustainable materials are key goals for our 
future global economy and for meeting Paris agreement targets to transition to net zero by 2050. 

Materials sustainability is a very multidisciplinary and complex research area. Such materials vary from bio-based
materials (polymers, carbons, ceramics, etc) to recycled materials that can be reprocessed or reused without 
requiring additional mining and minerals depletion. Sustainable materials must be closely connected with their 
applications, especially when urgent replacements for critical materials are required, for example in the energy 
sector but also in constructions, packaging, and textiles. Future developments in materials sustainability will need 
to eliminate resource scarcity and be part of a circular economy value chain to solve important global challenges. 
Not only the scarcity of resources must be eliminated, but such materials need to perform across their useful 
lifetime at a lower cost, be manufactured with minimum energy/water/toxic elements input and be 
reusable/recyclable at the end of their first useful life. 

We have a crucial mission to change our future technologies mix from energy to buildings, transportation, 
agriculture, and industrial sector. We must ensure we decarbonise across all these sectors while improving 
performance and improving economic value and reducing the environmental footprint to a minimum.  To achieve
this, we need to implement affordable and performant sustainable materials across all these sectors. Only then 
we will have a prosperous and climate neutral economy by 2050.

The key goal of this “Sustainable Materials Roadmap” is to present different ongoing research, progress, and 
remaining challenges in sustainable materials. This roadmap will start with a section defining a material 
criticality.  We will then focus on the potential of biomass, especially the biomass not in competition with the 
food supply (i.e biowaste) and its potential as a sustainable, widely abundant source for creating the next 
generation of materials to feed our ever more demanding society requiring advanced materials across different 
sectors of the economy. Hence, we will have a section elaborating on how best to extract valuable biomass 
components from the raw parent biomass in a reproducible and sustainable fashion. Using pure biomass 
components is key to ensure materials reproducibility given biomass variety from species to species and even 
within the same species from crop to crop.  We will then discuss biomass derived materials based on biomass 
components cellulose and lignin as well as the potential of wood for the future of nanoscience and materials 
engineering. Before diving into different specific classes of materials we will also discuss the importance of 
borrowing inspiration from Nature to impart biomass-derived materials with crucial properties such as 
maximised transport and diffusion, self-healing, ability to expand and contract upon function without damage to 
only mention a few. We will then dive into specific classes of materials from carbons to MOFs, polymers, 
nanocomposites, quantum dots and present recent progress and challenges on preparing these from sustainable 
bio-based precursors. After discussing various classes of sustainable materials, the roadmap will focus on 
important emerging technologies of key importance to reaching the Paris agreement goals by applications 
across different sectors such as renewable energy generation (wind and solar), storage and conversion in 
sustainable batteries and fuel cells, H2 storage, as well as creating a circular carbon economy  for CO2 capture 
and conversion into useful fuels and chemicals and electrochemical ammonia production. Other crucial sectors
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of our economy such portable electronics industry, construction materials packaging and textiles and fashion will 
also be addressed with focus on materials sustainability. The roadmap ends with discussing important issues 
about materials circular economy and best practice in recycling. Finally, the very important aspect of quantifying 
sustainability across all sages of a material life from the raw material is made from to manufacturing, transport, 
use phase and end of life is discussed.

We hope to have provided some concrete examples of how materials sustainability can be improved with focus 
on bio sourcing and bioinspiration by providing specific examples of sustainable materials and emerging 
challenges, their applications in key emerging technologies along with important aspects of materials circularity, 
recycling and life cycle assessment.

This collective review provides an overview of the current state of the art, research direction and future 
perspectives of sustainable materials. 
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Section 02 - Assessing raw materials criticality

Sterling G. Baird and Taylor D. Sparks
The College of Engineering at the University of Utah, USA. 

Status
Raw materials criticality can significantly impact global markets [1]. For example, the historical cobalt crisis of 
1977-1979 consisted of a violent rebellion in Zaire (0.009% global GDP at the time) that led to a price spike by 
380% [1]. In 2011, China implemented export quotas and taxes on rare earth materials, increasing the price of 
permanent magnet Dy and Nd materials up by approximately 800 and 2050%, respectively, which took several 
years to resolve via a World Trade Organization trade dispute [2]. Both cobalt and rare-earth materials, along with 
many other elements, are foundational for renewable or low-carbon technology, and the dependence of low-
carbon technologies (e.g. solar, wind, batteries) on critical materials affects the energy security of nations [3]. 
There is a growing shift towards alternative, sustainable renewable energy [2], battery [2], [4], thermoelectric [5], 
piezoelectric, ferroelectric, and drilling/cutting/grinding (e.g. automotive, oil, and gas) [6] technologies. Clearly, 
energy materials are heavily impacted; however, all materials and related applications will be affected by materials 
criticality. Therefore, for all materials, it is important to consider raw materials criticality questions such as:

• Is a particular element abundant or scarce? (elemental scarcity)
• Is it sourced primarily from a single region? (market concentration)
• Do the region(s) suffer from political instability or frequent, disruptive, natural disasters? (supply 

disruption risk)
• How much can secondary sources relieve the above constraints? (substitutes [7], recycling [2], see Figure 

1)
• How do the above factors depend on the short-, medium-, and long-term? (temporal [7], [8])

Specifically, raw material criticality is a function of geographic, geological, environmental, political, temporal, and 
economic factors and is difficult to quantify (Figure 1). Advancing understanding of the impact of raw materials 
criticality on industries for businesses, education, and governments [7] and increasing global data/analysis 
accessibility will enable:

• more efficient use of natural, monetary, and temporal resources
• avoidance of future supply-chain disruptions
• acceleration of materials discovery for game-changing technologies

For a detailed report of materials criticality provided by the U.S. Department of Energy (DoE), see [7].
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Figure 1. A flow analysis for materials criticality considerations demonstrates the dependence of materials criticality on and 
interdependence of many diverse factors, labelled as rates and displayed as gauges. Materials flow from resource base to resources and 
reserves, moving through manufacturing, recycling, consumption and in-use phases with circulatory connections in-between. Reproduced 
with permission from E. Alonso, J. Gregory, F. Field, and R. Kirchain, Environ. Sci. Technol., vol. 41, no. 19, pp. 6649–6656, Oct. 2007, doi: 
10.1021/es070159c [1].

Current and Future Challenges
Raw materials criticality needs to be assessed quantitatively in addition to qualitative measures so that data can 
be incorporated into algorithms to identify existing, high-risk materials as well as sustainable, alternative 
candidates. We present this in three distinct, data-driven components: 

1. identification and selection of meaningful features/metrics
2. data curation and sanitation
3. data analysis, interpretation, and visualization

Identification and selection of meaningful features/metrics. As a highlight of the ambiguity involved with defining 
“raw materials criticality”, Schellens and Gisladottir [9] gave a list of 23 distinct definitions across various review 
articles and gave a suggestion for a holistic definition. Alonso, et al. [1] identified 14 raw materials criticality 
features/metrics from 12 articles and sorted these into two categories: (1) institutional inefficiencies that cause 
resource unavailability and (2) physical constraints on amount and quality of resources. When a resource lacks 
certain institutional efficiencies, such as geographical supply and demand diversity or established recycling 
practices, the market is more susceptible to unpredictable events such as political change and natural disasters. 
Physical constraints were further sorted into static Malthusian (total amount and current rate of consumption), 
dynamic Malthusian (total amount and expected rates of consumption), and Ricardian (material quantity and 
quality) features, demonstrating the diversity of features that can exist. They also showed a material flow analysis 
(Figure 1) which highlighted dependence on and interdependence of many, diverse factors. Some features may 
exhibit higher importance based on the application (as determined by feature selection algorithms), yet feature 
selection approaches may benefit from considering ease of obtaining and availability [10] of data in addition to 
importance.

Data curation and sanitation. Data may be subject to large uncertainty [1], [10], gaps [5], or systemic bias, any of 
which can depend on both material and temporal factors. For example, some materials (e.g. Li, Ni, Ga) are studied 
much more frequently than others (e.g. Cs, Tl, and Th) [8] and some material data has higher uncertainty (e.g. 
Herfindahl-Hirschman index of Ga, Hf, Os) [5] or is missing data for certain years [5].

Data analysis, interpretation, and visualization. Once data has been obtained and curated, screening can take the 
form of thresholds [1] and multi-objective optimization for an application of interest [4]–[6]. Analysis and 
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interpretation can be accomplished via machine learning algorithms or visual analysis of high-information density 
charts and tables. Algorithms or analyses which cater to input uncertainty or handle cases of sparse or missing 
data may be particularly useful.

Advances in Science and Technology to Meet Challenges
Hayes and McCullough [8] introduced a “percent criticality” metric which they defined as the number of times an 
element was identified as critical vs. the number of times an element was considered based on 32 comprehensive 
raw materials criticality studies. They analyzed geographical, by-product recovery, and temporal trends using 
percent criticality and found that rare earth elements, platinum-group metals, In, W, Ge, Co, Nb, Ta, Ga, Sb, Bi, Tl, 
and Mg are commonly considered critical.

The DoE’s 2011 materials criticality document [7] identified Dy, Tb, Eu, Nd, and Y as near-term high criticality 
energy materials. They assigned qualitative measures of a material’s importance to clean energy and supply risk 
(rankings between 1 and 4) and visualized these in gridded, criticality matrices for short- and medium-term 
forecasts.

Successful examples of identifying new, promising materials have been demonstrated in the search of new, 
sustainable thermoelectric [5], battery [4], and superhard [6] materials using data compiled from the CRC 
Handbook of Chemistry and Physics and United States Geological Survey (USGS) commodity statistics for 
elemental scarcity and the Herfindahl-Hirschman index (HHI), respectively (Figure 2).
Gaultois, et al. [5] demonstrated that Te often correlates with high performance in thermoelectrics but has high 
scarcity. Despite being rare, the HHI value (a measure of market concentration) is low (good). In other words, the 
market is non-concentrated and less susceptible to local fluctuation.

Ghadbeigi, et al. [4] revealed that high energy battery materials (more typical of layered crystal structures) are 
scarcer than high power battery materials (more typical of olivine and spinel structures). They also showed that 
FeS2 can deliver good specific energy while having high abundance, and that Sb has more sustainable alternatives 
such as Si, Mn, Ni, Cu, and/or Zn.

Mansouri Tehrani, et al. [6] screened 1100 compounds for hardness values above 20 GPa and plotted the 
remainder in a high-information density plot (Figure 5 of [6]). The abscissa (x-axis), ordinate (y-axis), color, and 
plot marker size represented production HHI, scarcity, synthesis type (high-temperature/high-pressure vs. high-
temperature-only), and experimental hardness value (higher value = larger marker), respectively. By visually 
inspection, they identified best choices (diamond, c-BC5, c-BN, and BC2N), lower hardness alternatives (TiC, SiC, 
and TaB2), and poor choices (market-concentrated WB4 and transition metal candidates containing non-abundant 
Re, Ru, and Os).
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Figure 2. Elemental abundance and scarcity ξ (lower triangles), Herfindahl-Hirschman index (HHI) production (left quadrilaterals) and HHI 
reserve (right quadrilaterals) data used for sustainable materials discovery is overlaid on the periodic table of elements. Unavailable data 
is portrayed as white. Reproduced with permission from M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, and D. R. 
Clarke, Chemistry of Materials, vol. 25, no. 15, pp. 2911–2920, 2013, doi: 10.1021/cm400893e [5].

Concluding Remarks
Raw materials criticality is an important consideration for material selection. However, identifying and selecting 
criticality metrics, obtaining and curating data, and analyzing and interpreting it can present significant challenges 
in the form of lack of availability, inconsistent reporting, and difficult to predict events (e.g. political uncertainty 
and natural disasters). Materials discovery approaches that incorporate criticality metrics have been successful in 
identifying new and sustainable thermoelectric, battery, and superhard materials. Improvements in raw materials 
criticality data availability and accessibility and increased use of criticality data in material informatics can enable 
more efficient use of resources, better supply-chain stability, and accelerated materials discovery for future 
technologies.
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Section 03 - Isolation of sustainable material precursors from biomass

Shirley M. Yang and Agi Brandt-Talbot

Department of Chemistry, Imperial College London, UK. 

Status

Precursor isolation is a central part of biorefineries (Figure 1). It determines the chemical characteristics of the 
precursors and affects economics and sustainability through energy and chemicals inputs, through process 
complexity and output yield and quality. The isolation process consists of a variable number of separations and 
often a central thermochemical conditioning step. Isolation using extraction and fractionation aims to supply 
selected biomass components unaltered and hence these processes operate at lower temperatures (50-
200°C).[1] Thermochemical conversion aims to transform a whole biomass by applying high temperatures (250-
600°C), generating mixed, chemically altered fractions, with any separation occurring afterwards.[2] Production 
of biooils (from wood pyrolysis) is at the commercial scale, but nearly all of it is used in fuel applications. There is 
one instance where high value flavour compounds are isolated from pyrolysis oil. The most developed biocrude 
and bio-syngas processes are currently at demonstration scale.

Figure 3. Isolation of key precursors within existing and future biorefineries (adapted from IEA)

Precursors obtained via extraction/fractionation are classified according to biomass supply and chemical 
structure. First-generation precursors are derived from plant parts used for food. Sucrose is a first-generation 
sugar obtained by pressing sugarcane or sugar beet. The juice is used for fermentation, making sucrose the most 
accessible precursor for biobased polymers. Starch is a sugar polymer contained in grains, such as corn, and 
hydrolysed to fermentable glucose using enzymes. Starch is also used directly as a biobased thermoplastic.[3]
First generation lipids are obtained from lipid-rich crops by pressing, spontaneously forming a layer separate 
from water. Solvent extraction can improve yield. After lipid or starch isolation, plant protein is often 
concentrated in the residue and can be isolated, using solubilisation with aqueous alkali followed by acid 
precipitation.[4] Soybean is the most popular source of first-generation lipids and plant proteins. Cotton is a 
first-generation source of cellulose fibres and is the major precursor for biobased fabrics.
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Second generation precursors are derived from lignocellulosic (wood) biomass, arising in forests (wood chips) or 
as by-product of agriculture (straws). Wood fractionation can separate its major constituents, cellulose fibres, 
lignin, and hemicellulose. Wood cellulose fibres are isolated by industrial pulping through removing much of the 
lignin and hemicellulose.[5] Kraft, sulfite and soda pulping processes use concentrated aqueous solutions of 
inorganic chemicals, which are recycled. Some sulfite mills market water-soluble lignins (lignosulfonates) 
obtained after precipitation or ultrafiltration. Kraft lignin is usually incinerated as part of the chemical recovery 
but increasing quantities are available from Kraft mills upgraded with an acid precipitation unit. Second 
generation sugars produced at costs acceptable for fermentation, are available via water-based processes, 
usually steam explosion and dilute acid pretreatment. 

Current and Future Challenges
Current biobased materials are typically made from precursors that have simple isolation methods: biobased 
plastics from sucrose or starch and biobased fabrics from cotton. However, due to the use of agricultural land 
and intensive farming methods to grow their feedstocks, there is a significant limit to the quantities that can be 
obtained and also their overall sustainability potential.

Lignocellulosic biomass can provide sustainable precursors at much larger scale, but the cost to isolate 
precursors is increased. Capital costs are higher due to more processing steps, increased complexity of process 
equipment and the need for resistance to pressure and chemicals. Operating cost can be higher due to increased 
chemicals and energy use. As a result, many lignocellulose fractionation processes generate precursors at prices 
that do not cater for lower value uses, especially provision of fermentable sugar. Increased energy requirements 
also negate some of the greenhouse gas savings in the life cycle of the biobased product. Steam explosion 
coupled with enzymatic hydrolysis can generate fermentable glucose at attractive cost without harmful 
chemicals, but is only effective on some agricultural straws. Adding dilute sulfuric acid as a catalyst broadens the 
feedstocks that can be processed. The deposition of sugar derived humins, in addition to reprecipitated, 
condensed lignin, reduces yields, while fermentation inhibitors complicate downstream processes. The so-called 
biorefinery lignin is impure, making its use as a material precursor challenging. While certain natural and 
engineered microorganisms accept C5 sugars when provided alongside the cellulosic glucose, the fermentation 
is slow and uneconomical despite years of development. Concentrated acid processes combine softening the 
lignocellulose matrix and a chemical hydrolysis in one step, while using low temperatures, but effective sugar-
chemical separation is not easy. Fractionation processes using non-aqueous solvents struggle with solvent 
recovery, which must exceed 99 wt% even for inexpensive solvents such as ethanol. There is also concern for 
thermal and chemical stability of some solvents. For lipids and protein, processes that isolate them from second 
generation biomass, such as algae and protein rich wastes, are currently not commercial. Pyrolysis and 
hydrothermal liquefaction produce complex, partially unknown mixtures of organics with water, which are 
difficult to separate, hampering their use as a chemical feedstock.

Advances in Science and Technology to Meet Challenges

Additional methods to isolate precursors from lignocellulose have the potential to increase the quantity of 
available sustainable precursors and provide unique chemistries. Focussing on hemicellulose and lignin quality 
and not just cellulosic fibres and sugars may provide breakthroughs in the fuller valorisation of lignocellulose. 

Solvent based fractionation technologies often fractionate a wide range of woody feedstocks while producing 
purer cellulose fibres and novel lignins, but solvent stability and recovery (<99%) is key. Non-volatile, low-cost 
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solvents such as waste glycerol and ionic liquids (ILs) may be a solution, as their solvent recovery is innately high, 
if their stability and recyclability is proven.[6] Concentrated acid processes using HCl as a distillable acid may 
allow for effective acid recovery. Feedstock independent fractionation processes that are technically and 
commercially viable would boost the biorefining industry. 

Generating a separate C5 sugar stream from the C6 stream using pre-extraction can overcome the issue with 
slow C6/C5 co-fermentation. It may also be useful to produce furfural from the pentosan fraction, a versatile, 
underappreciated biobased building block with existing commercial applications.[7] Catalytic conversion of 
sugars rather than fermentation may also boost attractiveness of some isolation processes, for example 
concentrated acid processing. Cost-effective and sustainable lignin purification and fractionation will provide 
more useful lignins. Lignin first technologies may provide specialised lignins for certain performance materials or 
can be converted into phenolic building blocks at high yields.[8] For monitoring consistency across the industry, 
better standardisation of analytical techniques is needed, particularly for less developed and chemically diverse 
precursors, such as lignins, bio-oils and biocrudes. 

To provide low-cost, sustainable precursors, there is a case for utilising any low value food and lignocellulosic 
wastes, which includes peels, press cakes and shells, and construction and demolition wood waste. The use of 
marine biomass (seaweed, algae, chitin from crustaceans) has potential to provide novel precursors if efficient 
production technologies are developed. Utilisation of second-generation lipids and protein from algae and food 
residues could increase sustainable supply of these non-lignocellulosic precursors.

Key innovations will be in the process engineering, especially in the separation steps which are vital in any 
precursor isolation. Increasing biomass loading while maintaining fractionation performance will reduce costs.
This can be achieved through reactor design optimised for thermochemical conversion and extraction of high 
solid slurries, such as screw extruder reactors.[9] Lowering the water consumption during washing and effective 
precursor drying will help boost economics and minimise energy use. Fractional separations of pre-conditioned 
bio-oils and crudes may yield chemically pure precursors that can be used in materials production.

Concluding Remarks

In the past, focus has been on providing food sugars and cellulosic glucose as biobased material precursors. This 
needs to be expanded to include all biobased precursors that have the potential to be isolated at large scale. We 
need to develop cost- and environmentally benign fractionation technologies that can offer high quality streams 
of as many constituents of a biomass as possible. Close collaboration between chemists, biologists and engineers 
is needed to overcome technology bottlenecks. Collaboration with upstream (farmers, forest owners) and 
downstream stakeholders (fermentation, chemical conversion, material assembly) is crucial to match biobased 
products with the right feedstock supply and the most suitable precursor isolation method. 
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Section 04 – Lignin-a precursor for materials future
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Status
Global attention to environmental challenges such as pollution, deforestation, and anthropogenic climate change 
has prompted international efforts to use sustainable sources of energy, chemicals, and materials. Biomass is the 
main and most available renewable resource for providing sustainable alternatives to fossil-derived liquid fuels 
and materials. Lignin is the second most abundant polymer in the plant cell wall and a by-product of pulp and 
paper manufacturing. Worldwide, lignin is expected to be produced at 225 million tons per year by 2030 with an 
estimated value of about USD 913 million just by 2025 [1]. Currently, lignin’s main use is as a fuel for producing 
energy and electricity in pulp mills. However, lignin’s high production volume and current low price make it 
attractive as feedstock for multiple applications (Figure 1). In addition, lignin has other features making it 
attractive, such as high carbon content, aromatic structure, numerous depolymerization, and repolymerization 
possibilities. Most of these applications are still in the early stage of development and not commercialized, but 
the move toward commercialization has been accelerating in recent years. The advances in the area also affected 
by the fast-growing needs for new technologies such as energy storage systems and smart materials [2], [3]. Also, 
the need for a sustainable value chain resulted in developing biological and biochemical approaches for conversion 
of lignin to value-added products [4], [5].

  
Figure 1. Some of the main demonstrated applications of lignin.

The pulp and paper industry, especially softwood kraft process, accounts for the vast majority of produced lignin,
but the emerging bioeconomy is rapidly adding lignin from hardwood and herbaceous plants to this market. To 
compete with fossil fuels, high biomass yield and lignin valorization are necessary to enabling cost-competitive 
biofuels [6]. Lignin, as the main by-products of biorefineries, needs to obtain relatively higher market value for its 
products than carbohydrates since fuels generally have narrow profit margins. Still, carbohydrates markets are 
well established where higher-value chemicals and materials intermediates can help to support fuel production. 
The growing need to use all biomass components has spurred the development of new lignin isolation methods 
and chemical and biochemical conversion technologies. 
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Current and Future Challenges
Lignin’s heterogeneous structure along with the challenge in isolating it from plant polysaccharides contributes to 
the challenges in valorization. This heterogeneity arises from differences in botanical source that also dictates the 
isolation process. Lignin is based on varying amounts of different monomeric units, interunit linkages, and 
functional groups which harsh conditions are needed to deconstruct biomass and isolate the lignin. Contaminates, 
organic and inorganic, present from the biomass and pulping process often remain in lignin and add an additional 
layer of complexity. All of these factors increase variability and greatly impede depolymerizing lignin into simple 
chemical building blocks (e.g. BTX) for producing chemicals, fuels, and materials [5]. This makes finding new 
separation methods along with post refining and purification essential steps to valorize lignin [7]. For many 
products, the inherent variability in a natural polymer presents the biggest hurdle to overcome. Lignin’s non-
uniform structure along with readily oxidized linkages and a wide range of molecular weight creates challenges 
during a seemingly insurmountable challenge when process as a thermoplastic, such as in extrusion or melt-
spinning, by producing volatiles, foaming during processing and crosslinking. 
Lignin possesses strong intermolecular interactions, occur by hydrogen bonding and π-π stacking, that restrict 
thermal fusion and solubility of lignin in processing, conversion, and characterization of lignin. On the other hand, 
presence of different functional groups in lignin lends to high reactivity as it can uncontrollably go under different 
condensation/repolymerization reactions during both isolation and downstream processing.  
The current availability of lignin sources is another challenge in developing lignin-based products. Lignin is burned 
as a source of producing energy and steam in pulp and paper mills. Pulp and paper mills usually produce more 
energy than they need. Lignin-based products can potentially reduce their energy production, though unlikely, 
and result in a need for another energy source. High-value lignin products would increase the returns on biofuel 
and pulp production [6].
Other factors that challenge the commercialization of lignin-based products are colour, usually a dark to light 
brown, and odour, usually associated with the kraft process, which can limit the application of lignin in 
thermoplastics. The performance of the lignin-based materials is another restricting factor since these products 
need to compete with current commercial material. For example, the properties of lignin-based carbon fibers are 
still much lower than commercial petroleum-based (polyacrylonitrile) carbon fibers, but may possess other 
properties needed to be competitive in price and some important property compared to non-renewable sources 
[8].

Advances in Science and Technology to Meet Challenges
To overcome challenges related to the heterogeneous structure of lignin different approaches have been 
suggested and studied. Starting from the biomass, which is the source of lignin, engineering the feedstock is a 
solution for producing more homogeneous lignin [7]. The bioengineering in lignin biosynthesis pathway can 
further improve by developments in new CRISPR-based gene editing technologies [9]. Engineering biological 
solutions in depolymerization of lignin is another means to overcome the challenges arising from heterogeneity 
of lignin in conversion of lignin to any product [4]. Biological funneling has been proposed as a means to selectively 
convert lignin to chemicals and fuels within the biorefinery [4]. Refining and fractionation of lignin have been tried 
in many applications for obtaining a narrow molecular weight and higher homogeneity for different applications 
such as thermoplastics and fibers [8], [10]. Lignin can be fractionated into different molecular weight fractions 
using successive sequence of solvents after isolation of lignin or by other methods such as membrane filtration or 
pH fractionation during isolation. New green chemicals and solvents along with biological depolymerization are 
the near future of pulping and will have added benefits of reduced environmental impact and improved lignin for 
downstream processing [6]. 
Increasing lignin purity is another important factor for better valorization. The purity of lignin can be increased by 
improving lignin isolation technology or combined with post refining. Also, different pre-treatment technologies, 
feedstocks, and isolation methods greatly improve the purity of lignin. For example, organosolv process is known 
to produce lignin with a low level of contaminants. It mainly works well with herbaceous and hardwood feedstocks 
but has higher yields than kraft for all components. Nevertheless, developing commercial lignin purifications 
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methods, such as LignoBoost, Borregaard, CIMV Lignin, for recovery of commercial lignin. Developing new 
products based on new isolation technologies enables producing more lignin than needed for energy production 
and solves immediate availability issues.
Chemical modification of lignin is essential in some lignin valorization, especially conversion of lignin to 
thermoplastics/thermosets or for alloying with other polymers. Chemically modifying lignin aims to overcome 
many processing barriers including heterogeneity, reactivity, compatibility, and to improve processability for many 
applications [10]. For example, reducing the intermolecular interactions in lignin improves fusibility in 
thermoplastic processes, while adding photo active groups allows for use as a photocurable resin system [11]. 

Concluding Remarks
The field of lignin valorization and producing lignin-based materials covers a wide range of materials, chemicals, 
and fuels. Promising results have been reported in this area and commercialization of lignin-based products, 
especially in some area such as thermoplastics, thermosets, and some chemicals such as vanillin is rapidly growing. 
Factors such as environmental concerns and move toward sustainable materials with changes in legislations are 
greatly accelerating the transition toward renewable materials and energy. The developments in new technologies 
such as energy storage, smart materials, packaging, and biomedical have opened new possibilities for lignin 
products, which even has been extended to cosmetics and pharmaceuticals. Many developments are currently 
overcoming the challenges related to using lignin, which covers a broad range of current issues such as 
heterogeneity, functionality, odour reduction to facilitate lignin valorisation. The move towards using more 
sustainable materials, chemicals, and energy sources is pushing innovation that leads to new lignin materials to 
replace existing fossil-based materials and even new markets in the very near future.
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Section 05 – Cellulose-based materials

Dr Richard M. Parker and Prof Silvia Vignolini
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK. 

Status
Cellulose, a naturally occurring high molecular weight homopolysaccharide, is the most abundant biopolymer 
available on Earth. It is widely produced by plants, where it is employed to give structure to the cell wall, but also 
can be found in some species of bacteria and aquatic animals. In plants, cellulose is produced in a hierarchical 
fibrillar form where the smallest element is a linear semi-crystalline polymer formed of 
β-1,4-anhydro-D-glucopyranose units.[1] The degree of polymerization, which is measured as the number of 
monomer units per chain, depends on the cellulose origins and generally varies between 10,000 and 15,000 for 
wood and cotton-derived cellulose, respectively. The linearity of the chain is maintained by a combination of 
hydrogen bonds and hydrophobic interactions, which promotes parallel packing into elementary fibrils with a 
diameter of 3-20 nm. These nanofibrils are made of elongated crystalline domains separated by more amorphous 
regions, with the degree of crystallinity dependent on the source. The naturally occurring crystalline form is 
cellulose I, however this is a thermodynamically metastable structure and as such can be converted to the more 
stable cellulose II or cellulose III. The elementary fibrils are arranged into bundles forming a cellulose fiber. This 
fiber, with an overall diameter in the range 5-20 μm is produced by rosettes in the primary cell wall of the plant, 
where it is combined with pectin and hemicelluloses.

Cellulose has been widely exploited throughout history, although typically in an unprocessed form, such as cotton 
for textiles or wood for construction and paper manufacture. However, over the last few decades cellulose and its 
functional derivatives have been used directly to produce polymer films (e.g. cellophane) or as rheology modifiers 
in food and pharmaceuticals. More recently, nanocellulose has received strong interest due to offering a 
renewable, biodegradable, and biocompatible route to functional nanomaterials – key to transitioning to a more 
sustainable society.[2] Industrially-produced nanocellulose can be subdivided into two classes: (i) high-aspect ratio 
cellulose nanofibers (CNFs), which offer exceptional strength and stiffness for their weight (Fig. 1a), and (ii) 
cellulose nanocrystals (CNCs), which are highly crystalline nanorods that can form a stable colloidal suspension in 
water (Fig. 1b). CNCs have potential in a wide-range of applications from rheology modifiers to emulsion 
stabilizers, and even offer potential as a sustainable alternative to synthetic pigments. 
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Figure 1. Naturally occurring cellulose fibrils comprise a hierarchical structure, allowing for nanocellulose to be 
extracted in the form of either (a) high aspect ratio cellulose nanofibers (CNFs) or (b) colloidally stable cellulose 
nanocrystals (CNCs). Images courtesy of Yating Zhang and Thomas Parton, respectively.

Current and Future Challenges

From food and cosmetics to paint and textiles, color is used to not only enhance aesthetics, but also act as a gauge 
for quality, attractiveness, freshness, or taste. While the colorant industry has long relied on the use of complex 
synthetic dyes or inorganic pigments to produce such visual effects, there is a growing demand for alternatives
that can be presented to the consumer as natural, ethical and sustainable. To address this challenge, inspiration 
can be drawn from Nature where "structural color" is responsible for many of the most vibrant colorations, from 
the metallic wings of butterflies and the vibrant feathers of birds to the iridescent epidermis of plants. In these 
natural examples, color is produced not by absorption, but by the specific interference of light with precise 
nanoscale architectures. For example, within certain fruits and leaves, birefringent cellulose fibers are assembled 
into a periodic helicoidal nanostructure within the cell wall, enabling intense reflection of blue light.[3]
Interestingly, aqueous suspensions of colloidal CNCs have been shown to spontaneously assemble on the 
nanoscale to mimic this natural helicoidal architecture. Upon drying, this structure can be retained, enabling the 
intense reflection of visible light (Fig. 2a). Using this approach, colors from across the entire visible spectrum can 
be produced and combined with visual effects such as iridescence and metallic shine.[4]

While the ability for CNCs to self-assemble into colored films has been known for nearly two decades, critical 
technological locks have held back cellulose-based pigments from reaching industrial scale and entering the 
market.[5] The production of CNCs themselves has only recently reached industrial-scale production, with the 
largest supplier CelluForce able to output over 1 tonne/day since 2012. However, like any biologically sourced 
material, CNCs can be batch sensitive as their properties are related to the source and the methodology of 
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extraction.[6] The key challenge now is to develop large-scale and cost-effective fabrication of CNC-based 
pigments in terms of production throughput and yield, while maintaining the desired optical uniformity and 
tailored visual appearance. This will require strategies to overcome the inherent limitations of self-assembly driven 
processes, control over the drying kinetics and mitigation of new physical phenomena that arise at larger scales, 
such as flow and shear, wetting and adhesion, or delamination and cracking.

Figure 2. (a) Structurally colored cellulose nanocrystal films can be tuned to reflect across the full visible spectrum 
by altering the initial formulation. (b) Arrays of cellulose nanocrystal microfilms (diameter = 600 μm) can be printed 
to produce responsive dot-matrix images. (c) Roll-to-roll fabrication can be used to continuously encapsulate an 
iridescent mesophase of aqueous hydroxypropyl cellulose (roll width 14 cm). Image courtesy of Dr Hsin-Ling Liang.

Advances in Science and Technology to Meet Challenges

To move beyond small-scale batch production, several strategies can be envisaged, including: (i) continuous film 
deposition, (ii) ink-jet printing of microfilm arrays and (iii) emulsification to form dispersible pigments.

Cellulose-based packaging materials are industrially produced primarily via continuous roll-to-roll (R2R) 
manufacturing. While this methodology has been successfully demonstrated by encapsulating a mesophase of 
hydroxypropyl cellulose (Fig. 2c),[7] translating it to the large-scale organization of CNCs to produce photonics 
films and coatings is challenging. This arises from the slow timescales (hours to days) typically required by the 
complex evaporation-induced process of self-organization into cholesteric liquid crystalline tactoids and 
subsequent long-range self-assembly into a well-aligned film. This can only be overcome through new insight into 
the underlying mechanisms that will allow the initial formulation of the CNC suspension to be optimized in terms 
of concentration, ionic strength, phase behavior and the incorporation of functional additives. Finally, to achieve 
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commercially viable fabrication over a large area (i.e. m2), it will be necessary to address principal issues such as 
the non-uniform visual appearance arising from shear upon deposition, lateral flow, and concentration gradients.

An alternative approach to scaling-up is to produce arrays of sub-millimetre CNC films (Fig 2b).[8] This could be 
achieved at scale by droplet-on-demand inkjet printing, whereby polychromatic CNC arrays would be used to 
create vibrant, structurally colored dot matrix images, with applications ranging from highly reflective signage to 
anti-counterfeiting technology. To produce such designs, it will be necessary to develop ‘CNC photonic inks’ that 
are compatible with commercial inkjet printers, in terms of rheology (e.g. viscosity. <5 cP) and chemistry (e.g. 6-
8 pH). Furthermore, strategies to reproducibly overcome the high drying rate (<1 minute) of such small volumes 
will be needed, such that the final visual appearance of the array can be designed. 

While CNC pigments could be prepared by dicing films into a dispersible glitter, a more disruptive strategy is to 
produce CNC pigments directly through the confinement of the self-assembly process within discrete micron-scale 
water droplets.[9] Upon drying, each microdroplet would produce a single, structurally colored CNC microparticle. 
The advantage of this approach is that it can readily build upon existing industrial emulsion technologies (e.g. 
homogenization or membrane emulsification) to produce a non-iridescent powder that can be directly 
incorporated into existing formulations (e.g. cosmetics and paints). However, to optimize the visual appearance it 
will be necessary to first understand the role of surface buckling, overcome inherent scattering (i.e. whiteness) 
and maximize the color intensity in terms of particle size and geometry.

Concluding Remarks

By exploiting the most abundant biopolymer on the planet, cellulose, and replicating the natural assembly 
processes found within the plant cell, researchers are developing a new generation of sustainable "photonic" 
pigments. These CNC-based pigments have great potential for mass-market applications such as cosmetics 
(US $429.8 billion by 2022), food coloration (US $3.75 billion by 2022), and printing ink (market-size: US $20.4 
billion by 2022). Interestingly, membranes composed of CNFs have also recently gained significant attention due 
to their ability to scatter white light with high efficiency.[10] Given that the high refractive index nanoparticles 
commonly included as scattering enhancers within commercially available white products (e.g. TiO2) have recently 
raised serious health and environmental concerns,[11] this is extremely relevant for industrial applications as such 
as paints and sun creams. Finally, by incorporating such biocompatible and biodegradable alternatives to synthetic 
colorants into products, it allows industry to directly respond to growing environmental concerns over 
microplastic pollution.
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Section 06 – Wood science and engineering for nanotechnology 

Lars A Berglund and Yuanyuan Li
Wallenberg Wood Science Center, KTH Royal Inst of Technology, 100 44 Stockholm, Sweden. 

Status
Wood is by far the most successful biological material for structural applications. Worldwide, almost 500 million 
cubic meters of sawnwood was consumed 2018, together with 400 million cubic meters of wood panels (plywood, 
particleboard, fibreboard etc). Also on a weight basis, this even exceeds the plastics consumption. The main drivers 
have been low cost in combination with favourable mechanical properties per weight of material. Historically, the 
development of wood composites such as plywood, laminated veneer lumber and glulam was an important step 
forward, since the variability in mechanical properties caused by defects in wood structure is reduced significantly.
Particleboard is a clever use of waste in the form of wood particles and fibreboard is a lightweight fiber composite 
material for buildings and furniture. Previous research on wood modification includes thermal treatment, metal 
salt impregnation, chemical acetylation and many different surface treatments, mostly to reduce moisture effects 
on degradation for prolonged service life outdoors.

The societal need for sustainable development creates opportunities for replacement of fossil-based plastics and 
composites by materials from renewable resources, such as wood. In Sweden and Finland, forestry practices are 
sustainable in that new trees are planted after harvesting, and the growth rate exceeds the rate of harvesting. 
There is no competition for land use, and woody tissue is not used for food. Expanding the use of wood to new 
applications could therefore reduce environmental stress. For example, the use of wood nanocellulose in large, 
load-bearing structures will be limited by the energy needs, carbon footprint and cost associated with 
disintegration of wood and wood fibers. 

Nanotechnology is successfully commercialized in coatings, microelectronics and photonics, where sophisticated 
but elaborate bottom-up fabrication is common and materials are mechanically delicate. Wood offers unique 
potential for top-down approaches resulting in large-scale structures, where not only the nanostructure, but also 
the structural hierarchy of wood is exploited. The vision is to combine load-bearing function with new 
functionalities in applications where the wood component is a device. Functions possible in wood nanomaterials 
can be exemplified by liquid transport, electrical functions, thermal storage, fire retardancy, magnetic surfaces, 
energy harvesting and other functions introduced by chemical modification, functional polymers or nano-
particles.[1] Filtration and molecular scale separation is also of interest. Although full-scale nanotechnologies may 
take some time to develop, there is a strong need to develop the underlying nanoscience. 

Current and Future Challenges
A route for top-down preparation of wood nanomaterials is illustrated in Figure 1, although it may not be 
necessary to carry out all steps. Wood is subjected to delignification, followed by functionalization, which can 
include chemical modification, nanoparticle impregnation or precipitation from salt solution, monomer 
impregnation and polymerization, either one method only or combinations of methods.

An important step for wood nanoscience is the creation of a wood substrate by mild delignification of the wood 
cell wall, which leads to increased pore space and also space available for modification. One research challenge is 
to clarify effects from delignification and drying approaches on the nanostructure in terms of pore size 
distribution, cellulose nanofibril aggregation and chemical environment. Wood nanostructure can be controlled: 
a) in the microscale pore space, where functional nanoparticles or other compounds can be added, or b) in the
wood cell wall. Chemical and/or physical engineering of the cell wall during processing stages is particularly 
important, since controlled distribution of nanoparticles, polymers, dyes etc is critical in order to achieve new 
functionalities or extending the property range. During these stages, processing for nano-structural control of the 
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wood nanomaterial is important. Appropriate characterization techniques for nanostructure include small angle 
X-ray scattering, neutron scattering, and Raman microscopy in addition to high resolution electron microscopy 
techniques.[1]

Figure 1 Scheme for top-down preparation of wood nanomaterials. Lignin is removed to form a nanoporous, 
delignified wood substrate. This can be functionalized by, for instance, polymers, nanoparticles or by 
carbonization. Image by Jonas Garemark.

Sustainable development is critical, and new materials can contribute in terms of reduced environmental stress. 
Examples include the use of green chemistry processes under mild conditions, eco-friendly nanoparticles, 
biobased polymers or no added polymers at all, and an overall focus on integrated processes with minimum energy 
requirements. For some applications, improved mechanical properties per weight of material is important since 
less material is needed or energy for transportation is reduced. Materials design concepts which provide long 
service life are advantageous, and this often means that biodegradability may not be feasible. Recycling or 
downcycling are important contributions to sustainable development, where interface tailoring has been shown 
to facilitate recycling of wood fiber materials with well-preserved structure and properties in subsequent service 
lives.[2]

A different route, in the context of materials categories, is to convert wood into carbon or ceramic materials while 
controlling nanostructure.[1] This dramatically widens the attainable range of properties and functions, and is of 
interest in materials for energy. This category of materials, however, is competing with other related materials 
and devices, rather than polymeric materials. 

Advances in Science and Technology to Meet Challenges
The wood substrate in Figure 1 is the starting point for wood nanotechnology. Much of the scientific and technical 
progress in nanocellulose can be transferred into the creation of tailored wood-based nanostructures.

Delignification or bleaching is important for wood cell wall tailoring to eliminate light adsorption and improve 
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wood permeability/accessibility and create pore space for further modification. One key is to avoid wood tissue 
disintegration into fibers. Various delignification methods have been developed, including mild peracetic acid, 
sulfite and kraft pulping, “organosolv” approach, and bleaching (NaClO2, NaClO, H2O2, PAA/H2O2).[3] The H2O2-
based bleaching has advantages, since toxic by-products are avoided and the yield is high. Recently, new routes 
have been developed towards increased specific surface area in the substrate, including cellulose dissolution and 
regeneration[4] and tempo-oxidation.[5] The cellulosic wood substrate can be compressed to form high-strength 
materials,[1] and the collapse can even be spontaneous during drying.[3]

After delignification, the wood cell wall can be further modified to reduce moisture affinity and facilitate monomer 
impregnation. Examples include acetylation[6] and biobased anhydrides.[7] In-situ polymerization inside the cell 
wall of wood substrates has been thoroughly reviewed.[8] The wood substrate has also been modified by diffusion 
of nanoparticles into the cell wall, precipitation of metal salts [4] or addition of other active compounds, such as 
optical dyes.[9] Many other functional components have been used, as was recently discussed.[1]

Scalable and sustainable processing concepts for wood nanomaterials are important, since in the longer term 
perspective, nanoscience eventually needs connections to industrial applications. Introduction of a polymer matrix 
can serve as an example. For example, this can take place by thermoset precursor impregnation or monomer 
impregnation, which are possibly solvent-assisted. After impregnation, polymerization is initiated thermally, by 
mixing or by photo-curing. Such methods are used industrially for fiber composite prepregs, and lamination 
schemes have been developed for nanostructured plywood. Better understanding of how processing influences 
nanoscale distribution of polymer inside the wood cell wall is needed, and the nature of chemically and 
thermodynamically favourable conditions. These aspects are important for optical properties, since even small 
scale defects have an effect.

For outdoor structural applications in moist environment, perhaps the nanostructured polymer matrix composites 
concept has the highest application potential. Jungstedt et al recently reported a Young’s modulus of 20 GPa and 

a tensile strength of 260 MPa.[10]

Figure 2 Examples of functional materials and devices based on transparent wood. The central image is reproduced 
with permission.[9]
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Applications and new material concepts

Many new functional material concepts have been developed for wood, including solar steam generation towards 
water purification, ionic heat-to-electricity conversion for energy harvesting, energy efficient buildings through 
light transmission, radiative cooling, or thermal energy storage, smart windows with electrochromic or sensor 
functionalities, and wood as monolith reactors for gas conversion and water splitting. A thorough and up-to-date 
review with numerous other examples is available.[1]

Concluding Remarks
Wood nanotechnology research is under rapid development, and many new material concepts have been 
introduced just recently. Top-down wood nanotechnology is an interesting prospect, where the hierarchical wood 
structure is exploited for the development of sustainable nanomaterials. Energy consumption and carbon 
footprint for the materials need to be minimized by development of processing methods, material component 
combinations and applications. Molecular and nanostructural control of functional component distribution in 
wood are important engineering science goals, as well as scalable materials and processing concepts. The lesson 
from general nanocomposites research is that candidate materials, exemplified by transparent wood, also need 
stimulation in the form of feasible applications so that problems which hamper industrial development can be 
addressed.
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Section 07 – Biomimetic materials
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Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 
Jinzhai Road 96, Hefei 230026, P. R. China.

Attraction and inspirations

Learning from nature is an eternal theme in the development of human society. Biological materials found in 
nature have long been recognized as a rich source of inspiration for the development of new materials with 
enhanced properties1-2. Scientists are always fascinated by their distinctive and elegant property combination. 
Over millions of years of evolution, biological materials have developed a wide variety of efficient strategies for 
optimizing their properties and functions in terms of density, mechanics, hydrophobicity, color, etc.3 As 
representative examples, bone and nacre (part of abalone shell) are surprisingly damage-tolerant natural 
structural materials, which are formed by organisms at mild conditions from very limited options of raw 
materials, while exhibiting unprecedented combinations of low density, high strength and excellent toughness1. 
They inspire enormous biomimetic endeavors aiming to achieve lightweight and mechanical robust synthetic 
materials for structural applications, especially sustainable materials that exhibit potential to replace petroleum 
derived plastics4. Another case in point is gecko feet, which presents a robust attachment and easy detachment 
ability to arbitrary dry surfaces5. In addition, the surface of lotus leaves has excellent water repellency and 
self‑cleaning ability, which has motivated great efforts to develop superhydrophilic materials for self‑cleaning 
and anti‑fogging applications6. Intriguingly, the wings of butterflies are able to produce attractive structural color 
based on well-defined and sophisticated hierarchical structure7, which is another typical example to show the
charm of biological materials. Moreover, many biological materials are also able to self-diagnostic, self-repairing
and self-adaptive according to the changes of physiological conditions. These biological functions are highly 
desirable for synthetic materials, but are far beyond what would be achieved synthetically at present.

Understanding and bio-mimicking

Discerning the underlying mechanisms of biological materials is a prerequisite for the design of advanced 
biomimetic materials. Until recently, deciphering the relationships between biological structures and their 
properties is still a hot research topic8-10. It has been certified that almost all biological materials have some 
common structural characteristics7. They are commonly natural nanocomposites, comprising strong and stiff 
crystalline nanoscale building blocks bonded by very small volume of soft and compliant biopolymer interfaces. 
These constituents were arranged in sophisticated hierarchical architectures with structural dimensions ranging 
from the nanoscale to the macroscale. The unique hierarchical architectures together with their intricate 
interfaces are the prime factors biological materials utilized to optimize their mechanical behaviors or other 
functions. It is because that naturally available constituents for building biological materials are confined to very 
limited, mundane and sustainable species, such as calcium salts, silica, polysaccharides, proteins, etc.

Nacre from abalone shell is the mostly extensively studied and imitated natural structural material since its 
microstructures seem easier to mimic (Figure 1a). It is essentially a layered biological ceramic with unique “brick-
and-mortar” microstructure, which consists of 95 vol.% of mineral aragonite (CaCO3) platelets, bonded by a thin
(~10–50 nm) layer of ductile organic phase. Surprisingly, it shows unusual and attractive combinations of 
stiffness, hardness and toughness, far beyond that of aragonite7. The highly mineralized CaCO3 platelets provide 
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strength, stiffness and hardness, and their precisely controlled interfaces (organic mortar, nano-asperities, 
mineral bridges, tablet interlocking, etc.) allows for efficient toughening mechanisms1. Based on these principles, 
numerous strategies have been developed to copy the multiscale features of natural nacre, aiming at obtaining 
artificial nacre with desired mechanical performance. 

Unlike nature, we have more options to utilize environmentally friendly, readily available and mechanically 
superior components, including graphene oxide11, clay nanosheets12, alumina nanoplatelets13, brushite 
nanoplatelets14, chitosan15, alginate16, nanocellulose4, etc., as building blocks (Figure 1b-d) to fabricate high-
performance and sustainable artificial nacre-like materials (Figure 1e-h). In addition, a variety of interfacial 
modification methods also have been developed to optimize their mechanical performance17-19. Some useful and 
frequently applied bottom-up assembly strategies, such as layer-by-layer assembly15, evaporation induced self-
assembly20, vacuum filtration17, spray coating12, etc., are proved to be simple, efficient and versatile for 
fabricating high-performance nacre-mimetic films with large-size and multifunctions (Figure 1e), but difficult to 
produce nacre-mimetic bulk materials. In response to this challenge, the slurry-based freeze-casting13 or 
magnetic-field-assisted21 slip-casting combined with further sintering technique have been exploited as 
promising techniques for the fabrication of bulk artificial nacre. These methods could manufacture centimeter-
thick nacre-mimetic bulk materials with high level of microstructural control across multiple length scales, 
achieving impressive mechanical properties. However, they are still relatively complicated and further scale-up
has been obstructed by intrinsic barriers. In view of this, we presented an efficient and versatile bottom-up 
approach to solve this problem via combining well-developed evaporation-induced self-assembly with further 
lamination technique14. By laminating the pre-fabricated nacre-mimetic films that can be produced in large-scale 
and with good microstructural control, large-sized bulk nacre-mimetic composites with comprehensive mimicry 
of both the hierarchical structures and toughening mechanisms of natural nacre could be fabricated (Figure 1f)22. 
Recently, we demonstrated that high-performance and sustainable structural materials with scalable size can be 
directly made by directionally pressing nanoscale building blocks derived from biomass and natural clays (Figure 
1g,h)4, 23. These biomimetic materials show great potential to substitute petroleum-based plastics for future 
engineering applications due to their high comprehensive performance. 

While most of the above techniques involve the anisotropic assembly of building blocks, in nature, nacre is built 
via a biomineralization process in living organisms, which is completed at mild conditions. In this respect, 
biomimetic mineralization fabrication strategy has some incomparable advantages, especially for some heat-
labile materials. However, creating a macroscopic artificial nacre through this technique is still challenging. 
Recently, a mesoscale “assembly-and-mineralization” approach was proposed to address this challenge, and 
bulk synthetic nacre that highly resembles both the chemical composition and the hierarchical structure of 
natural nacre was successfully fabricated24. 

Apart from nacre, many other biological materials, such as wood25, bone26, enamel27, exoskeleton of 
crustacean28, etc., exhibit a more remarkable degree of sophistication compared with the layered “brick-and-
mortar” structure of natural nacre, making imitation of them with great challenge. Instead of using 2D nanoscale 
building blocks, one-dimensional (1D) fibrous nanoscale building blocks are wildly adopted in these natural 
structural materials to generate more fascinating mechanical functions. For instance, compact bone is composed 
of two major hierarchically arranged nanophases, including 1D collagen fibrils and 2D plate-shaped 
hydroxyapatite (HA) nanocrystals. They are assembled together periodically into a fibrous structure at the 
nanoscale with fibers of varying orientations arranged in a lamellar fashion. The sophisticated structures impart 
bone with both intrinsic mechanisms to promote ductility at molecular to nanometer scales, and extrinsic 
mechanisms to arrest the growing cracks at larger length scales1. Thus, unprecedented fracture resistance is 
achieved. However, artificial bone have not really been produced so far owing to the structural sophistication of 
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natural bone. A recently reported work from our group showed that biomimetic woods, made of traditional 
resins and functional nanoparticles, could achieve excellent performance far beyond that of natural wood,
although their structural hierarchy is still at a low level compared to that of natural wood (Figure 1i)29.Another 
example is the stomatopod dactyl club which is regarded as a formidable damage-tolerant biological hammer28. 
It can defense against catastrophic failure during repetitive high-velocity offensive strikes. It was found to have 
three mechanically distinct domains with an ultrahard external layer for maximum impact force, a modulus 
mismatch region for crack deflection, and a periodic helicoidal region for further crack shielding. The helicoidal 
region consists of unidirectional chitin fiber sheets arranged helicoidally in a twisted plywood (Bouligand-type) 
structure with each sheet rotated by a small angle from the sheet below. This unique helicoidal architecture 
provides effective toughening mechanisms to hinder catastrophic crack propagation by constantly rotating the 
crack front. This unique natural structural design motif offers important hints to design highly impact-resistant 
composite materials for structural applications. There have been several recent attempts to fabricate composite 
materials following this inspiration. Three-dimensional (3D) printing technique has shown good potential to 
produce biomimetic Bouligand-type structures, achieving distinctly enhanced toughness30-32. However, limited 
control over structural accuracy and limited selection of constituents restrict its application. A recently proposed 
brushing-induced assembly combined with further rotated laminating method revealed its capability to precisely 
control the arrangement of 1D bioactive mineral micro/nanofibers in biopolymer matrices, resulting in bulk 
biomimetic materials with similar Bouligand-type structure and toughening mechanisms resembling that in 
nature33.

Figure 1. Sustainable biomimetic materials made from natural raw materials. a, The morphology and 
microstructure of a natural nacre (Anodonta woodiana). Images reproduced with permission. [23]. Copyright 
2020, Springer Nature. b, The powder of mica microplatelets. c, A piece of bacterial cellulose. d, The powder of 
brushite nanoplatelets. Image reproduced with permission. [14] Copyright 2017, Springer Nature. e, A
multifunctional nacre-like composite film made from alginate and mica nanosheets. Image reproduced with 
permission. [12] Copyright 2018, Springer Nature. f, A nacre-like composite bulk made from biopolymers 
(alginate and chitosan) and brushite nanoplatelets. Image reproduced with permission. [14] Copyright 2017, 
Springer Nature. g, A lightweight, tough, thermostable, and sustainable bulk structural material made from pure 
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cellulose nanofibers. Image reproduced with permission. [4] Copyright 2018, American Association for the 
Advancement of Science. h, Bioinspired structural materials with tunable colors made from cellulose nanofibers 
and TiO2-mica, which possess great potential for plastic replacement due to their high comprehensive 
performance. Image reproduced with permission. [23] Copyright 2020, Springer Nature. i, Multifunctional 
bioinspired polymeric woods with tunable constituents made from traditional resins and nanoparticles. Images 
reproduced with permission. [29] Copyright 2018, American Association for the Advancement of Science.

Demands and challenges

At present, there is an urgent need for new structural, functional and sustainable materials to serve the rapid 
development of many high-tech fields, such as aerospace, transportation, biomedicine, and energy storage and 
conversion1. Previous achievements clearly demonstrate that biomimetic strategies can provide promising 
routes to design and manufacture advanced materials to fulfill diverse modern engineering demands. Despite 
impressive advances in the laboratory, biomimetic materials are still far from achieving the high degree of 
architectural control as those of biological materials, failed to yield expected material properties. In the future, 
deeply understanding and precisely mimicking the hierarchical structures, multiscale interfaces, and the 
underlying design principles of these elegant biological materials will still be the research hotspots in the field of 
materials science. In order to achieve engineering application, efficient techniques for large-scale manufacturing 
of biomimetic materials with practical bulk form must be exploited. In addition, scalable preparation and 
utilization of high-performance raw materials from cheap, abundant and sustainable natural resources, e.g. clay 
minerals, crop straw, marine food waste, etc. are also highly desirable.
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Section 08 – Sustainable carbon materials

Noel Díez1, Guillermo A. Ferrero2 and Marta Sevilla1

1. Instituto de Ciencia y Tecnología del Carbono, Spain.
2. Humboldt-University Berlin, Germany.

Status
Carbon materials are ubiquitous in our society since they are among the most versatile kinds of materials due to 
their variety of structures, forms and properties, which are a consequence of the highly flexible coordination 
chemistry of carbon atoms. They are used in a wide range of applications including energy, environment, 
bioscience, medicine, aerospace and defense, vehicle manufacture, electronics, and sports. Given the energy 
challenge we are facing, we would like to highlight the importance of carbon materials in the energy field, they 
are the main material of choice in most energy storage and production systems [1, 2]. Accordingly, the demand 
for them has steadily increased and will rise even more in the future with their use in emerging technologies 
(energy storage devices, electrocatalysis, photocatalysis, biofuels, smart textiles, etc.) and most probably in new 
technologies to come. With the exception of some activated carbons, carbon materials (e.g., carbon nanotubes, 
carbon fibers, carbon onions, synthetic graphite, carbon black, graphene, etc.) are industrially manufactured from 
non-renewable precursors and the manufacturing processes are not sustainable, often involving harsh or energy-
intensive conditions (e.g., chemical vapor deposition, electric-arc discharge techniques, strong 
oxidants/reductants, etc.). There is therefore a need to develop more sustainable approaches for the production 
of high-performance carbon materials, which consider the whole life cycle (from precursor to manufacturing and 
end-of-life disposal), in order to meet the growing demand without compromising the environment or human 
health. The use of earth abundant, renewable resources will guarantee the necessary supply. Advances in the 
efficiency of manufacturing methods with lower waste generation, energy consumption and smaller greenhouse 
gas footprints will not only benefit the environment, but will also result in low cost materials, opening up new 
applications otherwise prohibitive for certain allotropes (e.g., graphene as electrode in energy storage devices or 
CNTs in microelectronics).

Current and Future Challenges

The production of carbon materials frequently requires complex methodologies and/or the use of different fossil 
fuels as precursors. The development of new synthesis routes with biomass as the carbon precursor has emerged 
as an environmentally-friendly and economical alternative. In this regard, many different types of biomass have 
been reported as carbon precursors with advantageous properties and in a variety of morphologies (Figure 1). In 
addition, the natural abundance of heteroatoms in biomass represents an advantage in producing doped carbon 
materials with beneficial properties. However, the high moisture content of biomass is an obstacle for 
conventional pyrolysis, which translates into higher energy consumption.  Moreover, this process is normally 
characterized by low yields, as a result of the high oxygen content and low aromaticity of biomass.

One alternative for handling these feedstocks is the hydrothermal carbonization process [3]. However, it is 
relatively slow and generates a product that is unsuitable for certain surface-dependent applications (e.g., energy 
storage), thus requiring the use of additional pore generation treatment. 

In addition to bio-char, bio-oil is another valuable product obtained from the pyrolysis of biomass [4]. Although 
bio-oil has been initially used for the production of fuel, it has been recently proposed as an interesting alternative 
for directly producing functional carbon materials and bio-pitch. In spite of this, the process yield (~ 7 %) is far 
from ideal at the moment and further investigation is needed.
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Sustainable graphitic materials can also be produced from renewable precursors (e.g., vegetable oil) and, 
furthermore, in a variety of different forms (nanofibers, nanotubes or graphene) [5]. However, the high 
temperature needed for the graphitization step hinders widespread application. The development of synthesis 
processes with lower energy penalties coupled with the search for sustainable, greener catalysts (i.e., catalytic 
graphitization) and reducing agents (for graphene production) are challenges that need to be overcome.

Even though the harnessing of biomass represents a step forward in sustainability, scalability and the need for 
high-yield processes are still challenges for large-scale production. The majority of the studies published in the 
literature are based on homogeneous feedstocks or individual precursors (e.g., glucose, saccharose). The 
heterogeneous properties of biomass and waste materials is however a drawback, even when the same source is 
selected and when the reaction conditions are similar. Thus, the initial composition of a selected biomass 
feedstock can be affected by several factors such as the location and climate where it is harvested, the part of the 
original product used (e.g., stem or flowers) or the type of feed (e.g., animal wastes). Besides, the aforementioned 
variations in combination with the presence of inorganic compounds (from alkali to heavy metal) can result into 
differences on the final chemical composition of the carbon (N, S, P, Al, Si, Na, K, Ca), distinct yields or variations 
on the textural properties (e.g., after etching of CaCO3) which might result in irreproducible synthesis and 
therefore requiring an additional pre-treatment step.

Figure 1. General overview of different biomass precursors and the sustainable carbon materials derived from 
them (carbon capsules, carbon spheres, graphene, hierarchical porous carbon materials, nanofibers, nanosheets 
and multi-walled carbon nanotubes (MWCNTs)).

Advances in Science and Technology to Meet Challenges
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Integrating the production of carbons in material-driven bio-refineries would significantly alleviate the high energy 
consumption and waste generation associated with the pyrolysis of biomass. Such a production scheme would
help to reduce the price of the carbons obtained from biochars, thereby boosting their position in the market. 
Along these lines, the thermochemical treatments aimed at the production of char from biomass should be 
optimized in terms of operational parameters (e.g., higher heating rates or pressurized conditions to increase 
carbon fixation) or by coming up with improved carbonization routes. In terms of the latter, using polymerization 
agents (even obtained from the acid/alkaline hydrolysis of biomass) can increase the yield and strength of 
biochars, and it is their strength that currently limits their use in large sectors like the iron and steel industries [4]. 
Thermal condensation of bio-oils leads to bio-pitches with lower S and PAH content than coal tar pitches, which 
makes them a greener alternative for the preparation of pitch-derived carbon materials (C/C composites, needle 
cokes, synthetic graphite, etc.). However, the preparation of carbons from bio-oils is in the very early stages, and 
further investigation of the reaction pathways of complex bio-oil solidification needs to be done first [6].     

Emerging carbonization technologies should be implemented according to the characteristics of the feedstock and 
the desired final properties in the carbon. Hydrothermal carbonization avoids energy intensive drying pre-
treatments and produces carbons with a rich surface chemistry. For biomass with good microwave absorption 
capacity, microwave-assisted pyrolysis could reduce the cost and time of production significantly. However, 
current issues with temperature control and the formation of hot spots in large scale production should be 
resolved first [7].

The search for more sustainable and environmentally friendly synthesis processes involves not only the carbon 
precursor, but also demands a complete review of the use of other toxic/harmful substances involved in the 
preparation of the carbon materials. This is the case for highly porous carbons. In the preparation of these carbons, 
corrosive chemical activating agents can be replaced with milder but effective reactants, as has been shown in 
recent scientific studies [8]. Implementing greener templating strategies (e.g., soft or salt templates), as well as 
using low-cost catalysts from natural rocks in the synthesis of nanocarbons, will allow more scalable and more 
environmentally-friendly progress in the development of carbons with controlled morphological and textural 
properties.

Concluding Remarks

While the era of coal is coming to an end, the era of carbon materials is starting to flourish. Carbon materials hold 
the key to progress in many technologies that can improve our standards of living while protecting the 
environment. However, in order for that to happen, carbon materials must be produced more sustainably, based 
on using biomass/biomass wastes, and efficient, green manufacturing processes. Integrating carbon material 
production into biorefinery schemes will help take full advantage of biomass for carbon production, reducing 
energy consumption and waste generation. Despite great progress already having been made at laboratory scale, 
further involvement, and especially more investment, is necessary from industry to advance towards 
commercialization.
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Section 09 – Waste upcycling into metal-organic framework materials

Petra Ágota Szilágyi
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, 
UK. 

Status
Metal-organic frameworks (MOFs) are a class of hybrid materials, highlighted as desirable in applications ranging 
from catalysis, gas storage and separation, sensing, energy storage, drug delivery, etc.[1] Their most exciting and 
unique properties such as chemical and structural modularity are enhanced and exploitable through their high 
porosity and crystallinity; they are built up of inorganic nodes, i.e. metal cations or metal-oxide clusters, 
interconnected by organic linkers, i.e. polycarboxylic acids or heterocycles. However, these materials are costly 
for large-scale applications as their synthesis often requires expensive reactants and harsh conditions. 
Incorporating waste-derived reactants in their synthesis would make their production both greener and cheaper, 
thereby potentially enabling their applications.
One of the most common linker is terephthalic acid (i.e. 1,4-benzenedicarbocylate, BDC) or its functionalised 
analogues, which in turn modify their physical and chemical characteristics, diversifying potential applications. As 
a number of polyesters feature BDC monomer units (PET: polyethylene terephthalate, PPT: polypropylene 
terephthalate, PBT: polybutylene terephthalate, PTT: polytrimethylene terephthalate), their use as a feedstock for 
MOF linkers is therefore desirable. To date, syntheses have made use of PET as BDC feedstock (Figure 1).

Figure 4 Schematic diagram of the upcycling of terephthalic acid bacsed polyesters to metal-organic frameworks

To demonstrate the potential of using polymer waste as feedstock for MOF synthesis, first an indirect approach 
has been developed. It consists of the initial depolymerisation of PET yielding BDC and subsequent purification 
and MOF synthesis (following conventional solvothermal routes). This has successfully led to MOFs built up of 
inorganic nodes of both metal cations (e.g. Cu(BDC)[2]) and metal-oxide clusters (e.g. UiO-66(Zr)[3]). 
As the above approach still relies on the costly conventional MOF syntheses, De Vos et al.[4] developed a one-pot 
route for direct PET-to-MOF conversion. This led to the synthesis of MOFs with cations for inorganic nodes (e.g.
MIL-53(Al/Cr/Ga), MIL-47(V)[4, 5]) both in hydrothermal and solvothermal conditions, while MOFs with metal-
oxide-cluster nodes such as the defectful hcp UiO-66(Zr)[6] and MIL-101(Cr)[5] obtained solvothermally and 
hydrothermally, respectively. Nevertheless, to date, no reports have been published of direct PET-to-MOF 
conversion in aqueous environment under mild conditions.

Finally, it is worth mentioning that De Vos et al.[4] also found that employing nitric acid in the one-pot conversion 
leads to the nitro-functionalisation of BDC.
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Current and Future Challenges
The production costs (a combination of the price of reagents, and environmental and energy costs) of MOF is still 
excessive for wide-scale industrial use. While the application of polyester waste as linker feedstock addresses the 
challenge of reactant costs, the environmental and energy cost of the synthetic process, such as toxic solvents 
and/or harsh reaction conditions, remains a concern. This is exacerbated by the requirements for the 
depolymerisation reaction (either in an independent step or simultaneously with the MOF assembly). Therefore, 
one of the main challenges of waste conversion to MOFs can be identified as enabling greener reaction conditions. 
This may mean employing lower pressure and temperature, and/or avoiding toxic solvents, such as DMF. Ideally, 
however, conversion conditions should be set to take place near ambient pressure and temperature, and in 
aqueous media. As stated above, various MOFs with metal-cation inorganic nodes have been achieved in one-pot 
PET-to-MOF conversion in aqueous media, however the sole successful conversion of PET to a MOF with metal-
oxide-cluster inorganic nodes remains that to MIL-101(Cr), which is unique as MIL-101(Cr) is typically synthesised 
hydrothermally and thus its synthetic conditions may coincide with PET depolymerisation. A conclusion can 
therefore be drawn, namely that the assembly of MOFs based on metal-oxide-cluster inorganic nodes, such as the 
UiOs, is challenging in aqueous media, particularly when using PET as linker feedstock.

For applications of MOFs, particular properties; binding sites, colour, etc., are required, which may be tuned by
changing the framework chemistry, or the addition of organic functional groups. The direct synthesis of 
functionalised MOFs from PET feedstock is therefore a challenge, which may add further value to this upcycling 
approach. The indication that by judiciously selecting the reagents of the conversion mixture, it is possible to 
append -NO2 functional groups on the BDC linker[4]. Further study is therefore necessary to screen the possible 
reagents leading to functionalisation.

However, to date, only PET has been successfully employed as BDC feedstock, yet other polyesters, i.e. PPT, PBT 
and PTT, may also be desirable precursors. Finally, a great challenge of PET-to-MOF remains the relatively low 
yield, which needs further breakthrough.

Advances in Science and Technology to Meet Challenges
One of the major challenges in the direct upcycling of polyesters to MOFs is the development of synthetic 
conversion processes that take place under milder and greener conditions, while maintaining the required 
crystallinity and surface areas. This challenge is particularly acute for MOFs built up of metal-oxide-cluster 
inorganic nodes, such as UiO-66(Zr). Recently, significant advances have been made in understanding the 
fundamentals of the formation of inorganic nodes and how it may enable the assembly of the MOF framework. In 
particular, for the UiO structures, it has been shown that the pre-formation of a hexanuclear Zr-complex enables 
aqueous and green synthetic routes, and it may be achieved through the careful design of reaction conditions, 
such as the application of modulator acids, e.g. acetic acid, the pH of the reaction mixture, etc.[7] Such strategies 
could be translated into developing environmentally friendly waste-to-MOF upconversion approaches.

The applications of MOFs are most realistic when their chemical and structural diversity, and the resultant high 
specificity in their interactions with substances, are accounted for. Therefore, it is important that MOFs with 
various chemical functionalities are synthesised through the direct conversion of plastic waste. While such 
functionalisation typically concerns the decoration of the aromatic linkers with organic functional groups, 
examples have arisen in which the inorganic nodes may be grafted with functional molecules, such as N,N-
dimethylethylenediamine, an organic base.[8] Taking into account the possibility for base-catalysed 
depolymerisation of PET, it should be considered that such functional grafting agents are included in the plastic 
upcycling process.

A final consideration for the application of MOFs is their physical shape. While most syntheses yield powder 
samples, such forms are difficult to integrate into devices. In order to synthesise MOFs in a useful shape, such as 
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monoliths, thin films, fibres, etc., a new area of interest has emerged. In particular, shaped metal oxides have been 
successfully used for MOF synthesis with a dual function, i.e. as reactants (for the inorganic nodes) and templating 
agents.[9] Such approach however has not been reported for linker feedstock, e.g. wherein shaped PET is 
templating the MOF morphology while supplying the linker for framework growth.

Concluding Remarks
The direct conversion of plastic waste into MOFs serves two simultaneous purposes; it will tackle the issue of 
plastic pollution by adding value to the feedstock in the process, while it could enable the wide-spread use of 
MOFs, currently hindered by production costs, by lowering their price. Particularly, if functionalised MOFs can be 
obtained in a controlled and direct route, their syntheses through waste upcycling may become a major 
production approach. In addition, as many waste polyesters are produced and used in the form of fibres, often 
woven ones (e.g. textiles, carpets), if the shape of this feedstock may be used as morphological template for MOF 
synthesis, the potential and commercial value of plastic-to-MOF conversion would increase significantly.
Finally, in order to make this process truly environmentally friendly, care should be taken to develop processes 
for the reuse of other monomer units, e.g. ethylene glycol in the case of PET.
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Section 10 – Sustainable biopolymers

Connor J. Stubbs and Joshua C. Worch
School of Chemistry, The University of Birmingham, Birmingham, UK 

Status
Polymers, colloquially referred to as plastics, are ubiquitous in modern society with uses ranging from routine 
(such as packaging) to high performance (in medicine or transportation) applications. The first synthetic plastics 
appeared in the early 20th century and the contemporary industry was largely established by mid-century. 
However, the overwhelming majority of society’s accumulated plastics are derived from non-renewable 
feedstocks, specifically byproducts produced from the refinement of fossil fuels (> 99% of the estimated ~ 8300 
million metric tons produced up until 2017[1]). Not only are fossil fuels a limited resource, they are 
environmentally damaging to harvest and consume. Moreover, the plastic products that they yield pose lasting 
ecological issues considering they are usually not degradable and their usage is mostly linear. In response, the 
future materials economy is envisioned to transition from linearity to circularity whilst simultaneously drawing 
from renewable, rather than finite, biomass resources (Figure 1). 

Figure 1. Overview of bioplastics production including synthetic polymers with novel composition from biomass 
feedstocks.

Naturally occurring polymers (also referred to as biopolymers) such as polysacharrides (carbohydrates) or 
polypeptides form the chemical structural basis of many valuable bio-derived materials including starch, cellulose, 
algin, chitin and collagen.  Before the development of synthetic plastics, these biopolymers were routinely 
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processed into useful products via simple chemical modification. Even today, many biopolymers retain their 
commercial worth in numerous industries (especially in textiles and building materials) but ultimately lack the 
mechanical diversity of non-degradable plastics. In the future, natural biopolymers should become increasingly 
important feedstocks en route to the production of emergent synthetic bioplastics. Specifically, sustainable
building blocks for bioplastic synthesis can be furnished via the depolymerization (saccharification) of 
carbohydrates and derivatization of the isolated monosaccharides.[2] One of the most well-known and highly 
regarded examples is the manufacture of poly(lactic acid) (PLA) from lactic acid, which is conveniently derived 
from plant starches and already produced on a commercial scale.[3] Although the current market for synthetic 
bioplastics captures < 1% of the annual plastics production by volume, this is predicted to increase substantially.[4]

Biopolymer feedstocks are also being formulated into identical chemical precursors to yield conventional fossil 
fuels (Figure 1).[5] Under such circumstances, conventional plastics produced from sustainable monomers are also 
termed bioplastics and there are currently sustainable synthetic pathways to most commodity plastics, for 
example bio-polystyrene and bio-polyethylene. Many essential plant oils (in particular terpenes and/or 
terpenoids) can be isolated and/or chemically functionalized to yield sustainable building blocks for the synthesis 
of advanced materials.[6] Since they possess structural likeness to fossil fuel building blocks, their corresponding 
reactivity is often parallel to traditional petrol-derived vinyl monomers (such as styrene) and this makes terpenoids 
potentially amenable to existing plastic manufacturing processes. Vegetable oils or triglycerides harvested from 
agricultural plants (such as soybean, corn, or palm) are also important raw materials for polymers, although this 
application is presently overshadowed by their use as biofuels and/or conversion to other platform chemicals.[7]

Current and Future Challenges
Great progress has been made in increasing the sustainability of the polymers to afford bioplastics, either with 
new compositions or as bio-derived variants of conventional plastics. However, their properties and/or production 
costs are not yet competitive enough to be viable drop-in products. Moreover, many of the signature 
advancements in this area have only been achieved as “bench-scale” or “proof-of-concept” demonstrations. While 
this should give the field hope since the chemistry solutions have been largely offered, scaling these processes for 
commercial use poses a grand challenge – from both a technological and economical perspective. 

The manufacturing processes that are in place for refining biomass for bioplastic production are inherently 
expensive, with PLA and polymers from isosorbide (another starch derivative, see Figure 1) being rare exceptions 
that are economically viable.[8] There are also reservations that products may compete with food production 
(such as maize, palm or sugar cane to list a few). However, many of the same agricultural products are already 
used for bioethanol production without serious consequence to food production even though a similar argument 
was previously raised in this regard. Nevertheless, the economics are even more dire when compared next to 
fossil fuel derived monomers (such as ethylene, propylene, styrene, etc) and their associated plastics, which are 
almost free for manufacturers to obtain and produce.[5]  Thus, one of biggest barriers in transitioning to 
sustainable bioplastics is the overwhelming presence of cheap petrochemicals. In fact, plastic manufacturing 
goliaths are planning to invest nearly $400 billion in petrochemical plants in coming years, effectively aiming to 
double the market capacity.[9] With this in mind, it is difficult to imagine rapid growth of the bioplastics industry. 
One potential mitigating force is that bioderived plastics do provide excellent environmental returns in the form 
of significantly lower overall greenhouse gas (GHG) emissions compared to fossil-fuel plastics.[2]

Beyond economic considerations, most sustainable bioplastics (of novel composition) often possess inferior 
thermal and mechanical performance compared to conventional fossil-fuel counterparts. The highly sought-after 
combination of heat resistance, ductility and strength, that is typified by non-degradable polyolefins, is difficult to 
imitate. For example, although PLA is a strong bioplastic, it softens well below the boiling point of water, is 
exceptionally brittle, and possesses poor barrier properties necessary for translation into packaging applications. 
The Incorporation of plasticizing additives, non-degradable fillers or multilayered materials provide general 
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solutions to improve the properties of PLA and other bioplastics[10], however these strategies can be 
environmentally damaging within their own rights.[11] The key challenge will be to create more durable 
sustainable materials whilst ensuring the entire product is degradable without causing environmental damage at 
any stage of the process (such as the production of microplastics).

Advances in Science and Technology to Meet Challenges
Technological advances to improve bioplastics are mostly focused on two interrelated fronts: 1) identifying and 
scaling more efficient chemical transformations and 2) creating higher performing materials that are also more 
recyclable and/or degradable via careful monomer design. There is also a substantial translation divide between 
bench-top chemistry solutions and materials applications on scale. Simply put, chemists and engineers need to 
communicate more proficiently with strategic goals in mind to afford economically viable platforms. The same 
general sentiment should also be applied in bridging the ‘translational gap’ between academic and industrial 
research.

The principal pathway to mitigate inherent economic drawbacks will be to develop more cost-effective processes 
for converting biomass to monomer precursors. This can be achieved by using a waste biomass source as the 
monomer feedstock, such as in PLA which can be generated from food waste [12], or through advances in catalysis 
to achieve higher reaction yields and better product selectivity while requiring a lower energy input (Figure 2).[13]
Sustainability should also be designed into this framework by adopting Green chemistry concepts and principles 
where possible.[8] This should further bolster the environmental advantage, or argument, for sustainable 
bioplastics compared to petrochemical-based polymers. Finally, simply performing reactions on ever increasing 
scale should concomittantly improve the overall efficiency and lower the cost of feedstock refining efforts.

The subsequent transformation of biomass feedstocks to polymerizable monomers for renewable bioplastic 
production could also benefit from chemistry advancements (Figure 2). A rethink and/or redesign of targeted 
monomers should be considered in light of the aforementioned limiting properties of most bioplastics. More to 
the point, the available monomer stock can heavily dictate the accessibility of bioplastic products. The judicious 
design of monomers that can be more easily polymerized and depolymerized (i.e. polymers near equilibrium) 
should offer better prospects for recycling and thus sustainability (Figure 2). On the other hand, further advances 
in polymer chemistry should continue to afford effective paths to sophisticated polymer architectural control that 
can enable property improvement compared to current bioplastic formulations. For example, the performance of 
many bioplastics can be tailored and enhanced by controlling the 3D arrangement of atoms (stereochemistry) 
using controlled polymerization techniques.[14] Furthermore, the synthesis of sustainable multi-block 
biopolymers also provides a path to make the mechanical performance more competitive.[15]
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Figure 2. Emerging solutions for bioplastics design and synthesis to improve sustainability 

Concluding Remarks
The field of sustainable bioplastics has made giant leaps in the past few decades with numerous bioplastics 
beginning to trickle into the consumer market. However, a genuine sustainable plastics economy is only attainable 
through: 1) more competitive properties and facile recyclability from improved polymer design; 2) plastic 
degradation that is orthogonal with the environment; and 3) using only sustainable sources obtained from biomass 
(Figure 2). This monumental challenge can only be surmounted through intense interdisciplinary communication, 
collaboration and action to bridge the divide between what is both sustainable and feasible. Unfortunately, the 
systemic overhaul necessary to achieve this goal will likely come in gradual developments. Although there are 
serious economic barriers and some lingering performance issues centered around sustainable bioplastics, 
progress is tangibly accelerating and this should encourage optimism. Remember, the modern polymer industry 
leaped from discovery to industrial maturity within just a few decades. The journey to a more sustainable 
biopolymer economy, one that is carefully designed for a more circular framework, may appear daunting but it is 
attainable. 
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Section 11 – Sustainable conjugated polymers

Yunping Huang1 and Christine K. Luscombe1,2. 

1. Materials Science and Engineering Department, University of Washington, Seattle, Seattle, WA 98195, USA.
2. Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, 
Okinawa 904-0495, Japan.

Status
Conjugated polymers (CPs) are semiconducting materials featuring both flexibility and solution processability, 
breaking the dated conception that semiconductors are inorganic and rigid.[1] Moreover, this unique property 
combination has given birth to the previously unprecedented idea of flexible electronics. Simultaneously, this field 
pursues efficient device manufacturing via solution processing in contrast to high vacuum and/or high 
temperature processing used in inorganic semiconductors. CPs are indispensable in organic light emitting
diodes,[2] enabling flexible and light-weight lighting and display technologies now available in the commercial 
market. Other novel CP-powered technologies, including organic solar cells[3] and organic field transistors[4] are 
currently undergoing the commercialization process, taking lab-scale research into a viable product. To date, the 
champion efficiencies of single-junction organic solar cells are around 16%; highest mobilities in organic field 
transistors are up to 20 cm2 V−1 s−1 for p-type and approaching 10 cm2 V−1 s−1 for n-type.

In contrast to traditional semiconductors made from silicon and rare-earth elements, CPs are made primarily from
organic elements, especially C, H, N, O, and S. Therefore, CPs can alleviate or eliminate concerns about 
deforestation, loss of biodiversity and pollution related to silicon and rare-earth production in the current 
semiconductor industry. The semiconducting nature of CPs is enabled by p-orbital overlap between adjacent  C, 
N, O or S atoms (Figure 1), allowing electrons to delocalize along the polymer chain. Electron delocalization is
further enhanced in the condensed state, due to the ability for interchain −overlap between polymer backbones.

To meet the requirements of different applications, monomers with different  structures (see examples in Figure 
1) were incorporated into the conjugated backbone to tune the optoelectronic properties of resulting CPs, such 
as absorption, emission, charge mobility, energy levels.[2, 3] This requires efficient polymerization methods 
applicable to a wide variety of conjugated monomers. Moreover, high-selectivity methods are crucial for the 
synthesis of defect-free CPs, essential for champion performances. Furthermore, the economic and environmental 
impacts of CPs directly influence the commercial viability of these technologies, therefore in addition to 
researching recyclability and biodegradability,[4] developing low-cost and eco-friendly synthetic methodology for 
CP syntheses is also important in advancing this field.[5, 6]  
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Figure 1. Top: Illustration of how extended  orbitals in CPs function. Bottom: Select monomers used to construct 
CPs with different properties determined by the structure of the conjugated backbone.

Current and Future Challenges

Figure 2 illustrates the polymerization methods commonly applied in the synthesis of CPs along with their usage 
frequency over the past 15 years. Suzuki and Stille polymerizations have been the most common techniques for 
CP synthesis, and so far, the majority of the record-breaking CPs are synthesized with these methods. These high 
performances are enabled by few defects in the CPs: 1) After the substrates undergo ex situ conversions into 
halogenated, organotin or organoboron precursors, side products can be removed through purification before 
polymerization. 2) The reactivity of C-X (X = halogen) and C-M (M = SnR3, B(OR)2) bonds is significantly enhanced 
compared to the other C-H bonds on the substrates, which is crucial for controlling the site of bond formation on 
each monomer. These two factors reduce branching defects in CPs. Moreover, utilizing two different functional 
groups is important for reducing homo-coupling defects, preparing structures with desired alternating repeat 
units.

However, these pre-functionalization procedures compromise the economic and environmental sustainability of 
CPs: 1) They lengthen synthetic routes and require extra reagents and working hours, increasing production cost; 
2) explosive organolithium and toxic organotin used in the pre-functionalization steps are detrimental to 
workplace safety and environmental wellness.[5, 6]

To overcome these two concerns, direct arylation polymerization (DArP)[6] and cross dehydrogenative coupling 
polymerization (CDCP)[5] were developed (Figure 2). Compared to tradition polymerization methods, DArP and 
CDCP activate C-H bonds in situ in polymerization. This bypasses the syntheses of organotin or organoboron 
precursors, alleviating the environmental concerns regarding organolithium and organotin. However, undesired 
C-H bonds in the molecule can also be activated during DArP and CDCP, creating branching defects in the resulting 
CPs. Eliminating branching defects is one of the critical challenges for C-H functionalization in polymer science. 
Since CDCP utilizes monomers with the same functional group (two C-H bonds), in great contrast with traditional 
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polymerization methods (C-X bond and C-M bond) and DArP (C-X bond and C-H bond), it is challenging for the 
catalyst to differentiate between the monomers and therefore homo-coupling defects are more pronounced in 
CDCP.  

Figure 2. Comparison between polymerization method of CPs and the major defects involved. Homo-coupling and 
branching defects may exist in Suzuki or Stille polymerization as well, but the amounts are not as significant in
DArP and CDCP. It is worth mentioning that CDCP is different from oxidation polymerization, the latter of which is 
uncontrollable and leads to a significantly larger number of defects.[5] Their usage frequency in the recent 15 
years are also included (search results from google scholar as of Oct. 2020).

Advances in Science and Technology to Meet Challenges

Catalyst development is essential to address the challenges regarding selectivity and defects, and several papers 
have successfully synthesize CPs with minimal defects from DArP[7] and CDCP.[8] Still, DArP and CDCP are both at 
early stages in the development roadmap comparing to Suzuki or Stille polymerization, and their current major 
research focuses are:

1) Expanding substrate scopes and increase site selectivity. DArP and CDCP have limited substrate 
scopes, requiring the presence of highly reactive C-H bonds or directing groups. Meanwhile, 
suppressing undesired bond formation on during polymerization is essential to reduce defect and 
enhance the performance of CPs. Therefore, challenges regarding substrate dependency and site 
selectivity need to be overcome through development novel catalysts prior to the wide range 
application of these methods. 

2) Exploring earth abundant catalyst systems. Considering catalysts made from expensive and rare 
palladium are widely applied in Suzuki coupling, Stille coupling, DArP and CDCP, efforts are focusing 
in developing earth abundant catalysts (e.g. copper[9]) for DArP to further optimize the economic and 
environmental sustainability of CP syntheses. However, to our knowledge CDCP utilizing an earth 
abundant metal is still an untapped research area.     
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Sustainable synthetic methodology alone is inadequate for the vision of sustainable CPs. Sustainable thinking in 
CP molecular design is just as important to their economic and environmental sustainability.  At present, a majority 
of high-performance CPs are synthesized with lengthy synthetic routes, which increased production expense and 
the total amount of by-products. Researchers have been experimenting creatively on shortening the synthetic 
route and lowering the environmental impacts in the syntheses of organic conjugated molecules, by utilizing 
abundant natural products with conjugated structures (e.g. indigo[4], theobromine[10], and biobased furans[11]) 
with impressive performances achieved. Moreover, incorporating natural products introduces biodegradation 
pathways for resulting molecules.[4]. This thinking pattern can be also transferred into the design of CPs 
considering they share similar design principles. It is always important to continue developing novel molecular 
designs that increase the sustainability of CPs and leave their performance uncompromised. In addition, green 
and biomass-derived solvents (e.g. 2-methyltetrahydrofuran) are encouraged and effective as alternative solvents 
for developing more environmentally sustainable polymerization methods.[9]

Concluding Remarks
CPs are a class of materials that comprise features of semiconductors and plastics, and this unique combination is 
indispensable for the development of flexible electronic devices. At present, the syntheses of high-performance 
CPs require longer syntheses and chemical reagents that are toxic and explosive, adversely affecting their 
economic and environmental impacts. Green polymerization methods such as DArP and CDCP are now faced with 
inadequate selectivity and limited substrate scope, where significant efforts have been invested in recent years. 
In addition, the sustainability profile of these polymerization method can be further optimized by replacing the 
use of noble metal catalysts with earth abundant metal elements like copper. Last but not least, sustainable 
thinking in CP molecular design is equally important – designing simplified synthetic routes is straight-forward and 
efficient in lowering the economic and environmental footprint of CP syntheses. 
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Section 12 – Sustainable cellulose nanocomposites

Koon-Yang Lee
Faculty of Engineering, Department of Aeronautics, Imperial College London, SW7 2AZ UK.

Status

Nanocellulose, i.e. cellulose fibres in the nanometre scale, is a family of abundant, lightweight and high-
performance bio-based fibres that possess the broad chemical modification capacity of a cellulose molecule and 
the high specific surface area of a nanomaterial. It can be obtained either top-down or bottom-up. In the top-
down approach, wood pulp is passed through either high-pressure homogeniser, microfluidiser or stone grinder 
to liberate the cellulose fibrils [1]. Wood pulp-derived nanocellulose (Fig. 1a) is more commonly known as either
nano- or micro-fibrillated cellulose (NFC/MFC), depending on the mechanical action employed. The bottom-up 
approach utilises cellulose-producing bacteria from the Komagataeibacter genus to convert low molecular weight 
sugars into cellulose fibrils [2]. These microbially-synthesised nanocellulose (Fig. 1b), otherwise known as bacterial 
cellulose (BC), is an ultrapure form of cellulose without impurities such as hemicellulose or traces of lignin that are 
often present in MFC and NFC.

Figure 1. (a) An aqueous gel of nanocellulose consisting of ca. 98 wt.-% water, along with a high magnification scanning electron microscopy (SEM) image 
showing the morphology of the nanocellulose; (b) BC pellicle with a water content of 99 wt.-% and an SEM image showing the morphology of BC. Images 
obtained from ref. [3] and [4] with kind permission from Elsevier and American Chemical Society, respectively.

A major driver in the field of nanocellulose science and technology is the possibility of exploiting the high tensile 
properties of cellulose crystals for various advanced composite applications. Theoretical calculations and 
numerical simulations estimated the modulus and strength of cellulose crystals to be up to 300 GPa and 22 GPa, 
respectively [1]. Experimentally, the tensile modulus of single nanocellulose was measured to be ca. 100-160 GPa.
Recent work based on ultra-sound induced fragmentation of TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl 
radical) oxidised nanocellulose estimated the tensile strength of single nanocellulose to be 1.6-6 GPa, depending 

Page 52 of 130AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100605.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

ptUK.

Acc
ep

ted
 M

an
us

cri
ptUK.

is a family of abundant, lightweigh

Acc
ep

ted
 M

an
us

cri
pt

is a family of abundant, lightweight 

Acc
ep

ted
 M

an
us

cri
pt

t and high

Acc
ep

ted
 M

an
us

cri
pt

and high
broad chemical modification capacity of a 

Acc
ep

ted
 M

an
us

cri
pt

broad chemical modification capacity of a cellulose

Acc
ep

ted
 M

an
us

cri
pt

cellulose molecule and 

Acc
ep

ted
 M

an
us

cri
pt

molecule and 
. It can be obtained either top

Acc
ep

ted
 M

an
us

cri
pt

. It can be obtained either top-

Acc
ep

ted
 M

an
us

cri
pt

-down or bottom

Acc
ep

ted
 M

an
us

cri
pt

down or bottom-

Acc
ep

ted
 M

an
us

cri
pt

-up. 

Acc
ep

ted
 M

an
us

cri
pt

up. 
pressure homogeniser, microfluidiser or stone grinder 

Acc
ep

ted
 M

an
us

cri
pt

pressure homogeniser, microfluidiser or stone grinder 
(Fig. 1a) 

Acc
ep

ted
 M

an
us

cri
pt

(Fig. 1a) is more commonly known as

Acc
ep

ted
 M

an
us

cri
pt

is more commonly known as
, depending on the mechanical action employed

Acc
ep

ted
 M

an
us

cri
pt

, depending on the mechanical action employed
Komagataeibacter

Acc
ep

ted
 M

an
us

cri
pt

Komagataeibacter genus 

Acc
ep

ted
 M

an
us

cri
pt

genus to convert low molecular weight 

Acc
ep

ted
 M

an
us

cri
pt

to convert low molecular weight 
synthesised nanocellulose

Acc
ep

ted
 M

an
us

cri
pt

synthesised nanocellulose (Fig. 1b)

Acc
ep

ted
 M

an
us

cri
pt

(Fig. 1b), 

Acc
ep

ted
 M

an
us

cri
pt

, otherwise known as

Acc
ep

ted
 M

an
us

cri
pt

otherwise known as
cellulose (BC), is an ultrapure form of cellulose without impurities such as hemicellulose or traces of lignin that are 

Acc
ep

ted
 M

an
us

cri
pt

cellulose (BC), is an ultrapure form of cellulose without impurities such as hemicellulose or traces of lignin that are 

(a) An aqueous gel of 

Acc
ep

ted
 M

an
us

cri
pt

(a) An aqueous gel of nanocellulose 

Acc
ep

ted
 M

an
us

cri
pt

nanocellulose consisting of 

Acc
ep

ted
 M

an
us

cri
pt

consisting of 
showing the morphology of the nanocellulose; (b) BC pellicle with a water content of 99

Acc
ep

ted
 M

an
us

cri
pt

showing the morphology of the nanocellulose; (b) BC pellicle with a water content of 99
ref. 

Acc
ep

ted
 M

an
us

cri
pt

ref. [3]

Acc
ep

ted
 M

an
us

cri
pt

[3] and 

Acc
ep

ted
 M

an
us

cri
pt

and [4]

Acc
ep

ted
 M

an
us

cri
pt

[4] with 

Acc
ep

ted
 M

an
us

cri
pt

with kind 

Acc
ep

ted
 M

an
us

cri
pt

kind permission from 

Acc
ep

ted
 M

an
us

cri
pt

permission from 

A major driver in the field of nanocellulose science and technology is the possibility of 

Acc
ep

ted
 M

an
us

cri
pt

A major driver in the field of nanocellulose science and technology is the possibility of 
properties of cellulose 

Acc
ep

ted
 M

an
us

cri
pt

properties of cellulose crystals

Acc
ep

ted
 M

an
us

cri
pt

crystals
numerical simulation

Acc
ep

ted
 M

an
us

cri
pt

numerical simulations estimated the 

Acc
ep

ted
 M

an
us

cri
pt

s estimated the 
respectively

Acc
ep

ted
 M

an
us

cri
pt

respectively [1]

Acc
ep

ted
 M

an
us

cri
pt

[1]. Experimentally, 

Acc
ep

ted
 M

an
us

cri
pt

. Experimentally, 
R

Acc
ep

ted
 M

an
us

cri
pt

Recent work based on ultra

Acc
ep

ted
 M

an
us

cri
pt

ecent work based on ultra
radical) oxidised nanocellulose estimated the tensile strength of Acc

ep
ted

 M
an

us
cri

pt

radical) oxidised nanocellulose estimated the tensile strength of Acc
ep

ted
 M

an
us

cri
pt



on the source of nanocellulose [5]. Therefore, nanocellulose is often regarded as the prime candidate for the
production of high-performance sustainable nanocomposites that could replace fossil-derived engineering 
materials. At a nanocellulose loading of 60 vol.-%, the tensile modulus and strength of (sustainable) cellulose 
nanocomposites have been reported to be as high as 12 GPa and 200 MPa, respectively [1]. As a scomparison, 
poly(L-lactic acid) (PLLA), a fully bio-based polymer with the highest mechanical performance that already has 
widespread use, possesses a tensile modulus of 4 GPa and a tensile strength of 63 MPa only. 

Current and Future Challenges

Despite the promising mechanical performance, nanocellulose has not yet been commercialised as reinforcement 
for sustainable cellulose nanocomposite production. In fact, the commercial applications of nanocellulose are 
currently limited to low value applications, such as thickeners for gel inks in ballpoint pens (Mitsubishi Pencil Co. 
Ltd.), diaphragm in audio speakers (Onkyo Corp.), additives in toilet wipes (Daio Paper Corp), adult diapers (Nippon 
Paper Industries Co. Ltd.) and in-sole for shoes (ASICS). The bottleneck in the application of nanocellulose for 
sustainable nanocomposite applications are: (i) the cost and (ii) the transportation of nanocellulose. Currently, 
nanocellulose is priced at ~US$100/kg (dry basis) [6]. For NFC and MFC, this stems from the high energy refinement 
process to convert wood pulp to nanocellulose. For BC, the cost stems from capex as BC is grown most efficiently 
in static culture at rather low production rate. Nanocellulose is therefore not cost competitive in the high-volume 
low profit margin sustainable materials market as high loading fraction of nanocellulose is required [1]. Cheaper 
reinforcing fillers, such as talc and natural fibres, are available for the sustainable composites industry. In terms of 
transportation, nanocellulose will form a strong nanofibre network that can no longer be reprocessed upon drying. 
This is known as hornification, the formation of irreversible hydrogen bonds between adjacent cellulose fibres. 
Nanocellulose must therefore be kept wet after production in its never-dried form, typically contains up to ~98wt-
% water, prior to subsequent use. This reduces the cost-efficiency of nanocellulose as 98% of the total 
transportation cost of never-dried nanocellulose is transporting water, which does not add value to the final 
sustainable cellulose nanocomposites.

Advances in Science and Technology to Meet Challenges

It can be anticipated that the high cost of nanocellulose can be offset by designing high performance materials for 
high volume application but containing only low loading fraction of nanocellulose whilst offering dramatically 
improved mechanical performance that conventional materials cannot achieve. One can estimate the theoretical 
tensile modulus (𝐸c) of cellulose nanocomposites using the Cox-Krenchel model: 

𝐸c = 𝜂0𝜂L𝑣f𝐸f + (1 − 𝑣f)𝐸m (1)

In the model, 𝜂0 = fibre orientation factor, 𝐸f = tensile modulus of the fibre, 𝐸m = tensile modulus of the matrix 
and 𝑣f = fibre volume fraction. The term 𝜂L is related to the limited stress transfer efficiency due to the fibres 
having a finite length. It can be written as: 

𝜂L = 1 −
tanh(

𝛽𝐿

2
)

𝛽𝐿

2

(2)

𝛽 =
2

𝑑
[

𝐺m

𝐸f ln(√
𝜋

𝑋𝑖×𝜈
)

]

0.5

(3)

𝐺m =
𝐸m

2×(1+𝜈)
(4)
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whereby 𝐿 = fibre length, 𝑑 = fibre diameter, 𝐺m = shear modulus of the matrix, 𝜈 = Poisson’s ratio of the matrix 
and 𝑋𝑖 = packing of fibres. 

Using an imaginary 𝐸m = 4 GPa, which represents the tensile modulus of PLLA, 𝐸f = 114 GPa [7], 𝑋i = √3/2
(assuming hexagonal packing of fibres), 𝜈 = 0.34, 𝑑 = 50 nm (see Fig. 1) and an estimated 𝐿 value of 5 µm, the 
tensile modulus of a cellulose nanocomposite comprising of 5 vol.-% nanocellulose in a PLLA matrix (Fig. 2a) is 
estimated to be 5.7 GPa. Such low nanocellulose loading would not increase the cost of manufacturing significantly 
over neat PLLA. Couple this with the comparable tensile properties to a 30 wt.-% randomly oriented glass fibre-
reinforced polypropylene composite§, such sustainable cellulose nanocomposite with radically improved 
performance should easily penetrate the mass market as it could serve as a more sustainable alternative to fossil-
derived engineering materials. Yet, this high tensile properties at such low nanocellulose loading are rarely 
achieved experimentally due to the less-than-ideal dispersion and our limited understanding of the mechanics of 
nanocellulose in a polymer matrix. Further work in the consistent exploitation of single nanocellulose tesniel 
properties in a composite setting is required to breakthrough this bottleneck in the commercialisation of 
sustainable cellulose nanocomposites.

Figure 2. (a) An exemplary 5 vol.-% nanocellulose-reinforced PLLA composites, where the nanocellulose can be seen dispersed in the polymer matrix. (b) 
Nonwoven natural (sisal) fibreboard without nanocellulose binder. Deformation can be seen when small amount of water is added into the plastic cup. (c) 
Polymer-free nanocellulose-enhanced nonwoven fibreboard. No deformation was observed even when the water level was almost full in the plastic cup. 
The hornification between nanocellulose bind the loose fibres together, producing a rigid and robust fibreboard. Images obtained from [8] with kind 
permission from the MyJoVE Corp.

Another potential solution to the cost challenge of nanocellulose is to fully utilise the effect of nanocellulose 
hornification. Whilst the hornification of nanocellulose is detrimental in the processing of cellulose 
nanocomposite, the strong hydrogen bonds between adjacent nanocellulose could be used to bind loose or waste 
fibres. This concept has previously been explored to bind the otherwise loose natural fibres [8], as well as waste 

§ Tensile modulus of ca. 5.4 GPa based on Plastcom SLOVALEN obtained from www.matweb.com.
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chicken feathers [9] to produce rigid and robust polymer-free fibreboards (Fig. 2b-c). Only a small amount of 
nanocellulose is required and this effect, to our knowledge, is only exclusive to nanocellulose due to its strong 
hornification effect. The next logical step in the evolution of such nanocellulose technology could be in the 
maximisation of nanocellulose hornification to produce polymer-free, sustainable and durable composite 
fibreboards. This may further revolutionise how we think about utilising waste fibres as a resource, which can also 
act as carbon sink. 

The second challenge is to transport never-dried nanocellulose. Strategy based on capping the hydroxyl groups of 
nanocellulose [10] has been explored to prevent hornification but at the expense of altering the surface properties 
of nanocellulose. Never-dried nanocellulose has also been embedded in a water-soluble polymer [11] (essentially 
creating a composite), which can be dissolved away to recover nanocellulose. Whilst this approach is interesting, 
the nanocellulose-to-water mass ratio is typically ~0.002, implying that to transport 2 kg of nanocellulose (dry), 1 
tonne of water needs to be evaporated to embed the nanocellulose in the polymer (not cost-competitive!).
However, if a high boiling point liquid could form a thin film around individual nanocellulose, essentially “sizing” 
the nanofibres, hydrogen bonds between adjacent cellulose fibres could be circumvented, thereby preventing 
hornification. This was explored through the use of water-miscible low molecular weight liquid polyethylene glycol 
(PEG), resulting in nanocellulose-PEG filter cake achieved a solid content of up 70 wt.-%, without nanocellulose 
hornification [3]. Whilst this is an improvement over the state-of-the-art, this solution is not perfect as the solid 
content is still relatively low and a washing step was still required to completely remove the PEG. Nevertheless, 
this work has hinted the possibility of “sizing” nanocellulose as a mean to transport nanocellulose cost-effectively. 
If a solution to transport never-dried nanocellulose filter cake at a solid content of >95 wt.-% is available, this will 
further contribute to the successful commercialisation of sustainable cellulose nanocomposites. 

Concluding Remarks

The strong reinforcing effect of nanocellulose for polymers was first reported over 30 years ago. The first wave of 
nanocellulose research focussed on the understanding of the physical and chemical properties of nanocellulose, 
as well as nanocellulose-polymer interactions to a certain degree. As our knowledge broadened, the emphasis on 
the second wave of nanocellulose research switched to the creative utilisation of nanocellulose to maximise 
materials performance. The nanocellulose community has now reached a critical mass. There are currently various 
industrial partners with pilot plants producing nanocellulose, waiting for a “killer application” to commercialise 
nanocellulose, increasing its market uptake. Looking forward, the third wave of nanocellulose research will focus 
on the cost-competitiveness of nanocellulose, especially in the high volume sustainable cellulose nanocomposite 
application. The keys in the successful commercialisation of sustainable cellulose nanocomposite are:
• Sustainable design - reduce complexity, efficient use of materials and minimise the use hazardous solvents 
• Manufacturability - ensure that sustainable cellulose nanocomposite production can be scaled up easily in an 

economically feasible manner
• Radical effects - provide distinct mechanical performance other materials cannot achieve, especially in the 

context of sustainability. 
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Section 13 – Sustainable quantum dots

Hui Luo
Department of Chemical Engineering, Imperial College London, SW7 2BX, UK

Status
Quantum dots (QDs) are a class of fluorescent semiconductor materials with the general size of 2-10 nm, exhibiting 
optical and electronic properties that differ from bulk particles due to quantum mechanics.[1] The most well-
studied QDs including CdSe, CdS, PbS, Si, and GaAs, possess strong and tunable and robust fluorescence 
properties, which have potential applications in solar cells, light-emitting diodes (LEDs), sensing and bio-imaging. 
However, most of the semiconductor QDs contain metals from Group II-VI and III-V in the periodic table, which 
dictate their high toxicity and large life-cycle environmental impact.[2] Therefore, it is imperative to design and 
fabricate QDs from more sustainable resources. 

The discovery of fluorescent carbon-based dots (CDs) in 2004 brought people’s attention to this novel zero-
dimensional carbon material,[3] which soon becomes a rising star. CDs are called carbon quantum dots in the early 
years of discovery. However, new studies revealed their fluorescence is not entirely governed by quantum 
confinement, and there’s large diversity in CDs’ structure. Thus, CDs are now often used as the genetic term. 

Similar to semiconductor QDs, CDs usually have an average particle size below 10 nm, synthesised by either “top-
down” methods involving cutting large carbon materials such as graphite into small fragments, or “bottom-up” 
approaches, with growing small precursor molecules such as glucose into large-conjugated domains. Building up 
CDs from small molecular precursors is considered to be more sustainable and environmentally friendly. 

Because of this synthetic diversity, CDs possess various chemical structures, ranging from mainly crystalline, a 
hybrid of sp2/sp3 carbon, to mostly amorphous, and typically have different functional groups on the surface. The 
schematic diagram in Figure 1 summarises the structural differences between semiconductor QDs and CDs, along 
with their distinct fluorescence mechanisms. For CDs, their structural complexity makes it more difficult to tune 
the fluorescence property, but their carbon-based structure also endows them with advantages such as low 
toxicity, high (aqueous) solubility, facile modification and low cost. Thus, it is essential to develop CDs with well-
controlled optical properties to complement or replace semiconductor QDs in the above-mentioned applications 
to achieve a more sustainable life-cycle across all stages. 

Figure 5 Illustration of the structure and fluorescence mechanism of semiconductor QDs and CDs.
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Current and Future Challenges
Although clearly more sustainable than their inorganic counterparts, critical challenges remain to be addressed 
for CD further development and implementation in the desired applications mentioned above. 

Firstly, the inhomogeneity of most of the synthesised CDs makes it difficult to acquire precise information about 
their chemical structure. Since their electronic and optical properties are closely correlated with their structure, 
this challenge has hindered the fine-tuning of their performance towards the desired applications.[4] Suitable 
purification methods and thorough fundamental studies are thus required to unveil the true structural features 
of different CDs, in order to investigate their evolution during formation for improving their reproducibility. 
Secondly, a clear structure-property correlation for each type of CDs needs to be established, similar to the 
quantum confinement mechanism for semiconductor QDs, to allow accurate control of their emission behaviour 
by tuning their structural features, such as crystallinity, particle size, heteroatom doping and surface functionality. 
For each type of CDs, to avoid pitfalls and misleading results, universal protocols, from synthesis methods to 
characterisations, need to be shared across the entire research community to allow benchmarking and correct 
data interpretation.[5]

Following upon this, the third challenge is to fine tune the CDs optical properties based on their structural features, 
to overcome the issues in wide emission range and low quantum yield, as well as establish a clear excitation-
emission relationship.

The fourth major challenge relates to up-scaling of the CDs production, which currently impedes their 
commercialisation. The CDs yields in the current synthesis approaches are too low to achieve a sustainable 
production stream. Strategies to improve the synthetic methods for higher CDs yield with minimal waste are thus 
necessary. 

Fifth, from the application aspect, improving the performance of CDs is a key priority to meet the standards for 
different applications. This includes higher quantum yields across the entire light spectrum for LED applications, 
accurate response upon stimulation for bio-sensing and bio-imaging, as well as long-term stability for solar cells 
and photo(electro)catalysis. For example, CDs are excellent photosensitisers and co-catalysts when coupled with 
semiconductor materials in solar energy conversion, but its stability over hundreds of hours, especially at high 
catalytic rates, has been rarely discussed in the existing literature, leaving a knowledge gap for further 
industrialisation.[6]

Advances in Science and Technology to Meet Challenges
Intensive research efforts have been made in the last decade to address the challenges mentioned 
above, and some progress has been achieved across different areas. Qu and Sun have summarised the 
recent progress in the formation mechanism and chemical structure of CDs from “bottom-up” routes 
with various precursors, where the fluorophores in different types of CDs have also been proposed and 
discussed.[7] These fundamental studies provide insights on the precise chemical structures of CDs, 
paving the way towards accurate property control by tuning the reaction parameters. In a recent report, 
Wu and co-workers established a machine-learning model based on hydrothermal-synthesised CDs, 
which is capable of screening the relationships between various synthesis parameters, experimental 
outcomes as well as process-related properties such as the fluorescent quantum yield.[8] Under the 
guidance of machine learning, the authors have obtained CDs with strong green emission with quantum 
yield up to 39.3%, demonstrating the great potential of machine learning in accelerating the 
development of high-quality CDs.
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As machine learning provides a possibility for fast screening different reaction parameters for CDs 
fabrication, the mass production challenge for a high CDs yield with minimal waste stream also needs to 
be addressed. Efforts have been made in the scientific community to develop industry-relevant synthesis 
routes. Vomiero, Gong and co-workers have reported a gram-scale synthesis of CDs with yield of 
approximately 18% through a space-confined vacuum-heating approach.[9] Those CDs with a high 
quantum yield of ~65% and large Stokes shift of 0.53 eV are used as luminescent solar concentrators for 
solar cells, which can achieve the power conversion efficiency of 1.13%. 

Advances in developing high-performance CDs have also thrived over the past few years, expending their 
potential applications from conventional areas such as LEDs, photocatalysis, bio-imaging, towards 
emerging fields such as anticounterfeiting, tumour therapy and self-healing materials, as shown in Figure 
2. These remarkable achievements unlocked the vast potential of CDs in the future society.

Figure 6 A summary of potential future applications of CDs. Reprinted with permission.[10]

Concluding Remarks
In summary, sustainable CDs from eco-friendly precursors have been intensively studied, which have 
shown promising applications in LEDs, photocatalysis, bio-imaging, anticounterfeiting, tumour therapy, 
self-healing materials and many more. Although many intriguing electronic and optical properties have 
been investigated, some critical issues and significant challenges remain to be addressed before 
achieving a lab-to-industry transition. This includes (i) understanding the formation process and 
revealing their precise chemical structure, (ii) identifying the fluorescence mechanism, (iii)accurate 
controlling of the optical properties, (iv) increasing the production yield, as well as (v) improving the 
performance in terms of activity, sensibility and stability. Recent advances have already established 
major milestones in these areas, but more systematic researches related to these issues are still needed 
to release the full potential of this charming material.
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Section 14 – Sustainable wind turbines

M J Platts
Institute for Manufacturing, Alan Reece Building, 17 Charles Babbage Rd, Cambridge CB3 0FS, UK. 

Status
In the public mind, infrastructure has always been there, is totally reliable, will always be there… and is utterly 
invisible.  It is a ‘given’… so it doesn’t need to be understood.  This is a fatal blindness when something new, such 

as wind energy, needs to be developed at infrastructural scale, as attention is misdirected to things that don’t 
matter, away from things that do.

The wind turbine industry is now a very large global industry, with over 650GW of wind energy capacity installed 
and over 50GW p.a. being added – over 25,000 wind turbines a year – by an industry employing over 1.3m 
people and turning over more than $100bn p.a., and with a very large R&D budget within the industry itself, so 
most of the important technical data are not in the public domain.  The industry is set to grow several-fold in the 
coming decades.  But little is known about its carbon footprint as an industry.  How good is it, and is it getting 
better?

With wind turbines, the blades that rotate in the sky catch the attention as well as the wind.  They are made of 
advanced composites and they are the exciting bit.  But if you are interested in sustainability, it is the hundreds 
of tonnes of steel in the tower and hundreds of tonnes of reinforced concrete in the foundations – the boring 
bits - that dominate the carbon footprint… and if you construct an access road to your wind farm across a peat 
bog you make the carbon footprint even worse… but nobody pays any attention to the carbon footprint, 

because wind energy is defined as ‘clean’… so ‘thought’ is unnecessary.

So, the key problem is the public blindness.  No figures are made available for the carbon footprint ‘cost’ per 

MWH of a proposed wind farm, because nobody asks for them.  The public may have many emotive opinions 
about it but they can have no informed discussion about it.  Whilst it is true that information is necessary for 
this, what is essential in the first place is wanting to know.  The driving public insistence needs to be “Show us 

the numbers”. 

Current and Future Challenges
One aspect is particularly important, and that is lifetimes.  In civil engineering shorthand, ‘infrastructure’ is what 
you build for your grandchildren.  There is an intention of permanence.  Things that last 20-25 years – which is 
the design lifetime of current and planned wind turbines - are not ‘infrastructure’, they are consumables.  We 
speak of being zero carbon by 2050.  But with design lifetimes of 20-25 years, all the wind turbines currently 
installed and in planning will be totally derelict by 2050.  You need to understand that it is not only the rotors, 
the gearboxes, the generators, the electronics and so on that fatigue to death, the towers and foundations do 
too.  Everything is derelict.  In Denmark there is a well-established wind turbine demolition industry removing 
the 1990s turbines that are now derelict, and this includes blowing up the concrete foundations.

With designing against fatigue, it in fact only involves the addition of a small percentage more material to double 
the fatigue life, which would take the life out from 20 years to 40 years.  If you are only looking at the economics 
this small increment to the first cost is undesirable.  But if you are looking at the carbon footprint this doubling 
of life halves the carbon footprint ‘cost’ per MWH of electricity delivered to the user.  And those turbines would 

then be still turning in 2050, not yet in need of replacement.  Down this road, the word sustainable begins to 
have meaning.  But nobody asks the question.

Page 61 of 130 AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100605.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

pt

Acc
ep

ted
 M

an
us

cri
ptAlan Reece Building, 17 Charles Babbage Rd, Cambridge CB3 0FS, UK. 

Acc
ep

ted
 M

an
us

cri
ptAlan Reece Building, 17 Charles Babbage Rd, Cambridge CB3 0FS, UK. 

has always been there, is totally reliable, will always be there… and is utterly 

Acc
ep

ted
 M

an
us

cri
pthas always been there, is totally reliable, will always be there… and is utterly 

invisible.  It is a ‘given’… so it doesn’t need to be understood.  This is a fatal blindness when something new, such 

Acc
ep

ted
 M

an
us

cri
pt

invisible.  It is a ‘given’… so it doesn’t need to be understood.  This is a fatal blindness when something new, such 

scale, as attention is misdirected to things that don’t 

Acc
ep

ted
 M

an
us

cri
pt

scale, as attention is misdirected to things that don’t 

The wind turbine industry is now a very large global industry, with over 650GW of wind energy capacity installed 

Acc
ep

ted
 M

an
us

cri
pt

The wind turbine industry is now a very large global industry, with over 650GW of wind energy capacity installed 
by an industry employing over 1.3m 

Acc
ep

ted
 M

an
us

cri
pt

by an industry employing over 1.3m 
people and turning over more than $100bn p.a., and with a very large R&D budget within the industry itself, so 

Acc
ep

ted
 M

an
us

cri
pt

people and turning over more than $100bn p.a., and with a very large R&D budget within the industry itself, so 
most of the important technical data are not in the public domain.  The industry is set to gro

Acc
ep

ted
 M

an
us

cri
pt

most of the important technical data are not in the public domain.  The industry is set to gro
coming decades.  But little is known about its carbon footprint as an industry.  How good is it, and is it getting 

Acc
ep

ted
 M

an
us

cri
pt

coming decades.  But little is known about its carbon footprint as an industry.  How good is it, and is it getting 

With wind turbines, the blades that rotate in the sky catch the attention as well as the wind.  They are made o

Acc
ep

ted
 M

an
us

cri
pt

With wind turbines, the blades that rotate in the sky catch the attention as well as the wind.  They are made o
advanced composites and they are the exciting bit.  But if you are interested in sustainability, it is the hundreds 

Acc
ep

ted
 M

an
us

cri
pt

advanced composites and they are the exciting bit.  But if you are interested in sustainability, it is the hundreds 
of tonnes of steel in the tower and hundreds of tonnes of reinforced concrete in the foundations 

Acc
ep

ted
 M

an
us

cri
pt

of tonnes of steel in the tower and hundreds of tonnes of reinforced concrete in the foundations 
bon footprint… and if you construct an access road to your wind farm across a peat 

Acc
ep

ted
 M

an
us

cri
pt

bon footprint… and if you construct an access road to your wind farm across a peat 

bog you make the carbon footprint even worse… but nobody pays any attention to the carbon footprint, 

Acc
ep

ted
 M

an
us

cri
pt

bog you make the carbon footprint even worse… but nobody pays any attention to the carbon footprint, 

because wind energy is defined as ‘clean’… so ‘thought’ is unnecessary.

Acc
ep

ted
 M

an
us

cri
pt

because wind energy is defined as ‘clean’… so ‘thought’ is unnecessary.

So, the key problem is the public blindness.  No figures are made available for the carbon footprint ‘cost’ per 

Acc
ep

ted
 M

an
us

cri
pt

So, the key problem is the public blindness.  No figures are made available for the carbon footprint ‘cost’ per 

MWH of a proposed wind farm, because nobody asks for them.  The public may have many emotive opinions 

Acc
ep

ted
 M

an
us

cri
pt

MWH of a proposed wind farm, because nobody asks for them.  The public may have many emotive opinions 
about it but they can have no informed dis

Acc
ep

ted
 M

an
us

cri
pt

about it but they can have no informed discussion about it.  Whilst it is true that 

Acc
ep

ted
 M

an
us

cri
pt

cussion about it.  Whilst it is true that 
this, what is essential in the first place is wanting to know.  The driving public insistence needs to be 

Acc
ep

ted
 M

an
us

cri
pt

this, what is essential in the first place is wanting to know.  The driving public insistence needs to be 

Current and Future Challenges

Acc
ep

ted
 M

an
us

cri
pt

Current and Future Challenges
One aspect is particularly important, and that is 

Acc
ep

ted
 M

an
us

cri
pt

One aspect is particularly important, and that is 

Acc
ep

ted
 M

an
us

cri
pt

lifetimes

Acc
ep

ted
 M

an
us

cri
pt

lifetimes
you build for your grandchildren

Acc
ep

ted
 M

an
us

cri
pt

you build for your grandchildren.  There is an intention of permanence.  Things that last 20

Acc
ep

ted
 M

an
us

cri
pt

.  There is an intention of permanence.  Things that last 20
urrent and planned wind turbines 

Acc
ep

ted
 M

an
us

cri
pt

urrent and planned wind turbines 
speak of being zero carbon by 2050.  But with design lifetimes of 20

Acc
ep

ted
 M

an
us

cri
pt

speak of being zero carbon by 2050.  But with design lifetimes of 20
installed and in planning will be totally derelict by 2050

Acc
ep

ted
 M

an
us

cri
pt

installed and in planning will be totally derelict by 2050
the gearboxes, the generators, the electronics and so on that fatigue to death, the towers and foundations do 

Acc
ep

ted
 M

an
us

cri
pt

the gearboxes, the generators, the electronics and so on that fatigue to death, the towers and foundations do 
Everything

Acc
ep

ted
 M

an
us

cri
pt

Everything is derelict.  In Denmark there is a well

Acc
ep

ted
 M

an
us

cri
pt

is derelict.  In Denmark there is a well
the 1990s turbines that are now derelict, and this includes blowing up the concrete foundations.

Acc
ep

ted
 M

an
us

cri
pt

the 1990s turbines that are now derelict, and this includes blowing up the concrete foundations.

With designing against fatigue, it in fact only involves the addition of a small percentage more material to double 

Acc
ep

ted
 M

an
us

cri
pt

With designing against fatigue, it in fact only involves the addition of a small percentage more material to double 
the fatigue life, w

Acc
ep

ted
 M

an
us

cri
pt

the fatigue life, which would take the life out from 20 years to 40 years.  If you are only looking at the economics 

Acc
ep

ted
 M

an
us

cri
pt

hich would take the life out from 20 years to 40 years.  If you are only looking at the economics 

Acc
ep

ted
 M

an
us

cri
pt

this small increment to the first cost is undesirable.  But if you are looking at the carbon footprint this doubling 

Acc
ep

ted
 M

an
us

cri
pt

this small increment to the first cost is undesirable.  But if you are looking at the carbon footprint this doubling 
of life halves the carbon footprint ‘cost

Acc
ep

ted
 M

an
us

cri
pt

of life halves the carbon footprint ‘cost

Acc
ep

ted
 M

an
us

cri
pt

then be still turning in 2050, not yet in need of replacement.  Down this road, the word 

Acc
ep

ted
 M

an
us

cri
pt

then be still turning in 2050, not yet in need of replacement.  Down this road, the word 
have meaning.  But nobody asks the question.Acc

ep
ted

 M
an

us
cri

pt

have meaning.  But nobody asks the question.



Advances in Science and Technology to Meet Challenges
Concerning the technology itself there are some exciting parts to the story.  The wind turbine blade industry has 
created a completely new sector of the global composites industry, currently producing 3/4m tonnes per annum 
of highly develop technical composites entirely different to both the aerospace and automotive industries, and it 
is set to grow several-fold in coming decades.  This is around 75,000 wind turbine blades a year – 300 a day –
averaging some 60m long and 10 tonnes in weight.  As energy capture capacity factors have increased from 
typically 20% to over 50%, developments in better carbon fibre, better glass fibre and particularly in better resin 
chemistry, plus more advanced aerodynamic design, have enabled blades to become highly optimised, efficient 
structures, steadily reducing their carbon footprint per MWH of electricity produced, and there is more to come.

Unfortunately, it is not matched by the carbon footprint per MWH of the wind turbine tower-and-foundation
support structures, which is increasing as they get bigger.  Globally, they already use over 5m tonnes of steel and 
15-20m tonnes of reinforced concrete annually.   As commodity materials they are cheap, but they have a high 
carbon footprint.  These are not optimised minimum mass structures.  They remain simple, unoptimized 
structures in which their mass is driven by a cube law as wind turbines get larger, whereas the energy capture, 
which is driven by the swept area of the rotor, only rises as the square.  And as the turbines have got bigger, 
towers have got proportionally taller, increasing in height from 0.8 times rotor diameter to 1.2 times.   Lifting the 
rotor higher in the sky has increased the energy capture, but now the tower and foundations dominate the 
carbon footprint [1].

The story offshore is similar.  Figure 1 shows the massive sub-sea foundation cylinder produced for a 6MW 
offshore wind turbine.  7.8m in diameter and 82.2m long, it goes down through more than 30m of water and 
more than 30m into the soft sea bed.  At 1,302.5 tonnes of steel, it weighs far more than the wind turbine and 
tower it is to support and is dominant in the carbon footprint analysis.

These towers and foundations are not minimum mass structures and they need to be.  Their design is shape 
constrained, not material constrained.  Improvement is only possible with changing the geometry.  Using guyed 
tower designs for instance, as is used in some smaller wind turbines, the quantity of material in the tower could 
be halved and the foundations reduced to less than a quarter.  To achieve better sustainability figures, this is 
where future attention is needed.

Figure 1. A 1302.5 tonne monopile [2]
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Concluding Remarks
To propose achieving a zero-carbon economy by 2050 and then completely ignore the carbon footprint of the 
technology being developed to get you there, is absurd.  Every wind farm proposal has, on the first page, a figure 
showing the cost per MWH of the electricity it will produce, and that figure is made public.  It is just as easy –
and just as important – to put a second figure beside it showing the carbon footprint ‘cost’ per MWH of 

electricity it will produce, so that this too can be discussed.  It should be public policy to ask for this figure, 
calculated in a standardised way that is audited to ensure comparability with other proposals, so that, together, 
they create a public ‘carbon cost’ awareness that will allow a scientifically and technically sound zero-carbon 
strategy to be developed.

Acknowledgements
The insights concerning the differences between what drives the economic cost and the carbon footprint ‘cost’ 

have emerged over time from a small number of student projects using example data made available privately 
for teaching purposes.  More widely, practitioners do not write papers.  Their strategic thinking is revealed by 
their design decisions and manufacturing choices, both fruitful and problematic, evolving over decades.  Luckily, 
wind energy is blessed by having a ‘journal-of-note’ – Windpower Monthly – that has grown through the 
decades with this industry, covering all conceivable aspects of both technology and policy worldwide, and 
trusted by all.  The whole industry has been the constant teacher of this practitioner.  Windpower Monthly is the 
reference that honours them all.
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Status

Photovoltaics (PV) remains one of the fastest-growing energy markets worldwide, which is overwhelmingly 
dominated by monocrystalline Si absorbers reaching power conversion efficiencies (PCE) of 24.4% across modules 
as large as 13177 cm2 [1]. While Si technologies will remain dominant in the utility sector, alternatively 
technologies are required for integration in densely populated areas as well as for powering every sector of the 
economy. One of these sectors include building-integrated PV, which requires several functionalities beyond PCE, 
such as light-weight, flexibility, low-toxicity, high stability [2].

Lead hybrid perovskites have recently become one of the leading emerging technology, reaching PCE values of 
16.1% in 802 cm2 modules [1]. Lead hybrid perovskites are characterised by large absorption coefficients, high 
carrier mobilities, high dielectric constants and long carrier-lifetimes, which are linked to the electronic properties 
of Pb2+ ion [3]. Given the similar chemical properties of Bi3+ and the significantly lower toxicity in comparison to 
Pb2+ ions, there is a strong drive towards identifying Bi-based inorganic solar absorber which can match the 
optoelectronic properties of lead hybrid perovskites. Furthermore, bismuth-chalcogenides and halides have been 
implemented in several technological applications such as thermoelectrics, ionising-radiation detectors, as well as 
topological and spintronic devices. Some of these applications display electronic and bonding structure relevant 
to solar PV. 

Figure 1. Difference between best power conversion efficiency (PCE) values reported for Bi-based PV 
devices and the corresponding Schockley-Queisser limit. PCE were obtained from references 
[3–5](AgBixIy, Cs3Bi2I9, Cs2AgBiBr6), [6](Bi2S3; CuxBiSy; AgBiS2), [7](BiI3), [8](BiSI), [9] (BiOI) and 
[10](BiFeO3).
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Figure 1 shows the state-of-the-art PCE of prototype PV devices featuring inorganic Bi-based compounds. AgBiS2

have shown the highest PCE value reported (6.3%), while BiFeO3 all-oxide PV devices have reached 4% [6], [10]. 
Figure 1 also contrasts the experimental values and the corresponding Shockley-Queisser limit based on the 
material bandgap. The trends clearly illustrate the scale of the challenge not only on the preparation of high-
quality materials but crucially on rationalising power conversion loss mechanisms as well as to establishing 
effective device design principles.  

Current and Future Challenges

Three key challenges can be identified towards the development of efficient Bi-based PV devices, namely carrier 
lifetime, anisotropic carrier mobility and interface engineering. The minority carrier lifetime associated with most 
reported Bi-absorbers, suitable for single-junction PV devices (Eg < 2 eV) such as BiI3, BiSI, BiOI, BiPS4, are in the 
range of several nanoseconds[7]–[9], [11]. Only a few wide bandgap materials such as BiFeO3 and Cs2AgBiBr6 have 
shown lifetimes from 10 ns up to 1s [3],[5]. Lee et al. suggested that the shorter carrier lifetime in Bi-based 
compounds relative to Pb-based perovskites is connected with the relatively smaller contribution of the Bi 6s2

lone-pair to the valence band, which leads to deeper point defects acting as recombination centres [3]. On the 
other hand, it is yet to be assessed the effect of surface defects on the carrier lifetime of these complex materials. 
For instance, significant improvement in AgBiS2 device performance has been achieved through surface 
passivation [6]. Our recent study on BiPS4 also points towards a significant contribution from surface 
recombination [11]. Thus, it is imperative to understand the process leading to a decrease in the carrier lifetime 
of Bi-compounds to develop appropriate preparation methods and surface passivation strategies. 

Bismuth materials can be prepared as 0-dimensional (i.e. quantum dots) such as the case of Cs3Bi2I9, 1D (BiSI), 2D 
(BiI3) or 3D (Cs2AgBiBr6) structures. In the case of 1D and 2D materials, the carrier effective masses along the 
directions of van der Waals interaction are significantly larger i.e. lower charge-mobilities than in the directions of 
the covalent bonding. Most of the growth methods reported so far lead to textured thin films with random crystal 
orientation. To improve charge transport across the devices, the new deposition strategies should be developed 
with control crystal orientation [6],[7],[10].

Challenges associated with device engineering can be seen by the band edge energy offset of the Bi-compounds 
to conventional charge-transporting layers illustrated in Figure 2.  It can be seen that Bi-compounds are 
characterised by deep-lying valence band edge, which is not optimally aligned with hole-transporting layers such 
as 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene, abbreviated as spiro-omeTAD. We 
have obtained promising performances in the case of BiSI and BiI3 employing poly(9,9-di-n-octylfluorenyl-2,7-diyl), 
commonly referred to as F8, which shows a better band alignment [7], [8].
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Figure 2. Band edge energies offset of several Bi-compounds along with conventional electron- (ETM) 
and hole-transporting materials (HTM) [6], [11]. CBI, ABS, CABB, ABI, BPS and F8 stand for 
Cs3BiI9, AgBiS2, Cs2AgBiBr6, Ag3BiI6, BiPS4 and poly(9,9-di-n-octylfluorenyl-2,7-diyl), 
respectively. 

Concluding Remarks

Bi-based materials offer a range of exciting structural and optoelectronic properties which can be exploited in the 
context of thin-film PV. Despite similar electronic properties between Bi3+ and Pb2+ cations (i.e. ns2 lone-pairs), we 
strongly believe that implementing the same strategies as for Pb-perovskites cells will not lead to efficient PV 
devices. In this sense, understanding the processes limiting carrier lifetime (bulk v surface defects), as well as 
designing strategies for oriented crystal growth are two important areas of research. Furthermore, we also 
propose a more rational approach to engineering the boundaries to these materials. For instance, compositionally 
graded heterojunctions such as those developed for high-efficiency CdTe and CIGS solar cells, rather than abrupt 
heterojunctions as in Pb-perovskite cells, may hold the key for taking these systems to technology relevant 
performances.
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Section 16 – Sustainable battery materials

Heather Au, Hande Alptekin and Maria Crespo-Ribadeneyra
Faculty of Engineering, Department of Aeronautics, Imperial College London, SW7 2AZ UK.

Status
To achieve the target of carbon neutrality by 2050, a shift in energy production to renewable sources is imperative. 
Sustainable batteries will play a prominent role in our changing energy economy; indeed, batteries could enable 
30% of the required reductions in carbon emission in the transport and power sectors.[1] In pursuit of sustainable 
technologies, it is essential to consider availability of resources, environmental efficiency of manufacturing 
processes, scalability, toxicity, safety, and end-of-life pathways. 

Li-ion batteries (LIBs), which currently dominate the market, depend on graphite and transition metal oxides for 
the anode and cathode, respectively. However, natural graphite has been classified as a critical resource by the 
European Union (EU), not least because there are no natural resources within the EU, and while synthetic graphite 
is an alternative, it is more expensive to produce, and derived from petroleum; thus, recovery of graphite may 
become more important in the future. Of the existing cathode materials, lithium cobalt oxide (LCO), lithium nickel 
cobalt manganese oxide (NMC) and lithium nickel cobalt aluminium oxide (NCA) contain cobalt, which is 
considered an endangered resource and depends heavily upon mining in the Democratic Republic of Congo.[2]
Cathodes based on lithium manganese oxide (LMO) and lithium iron phosphate (LFP) rely on elements which are 
earth abundant, and therefore present a more attractive alternative to traditional Co-based electrodes.

The environmental impact of the other components within a battery must also be evaluated. Typically, 
polyvinylidene fluoride (PVDF) is used as the binder, but processing requires the use of toxic and teratogenic N-
methyl-2-pyrrolidone (NMP), and the fluorinated degradation compounds complicate disposal. Similarly, lithium 
electrolytes contain fluorine-based anions such as hexafluorophosphate (PF6

-), bis(trifluoromethane)sulfonimide 
(TFSI-) and bis(fluorosulfonyl)imide (FSI-), which can degrade to toxic and reactive products. In addition, 
commercially available LIBs use polyolefin separators, derived from petrochemical sources, while copper, of 
limited availability, is used for the current collector.

Driven by these shortcomings, alternative battery chemistries have therefore been the subject of much research, 
although sustainability considerations have always been placed below material performance. However, the 
urgency of the climate crisis is pushing sustainability criteria to the forefront to achieve a healthier battery 
economy.

Current and Future Challenges
Given the forecasted demand for energy storage, the availability of lithium itself is uncertain, while uneven global 
distribution raises geopolitical concerns. The enormous and growing body of research into new battery 
chemistries thus focuses on other alkali metals, Na and K, as well as multivalent-ion batteries (MVIB) based on 
earth abundant Mg, Ca, Al or Zn.[3] The development of these technologies suffers from several problems: Na-
and K-ion batteries (NIBs and KIBs) have a lower energy density, so new active materials must be developed; MVIB 
have higher specific capacities, but these chemistries are still in their infancy with stable, high-energy cathodes 
and non-corrosive high-voltage electrolytes remaining to be discovered. Alongside the development of suitable 
high-performance materials, efforts must also be concentrated on improving the overall sustainability credentials 
related to three main aspects: materials resource management, production energy cost, and end-of-life pathways 
(Figure 7).
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Figure 7. Considerations for designing future sustainable batteries in terms of materials resource management, processing and end-of-life 
pathways.

The materials currently used in existing batteries are derived from steadily depleting sources. Often, materials 
obtained from mining can only be found in geographically limited regions and may rely on unethical labour. These 
materials must be replaced with alternative and renewable precursors, ideally evenly distributed globally.

Streamlined, low-energy manufacturing must be targeted for fully sustainable materials. In the production of 
carbons, as active materials or conductive additives, this requirement is especially difficult, since energy-intensive 
high temperature annealing is necessary. Decreasing the volumes of solvents or switching to aqueous media will 
reduce the environmental impact; however, many cathode materials are extremely sensitive to water, and parallel 
materials discovery must be pursued to develop cathodes able to withstand aqueous processing. Additional 
consideration must also be given to by-products, which must be easy to dispose of safely, or harnessed for other 
applications.
Lastly, disposal or recycling routes must be redesigned. At present, existing LIBs are difficult to dismantle, contain 
harmful components, and do not biodegrade, posing a large-scale problem of waste disposal.[4] Greater emphasis 
must be placed on designing batteries either for facile disassembly, or to be fully biodegradable. End-of-life design 
is strongly linked to materials resource management, because if materials can be efficiently recovered, then 
reliance on depleting sources may be alleviated.

Advances in Science and Technology to Meet Challenges
New technologies have emphasised material source as a key consideration; NIBs replace Li with abundant Na, 
while sulfur is a readily available cathode for Li-S batteries. Carbon materials, found across all battery chemistries, 
are increasingly shifting towards biomass precursors.[5] However, to achieve the requisite conductivity, 
alternatives to high temperature treatment must be explored, such as hydro-, solvo-, ionothermal synthesis, and 
catalytic- or microwave-assisted processes.[6]
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Water-processable, biomass-derived or synthetic biodegradable polymers can exhibit excellent chemical and 
mechanical properties, already outperforming PVDF when used as binders in carbon, Sn or Si anodes.[7] Further, 
lignin- or cellulose-derived mats may be a renewable alternative to polyolefin separators or foil current 
collectors.[8] Future advances will be achieved by introducing functionalities onto these polymer scaffolds tailored 
to specific battery chemistries.

Polymers with enhanced ionic conductivity could also replace organic electrolytes, improving both sustainability 
and safety. Despite their cost, ionic liquids are also promising; easy to recover and recycle, their environmental 
impact is lowered. Replacing organic electrolytes for aqueous alternatives is also attractive, although the limited 
operating voltage window remains challenging; water-in-salt electrolytes are one potential solution to overcoming 
the problem.[9]

While the energy demands of battery production cannot be completely eliminated, offsetting them against longer 
battery life will improve sustainability. Efforts to prolong lifetime should concentrate on protecting component 
structure and stabilising interfaces, for example by introducing self-healing ability, as well as in-situ monitoring to 
aid diagnostics.[10]

Once battery life is exhausted, full biodegradability of cell components must be targeted: one example study 
produced an all-organic LIB based on 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), graphite and 
cellulose.[8] Alternatively, the battery must be easily disassembled to allow extraction, purification and recycling 
of individual parts. However, designing a cell to be mechanically and chemically robust during operation, yet easily 
dismantled after use, is highly challenging. Approaches based on electrode patterning or transient bonds could 
potentially allow strong interactions when cycling, but easy separation of components for recycling. It is clear that 
end-of-life pathways cannot be an afterthought to the rest of the battery manufacturing process: disposal or 
recycling routes must be central to the initial material or cell design.

Concluding Remarks
In the development of batteries, performance will always be the primary consideration. However, emphasis on 
sustainability is growing and both factors must now drive the discovery of new materials. For materials to be 
deemed fully sustainable, they must be derived from readily available abundant or renewable sources, by ethical 
means; processing must be energy efficient with no harmful by-products; and they should be easily biodegradable 
or recoverable, to allow repeated use.

While not falling directly within the sustainability remit of the material itself, developing approaches to prolong 
the battery lifetime will offset the energetic cost of production against useful life. Understanding the degenerative 
effects of extreme thermal, mechanical, and electrochemical stress during operation, or simply ageing, will be key 
to designing these strategies. Therefore, to achieve truly sustainable battery materials, efforts must be made not 
only in advancing sustainable materials discovery and processing but critically examining the entire life cycle of 
the battery to design for a circular economy.
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Section 17 – Sustainable materials for H2 storage 
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Status

As a sustainable fuel vector, hydrogen has the potential to be a key technology in the race to limit climate 
change. It can be a means of balancing supply and demand of energy from renewable sources such as wind and 
solar power and is an alternative low-carbon fuel for applications that are challenging for electrification (such as 
long-haul flights or long-distance road transport)[1]. However, the safe and efficient storage of hydrogen (a light, 
flammable gas) remains a significant engineering challenge – one that could benefit from new materials-based 
solutions.
While state-of-the-art for hydrogen storage on-board vehicles involves storage as a cryogenic liquid or as high-
pressure gas, the specialised, lightweight carbon fibre-wound composite tanks needed for these applications are 
expensive to produce. In addition, to increase the storage density of the H2, high pressures (of typically 350 bar 
or 700 bar) or exceedingly low temperatures (~20 K, in the case of liquid H2) are required. These extreme storage 
conditions present safety concerns and increase costs [2]. As an alternative approach, storage of hydrogen in 
solid-state materials offers the ability to contain practical amounts of hydrogen at lower pressures than 
compressed gas tanks, thus allowing for safer storage and lower cost, more conformable fuel tanks [3].

In terms of sustainability, solid-state hydrogen storage systems involving physical adsorption of gases can result 
in less material waste and greater cyclability then systems based on chemical storage (e.g., metal hydrides or 
complex hydrides), where storage efficiency may degrade over time or generate waste intermediates. In 
addition, since physical adsorption is based on weak interactions between H2 and the surface of the material, 
uptake and release of the hydrogen is rapid, can be simply controlled using changes in pressure or temperature 
and can be cycled reversibly without loss of performance. However, there are still outstanding challenges to be 
met, and with legislated deadlines for decarbonisation fast approaching, the search for materials-based 
solutions will become even more intensive. 

Current and Future Challenges

Of the current challenges in adsorptive hydrogen storage, three key areas of relevance to sustainability involve: 
(i) identification of materials with sufficient storage capacity under close-to-ambient conditions; (ii) optimisation 
of materials performance; and (iii) large-scale manufacture of the materials for practical application.

In terms of identification of appropriate materials, the challenge is presented by the sheer variety of porous 
materials available, with carbon-based materials and metal organic frameworks (MOFs) perhaps being the most 
heavily researched over the past few decades. In an effort to provide benchmarks for the development of 
hydrogen storage systems, the US Department of Energy (US DOE) has compiled guidance on some of the key 
technical targets for use in light-duty road transport [4], with system capacities expressed in terms of gravimetric 
(kg H2/kg system) and volumetric (kg H2/L system) targets. To date, development of porous materials for 
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hydrogen storage has focused on the maximisation of surface areas, pore volumes (as a proxy for storage 
capacity) and increasing isosteric enthalpies of adsorption to improve the amount of hydrogen stored at ambient 
temperatures (e.g., by incorporating open metal centres/metal-decorated surfaces). Discovery of materials that 
have high hydrogen capacities has traditionally involved costly and challenging experimentation, to uncover 
empirical relationships such as the dependence of hydrogen capacity with BET surface area and the dependence 
on extremely small pores. (i.e., micropores of diameter < 2 nm) [5].

With regard to optimisation of performance, the storage capacities of materials such as nanoporous carbons and 
MOFs are maximised at low temperatures and are correlated with the material’s structure. Experimental 

evaluation of the storage capacities of the materials under different operating pressure and temperature ranges 
is time-consuming and may not lead to an optimal materials solution. A closely-related aspect is the 
reproducibility or trustworthiness of experimental measurements of porous materials; data that is misleading or 
irreproducible can lead to much wasted effort and resources [6]. 

A further consideration in terms of sustainability of such materials solutions is the sheer scale of the application. 
If even a fraction of the vehicles in production today were converted to hydrogen fuel cells vehicles employing 
porous materials for on-board storage of hydrogen, the material demand for the storage component would be 
of the order of hundreds of thousands of tons of adsorptive materials. The challenge is thus to find a materials 
solution that addresses all of these needs, while acknowledging the speed at which we need to act to meet our 
Net Zero targets.

Figure 1: Inter-related challenges and advanced tools in the development of sustainable materials-based solutions for 
hydrogen storage.
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Understanding the key structural characteristics that will lead to a practically useful hydrogen storage material 
can usefully direct the search for new materials. For large-scale screening of systems for H2 storage, the 
application of machine learning [7], structure-based computational approaches to prediction of storage capacity 
[8] and use of data mining [9] for high-throughput analysis can be far more time- and materials efficient than 
experimentation alone. Such computational approaches have been used to inform targeted synthesis, for 
example in predicting the structure and properties of a NU-100 metal-organic framework that was later shown 
to have a record high surface area and gravimetric capacity (13.9 wt% at 100 bar and 77 K [10]) exceeding the 
2025 US DOE targets of 5.5 wt% (though it should be recognised that the DOE targets refer to the whole system, 
rather than the material alone). In terms of validation, variability in experimentally-determined surface areas 
and hydrogen storage capacities also lead to difficulties in successfully comparing different types of porous 
materials; thus, recent efforts toward standardising methods for calculating and reporting surface areas and 
hydrogen uptakes are recognised to be valuable and of universal benefit [6].

In terms of optimising performance under real-world conditions, better understanding of systems integration 
has also helped steer research. An example is the recent focus on usable deliverable hydrogen capacities (which 
consider the need for hydrogen to be delivered to a fuel cell at pressures greater than atmospheric) rather than 
total hydrogen capacities (often measured with respect to a vacuum) [5].  An example of the application of 
computational prediction alongside practical targets has led to the development of NU-1501- Al MOF material 
displaying gravimetric and volumetric hydrogen capacities (14 wt %, and 46 g. L-1) that exceed the U.S. 
Department of Energy targets using adsorption and desorption at 100 bar and 5 bar pressure, respectively, and 
temperatures of 77 K and 169 K [11].

Finally, with regard to the scale of production, carbon materials are advantageous as they can be fabricated 
from waste biomass feedstocks, are non-toxic and can be produced on a large scale. However, new methods 
including mechanochemical synthesis, spray-drying or continuous approaches have also been reducing the 
environmental impact of large-scale production of more complex porous materials such as MOFs [12]. Due to 
the scale of the application, assessment of the whole life cycle of the material will play an important part in 
determining which future solutions are implemented.

Concluding Remarks

The urgency for hydrogen storage solutions that can operate at the volumes needed to allow widespread 
application must drive smarter and more holistic approaches to materials development. Advances in 
computational modelling, data mining and prediction of storage capacity are expected to make the search far 
more targeted, rapid and efficient, while standardisation of experimental testing methods will also reduce 
wasted effort.

However, materials development cannot be focussed on developing materials purely for higher capacity. 
Considering all aspects of the sustainable production, use and cyclability of any materials-based solution is 
imperative to ensure that in solving one problem, we are not creating additional sustainability issues.
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Section 18 – Sustainable catalysts for fuel cells

Tim-Patrick Fellinger
Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany

Status
Sustainable catalysts are omnipresent as enzymes, efficiently facilitating most complex reactions at ambient 
conditions. Also, the live-spending (di)oxygen reduction reaction (ORR), is facilitated by enzymes like cytochrome-
c-oxidase, which shows turnover frequencies ~500 s-1, 20x higher compared to platinum nanoparticles and still 
twice as active as bulk platinum at 0.8 V vs. RHE.[1, 2] Therefore, it is no surprise that the development of 
sustainable catalysts for hydrogen-oxygen fuel cells was originally inspired by a enzymatic motif. Jasinsky showed 
in 1964 that the macrocyclic cobalt-phthalocyanine molecule, an analogue of the oxygen-binding heme molecule, 
is able to catalyse the ORR.[3] Modern analytical techniques today leave little doubt, that the square-planar 
coordination of four nitrogen atoms around a central metal-ion (M-N4 motif) found in heme is the functional unit 
of so-called atomically dispersed M-N-C catalysts.[4] Enzymes decay relatively quickly (because of their organic 
backbone), however the active-sites in M-N-Cs are embedded into inorganic carbon, which is also part in durable 
commercial Pt/C catalysts. While substantial reduction of precious metal amounts is feasible to allow wide 
application of fuel cell cars, M-N-Cs are the most promising class of precious metal free fuel cell catalysts today. 

Practically relevant polymer-electrolyte-membrane fuel cells (PEMFCs), still rely on high loadings of platinum, the 
pure metal with the highest catalytic activity towards the ORR. The reduction of platinum is progressing, however 
for reasons of cost competition rather than for sustainability. In context of growing efforts to utilize hydrogen in 
alternative energy grids, this will however become a topic of increasing importance. Despite the substantial 
progress in the last 15 years,[4-7] sustainable precious-metal-free catalysts currently still lack competitive 
performance (activity, selectivity and stability) as compared to platinum-based catalysts.[8] However, recent 
developments suggest that M-N-C catalysts with practically relevant catalytic activity and stability may be reached 
in the future, even for demanding PEMFC applications such as in the automotive sector. Realization of equally 
performing M-N-Cs compared to commercial Pt catalysts would facilitate the transition to sustainable energy 
schemes by the balancing of the intermittent supply of sustainable electricity. The scientific and engineering steps 
to develop such functional M-N-C based technology may cause breakthroughs also in other chemistry-related 
energy conversion technologies having potential for substantial socio-economical changes in general.
   

Current and Future Challenges
M-N-C catalysts can be regarded as the most studied subgroup of the recently emerging atomically dispersed 
catalysts or single-atom catalysts. The activity has been limited by stagnating catalyst loadings, hence limited
active-site density (SD). This is because side-phases increasingly form throughout the synthesis if higher catalyst 
loadings are targeted, which is typically stated as dilemma of M-N-Cs or Fe-N-Cs, the most common type of M-N-
C as cathode catalyst in PEMFCs. New preparation protocols recently lead to a steady increase in reported SDs, 
especially for cases in which Zn ions were present in the precursor mixture.[8-10] It has been shown that Zn2+ can 
imprint the N4 binding site for active metal ions, while being less reactive towards harmful side-phase 
formation.[10]

Active-site imprinting therefore in principle allows to increase the catalyst loading until the intrinsic conductivity 
of the [FeNx]NyCz becomes limiting. The quantification of utilizable active-site densities is a current topic of 
research, a fundamental criterium to determine site-specific catalytic activities as well as stabilities. Several 
methods have recently been developed and can be applied to M-N-Cs without contamination with harmful 
inorganic side-phases.[6, 11] However, there is still a large range of active-sites with different chemical structures 
to be considered, so that specific activities and durability still need to be considered average values.[12] Besides 
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M-N4 sites, in which the coordinating N-atoms can be of either tetrapyridinic or tetrapyrrolic nature, the presence 
of penta-coordinated M-N5 sites, trigonal M-N3 sites and sites with other or mixed coordinating atoms such as C, 
O, S etc. are discussed. A future challenge is to quantify site-specific catalytic activity, selectivity and stability to 
be able to target the most active, selective and stable catalytic sites. This might have a disruptive impact on the 
applicability of sustainable fuel cell catalysts, depending on the performance of the best catalytic site. The ultimate 
challenge is the preparation of catalysts by design, which would allow for the adoption of more complicated 
enzyme principles employed by Nature to unleash the potential that lies behind the still very sluggish reaction 
kinetics for the ORR even for platinum-based catalysts.

Advances in Science and Technology to Meet Challenges
Assuming that the SD of future Fe-N-Cs is only limited by their intrinsic conductivity, a projection for future catalyst 
performances can be made. A conductivity limit may be speculated at fifty carbon atoms per FeN4 site, e.g. 
[FeN4]N4C50, corresponding to about seven mass percent of iron at maximum. Further assuming a reasonable 
catalysts layer density of 0.4 g ˑ cm-3[9] gives a theoretical SDvol of 1.04 mmol ˑ sites ˑ cm-3. With an empirically 
found (average) turnover frequency of 1.6 e- ˑ s-1 [11] and full site utilization, a catalyst layer thickness of τ=75 µm 
would then be sufficient to match the kinetics of commercial PEMFC cathodes (τ=10 µm, 50 wt.% Pt/C), without 
running into severe mass transport issues.[7] The moderate stability of current Fe-N-Cs is currently far from 
practical requirements of 5000 h.[8]  

However, increased SDs in combination with improved selectivity have the potential to shift the situation into an 
adequate range. The stability may increase proportional to the SD, while selectivity enhancements may have a 
larger effect. The ultimate know-how to meet future challenges would be the synthetic control to define chemical 
composition and structure on the sub-nanometre level. To develop accurate synthetic protocols for the chemistry 
of M-N-C materials standardized methods and more powerful analytical tools for the characterization of the 
amorphous, lightweight materials may arise to support such development. The merge of macromolecular carbon 
chemistry and pyrolytic carbon chemistry may result in progress if 3D systems are increasingly addressed. In a first 
step, the selective synthesis of single-site M-N-C catalysts is a requirement to rank the variety of different active-
sites (by means of activity, selectivity and stability) and account for the potential with regards to commercial 
application. In the second step a scalable and inexpensive (relatively “costless”) preparation of the respective 
highly structured and heavily loaded single-site catalyst could suffice the spatially demanding fuel cell application. 

Advanced synthetic techniques may further allow for the design of more complicated, enzyme-inspired 
electrocatalysts e.g. mimicking the active-sites of cytochrome-c-oxidase or transfer other enzyme-principles to 
electrocatalytic chemical conversions. 

Concluding Remarks
M-N-C catalysts are the most promising class of sustainable fuel cell catalysts applied in PEMFCs. The technological 
immaturity of alkaline fuel cells currently still omits the practical use of metal-free carbon materials as well as 
other sustainable catalysts. M-N-C catalysts allow to combine achievements of Nature by means of enzyme 
reactions with the accomplishments of human technology by means of electricity and conductive synthetic matter. 
The coming decade is expected to reveal, if the heme-inspired catalytic M-N4 site in combination with a 
synthetically optimized conductive carbon matrix will be sufficiently performing to justify the high costs of other 
required fuel cell components, resulting in a commercially viable product. Regarding the progress of the field in 
the last ~15 years, the current projections, and the library of other naturally employed catalytic sites, a disruptive 
impact of M-N-C catalysts on the chemical energy conversion technologies seems to be a reasonable scenario.  
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Section 19 – Bioinspired sustainable materials for ammonia production 
Jesús Barrio,1,2 Olivia Westhead, 1 Claudie Roy,3 Ifan E.L. Stephens1
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2. Department of Chemical Engineering Imperial College London, England.
3. Energy, Mining and Environment Research Center, National Research Council Canada

Status
Ammonia is a widely utilized chemical that allowed the growth of world population in the last century due to its 
application as fertilizer and energy carrier. Currently, ammonia is produced in centralized industrial plants through 
the Haber-Bosch process, which combines atmospheric nitrogen with hydrogen derived from the combustion of 
hydrocarbons at high temperatures and pressures (400 °C and 150 bar) in the presence of an Fe catalyst. The 
highly energetic triple bond of N2 (941 kJ mol-1) requires high temperatures and high pressures to enable its 
dissociation and subsequent reduction, implying large infrastructure and centralized production. Moreover, since 
H2 is derived by steam reforming methane, it results in 1% of global energy consumption and the production of 
1.4% of global CO2 emissions. [1] The production of such a chemical utilizing renewable feedstocks and electricity 
is therefore highly appealing, as it would allow production on site, rather than in centralized structures, and under 
ambient conditions. Consequently, low temperature electrochemical nitrogen fixation has emerged as a 
sustainable alternative to the Haber-Bosch process, where electrons reduce atmospheric N2 in the presence of 
protons on the surface of an electrode, acting as a cathode and the protons would ideally be derived from oxidising 
water. This process would have tremendous economic and social implications in sub-Saharan Africa due to the 
lack of transportation network and its potential for producing ammonia from renewable energy to be used as 
fertilizer and seasonal energy buffer.

Singh et al estimated, if 100% Faradaic selectivity towards nitrogen reduction was achieved, operating at 1 V total 
cell overpotential, the power needed to feed a standard field with ammonia for a year would be 145 W/hectare, 
which could be provided by a 5 m2 solar cell. Obviously the size of the solar cell would be larger if the electrolyser 
had a lower Faradaic selectivity and higher overpotential. [2] In addition to selectivity and overpotential, 
sustaining high current densities is important to minimise capital costs: the US Department of Energy set the target 
of 300 mA cm-2 at 90% Faradaic efficiency of N2 to NH3, similar to state-of-the-art water electrolyzers. [3] Thus far, 
the only solid electrode in the literature which can unquestionably reduce N2 to NH3 is an in-situ deposited lithium 
electrode in an organic electrolyte with ethanol as a proton source. [1], [4] Conversely, no aqueous system 
employing a solid electrode has yielded  quantities of NH3 that are sufficiently high to be distinguishable from 
adventitious contamination; [5] almost all electrodes simply yield the competing side reaction, H2 evolution. There 
is therefore a need to develop novel, sustainable materials which enable efficient nitrogen electroreduction. In 
this sense, nature may provide suitable inspiration: nitrogen reduction is carried out under ambient conditions by 
the nitrogenase enzyme through its Mo-Fe-S-C catalytic cofactor with up to 65% Faradaic selectivity.[6] The 
emulation of nitrogenase on a solid electrode could lead to the efficient activation and hydrogenation of N2 (Figure 
8a,b).  
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Figure 9. Structure of the catalytically active cofactor within the nitrogenase enzyme (a). [6] Schematic representation of the synthesis of 
a carbon-based bioinspired electrocatalyst, yet to be realised experimentally (b).

Current and Future Challenges
One of the major challenges in the field of nitrogen reduction is that all metallic surfaces display scaling relations 
between the adsorption energy of the sole intermediate of H2 evolution, *H and all the nitrogen containing 
intermediates of nitrogen reduction, e.g. *N2, *N2H, *N2H2, *N, etc. [7] As such, in an aqueous electrolyte, *H 
poisons N2 reduction, favouring H2 evolution.  

The only electrochemical process that has been rigorously shown to produce ammonia is a Li-mediated approach 
in an organic electrolyte with ethanol as a proton source.[1] This is putatively due to the formation of a solid 
electrolyte interphase which can inhibit the transport of protons towards the active site, emulating the 
hydrophobic peptide matrix of nitrogenase that controls the release of H+ species through a proton wire.[6]
Additionally, this interphase can potentially be tailored by manipulating the chemical composition of the 
electrolyte, borrowing insight from lithium ion battery science.[8] However, the use of lithium restricts operation 
to lithium plating potentials, building in an intrinsic overpotential and low energy efficiency, which prevent its 
industrial scale-up. Moreover, water oxidation would be a far more convenient source of protons than ethanol 
oxidation.

Advances in Science and Technology to Meet Challenges
The discovery of a solid catalyst that emulates nitrogenase would be a game changer. We propose that the key 
enabling features would be (a) highly reactive metal site consisting of two contiguous Fe atoms, coordinated to 
inert sulfur (b) restricting access to protons, oxygen and electrons. [6] DFT calculations have revealed that isolated 
dimers surrounded by an inert substrate  exhibit exceptionally low barriers for N2 dissociation (Figure 1b). [9] The 
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difficulty of preparing these catalysts lies in the tendency of isolated metallic moieties to aggregate owing to their 
large surface energy. To avoid such aggregation into nanoparticles, loadings are often kept low (1 – 2 wt%), which 
presents further challenges in the precise elucidation of their chemical and electronic state through advanced 
characterisation techniques. The construction of an appropriate support which sustains a high number of binding 
sites for stabilizing isolated dimers is critical. In this regard, nitrogen-doped carbons hold the potential to become 
an ideal platform for carrying this task, owing to their high conductivity and hierarchical porosity and facile tuning 
of their chemical composition and pore size. Additionally, while the stability of enzymes attached to electrodes is 
low, we envision that a solid inorganic electrode might be more durable. Moreover, to maximise circularity, the 
materials used should be amenable to recycling. However, the production of these materials often entails complex 
methodologies; consequently sustainable C-N based precursors and new synthetic routes that can provide 
crystalline products with well-defined pores and homogeneous distribution of heteroatoms with lone electron 
pairs (N, S) in a large scale are sought after.[10]

Due to the number of different sources and quantity of contamination, it is critical to carry out electrochemical 
experiments with quantitative isotopically labelled 15N2 as the feed gas to be certain of nitrogen reduction; it is 
essential that multiple checks are performed and that the ammonia concentration increases with reaction time or 
charge passed, both in the labelled experiments. Techniques such as NMR, FTIR or Mass spectrometry can 
distinguish between 15NH3 and 14NH3  for the accurate and rigorous quantification of NH3. [1]

In order to understand the working mechanism of sustainable carbon-based bioinspired catalysts for nitrogen 
reduction, we can borrow methodologies from adjacent fields of electrochemistry and catalysis. For instance, in-
situ Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) can probe the potential dependent formation 
of adsorbates such as *NH or *N2H2.[11] Furthermore, in-situ Electron Paramagnetic Resonance (EPR) 
spectroscopy, a technique well used in homogeneous catalysis, [12] could elucidate the environment around the 
active metal centre.

Concluding Remarks
While low-temperature electrochemical approaches have recently emerged for ammonia production, the 
realisation of an efficient bioinsipired sustainable catalyst remains a formidable challenge. The success of the Li-
mediated approach may be because it affords the controlled diffusion of protons to the electrode, emulating the 
hydrophobic peptide matrix in the secondary structure of enzymes. Going further, the formation of isolated 
metallic dimers in an inert C-N or C-S based substrate could emulate the active site of the catalytic cofactor within 
the MoFe-nitrogenase, which is unique in activating and promoting the reductive hydrogenation of the highly 
stable N2 molecule. By combining the power of the metal dimer catalyst and lithium mediated approaches, it may 
be possible to mimic the nitrogenase enzyme over a robust, recyclable, solid electrode. Nitrogenase currently 
outperforms all anthropic attempts at green ammonia synthesis under ambient conditions. If a solid 
electrocatalyst could achieve the same per-site activity and efficiency as nitrogenase, it would be revolutionary
(Figure 2). 
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Figure 10. NH3-producing electrolyzer with a bioisnspired material acting as a working electrode where the N2 reduction takes place: N2 + 
6H+ + 6e-→ 2NH3. O2 evolution occurs at the anode: 2H2O → O2 + 4H+ + 4e-
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Section 20 – Sustainable materials for CO2 capture

Sabina Alexandra Nicolae 1,2,3

1. Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London 
E1 4NS, UK.

2. National Institute of Materials Physics, 077125, Magurele, Romania.
3. Department of Chemical Engineering, Imperial College London, SW7 2BX, UK.

Status
Global emissions of CO2 are increasing year by year adding up to the greenhouse effect and leading to serious 
environmental problems. Global average temperatures have increased with about 1.2 ˚C since the pre-industrial 
revolution, underlying the negative impact of the anthropogenic activities on the environmental quality.[1,2]
There are five scenarios about the evolution of CO2 atmospheric concentration by 2100, according to Climate 
Action Tracker: if no climate policies are considered, a warming with about 4.1 to 4.8 °C is expected by 2100; 
current climate policies project a warming with about 2.8 to 3.2 °C by 2100; in the third scenario, if all countries 
keep on their current targets, established in the Paris Climate Agreement, the average warming projected by 2100 
is below 2.8 °C; 2 °C consistent will limit the average warming by 2100, but requires a significant increase in 
ambition of the current plans within the Paris Agreement and the 1.5 °C consistent scenario represents the case 
where the average warming will be limited to 1.5 °C by 2100, if an important and rapid reduction in global 
greenhouse gas emissions will happen. [3]
Figure 1. Global greenhouse gas emissions and warming scenarios; reproduced from climateactiontracker.org.

Over the years, numerous international efforts were dealing with the reduction of CO2 atmospheric emissions, 
including Agenda 21 (1992), Kyoto Protocol (1997), Bali Road Map (2007), Copenhagen Accord (2009), Paris 
Agreement (2015), European Green Deal and UK, Japan, Korea and US 2050 Net Zero (2019) and China 2060 Net 
Zero (2020). These represent action plans targeting the diminution of the greenhouse effect, air and water 
depollution, clean and sustainable energy production. Carbon capture and separation can be achieved via post-
combustion, pre-combustion and/or oxyfuel combustion, for capturing the CO2 from flue gases, and direct air 
capture (DAC), dealing with CO2 adsorption from atmospheric air. The CO2 separation technologies include 
absorption with alkaline compounds (carbon scrubbing), membrane gas separation, carbonate looping 
technology, cryogenic distillation and adsorption. Carbon scrubbing is a mature technology used in industry, based 
on the absorption of CO2 with alkanolamine. Absorption process received recognition due to the capacity of 
absorbing large gas emissions from industrial processes and power plants operations. In addition, the cost and the 
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possibility to operate in power plants with low infrastructure make this separation method highly used. Membrane 
gas separation gained a lot of interest. Membrane Technology and Research Inc. (MTR) [4] reported on a rubbery 
polymer membrane, “Polaris” with impressive CO2 permeance (3.3x10-7 mol/m2·s·Pa), and about 50 selectivity 
CO2/N2. The good performance comes from the membrane microstructure which consists of an inorganic material 
in the form of micro- and nanoparticles (discrete phase) integrated into a polymeric matrix (continuous phase). 
Various solid porous materials have been proposed for the removal of CO2 via adsorption, including metal organic 
frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and porous carbon materials. The high 
chemical and thermal stability of zeolites coupled with low-cost production, porous structure and structural 
diversity make them attractive for CO2 capture applications.  MOFs and COFs have merits like large CO2 capacity 
and selectivity, uniform pore size, rich porosity, easy recyclability, good stability and low energy input for 
regeneration. On the downside, zeolites, MOFs, and COFs show a decrease in the CO2 adsorption capacity in 
moisture conditions. Porous carbon materials have emerged as low-cost CO2 adsorbents. They present common 
advantages with the above-mentioned solids, plus they can retain important amounts of gas in humid conditions. 
In addition, carbon-based adsorbents present good stability, high CO2 capture capacities at high pressures and 
low-cost regeneration. 

Current and Future Challenges

Present CO2 capture and separation technologies suffer from lack of sustainability corroborated with limitations 
of the process performance and selectivity, in some cases. For example, carbon scrubbing involves high cost and 
energetically intensive processes. Moreover, the solvents (alkanolamines) are toxic and corrosive. Separation
membranes have proved a high stability, long operational life and improved selectivity, but still require 
optimization. Further research is needed to overcome challenges such as inability to separate low concentrations 
of CO2 in the gas feed (below 20% the membrane technology becomes unsuitable) which makes it incompatible 
with the post-combustion capture process. Solid CO2 adsorbents, like zeolites and porous carbon adsorbents, 
present high chemical and thermal stability and low production cost, plus good performance towards carbon 
capture. Zeolites are standardly synthesised via hydrothermal processes, which can be energy and water intense. 
Moreover, their powdered form represents a limitation when it comes to implementation in large-scale 
applications where processable monolith or membrane like formats are preferred. Porous carbon materials show 
high CO2 adsorption capacities at high pressures, even under moisture conditions, but their lack of selectivity and 
small low-pressure working capacity remain challenging to solve. 

In addition, the production of some carbon materials is based on the usage of different fossil fuels precursors. 
Alternatives, like starting from biomass as carbon precursor or synthesis via hydrothermal carbonisation to 
diminish the high energy consumption and the emission of different volatiles compounds during pyrolysis, have 
been adopted. Despite these efforts, the high moisture content in biomass, and the long duration process of
hydrothermal transformation to ensure maximum yield under high temperature adds up to the current challenges
of designing truly sustainable and low-cost adsorbents. The applications of MOFs in gas storage are based on their 
pore structure and the functionalization of the inner and outer surface with different groups, improving in this 
way the gas adsorption performance. The CO2 capture is highly influenced by the humidity conditions and by the 
open metal sites in MOFs, that bond preferentially and much more strongly with H2O than CO2. COFs are equally 
used in CO2 capture, based on their textural properties (large surface area and pore volume). Among all solid 
adsorbents, COFs are characterized by sustainable character.[5] Their stability is sometimes a challenge. Some 
COFs like boroxine or boronate ester are not stable under humid conditions, implying that more research needs 
to be done in order to implement these materials at industrial level.[5] Moreover, the structure of the porous 
adsorbents is crucial for their application in carbon capture. It has been reported that the best results are usually 
obtained with solid adsorbent which have in their structure a high number of micropores, predominantly narrow 
micropores. MOFs, COFs, zeolites and porous carbons can have this type of structure, but improvements in their 
carbon capture properties can be achieved by tuning their porosity. This could add up to the synthetic process and 
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can also involve alkaline templating compounds with a hazardous character. The separation methods can be 
employed in DAC, as well. For example, amine-based CO2 capture incorporated in solid sorbents is often used in 
DAC. The solid sorbent can be silica, nanocellulose, MOFs and resins. The main challenge is that DAC is 
thermodynamically unfavourable. In addition, the feasibility of the material is very much dependent on the active 
materials that captures CO2. 

Advances in Science and Technology to Meet Challenges
There is a clear need of more efforts for improving the present technologies for CO2 adsorption and addressing 
the current challenges in the field. In this way, with respect to the up to date performance of the solid adsorbents, 
the research community reports as much as 7.9 mmol/g, for MOF-based adsorbents (Mg-MOF-74); around 5.9 
mmol for zeolite 13X, 4.4 mmol/g for COFs and 5.2 mmol/g for waste derived porous carbons, all at 25 °C and 1 
bar.[6] Starting from here, more attention is put into developing efficient and sustainable synthetic routes for solid 
CO2 adsorbents. Valencia et al. [7] reported the synthesis of a new sustainable bio-based hybrid foam, consisting 
of cellulose and gelatine,  infused with high amount of zeolites which has an excellent CO2 adsorption capacity and 
selectivity. The zeolite synthesis via hydrothermal treatment through a microwave assisted heating system or 
using low-cost templates has been reported, and scaled up by BASF (Ludwigshafen, Germany).[8] In addition, 
porous carbons with high number of micropores can be manufactured using less harmful additives (K2CO3, Na2CO3, 
Na and K bicarbonates, potassium oxalate, potassium bicarbonate, potassium acetate), or strategies like self-
activation of biomass or salt template-assisted chemical activation.[9]

This results in minimizing the expenses associated with the manufacture, easy cleaning of the generated waste 
and a reduction in the reaction time. Moreover, based on the acidic character of CO2, incorporation of basic 
adsorption sites has been intensively proposed, such as nitrogen doping into the carbon structure or impregnation 
with alkaline compounds, targeting superior performance.[6] In addition, advances addressing the gaps between 
the scientific and engineering CO2 capture research have been reported. In this way, a number of 25 adsorbents 
have been considered, including MOFs, zeolites and activated carbons, and have been screened in four different 
scenarios (a natural gas combined cycle flue gas, a high rank pulverised coal ultra-supercritical flue gas, a cement 
plant and an integrated steel mill), considering the CO2 purity and recovery plus the cost. The outcome revealed 
that the cost of using solid adsorbents remains quite high compared to amine-based process.[10] In parallel, 
advances in direct air capture have been reported. This technology started out at $600 per ton of carbon, and now 
costs around $200 a ton. The price is still high, but companies like, Swiss Climeworks, Canadian Carbon Engineering 
and American Global Thermostat are working on getting the costs down by selling the captured CO2. Nowadays, 
the first commercial plant near Zurich captures 1,000 metric tons of CO2 per year, used in a greenhouse to boost 
the yields by 20 percent. The same company (Climeworks) has now 14 direct air capture facilities, and the Italian 
plant uses the CO2 for the manufacture of fuel for trucks. 

Concluding Remarks
Although, over the years many technologies and researchers have been working on lowering the CO2 atmospheric 
concentration, this is still a pressing problem, threatening the ecosystem and the quality of life on earth. 
Nowadays, the amine-based carbon scrubbing process is still the most used technology for CO2 removal, at 
industrial scale. Despite their good affinity, zeolites, MOFs, COFs, and porous carbons cannot compete with amine-
based systems, because of their high synthetic cost, and their porous structure which behaves different depending 
on the process conditions (gas concentration, temperature, pressure, impurities). Overall, research needs to be 
invested in the development of materials with good performance towards CO2 removal, which show improved 
stability, low cost production, easy reusability and sustainable character for real life applications, such as pre- and 
post-combustion in power plants applications or direct air capture.   
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Section 21 – Understanding the challenges for multi-carbon products (>C2) formation 
during electrochemical carbon dioxide reduction

Saurav Ch. Sarma,1 Rose P. Oates,2 Ifan E. L. Stephens2

1Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
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Status
The Paris Agreement, signed in 2015, aims to limit the global temperature rise to 1.5 oC. This is ideally possible 
when 12 billion tonnes of climate-warming CO2 are continuously removed from the atmosphere every year 
through decarbonization, sequestration and conversion to value-added chemicals. One example of an established 
conversion initiative is by BluePlanet which has developed carbon-negative building material to construct the 
Terminal 1 of San Francisco International Airport. Similarly, the Opus 12 start-up uses a low-temperature 
electrochemical reduction process to produce 1 tonne of ethylene (precursor of plastics) from 3 tonnes of CO2. 
This provides an attractive alternative to the conventional high-temperature/high-pressure technology to produce 
energy-dense ethanol, acetic acid and acetone with high market value.

Interestingly, Cu is the only catalyst that can electrochemically produce such multi-carbon products with a 
reasonable turn-over frequency (TOF). Many recent studies have reported Cu-based alloys/bimetallics with higher 
Faradaic selectivity/efficiency (FE) towards multi-carbon products. However, Faradaic selectivity is not a measure 
of the intrinsic catalytic activity. Hence, TOF and partial current density are also important figures-of-merit for the 
comparison of activity; to date, no catalysts have surpassed the activity of polycrystalline Cu [1].

Alkaline electrolyte enhances the formation of multi-carbon products due to the promotional effect of the cation 
(Na+, K+ or Cs+). However, in such an alkaline condition, a significant amount of CO2 is lost due to the formation of 
CO3

2-/HCO3
-, which is an energy-intensive process. Further, the anions move across the anion-exchange 

membrane, evolving CO2 at the anode. This has a huge implication on the output gas-flow (used for quantification 
of FE) and single-pass conversion efficiency of an alkaline electrolyser, increasing the cost of the CO2-converted 
products. The issue can be resolved through a tandem device, where (i) in the first electrolyser, CO2 is converted 
to CO, either using a solid oxide electrolyser at 700oC or a low temperature device below 80oC and (ii) in the second 
electrolyser, the CO produced from is reduced further to produce multi-carbon products. However, this integrated 
technology is still at a low technology readiness level (TRL-2). Consequently, optimization of the reaction 
parameters is crucial to achieving the target set by the Energy-X expert panel of the European Union for the next 
5 years: low operational voltage (< 2.5 V), a high current density of 500 mAcm-2 for a continuous duration of >1000 
h with a single-pass efficiency of 40% [2].

Current and Future Challenges
The field has multi-faceted challenges to overcome: ranging from catalyst design to reactor engineering. A few of 
the major issues are briefed below:
a) Selectivity: Enhancing selectivity towards multi-carbon products is essential to reduce the cost of separation. 

Polycrystalline Cu has many distinct active sites including defects, undercoordinated sites and grain boundaries 
[3]. Ager and co-workers [3] observed that the presence of these sites are responsible for steering reaction 
pathways to specific products via the stabilisation of different intermediates. Thus, it becomes necessary to 
enhance the selectivity by reducing the number of distinct active sites and enhancing homogeneity within the 
catalyst [1].

b) Stability: The stability of a catalyst over an extended operational period is challenging under reductive reaction 
conditions [4] and maintaining the stability of a molecular catalyst is far more challenging. Degradation is 
mainly observed due to restructuring of the surface, detachment of the catalyst due to hydrogen evolution or 
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surface poisoning by adsorbed CO2 reduction intermediates. Restructuring and aggregation of nanoparticles 
are enhanced when the constituent elements have different surface energies or binding to reaction 
intermediates. Stronger anchoring to the support should enhance stability. Operando studies, such as in-situ
TEM coupled with X-ray Absorption Spectroscopy and in-situ IR are crucial to understanding the deactivation 
mechanism of the catalyst during the reaction [4].

c) Current density: There is a limit to which surface areas can be maximised through nanostructuring without 
incurring transport localised CO2 or proton depletion. In recent years, researchers have been working on gas-
diffusion electrodes (GDE) and membrane electrode assemblies (MEA) to circumvent mass-transfer limitation 
and achieve high current density (>500 mAcm-2).

Advances in Science and Technology to Meet Challenges
Rate-determining C-C coupling step for multi-carbon product formation is highly dependent on the adsorption 
energy of CO and its concentration near the catalyst surface. A mere error of 0.15 eV in theoretical adsorption 
energy calculation may lead to a 300 times error in the TOF calculation [1]. Since a single catalyst can have many 
types of planes exposed, each with different CO adsorption energy, this makes predictions quite complicated. 
Thus, relative comparison can be made, but designing materials based on DFT predictions still remains in its 
nascent stage.

Figure 1. Schematic representing strategies to enhance multi-carbon products.

Following strategies can be used to enhance the formation of multi-carbon products (Figure 1):
a) Introduction of secondary elements: Yeo and co-workers [5] introduced Zn as a dopant in Cu lattice to 

generate an in-situ source of CO near the catalyst surface. CO2 gets converted to CO on the Zn active sites 
due to the relatively weak binding energy of CO. With this strategy they could enhance the selectivity towards 
ethanol. Thus, optimization of the local geometric arrangement of atoms is crucial to manipulate the 
adsorption energy of the intermediates.

b) Tandem Catalysis: In tandem catalysis, two different catalysts are coupled together for subsequent CO2

reduction. Ager and co-workers [6] proved this concept by coupling Cu and Ag together. Ag was fixed at a 
higher negative potential to maintain a high flux of CO near Cu surface which is then further reduced to form 
multi-carbon products.

c) Nanocavity formation: Sargent and co-workers [7] experimentally observed that nanocavities can confine 
soluble C1 and C2 intermediates, such as aldehydes or CO, thus increasing their concentration to form multi-
carbon products, such as propanol.

d) Metal-doped carbons: Metal-doped carbons are known to produce highly selective CO at industrially relevant 
current densities (700 mAcm-2) [8]. However, the coordination environment can be modified to mimic the 
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nature of V-nitrogenase enzyme, where the metal-metal bond facilitates the C-C coupling and produce 
ethylene (major product), ethanol and propane from CO reduction [9]. We envisage the same functionality of 
dual-atom catalysts can be incorporated in functionalized carbon. However, stabilizing such a species during 
the harsh reducing environment is crucial to achieving high efficiency. Tuning the micro-environment around 
the active sites can be done through defect engineering, manipulating metal-support interaction and varying 
the anchoring atoms.

e) Membrane Optimisation: High CO2/CO partial pressure is crucial for facilitating C-C coupling. Unlike alkaline 
membranes, bipolar membranes can reduce CO2 losses by resolving the issue of CO3

2- formation and 
crossover in alkaline electrolyte. However, further optimisation with thickness, chemical composition etc. are 
required to reduce the extra over-potential it adds for driving the water dissociation at the bipolar membrane 
[10].

Concluding Remarks
Electrochemical CO2 reduction is a promising carbon-neutral electrochemical technique capable of producing 
desirable, energy-dense, multi-carbon products with the potential to be integrated into the present-day industry. 
To improve upon the activity and selectivity towards the multi-carbon products, an alternative to the Cu catalyst 
is desired. The intrinsic activity (turnover frequency) of such a catalyst should be compared along-with the Faradaic 
selectivity and partial current density. It is also crucial to test the electrochemical activity and stability of the best 
catalysts in commercially relevant conditions and at a higher current density. We foresee that by stabilising metal-
doped carbon catalysts, which emulate nitrogenase, researchers may enable achieving higher selectivity for multi-
carbon products.
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Section 22 – Biodegradable sustainable electronics 
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Status. Electronics are indispensable tools in modern society. While the electronics become more powerful and 
affordable, the lifetime of electronics is becoming shorter, even within a few hours for single-use transient devices. 
Most electronic devices contain a variety of toxic elements and organics in complex structures, which is the key 
hurdle for electronic waste (e-waste) treatment. In 2019, approximate 50 million tonnes of e-waste was produced 
and less than 20% of  e-waste was recycled, remanufactured and reused appropriately [1]. Landfill and incineration 
are currently the main methods for e-waste treatment, which brings potential soil and groundwater 
contamination as well as bioaccumulation of hazardous molecules. It is noted that e-waste represents around 2% 
of solid waste streams but it produces 70% the hazardous waste during landfill processes [2]. To address these 
environmental threats, sustainable electronics, which made with non-toxic and biodegradable materials, are 
emerged as eco-friendly alternatives to conventional electronics [3–5]. In comparison with conventional 
electronics consisting of inorganic materials such as heavy metals and ceramics, sustainable electronics use 
organic materials coupling with less toxic metals. Polymeric materials with intrinsically light-weight, flexible, 
adapted for roll-to-roll processes, and even biodegradable have been well-developed for constructing functional 
sustainable electronics in the past decade [6].

Current and future challenges. Electronic devices generally consist of several components with conducting, 
semiconducting, and dielectric functions on a substrate. Substrate generally constitutes the majority of weight 
ratio in the entire device; therefore, the use of biodegradable substrate materials is vital for sustainable 
electronics. A variety of naturally derived polymers, e.g., cellulose, alginate, silk and chitosan, have been utilized 
as sustainable substrates due to their enzymatic degradability. Although natrual polymeric materials are low-cost, 
flexible and biocompatible, the insufficient strength and thermal stability limit their utility on chips and electronic 
displays. On the other hand, synthetic polymers, such as polycaprolactone (PCL), poly(hydroxybutyrate), poly(4-
hydroxybutyrate), poly(L-lactide) (PLA), polyethylene glycol, poly(vinyl alcohol), polydimethylsiloxane, and 
poly(lactic-co-glycolic acid), have been engineered as the substrates in sustainable electronics. Synthetic 
biodegradable polymers are advantageous in the physical and thermal properties, designable structures and 
stable qualities. 

One of the challenges on sustainable electronics is the evaluation of the toxicity of the degradation products, 
especially for biomedical devices [7]. The degradation by-products of environment friendly polymeric matreials 
are naturally abundant compounds (i.e., sugars, proteins and peptides) and chemicals (i.e., monomers and 
oligomers) with low or no toxicity. In comparasion with a broad material scope on organic substrates, 
biodegradable conducting and semiconducting materials are relatively limited. Metal matrix composites and 
inorganic materials such as Si, SiO2, Mg and MgO were employed as bioresorbable and biocompatible substrates 
and components in electronic devices [8]. Rogers et al. developed implantable silicon electronics containing 
transistors, diodes, inductors, capacitors, and resistors for biomedical applications [9]. The device degrades rapidly 
in deionized water and simulated body fluid as shown in figure 1(a). Nguyen et al. reported a biodegradable and 
biocompatible piezoelectric pressure sensor constructing by a sandwich structure with three molybdenum 
electrodes and two piezoelectric PLA films [10]. This sensor is applicable for pressure measurement in a wide range 
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of 0 to18 kPa and completely degrades after use. Moreover, the sensor was implanted inside the abdominal cavity 
of a mouse to monitor the pressure of diaphragmatic contraction and to produce useful electrical stimulation for 
tissue regeneration, while the sensor degraded gradually in vivo without significant presence of inflammation. 
Two-dimensional (2D) materials such as molybdenum disulfide (MoS2) and black phosphorus quantum dots also 
exhibited surpior mechanical strength, flexibility, and biodegradablility [11−13]. These emerging 2D materials 
were intergated into biocompatible and biodegradable transient bioelectronics. Althoguh the conditions to 
achieve fully biodegradable are varied due to different materials and testing environments, most of the 
bioelectronics can degrade and convert to non-toxic molecules under physiological (phosphate-buffered saline 
(PBS) or saline at 37 °C) or enzymatic environments from days to months ((figure 1(b)).

Advances in science and technology to meet challenges. Although many organic-inorganic hybrid devices 
demonstrate excellent biodegradability, the excessive dosage of degraded inorganic by-products may exhibit 
physiological toxicity and health concerns. Biodegradable organic conductors, semiconductors, dielectrics and 
their integrated devices have therefore recently gained significant attention [14]. Notably, conductive and 
semiconductive organic molecules and polymers containing rigid conjugated moieties are often brittle and stiff. 
The increasing needs on implantable flexible electronics boosts the development of next generation 
(semi)conductive polymers with high processibility and biodegradablility. Lipomi et al. reported a stretchable and 
biodegradable semiconductive block copolymer containing rigid and semiconducting diketopyrrolopyrrole (DPP) 
segments and soft and degradable PCL segments. This polymer exhibit over 100% elongation and a hole mobility 
of near 0.1 cm2/V·s, showing in figure 1(c) [15]. The PCL segments is degradable in physiological conditions and 
the remained DPP segments are intact. Recently, Hwang and coworkers developed a water-triggered, rapid 
destruction system with biologically safe, dissolvable citric acid (CA) and sodium bicarbonate (SB) to construct 
transient electronics. For example, they successfully integrated CA and SB with supporting polymer matrices and 
degradable Mg coil to create an optical device, as shown in Figure 1(d) [16]. When the device immersed in water, 
CA and SB could rapidly dissolve in water and generate carbon dioxide. Meanwhile, Mg also reacted with dissolved 
CA to produce hydrogen gas, resulting in on-demand degradation after use. These biodegardable and flexible 
materials represents promising advances toward developing next-generation sustainable electronics for foldable 
devices, electronic skins and implantable biosensors. 
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Figure 1. (a) Images of a degradable electronic oscillator device on a thin silk substrate and its dissolution process 
in deionized (DI) water. (b) Schematic and optical images of a MoS2-based biodegradable sensor. 
Degradation was performed in a PBS solution (pH = 7.4) at 70 °C with different dissolution times (0−72 h). (c) 
Chemical structure, hole mobility across 0–90% strain and degradation of the semiconducting polymer. 
Degradation conditions: in PBS (red line) and 0.5 M NaOH (black line) at 37 °C for 12 weeks. BCP: block copolymer; 
T: 2,5-bis(trimethylstannyl)thiophene; TT: thienothiophene. (d) Image of an optical device and time-sequential 
collapse images of BA-embedded electronics in deionized (DI) water at room temperature. Inset: Device image 
under a dark condition. Copyright 2012 AAAS, 2018 Xiang Chen et. al., and 2018 and 2021 American Chemical
Society [9,11,15,16]

Concluding remarks. Innovation and collective efforts from researchs, industry and end-users are highly 
demended to overcome the obstacles of e-waste. Nowadays, electronics is becoming more hybrid and smaller to 
match the requirement of personal wearable devices and micro-electronics, leading to difficulties on recycling. 
Therefore,  besides active recycling and raising social awareness, sourcing for alternative materials and 
technologies to traditional electronics is a feasible route toward sustainable electronics. Electronics constructing 
with (bio)degradable materials is a particularly attractive solution because the waste could be treated with 
enzymatic or chemical methods and covert to safe by-products. In the future, sustainable electronics should be 
designed and fabricated with suitable materials to match not only performance and strength but also degradation 
conditions in different physiological environments. Apart from biodegradability, innovations on eco-friendly
processes for sustainable electronic manufacturing are also important in reducing the environmental impact while 
increasing the value of sustainabe electronics.
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Section 23 – Sustainable construction materials

Rupert J. Myers1 and Niko Heeren2

1 Department of Civil and Environmental Engineering, Imperial College London, UK. 

2 Industrial Ecology Programme, Department of Energy and Process Engineering, NTNU, Trondheim, 
Norway.

Status

More materials are used in construction than in any other human activity. Construction materials 
have been used throughout human history (Fischer-Kowalski et al., 2014). Hunter-gatherer societies 
used natural materials such as wood, soil, and stone to construct temporary shelters for many 
thousands of years, consistent with their mobile lifestyles. From ~10,000 BC, agrarian societies built 
permanent structures with a greater diversity of construction materials, including timber, bricks, 
glass, and Roman concrete. More types and higher quality materials have been used since the 
industrial era, notably Portland cement concrete (including steel reinforced), structural steel, and 
plastics. Within the last few decades, materials such as self-compacting concrete and cross-
laminated timber have been developed and become commonplace in construction. 

Accordingly, the main construction materials used today – concrete and mortar, timber, steel, 
plastics, bricks, glass, stone, soil, and aluminium – are produced from raw materials that are typically 
regionally or globally available in massive quantities. They are non-hazardous (usually; Delile et al., 
2014), simple to use, and relatively inexpensive, such that they can be accessed by most of the 
population. Construction materials must also have good ‘durability’. This is especially important 
since construction materials must ensure structural integrity for typically many years in e.g. walls, 
and infrastructure, tunnels, where maintaining a low risk of failure is imperative.

In 2015, the production of construction materials led to ~5 Gt CO2-eq. greenhouse gas emissions 
(Hertwich et al., 2020). This corresponds to roughly half of the greenhouse gas emissions from 
materials production and ~10% of the global total. Greenhouse gas emissions from materials 
production approximately doubled between 1995 and 2015, i.e. at a faster rate than the global total, 
which rose by ~40% over the same time period (Hertwich, 2019). Prevailing urbanisation and 
development trends (Seto et al., 2017), e.g. expansion of urban land area; higher density living; 
increasing demand for floor area, material goods, and services, particularly in less developed 
economies and countries with growing populations; alongside increasing generation of lower 
greenhouse gas emitting electricity and heat (e.g. wind); indicates that greenhouse gas emissions 
from the production of construction materials will both continue to increase in absolute amount and 
relative share of the global total in the future. These issues – climate change, urbanisation, 
development, and population growth – demonstrate the importance of systemic construction 
materials research.

Current and Future Challenges

Transformative changes to how we produce and use construction materials are needed to meet 
future demand with lower environmental impact. This requires actions from all stakeholders across 
the life cycles of buildings and infrastructure systems, from raw material extraction, material 
production and consumption, and through to end-of-life/waste management. It is thus necessary to 
produce more durable, inexpensive, and less greenhouse gas emitting (‘low carbon’) construction 
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materials, while at the same time reducing their consumption. Here, we distinguish the former 
supply-driven measures, which mainly lie in the cradle-to-gate or material production stages (but 
also in waste management) and are the traditional focus of engineering and materials science 
research, from demand-driven measures, which involve changes to demand for materials and exist 
throughout product life cycles. 

Recent industrial ecology research has focussed on improving quantitative understanding of the 
effects that supply- and demand-side measures may have on the life cycle greenhouse gas emissions 
from use of construction materials (Hertwich et al., 2020; Pauliuk et al., 2020). Practically all 
emissions occur upstream and therefore are mostly able to be influenced by industry. Nevertheless 
research shows that strategies to improve material-service efficiency rather than decarbonisation of 
material production, i.e., material efficiency or ‘circular economy’ strategies, such as more intense 
and prolonged use, reuse, or recycling of construction materials, can substantially reduce demand 
for primary material production. For example, it has been reported that net-zero carbon scenarios 
for year 2050 can be achieved with 60% of the necessary greenhouse gas emissions reduction 
contributed from material efficiency strategies (Material Economics, 2019), leaving the remainder 
needing to be achieved by supply-side measures such as novel technologies and carbon capture and 
storage. Despite the growing body of literature in this area, important questions remain about the 
systemic effects and implementation of material efficiency strategies (Hertwich et al. 2019). Table 1 
illustrates some open research questions and measures in this area. 

Table 1. Summary of challenges related to sustainable construction materials, differentiating those 
related to systematic science, the supply-side, and the demand-side. GHG is greenhouse gas 
emissions.
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Categ
ory

Strategy Description Challenges Solutions Potential References

Syste
mic 

scienc
e and 
acade

mia

Informatio
n discovery

Identification of 
systemic 
interdependencies 
(e.g. between 
construction 
materials selection 
and operational 
energy demand)

Knowledge of 
systemic issues are 
currently insufficient 
(e.g. biomass 
demand competition 
across different 
sectors (energy, 
chemicals, 
construction); carbon 
cycles and storage in 
buildings).

Systemic research to 
identify effective 
measures, further 
research needs, and 
create public 
awareness.

High. 
Identification of 
synergies and 
anticipation of 
future issues 
(rebound and 
lock-in effects, 
etc.)

Hertwich et 
al. 2019, 
Pauliuk et 
al. 2017; 
Heeren et 
al. 2015

Implement
ation and 
action

Implementation of 
research results.

Market mechanisms 
hinder uptake of new 
technologies and 
products. 

Increased 
interdisciplinary 
research (e.g.  
collaboration between 
engineers, 
economists, 
psychologists, etc. to 
explore feasibility and 
actions for politicians 
and consumers).

High. Overcoming 
information gaps 
and increasing 
effectiveness of 
academic 
research.

Weichselga
rtner and  
Kasperson, 
2010

Disseminati
on

Research is often 
poorly 
communicated to 
the public and 
decision makers, 
resulting in poorly 
informed 
consumer 
decisions.

Simplifying findings 
from research studies 
into accurate and 
actionable insights.

Interdisciplinary 
research, stakeholder 
involvement, 
strengthening the 
science-policy-
practice system, new 
ways to disseminate 
science.

Medium. 

More effective 
research, impact-
driven research, 
informed politics.

Weichselga
rtner and  
Kasperson, 
2010

Dema
nd

Reuse Buildings can be 
repurposed, and 
components (e.g. 
steel beams, 
windows) can be 
reused, 
substituting 
production of new 
materials and 
avoiding their 
associated 
emissions.

Legislation, creating 
markets, quality 
assurance, potential 
rebound effects due 
to increased 
transport or energy 
demand related to 
building operation. 

Research on quality 
assurance of reuse 
components, 
establishing web 
platforms for trading 
components. Flexible 
architecture and 
creative design 
allowing repurposing 
of buildings.

Medium. 
Emissions can be 
avoided entirely. 

Fraj et al. 
2017; 
Material 
Economics 
2018; 
Hertwich et 
al. 2020
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Recycling Availabilities of 
end-of-life 
materials and 
energy intensities 
of recycling 
processes 
determine 
recycling benefits. 
Recycling is both a 
demand- and 
supply-side 
measure:  resource 
recovery is a 
responsibility of 
the consumer and 
the recycling 
process is operated 
by industry. 

Avoid downcycling, 
since it degrades 
material quality over 
time, sustaining 
demand for primary 
material. Some 
recycling processes 
have a negative net 
benefit (e.g., 
concrete containing 
recycled aggregates 
typically have similar 
impact relative to 
virgin concrete mixes 
(Fraj et al. 2017; Gao 
et al. 2017).

Improve collection 
rates, use less 
environmentally 
impactful recycling 
technologies, 
optimisation of 
transport, life-cycle 
assessment. 

Varies. 

Metals recycling 
rates are already 
relatively high in 
most countries, 
while plastic 
recycling still has a 
large potential. 
Most recycling 
processes cause 
non-negligible 
GHG emissions, 
limiting overall 
potential. For 
some 
construction 
materials and 
regions recovery 
rates can be 
increased. For 
some materials, 
e.g. timber, 
implementation 
of cascade use 
must be explored.

Hertwich et 
al. 2020

Sufficiency Less floor area per 
person and 
densification of 
urban areas. 

Sufficiency has social, 
economic, and ethical 
implications that are 
often controversial. 

Smart architecture 
enables denser 
buildings. Shift from 
single-family 
(especially detached) 
to smaller single-
family and multi-
family homes, less 
rural structures, 
higher occupation in 
buildings.

High. Per capita 
floor area differs 
widely between 
countries, with 
some countries 
developing at a 
rapid rate. 

Hertwich et 
al. 2020

Prolonged 
lifetime

Using buildings or 
components for 
longer reduces 
overall demand.

For energy efficient 
buildings the material 
emissions may 
outweigh the 
operational ones. 
Therefore, operating 
an inefficient building 
for longer may 
backfire. Often 
buildings reach end-
of-life for socio-
economic reasons 
rather than technical 
ones. 

Case-by-case analysis, 
avoid lock-in effects.

Uncertain. 
Context 
dependent.

Hertwich et 
al. 2019; 
Hertwich et 
al. 2020
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Material 
substitutio
n

Use of materials 
with less embodied 
carbon (e.g. wood 
rather than 
concrete).

Established industries 
and standards 
hinders the uptake of 
new construction 
materials. Higher 
skilled personnel 
(designers, etc.) are 
generally needed. 

Ensure national 
legislation allows for 
alternative materials 
(e.g. standards for fire 
and earthquake safety 
of high-rise timber 
buildings). Create 
awareness with 
architects and 
stakeholders. 

Medium to High.
Depends on the 
materials 
substituted (e.g. 
steel for wood 
beams). Biogenic 
carbon 
sequestration 
effect is generally 
not considered, 
but is important.

Hertwich et 
al. 2020; 
Heeren and 
Hellweg 
2019; 
Sathre and 
O’Connor 
2010

Suppl
y-side

Concrete 
and mortar

Concrete is the 
most used 
construction 
material by mass 
and volume. Most 
concrete contains 
approx. ~10-15 
mass% cement, 
which is 
responsible for up 
to 60-90% of its 
CO2 emissions.

Most of the CO2

emissions arising 
from the life cycle of 
concrete arise from 
Portland cement 
clinker production. 
Reducing these 
cement-related GHG 
emissions is key. 

Substitution of 
Portland cement 
clinker, which may be 
facilitated by 
transitioning from 
ready-mix to precast 
concrete use; improve 
production efficiency 
alternative fuels use in 
Portland cement 
production including 
electricity and 
hydrogen produced 
from renewable 
energy; carbon 
capture and storage.

High. Current 
clinker-to-cement 
ratios of ~0.75 can 
be readily 
reduced to ~0.5 
using LC3

technology.

Material 
Economics, 
2019; Alig 
et al. 

2020; 
Pamenter 
and Myers, 
2021

Timber A number of 
studies show that 
wood buildings 
have lower life-
cycle emissions, 
due to lower 
specific mass 
(weight) and 
because the 
building envelope 
can fulfil thermal 
and structural 
function 
simultaneously 
(e.g. insulation 
between beams). 

Production of wood 
products is energy 
intense and requires 
large amounts of 
processing and 
transport. Timber 
yields substantial 
advantages 
particularly when 
considering the end-
of-life phase and 
biogenic carbon 
storage. Timber 
supply needs to be 
massively expanded 
to substitute 
concrete at scale.

Reducing upstream 
impacts from timber 
production (e.g. no 
fossil fuels for drying). 
Use locally sourced 
timber. Implement 
end-of-life 
management 
strategies (e.g. 
pyrolysis for 
permanent carbon 
fixation). Develop 
legislation for high-
rise timber buildings. 

High. While 
industry has been 
improving their 
processes (e.g. 
use of waste 
wood for drying), 
further 
optimisation can 
yield important 
savings. Wood can 
be an important 
carbon sink.

Sathre and 
O’Connor 
2010; 
Heeren et 
al. 2015

Metals Metal production 
involves 
considerable GHG 
emissions.

Metal production is 
energy intensive. 
Steel production 
requires fossil fuels. 
Not all metals are 
recovered at end-of-
life for recycling.

Decarbonising energy 
supply, use alternative 
processes (e.g. 
hydrogen-based steel 
production1). 
Substitution (e.g. 
engineered wood 
products). 

Medium. Metal 
production 
impacts can be 
greatly reduced 
by increasing 
recycling, 
substitution, and 
technology 
innovation.

Hertwich et 
al. 2019, 
Hertwich et 
al. 2020

Page 100 of 130AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100605.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

pt

substituted (e.g. 

Acc
ep

ted
 M

an
us

cri
pt

substituted (e.g. 
for wood 

Acc
ep

ted
 M

an
us

cri
pt

for wood 
beams). Biogenic 

Acc
ep

ted
 M

an
us

cri
ptbeams). Biogenic 

sequestration 

Acc
ep

ted
 M

an
us

cri
ptsequestration 

effect is generally 

Acc
ep

ted
 M

an
us

cri
pteffect is generally 

not considered, 

Acc
ep

ted
 M

an
us

cri
ptnot considered, 

but is important.

Acc
ep

ted
 M

an
us

cri
ptbut is important.

Hellweg 

Acc
ep

ted
 M

an
us

cri
pt

Hellweg 
2019; 

Acc
ep

ted
 M

an
us

cri
pt

2019; 
Sathre and 

Acc
ep

ted
 M

an
us

cri
ptSathre and 

O’Connor 

Acc
ep

ted
 M

an
us

cri
ptO’Connor 

2010

Acc
ep

ted
 M

an
us

cri
pt2010

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Portland cement 

Acc
ep

ted
 M

an
us

cri
pt

Portland cement 
clinker, which may be 

Acc
ep

ted
 M

an
us

cri
pt

clinker, which may be 
facilitated by 

Acc
ep

ted
 M

an
us

cri
pt

facilitated by 
transitioning from 

Acc
ep

ted
 M

an
us

cri
pt

transitioning from 
mix to prec

Acc
ep

ted
 M

an
us

cri
pt

mix to precast 

Acc
ep

ted
 M

an
us

cri
pt

ast 
concrete use; improve 

Acc
ep

ted
 M

an
us

cri
pt

concrete use; improve 
production efficiency 

Acc
ep

ted
 M

an
us

cri
pt

production efficiency 
alternative fuels use in 

Acc
ep

ted
 M

an
us

cri
pt

alternative fuels use in 
Portland cement 

Acc
ep

ted
 M

an
us

cri
pt

Portland cement 
production including 

Acc
ep

ted
 M

an
us

cri
pt

production including 
electricity and 

Acc
ep

ted
 M

an
us

cri
pt

electricity and 
hydrogen produced 

Acc
ep

ted
 M

an
us

cri
pt

hydrogen produced 
from renewable 

Acc
ep

ted
 M

an
us

cri
pt

from renewable 
energy; carbon 

Acc
ep

ted
 M

an
us

cri
pt

energy; carbon 
capture and storage.

Acc
ep

ted
 M

an
us

cri
pt

capture and storage.

High

Acc
ep

ted
 M

an
us

cri
pt

High. Current 

Acc
ep

ted
 M

an
us

cri
pt

. Current 
clinker

Acc
ep

ted
 M

an
us

cri
pt

clinker-

Acc
ep

ted
 M

an
us

cri
pt

-to

Acc
ep

ted
 M

an
us

cri
pt

to-

Acc
ep

ted
 M

an
us

cri
pt

-cement 

Acc
ep

ted
 M

an
us

cri
pt

cement 
ratios of ~0.75 can 

Acc
ep

ted
 M

an
us

cri
pt

ratios of ~0.75 can 
be readil

Acc
ep

ted
 M

an
us

cri
pt

be readily 

Acc
ep

ted
 M

an
us

cri
pt

y 
reduced to ~0.5 

Acc
ep

ted
 M

an
us

cri
pt

reduced to ~0.5 
using LC

Acc
ep

ted
 M

an
us

cri
pt

using LC3

Acc
ep

ted
 M

an
us

cri
pt

3

technology.

Acc
ep

ted
 M

an
us

cri
pt

technology.

Material 

Acc
ep

ted
 M

an
us

cri
pt

Material 

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

because the 

Acc
ep

ted
 M

an
us

cri
pt

because the 
g envelope 

Acc
ep

ted
 M

an
us

cri
pt

g envelope 
can fulfil thermal 

Acc
ep

ted
 M

an
us

cri
pt

can fulfil thermal 
and structural 

Acc
ep

ted
 M

an
us

cri
pt

and structural 
function 

Acc
ep

ted
 M

an
us

cri
pt

function 
simultaneously 

Acc
ep

ted
 M

an
us

cri
pt

simultaneously 
(e.g. insulation 

Acc
ep

ted
 M

an
us

cri
pt

(e.g. insulation 
between beams). 

Acc
ep

ted
 M

an
us

cri
pt

between beams). 

Acc
ep

ted
 M

an
us

cri
pt

Production of wood 

Acc
ep

ted
 M

an
us

cri
pt

Production of wood 
products is energy 

Acc
ep

ted
 M

an
us

cri
pt

products is energy 
intense and requires 

Acc
ep

ted
 M

an
us

cri
pt

intense and requires 
large amounts of 

Acc
ep

ted
 M

an
us

cri
pt

large amounts of 
processing and 

Acc
ep

ted
 M

an
us

cri
pt

processing and 
transport. Timber 

Acc
ep

ted
 M

an
us

cri
pt

transport. Timber 
yields substantial 

Acc
ep

ted
 M

an
us

cri
pt

yields substantial 
advantages 

Acc
ep

ted
 M

an
us

cri
pt

advantages 
particularly when 

Acc
ep

ted
 M

an
us

cri
pt

particularly when 
considering the end

Acc
ep

ted
 M

an
us

cri
pt

considering the end
of

Acc
ep

ted
 M

an
us

cri
pt

of-

Acc
ep

ted
 M

an
us

cri
pt

-life phase and 

Acc
ep

ted
 M

an
us

cri
pt

life phase and 
biogenic carbon 

Acc
ep

ted
 M

an
us

cri
pt

biogenic carbon 
storage. Timber 

Acc
ep

ted
 M

an
us

cri
pt

storage. Timber 
supply needs to be 

Acc
ep

ted
 M

an
us

cri
pt

supply needs to be 
massively expanded 

Acc
ep

ted
 M

an
us

cri
pt

massively expanded 
to substitute 

Acc
ep

ted
 M

an
us

cri
pt

to substitute 
concrete at scale.

Acc
ep

ted
 M

an
us

cri
pt

concrete at scale.

Reducing upstream 

Acc
ep

ted
 M

an
us

cri
pt

Reducing upstream 
impacts from timber 

Acc
ep

ted
 M

an
us

cri
pt

impacts from timber 
production (e.g. no 

Acc
ep

ted
 M

an
us

cri
pt

production (e.g. no 
fossil fuels for drying). 

Acc
ep

ted
 M

an
us

cri
pt

fossil fuels for drying). 
Use locally s

Acc
ep

ted
 M

an
us

cri
pt

Use locally s
timber. Implement 

Acc
ep

ted
 M

an
us

cri
pt

timber. Implement 

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Metals

Acc
ep

ted
 M

an
us

cri
pt

Metals Metal production 

Acc
ep

ted
 M

an
us

cri
pt

Metal production 
involves 

Acc
ep

ted
 M

an
us

cri
pt

involves 
considerable GHG 

Acc
ep

ted
 M

an
us

cri
pt

considerable GHG 
emissions.

Acc
ep

ted
 M

an
us

cri
pt

emissions.

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt

Acc
ep

ted
 M

an
us

cri
pt



Bricks Bricks are well-
known, common, 
simple, and 
durable 
construction 
materials

Most GHG emissions 
associated with brick 
production originate 
from fossil fuel use in 
the high-temperature 
processes in the kiln.

Alternative fuel and 
energy use derived 
from renewable and 
low carbon sources; 
carbon capture and 
storage; use of 
alternative bricks and 
blocks, for example 
derived from lower-
carbon cements and 
biomass. 

High. Alternative 
bricks and blocks 
from lower-
carbon materials.

Medium: 
microwave 
assisted gas firing 
and greater 
electricity use. 

Alig et al. 
2020

Plastics Plastics demand in 
the construction 
sector has been 
increasing 
considerably.

Plastic recycling is 
currently largely 
under-developed due 
to a lack of 
technologies and low 
collection and 
recycling rates for 
some plastics. 
Furthermore, 
downgrading in 
recycling is 
problematic.

Recycling rates must 
be increased. New 
chemical processes 
and understanding of 
polymer chemistry are 
required.

High. Emissions 
from the use of 
plastics are 
expected to 
increase 
considerably in 
the future.

Rissman et 
al. 2020

Glass Glass is used in 
most buildings, 
produced using the 
float process.

Most GHG emissions 
from glass production 
come from use of 
fossil fuels, so 
reducing these is key.

Use of alternative 
fuels and energy; 
carbon capture and 
storage.

Medium.
Emissions from 
fuel use can be 
reduced. Process 
emissions from 
use of Na2CO3 as a 
raw material are 
difficult to 
mitigate.

Alig et al. 
2020

Many supply-side challenges are material-specific. For mortar and concrete (1), the latter being by 
far the most used man-made material, these include: (1a) greatly increasing substitution of Portland 
cement clinker for non-Portland cementitious materials like coal fly ash and calcined clay (the 
current global average substitution rate is ~25 mass% (WBCSD, 2016)) as well as developing and 
using non-Portland cements such as those based on Mg-Si rocks (Miller and Myers, 2020), since 
most CO2 emissions from the cementitious materials cycle originate from Portland cement clinker 
production (Pamenter and Myers, 2021); (1b) low-cost and mass scalable carbon capture and 
storage/utilisation technology that does not deleteriously affect material properties and thus 
product functionality; and (1c) (kiln) electrification of Portland cement clinker production, since this 
can roughly halve process emissions. 

Similarly, for steel (2), (2a) use of alternative energy sources such as hydrogen, with or without 
carbon capture and storage, and (2b) electrification of iron production, can make substantial 
progress towards decarbonising steel production since most of its CO2 emissions originate in the 
blast furnace (Raabe et al., 2019). (2c) Improving reuse and functional recycling of steels is another 

1 Austria: https://asia.nikkei.com/Spotlight/Environment/Climate-Change/Mitsubishi-Heavy-to-build-biggest-
zero-carbon-steel-plant Sweden: https://www.hybritdevelopment.com/
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https://asia.nikkei.com/Spotlight/Environment/Climate-Change/Mitsubishi-Heavy-to-build-biggest-zero-carbon-steel-plant
https://www.hybritdevelopment.com/


key lever, although steel recycling rates are already high (50-90%; UNEP, 2011) and demand for steel 
is far greater than end-of-life steel generation (1,500 Mt year-1 demand vs. 298 Mt year-1 end-of-life 
generation of steel in 2014; Cullen, 2017), so the former upstream challenges have higher 
decarbonisation potential. 

Demand for plastics (3), such as polyvinyl chloride – the most used plastic in construction (43% of 
the total; Geyer et al., 2017) – also far outstrips supply of end-of-life material (299 Mt year-1 demand 
vs. 28 Mt year-1 end-of-life generation of plastics in 2014; Cullen, 2017), so upstream challenges are 
similarly important here. For plastics, a key challenge is (3a) shifting production from fossil resources 
to alternative and renewable feedstocks such as biomass and end-of-life organic materials, since 
fossil resources are used to synthesise virtually all plastics today. 

Holistic governance of land is needed if biomass resources are to be used, as well as for timber (4), 
since a key challenge for this material is (4a) massively upscaling its supply, on the order of doubling 
or greater (in 2017 timber accounted for ~2.4 mass% or equivalently ~14 vol.% of all construction 
materials, Figure 1; UNEP, 2020). Understanding how land use should be managed to approach 
maximal delivery of socioeconomic services and minimal environmental impact is a key modelling 
challenge. Forestry will take time to upscale. It will also take time to (4b) establish the 
standardisation needed for massively increased timber use in construction, hence for the 
foreseeable future construction should be envisaged as use of a palette of materials involving timber 
in combination with other construction materials. Finally, since most new construction will occur in 
developing economies (see the Status Section), (4c) governance for forestry in these growing regions 
is undoubtedly an urgent and key challenge. 
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Figure 1. Global materials extraction in 2017. a) Masses of materials extracted: (a-i) all materials, data from 
UNEP (2020); (a-ii) construction-related materials; and (a-iii) construction-related materials used in 
construction products. Masses (b) and volumes (c) of materials extracted that are both construction-related 
and used in construction products. The construction-related materials, their proportions used in construction 
products, and densities are: non-metallic minerals - construction dominant, approximated here as granite 
(100%; 2,700 kg m-3) (UNEP, 2020); wood, approximated here as Sitka Spruce (50%; 415 kg m-3) (FAOSTAT, 
2020); ferrous ores, approximated here as hematite (50%; 5,150 kg m-3) (Cullen et al., 2012; Nuss et al., 2014); 
non-ferrous ores, approximated here as chalcopyrite (37.5%; 2,700 kg m-3) (Cullen et al., 2013; Nassar et al., 
2012); and petroleum, approximated here as crude oil (20%; 870 kg m-3) (Geyer et al., 2017). The values shown 
here should be treated as rough estimates only since mass losses occur during their downstream production, 
fabrication, and manufacturing.

Advances in Science and Technology to Meet Challenges

While many strategies for reducing construction material-related emissions have been investigated 
in detail, systemic understanding is still scarce. It can be anticipated that strong competition for 
available resources (e.g. land) and technologies will result once all industries more fully transition to 
carbon neutral production. For instance, it is likely that demand for hydrogen will increase 
tremendously as many high temperature processes transition to use of this energy carrier (e.g. metal 
industry), while also aviation and automobile industries may become more dependent on it as a fuel. 
Another example of potential market competition is timber and lignite, since wood is a key 
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renewable material. Chemical, automobile, construction industries are all investigating large scale 
use of wood to replace current fossil-based processes. At the same time biomass has become an 
important source for thermal energy supply in recent years. Industrial ecology is a branch of 
environmental science that aims to analyse life-cycle and systemic effects and is well suited to 
identify strategies that approach maximum climate benefit from strategic management of resource 
competition (Weisz et al. 2015). 

Major trends in construction such as digitalisation, off-site construction, and additive manufacturing 
are simultaneously addressing multiple supply- and demand-side challenges (see the Current and 
Future Challenges Section). For example, digitalisation, through the use of building information 
modelling to create digital twins of buildings, and eventually whole cities and larger regions in the 
future, is enabling precise tracking of materials and thus increasing data availability for improved 
design and sustainability assessments. Off-site construction, meaning manufacturing products (i.e. 
component production and assembly) such as buildings at least partially in a facility ‘off-site’ rather 
than at the use site, will increase material choice and improve build quality since it can shift the 
burden of performance specification from the material to the component level. This is especially 
important for cementitious materials, since their properties change over time and are greatly 
affected by the prevailing environmental conditions during setting (‘curing conditions’); since such 

conditions can be much better controlled in an off-site facility, this will lead to a greater variety of 
cementitious materials (including non-Portland) being specified. Finally, additive manufacturing can 
improve material-shape combinations and thus material efficiency. These trends need to be 
accelerated and the technologies underpinning them, e.g. wire arc additive manufacturing, need to 
be further developed.

Supply-side challenges can also be met by advancing material-specific technologies. We provide 
some examples here. For concrete and mortar, new cements with lower Portland cement clinker 
content that leverage intelligent materials selection based on local availability of primary (mined, 
e.g. clay) and secondary (generated, e.g. coal fly ash) resources should be developed (van Deventer 
et al., 2020). Novel combinations of non-Portland cement binder and non-steel reinforcement 
should be explored as a longer-term strategy. Electrolytic production of cementitious materials from 
renewable energy sources requires further research (Ellis et al., 2020), as does increased utilisation 
of CO2 in cementitious products including both in the binder phase and in aggregates. For steel, 
development of more impurity tolerant alloys and improvements to metal collection and sorting 
processes can improve recycling rates, which may thus reduce steel production from primary 
resources. To accelerate upscaling and standardisation of engineered wood products such as cross-
laminated timber, as well as to increase their quality, a more accurate and reliable capability to 
predict properties of structural members derived from multiple species, with different grades, and 
including defects is needed (Brandner et al., 2016). This applies to engineered wood products 
sourced from both primary and secondary materials, where the latter may have additional defects 
and contamination (e.g. metallic fasteners) from their previous use (Rose et al., 2018). Technological 
advancements are also needed to reduce the environmental impact of timber production, including 
decarbonised wood drying and transport, and novel materials (e.g. non-fossil derived glues) (Laurent 
et al., 2013). 
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Section 24 – Nature, an architecture in the making
Alice Grégoire and Clément Périssé
Cookies, Villa Medici, Viale della Trinità dei Monti, 1 – 00187 Rome, Italy. 

Status
A primitive 'man' inventing architecture to overcome his nakedness and shield himself from the cruel 
elements is the seminal tale. From there, using a unique brain ability, a continuous lineage of designers 
have piled and arranged bones, stones, sticks, then mortars, bricks and concrete to protect themselves 
and live comfortably away from nature. The traditional architectural canon has always been about 
celebrating human's superiority over Nature. This historical opposition must be challenged, even 
reversed so as to be able to consider architecture as an emanation from nature. 

Recent scientific and philosophical advances on the notion of 'living' allowed a considerable 
amplification of the meaning and extent of the term. The question nowadays isn't much anymore to 
know what is 'living', but rather to be able to find what is not the by product or a remnant of various 
life forms. From sedimentary stones, made from dejections and shells of early molluscs, to oxides 
formed following the Great Oxidation Event triggered by planetary bacterial populations, minerals are 
often the result of life activity2.

Architecture in that regard finds itself in a new situation now that we can consider it as a 
recomposition of materials stemming from the 'living'. The discipline that was once considered as a 
celebration of human's victory over nature, in the form of a sophisticated articulation of inert matter, 
has now become the recomposition of remains, traces of anterior lives with the role of welcoming and 
hosting human and non-human life forms.

Architectural material follows a trajectory, from a natural habitat towards a final manufactured and 
spatialized state. Reinscribing the act of building in continuity with the natural world, should 
interrogate the architect's position and its practices considering the current environmental challenges.

Current and Future Challenges
[This section discusses the big research issues and challenges. (350 words max)]

Architecture's shameless extractivist behaviour emanates mostly from the misconception that 
architectural material is inert. Stone, sand, gravel are considered as inanimate. They are only rated as 
per the force, the energy thus the CO2 required to extract, transport and transform them into 
architecture. Wood belongs also to the dead matter reign, as it is considered as a handy CO2 trap, 
once cut and sawed. 

Totally detached from their local context, and for most of them heavily transformed, these supplies’ 
relation with the environment is limited to the carbon footprint exhibited on their label.

Yet archaeology or building restoration consider architecture's ingredients from an entirely different 
perspective. Intimate chemistry between stones and mortars, complex oxidation processes, micro 

2 Our understanding and vision about minerals has been greatly stimulated by the works of Robert M. Hazen, from his 
seminal paper on 'Mineral Evolution' to his best seller book The Story of Earth.
Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry F, McCoy T, Sverjensky D, Yang H (2008) Mineral evolution. American 
Mineralogist 93:1693-1720 and Hazen RM, The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet, 
London, Penguin Books, 2013.

Page 108 of 130AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100605.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

ptA primitive 'man' inventing architecture to overcome his nakedness and shield himself from the cruel 

Acc
ep

ted
 M

an
us

cri
ptA primitive 'man' inventing architecture to overcome his nakedness and shield himself from the cruel 

ty, a continuous lineage of designers 

Acc
ep

ted
 M

an
us

cri
ptty, a continuous lineage of designers 

have piled and arranged bones, stones, sticks, then mortars, bricks and concrete to protect themselves 

Acc
ep

ted
 M

an
us

cri
pthave piled and arranged bones, stones, sticks, then mortars, bricks and concrete to protect themselves 

and live comfortably away from nature. The traditional architectural canon has always been about 

Acc
ep

ted
 M

an
us

cri
ptand live comfortably away from nature. The traditional architectural canon has always been about 

s superiority over Nature. This historical opposition must be challenged, even 

Acc
ep

ted
 M

an
us

cri
pt

s superiority over Nature. This historical opposition must be challenged, even 
reversed so as to be able to consider architecture as an emanation from nature. 

Acc
ep

ted
 M

an
us

cri
pt

reversed so as to be able to consider architecture as an emanation from nature. 

Recent scientific and philosophical advances on the notion of 'living' allowed a considerable 

Acc
ep

ted
 M

an
us

cri
pt

Recent scientific and philosophical advances on the notion of 'living' allowed a considerable 
mplification of the meaning and extent of the term. The question nowadays isn't much anymore to 

Acc
ep

ted
 M

an
us

cri
pt

mplification of the meaning and extent of the term. The question nowadays isn't much anymore to 
know what is 'living', but rather to be able to find what is not the by product or a remnant of various 

Acc
ep

ted
 M

an
us

cri
pt

know what is 'living', but rather to be able to find what is not the by product or a remnant of various 
s and shells of early molluscs, to oxides 

Acc
ep

ted
 M

an
us

cri
pt

s and shells of early molluscs, to oxides 
formed following the Great Oxidation Event triggered by planetary bacterial populations, minerals are 

Acc
ep

ted
 M

an
us

cri
pt

formed following the Great Oxidation Event triggered by planetary bacterial populations, minerals are 

Architecture in that regard finds itself in a new situation now that we can consider it as a 

Acc
ep

ted
 M

an
us

cri
pt

Architecture in that regard finds itself in a new situation now that we can consider it as a 
recomposition of materials stemming from the 'living'. The discipline that was once considered as a 

Acc
ep

ted
 M

an
us

cri
pt

recomposition of materials stemming from the 'living'. The discipline that was once considered as a 
celebration of human's victory over nature, in the form of a so

Acc
ep

ted
 M

an
us

cri
pt

celebration of human's victory over nature, in the form of a sophisticated articulation of inert matter, 

Acc
ep

ted
 M

an
us

cri
pt

phisticated articulation of inert matter, 
has now become the recomposition of remains, traces of anterior lives with the role of welcoming and 

Acc
ep

ted
 M

an
us

cri
pt

has now become the recomposition of remains, traces of anterior lives with the role of welcoming and 

Architectural material follows a trajectory, from a natural habitat towards a final manufactured and 

Acc
ep

ted
 M

an
us

cri
pt

Architectural material follows a trajectory, from a natural habitat towards a final manufactured and 
spatialized state. Reinscribing the act of building in continuity with the natural world, should 

Acc
ep

ted
 M

an
us

cri
pt

spatialized state. Reinscribing the act of building in continuity with the natural world, should 
interrogate the architect's position and its practices con

Acc
ep

ted
 M

an
us

cri
pt

interrogate the architect's position and its practices considering the current environmental challenges.

Acc
ep

ted
 M

an
us

cri
pt

sidering the current environmental challenges.

Current and Future Challenges

Acc
ep

ted
 M

an
us

cri
pt

Current and Future Challenges
[This section discusses the big research issues and challenges. (350 words max)]

Acc
ep

ted
 M

an
us

cri
pt

[This section discusses the big research issues and challenges. (350 words max)]

Architecture's shameless extractivist behaviour emanates mostly from the misconception tha

Acc
ep

ted
 M

an
us

cri
pt

Architecture's shameless extractivist behaviour emanates mostly from the misconception tha
architectural material is inert. Stone, sand, gravel are considered as inanimate. They are only rated as 

Acc
ep

ted
 M

an
us

cri
pt

architectural material is inert. Stone, sand, gravel are considered as inanimate. They are only rated as 
per the force, the energy thus the CO2 required to extract, transport and transform them into 

Acc
ep

ted
 M

an
us

cri
pt

per the force, the energy thus the CO2 required to extract, transport and transform them into 
architecture. Wood belongs also to the dead matter reig

Acc
ep

ted
 M

an
us

cri
pt

architecture. Wood belongs also to the dead matter reig
once cut and sawed. 

Acc
ep

ted
 M

an
us

cri
pt

once cut and sawed. 

Totally detached from their local context, and for most of them heavily transformed, these supplies’ 

Acc
ep

ted
 M

an
us

cri
pt

Totally detached from their local context, and for most of them heavily transformed, these supplies’ 
relation with the environment is limited to the carbon footprint exhibited on their label

Acc
ep

ted
 M

an
us

cri
pt

relation with the environment is limited to the carbon footprint exhibited on their label

Yet archaeology or building restoration consider architecture's ingredients from an entirely different 

Acc
ep

ted
 M

an
us

cri
pt

Yet archaeology or building restoration consider architecture's ingredients from an entirely different 
perspective. Intimate chemistry between stones and mortars, complex oxidation processes, micro 

Acc
ep

ted
 M

an
us

cri
pt

perspective. Intimate chemistry between stones and mortars, complex oxidation processes, micro 

Acc
ep

ted
 M

an
us

cri
pt

2

Acc
ep

ted
 M

an
us

cri
pt

2 Our understanding and vision about minerals has

Acc
ep

ted
 M

an
us

cri
pt

Our understanding and vision about minerals has
seminal paper on 'Mineral Evolution' to his best seller book The Story of Earth.

Acc
ep

ted
 M

an
us

cri
pt

seminal paper on 'Mineral Evolution' to his best seller book The Story of Earth.
Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry F, McCoy T, Sverjensky D, Yang H (2008) Acc

ep
ted

 M
an

us
cri

pt

Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry F, McCoy T, Sverjensky D, Yang H (2008) 
Mineralogist 93:1693Acc

ep
ted

 M
an

us
cri

pt

Mineralogist 93:1693
London, Penguin Books, 2013.Acc

ep
ted

 M
an

us
cri

pt

London, Penguin Books, 2013.



infiltrations and cracks reveal how materials are constantly changing. Spectrographic analysis can help 
historians to retrace material's origins and age. Both of those sciences are maintaining the link 
between the built environment and its natural ores, quarries and mines.

This link gives architecture a powerful connection with deep time and planetary history. From rather 
young travertines to the seminal basalt, architecture is reorganizing the planet's timeline into new 
configurations. This directly links our everyday spaces, our built commons and our monuments with 
the cosmos where they all originated from.

Advances in Science and Technology to Meet Challenges
It seems to us that the tools to bridge architecture with its natural context are missing.  A direct 
relation between the two exists in specific cases, such as for the ruins. These unique moments where 
remains of architecture, in most cases stone parts, are absorbed back in the soil have been thoroughly 
described and depicted by the art of the Romantics.

Calamities such as earthquakes, volcanic eruptions and at a smaller scale sinkhole are also moments 
of symbiosis between architecture material and nature, where the built artefacts are swallowed by 
the superficial crust layers and head towards deeper geotopes.

But this is a one-way relation. Why does it take such incommensurable forces to reunite architecture 
with its breeding ground? 

We want to believe that with the help of geologists, meteorologists, biologists, archaeologists and 
artists, we can develop tools for architects, but also for non-architects which would allow them to 
reconnect the discipline with its origins. The most important of these tools should address 
representation. How to show, illustrate, communicate and demonstrate the intimate bonding 
between materials and design, for all audiences.3

How to read a landscape, a region's geomorphic qualities and understand what architectural potential 
they contain? What vocabulary, which lexical field is appropriate to describe an architecture in the 
making, seen from the natural environment?

Ahead of the carbon optimization at the level of building products, there must be a new intellectual 
corpus that gives architects, engineers, manufacturers, builders and ultimately end users a way to 
read and understand material nature more intuitively, and therefore think of architecture in 
another, more sustainable way.

At a planetary scale, architecture is a superficial, rapidly eroded mineral layer. A thin layer of soon to 
be debris. Yet it's impact on the living is immense and threatening. Understanding and discussing 
architecture as an act of biopsy could pave the way to a more responsible design.

3 Tim Ingold develops at length how materials, design and thinking processes are intimately bonded in Ingold, 
T. (2013). Making: Anthropology, Archaeology, Art and Architecture. London, Routledge.
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Concluding Remarks
As we advance in our research, we are obsessed with two overarching interrogations. Is architecture 
Earth's latest geological layer? Has rock itself evolved in a complex and surprisingly rapid manner into 
a refined assemblage that has the form of buildings?

A large part of the rock formation is either the product of organic matter, a massive accumulation of 
dead matter, compacted over thousands of years by colossal forces or it has been greatly influenced 
by living organisms at a planetary scale. We want to believe that human's building actions are the 
most recent factor in steering rock evolution4. This allegory would put us in a more appropriate 
position regarding our extractivist behaviour, and ultimately in the manner we produce architecture.

Since their origins, humans showed a profound devotion to the beauty of minerals5. The immense 
amount of inhabited geological chimeras resulting from this obsession has since then taken the name 
of architecture...
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Figure 1 : An abandoned quarry near Sermoneta (Lazio), Italy 
©Cookies 2020-21

Figure 2 : A Travertine quarry in Tivoli, where travertine has been extracted since Antiquity.
©Cookies 2020-21
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Section 25 – Sustainable packaging
Xiaoying Zhao and Yael Vodovotz
The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Road, Columbus, 
Ohio 43210 USA.

Status
Currently, the major challenge of improving food system sustainability is to reduce food loss and 
waste. Around 30% of the food produced globally is lost/wasted along the supply chain[1]. 
Appropriate packaging can reduce losses at almost every stage of the food supply chain by extending 
shelf life and facilitating the safe food transit. However, the overall contribution of packaging to the 
food system sustainability is controversial, as packaging is linked with high levels of non-degradable 
plastic waste and low rates of recycling. More than 90% of food packages are made from petroleum-
based non-compostable plastics, around 40% are disposed of after a single use, and more than 80% 
are landfilled[2], causing great environmental concerns. Therefore, food and packaging manufacturers 
are under great pressure to seek sustainable alternatives. 

Sustainable packaging is a complex concept requiring critical thinking and systematic approaches[3]. 
Evaluation of packaging sustainability needs to consider (i) lifecycle impact of the package from raw 
materials to end-of-life management; (ii) interactions between the package and the food; (iii) impacts 
of the packaging on the business, people, and the natural environment including material sourcing, 
production, and waste management  (triple bottom line) [3]. 

Bioplastics (BPs) are polymers that are either biobased (fully or partially), or biodegradable, or both. 
Currently, bioplastic packaging accounts for less than 1% of the packaging market. Among them, 
biobased and nonbiodegradable BPs, i.e., drop-ins, such as bio- polyethylene terephthalate (PET) and 
bio-high density polyethylene (HDPE), have the largest packaging market, as their identical chemical 
structure and properties to their petroleum-based counterparts can lower the risk for end users[4]. 
Braskem have produced commercial bio-PET and bio-HDPE which can replace their conventional 
counterparts[2]. Examples of drop-in bioplastic packaging include snack bags and stretch films from 
Braskem, Avery Dennison, and FKuR[2]. 

Biodegradable (in defined conditions) BPs are expected to play a greater role in the packaging industry. 
According to European Bioplastics, biodegradation is a chemical process in which materials are
metabolized into CO2, water, and biomass with the help of microorganisms.  For example, blends of 
polylactic acid (PLA) and polyhydroxyalkanoates (PHAs) have been used for coffee capsule and 
pouches[2]. Different biodegradability can result in different packaging applications. For example, 
shelf life of products can drive the packaging needs: bioplastics with high biodegradability, such as 
starch and cellulose-based bioplastics, can be used for food with short shelf life while those with lower 
biodegradability such as PHAs can be used for food with longer shelf life; bioplastics that require 
extended periods of time to biodegrade and can be recycled, such as PLA, can be used for food with a 
much longer shelf life[2]. It is worth mentioning that although biodegradability is a useful 
characteristic for packages in applications where plastic recycling or reusing is difficult, such as flexible 
packages and plastic wastes in marine environments, bioplastics are not a solution to the problem of 
plastic littering, as littering should not be promoted or accepted for any plastic waste in any 
environment. Instead, proper end-of-life management for all kinds of plastic waste is needed. 

Additionally, novel food packaging techniques such as active and intelligent packaging are being used 
to combat food waste and improve food system sustainability. Active packaging interacts with the 
food and/or its direct environment to reduce food spoilage. Intelligent packaging can monitor the 
condition of food and inform food spoilage using colour or other indicators. It also allows real-time 
monitoring of food quality throughout the supply chain to reduce food-borne disease and food waste. 
Green, active, and intelligent packaging technologies can work together to yield a multipurpose food-
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packaging system, to reduce food loss and create more sustainable food systems. This aim is seen the 
ultimate future goal for food packaging technologies.

Figure 1. Types and applications of bioplastics (adapted from X. Zhao, K. Cornish, and Y. Vodovotz, 
Environmental Science & Technology, vol. 54, no. 8, pp. 4712-4732, 2020.)

Current and Future Challenges

Currently, the challenges for bio-alternative packaging mainly include:

(i) Property and cost gap between bio- and conventional plastics for food packaging. Although drop-
ins do not pose a gap in functional properties compared to conventional plastics as they have the same 
chemical, mechanical, and barrier properties, they are more expensive. For the compostable BPs, they
mostly have lower toughness, lower flexibility, lower barrier, and higher price than the conventional 
plastics[2]. 

(ii) End of life management of BPs and their effect on current plastic management system. As drop-in 
BPs can be recycled in the same way as their conventional counterparts, their use does not disturb 
the current plastic waste management system. In contrast, biodegradable BPs have a much more 
complex end of life scenarios. Biodegradable BPs can potentially contaminate the current plastic waste 
recycling stream due to the lack of nationwide BP collection infrastructure and accurate BP waste 
separation technique[2, 5]. 

(iii) Lack of universal biodegradation definition, policies, and testing method. As bioplastic market is 
not as mature as the petroleum plastic market and only accounts for a small section (<%) of the 
market, currently, there is no universal definition for biodegradation or standards regulating the 
framework conditions and pass/fail criteria of biodegradability[2, 6]. To make accurate claims about 
biodegradability/compostability of a BP material, the biodegradation/composting location (home, 
industrial), condition, and time frame need to be specified.

(iv) Lack of comprehensive BP sustainability assessment approach. The sustainability assessment of 
BPs should consider their environmental, economic, and social impacts. Currently, most assessment 
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approaches are not comprehensive enough to include all these three dimensions. For example, life-
cycle-assessment (LCA) approaches, which has limitations for a direct comparison of bio- and 
conventional plastics[2, 7]. It is generally believed that bioplastics can potentially save 241−316 million 
tons of CO2-eq. each year and have lower non-renewable energy use than conventional plastics[2].
For example, the carbon footprint of packaging films made from LDPE and PLA were assessed with 
three different end of life management,  i.e., incineration, landfill, and recycling[2]. LCA study showed 
when biogas collection from the landfill included landfilling, PLA film reduced carbon emissions the 
most[2].

(v) Poor public understanding of BP definition, identification, and end-of-life handling, limits waste 
separation and restrict consumers’ desire to pay for BPs[2].

(vi) Concerns over competition of BPs with food production if widely adopted. Currently, some of the 
marketed BPs, such as bio-polyethylene and polylactic acid, use food resources such as corn or cane 
sugar for the production, causing concerns over food security and pressure on agricultural land if such 
products are scaled up significantly for replacement of plastics[8].

Advances in Science and Technology to Meet Challenges

To meet the challenges faced by the sustainable packaging, required advance in science, technology, 
and policy include:

(i) Property reinforcement. The toughness and flexibility of the BPs can be enhanced through 
plasticization, blending/compounding with other flexible and tough biopolymers, chemical 
copolymerization, grafting, and cross-linking, incorporation of reinforcing agents, altering 
crystallization behaviour, and other methods. The barrier properties can be improved by lamination 
with barrier plastics, metallization, decreasing moisture/gas diffusion by incorporating nanofillers, 
introduction of hydrophobic materials, crosslinking, and other methods. The processability can be 
improved by chemical modifications, such as long chain branching, grafting, cross-linking, blending 
with elastomers, plasticizing, nucleation to change crystallization properties, and other methods[2, 9]. 

(ii) Cost reduction. Production of BPs by value-added use of agro-food waste residues can potentially  
reduce BP cost[10]. Additionally, BP prices will likely decline if economies of scale are achieved and 
logistics are fully developed[2]. Finally, price reduction can be fostered by product design, such as rigid 
BPs may require less materials than conventional plastics to produce products with the same 
rigidity[2]. 

(iii) End-of-life management. Ideally, BPs should be separated from other plastic waste at the 
household level to reduce their risk of contaminating the plastic recycling stream[10]. Biological 
treatments, like composting and anaerobic digestion, are considered the most suitable waste 
management option for biodegradable plastics[10]. Another method is chemical recycling which 
breaks down BPs into smaller hydrocarbon molecules that can be used to produce new materials.
Additionally, an emerging and promising treatment is biological recycling, which involves in designing 
enzymes and microbes to selectively degrade BPs into new molecular feedstocks[2]. 

(iv) Meaningful education of consumers, manufacturers, stakeholders, and government about BPs is 
needed. Clear communication with consumers on the proper use of BPs, the importance of BP 
separation, and BP waste handling instructions is needed[2]. 

(v) To comprehensively assess the sustainability of BP packaging, the assessment approach needs to 
a. address the impact differences of bio- and conventional plastics through normalization/weighting, 
b. include BP end of life scenarios, c. include more environmental impact indicators, d. consider that 
the carbon resources of the BP materials can potentially be recycled and reused after degradation[2, 
11].
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Concluding Remarks

We are at a crossroad for BPs. Packaging represents the largest portion (∼60%) of BP applications. 
Collaborations between academic and industry is required to advance the applications of BPs for 
packaging industry. Reliable and sustainable raw material supplies for BPs as well as appropriate BP 
waste collection and separation options are needed. The sustainable economic growth of the BP 
market also requires policy support. In the future, compostable, semidurable (BPs that can be both 
recycled and composted), and durable (BPs that are recyclable but nonbiodegradable or with very low
compostability) BPs will attract increasing interest for packaging applications[2]. To address the 
sustainability challenges of agricultural production and end of life management, research efforts on 
improving energy efficiency in manufacturing, accelerating biodegradability, clear plastic labelling, 
and efficient recycling systems are desired [2]. 
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Section 26 – Sustainable textiles for fashion

Rebecca Earley

University of the Arts, 272 High Holborn, London WC1V 7EY, UK. 

Status

The fashion/textiles industry presents enormous challenges in reducing energy consumption. Impacts 
from every stage of the garment’s lifecycle need to be considered – extraction, production, use and 
disposal - and these vary according to fibre type, textile/garment finishing and construction, retail/use 
contexts, and end-of-life options. 

The sector has grown exponentially in the last few years and is predicted to continue to grow:

“In 2019, global fibre production was around 111 million tonnes. Fibre production has more than 
doubled in the last 20 years and is expected to increase by another 30% to 146 million tonnes in 2030 
if business as usual continues.” [1:6]

The volumes of fashion/textiles create multiple environmental impacts: waste – through 
overproduction, over consumption, and inefficient processes – as well as resource depletion, water 
usage, chemical pollution, exploitative labour practices, deforestation, endangered species, animal 
suffering and habitat destruction. The current linear system within the textiles industry is highly reliant 
on non-renewable materials and energy. [1:4] 

“Clothing consumption around the world is equivalent to 62 million tons, being responsible for the 

annual consumption of 79 billion cubic metres of water and the emission of 1,715 million of CO2 tons 
emitted.” [2:8] 

Emissions are greatest in the fibre to yarn manufacturing stage. [3:58] Assessing fibre impacts is 
difficult as key factors – boundaries, assumptions and in particular geographical locations - can vary
hugely.

“There is no one study that deals with the quantification of energy needs of different textile fibres. If 

such a study were available, then it would be possible to compare various fibres in terms of their 
energy needs.” [4:86] 

Conventional cotton and virgin polyester are the two most commonly used materials within textiles 
industry today and account for around 75% of the global fibre production. [1:6, 3:13] Conventional 
cotton uses 60 MJ per kg of fibre to produce; organic cotton, 54 MJ/kg. Polyester uses 125 MJ/kg 
[4:86]. If you include the other synthetics – nylon 66 (138 MJ/kg), acrylic (175 MJ/kg), etc. – then 
together with cotton and polyester, this totals 89% of the market. These synthetic fibres are made 
from oil, using an estimated 342 million barrels every year. [5:38]
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Current and future challenges

Replacing fibres made from oil, focussing on organic and improved cotton and getting a more balanced 
palette of textile options lies at the heart of the current and future challenges. However, changes need 
to be made around the whole lifecycle and value chain, as clothing moves across continents and in 
and out of people’s homes.

Impacts come from the heat and power needed for spinning, weaving, dyeing, finishing and 
constructions processes. [8:8, 4:86,87] Shipping and distribution impacts from transportation are 
increasingly relevant as the internet drives consumers to shop more globally. [4:65,70] Both the 
physical and online retail functions create impacts; washing machines, tumble dryers, irons and dry-
cleaning uses energy too. [4:71,72]

The sheer volume of clothing however, as much as the material and systems around them, are 
amongst the biggest challenges. The industry produces large volumes of waste through 
overproduction, as well as underutilisation (people not wearing and tiring quickly of their purchases). 
[5:36, 8:21]

At end-of life the textile collection systems on offer in the UK are the bin (in which case the clothes 
will go to landfill or incineration), resale, donations to a charity/organisation’s bank/shop, or in council 
recycling schemes. [6:16, 4:25, 5:104] Yet of all the total global fibres produced less than 1% is recycled 
textile-to-textile. [1:92,5:20]

Advances in design strategy, science and technology to meet the challenges

The problem of fashion textile design and energy is so complex it needs to be viewed through a holistic 
lens and supported by design-driven approaches. Design decisions directly lead to between 50-90% of 
impacts; aesthetic/functional choices made in terms of fibre type and mix, fabric colour/finishing, 
garment construction approach and market level, etc., all play a part in the overall environmental 
performance. [7:11] 

Designers need to work with scientists/technology experts to become fully aware of impactful 
decisions. Several advances have been made in recent years to bridge knowledge gaps by bringing 
designers together with scientists, business and policy makers. Projects like the Mistra Future Fashion 
(MFF) programme6 and Trash-2-Cash7 have created insights, roadmaps and methods. The TEN8 were 
co-created to break down and detail the range of sustainable design decisions across the whole 
lifecycle. They have also been used to help build collaborative relationships between diverse
stakeholders. [7:15-17]

This cross-disciplinary approach was explored in the MFF programme and contributed to a roadmap 
for the Swedish fashion industry. In ‘The Supply Change Guidelines and Ecodesign Action List’ Roos et 
al details one of the three goals for 2030, “reduce emissions of greenhouse gases from textile use by 
50%, and by 2050 be carbon-neutral.” [8:19] Roos et al argues how a range of approaches can bring 
the industry’s impacts down by 50%. (Figure 1)

6 Mistra Future Fashion research programme was based in Sweden and ran between 2011-2019. It created collaborative 
approaches between design researchers, material scientists, lifecycle assessment experts, business and user behaviour 
researchers and brands. http://mistrafuturefashion.com/
7 The Trash-2-Cash project (2015-2018), https://www.trash2cashproject.eu/
8 https://www.circulardesign.org.uk/research/ten/
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Figure 1: How a series of changes at different stages of the lifecycle could lower the Swedish fashion 
industry’s emissions by 50%

Figure 2: Carbon footprint reduction scenario 2019-2030 (Textiles 2030 Circularity Pathway)

WRAP’s Textile 2030 pathway report presents a similar set of ideas for the UK and also shows that 
circularity - using recycled fibres and moving to ‘sharing economy’ business models – could constitute 
26% of the savings. (Figure 2) [6:12] Both note that garments designed to last longer will help. Roos 
also shows the savings made if we just used our clothes twice as much as we currently do. [8:11]
Changing the way we use energy, and the kinds of energy the industry uses, right across the value 
chain from factories to homes, will make the biggest difference to the garments footprint.
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Table 1: Advances specific to polyester and cotton textiles which are 75% of the current fibre market

Table 1 shows other technical and strategic design innovations for cotton and polyester users to aim 
for. Innovative recycled manmade cellulosics and synthetic biology (e.g., bacteria and mycelium) play 
an important role in how we might create a more balanced palette of materials. [1:56-58, 9] In dyeing 
and finishing new efficiencies like dope dyeing are helping to reduce impacts; as well as ‘bio-fabricate’ 
approaches, like bacterial colouration. [9:10]

Towards a Sustainable and Circular Industry

Prototypes co-created by designers with other experts can show us how these new materials, 
processes, product concepts, business models and end-of-life reprocessing approaches can be 
brought together through systems design, to create both slow and new kinds of fast fashion/textiles, 
using less energy.9 [10] These highlight the urgent need for sustainability and circularity challenges to 
be approached together, through working in challenging new partnerships. Such partnerships are 
being developed and supported by organisations and programmes such as: WRAP10 who look at the 
full supply chain; at the fashion product level, the Institute of Positive Fashion (at the British Fashion 

9 Circular Design Speeds, https://www.circulardesignspeeds.com/
10 WRAP, https://wrap.org.uk/
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Council) developed the Circular Fashion Ecosystem11 report for the UK and the Ellen MacArthur 
Foundation has been focusing on jeans through their Make Fashion Circular programme (Jeans 
Redesign project) which has enabled a rich picture to emerge around one product type12; and in terms 
of technologies, Accelerating Circularity13 is focused on digitised system to increase textile resource 
efficiencies. World Circular Textiles Day 205014, established in 2020, is a global platform that brings all 
these stakeholders together with the specific intention of sharing insights and charting progress every 
year on 8 October.
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Section 27 – Life cycle assessment of materials
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Status
As evidenced by this paper, the necessity to reduce emissions contributing to global warming and 
other environmental impacts is a major driving force for materials development. In order to ensure 
that new materials and products actually lead to reduced environmental burdens, the environmental 
impacts must be assessed. This should preferably be done in a life cycle perspective to make sure that 
environmental problems are not just shifted from one location to another, or from one type of 
problem to another. Life Cycle Assessment (LCA) is a method for assessing the potential environmental 
impacts of a product from “cradle to grave”, i.e. from raw material extraction, via production and use 
to waste management (Hauschild et al, 2018).  An LCA is performed in four phases: Goal and scope 
definition where also system boundaries are defined, Life cycle inventory analysis where inputs and 
outputs to and from the system are calculated, Life cycle impact assessment (LCIA) where the potential 
environmental impacts of the inputs and outputs are assessed, and Interpretation where conclusions 
are drawn. Ideally the system boundaries should be defined so that the inputs are resources from the 
environment and the outputs are emissions to the environment. In a comprehensive LCIA, three broad 
areas of impacts should be considered: Natural resources, Ecological impacts and Human health 
impacts. These broad categories can be further divided into more specific impact categories such as 
Climate change, Human toxicity, Mineral resources use, Fossil energy use, and Land transformation 
(Hauschild et al, 2018). An LCA can be made for a single product, where the aim can be to identify the 
most important environmental impacts or parts of the life cycle. LCAs are often made in comparative 
assessments. In such cases the products need to fulfil similar functions in order to allow for a fair 
comparison. An important part of the Goal and scope definition is therefore to define the functional 
unit, which is a quantitative measure of the function(s) the product fulfils, and which is the reference 
value for the inventory analysis and the LCIA. A distinction can be made between Attributional LCA, 
which is defined by its focus on describing the environmentally relevant physical flows to and from a 
life cycle and its subsystems (Finnveden et al, 2009), and Consequential LCA, which is defined by its 
aim to describe how environmentally relevant flows will change in response to possible decisions 
(Curran et al, 2005). An ISO standard for LCA (ISO, 2006) provides a common framework, terminology 
and some methodological guidance. 

Current and Future Challenges
Since LCA is primarily a method for assessing potential environmental impacts of products (including 
both goods and services), it may not always be straightforward how to apply it for materials. One 
common approach is to do what is often called a “cradle-to-gate” analysis (Finnveden et al, 2009), i.e. 
to include raw material extraction and production up to the point where the material leaves the 
production gate, but not include further production, use and waste management stages. Such studies 
can be used for comparing different raw materials or production methods for the same material. This 
is possible since environmental impacts occurring after the materials have been produced can be 
assumed to be equal and therefore can be disregarded in a comparative study. It can however not be 
used for comparing different alternative materials that behave differently during the use and waste 
management stages. One example of this is the assessment of new so-called self-reinforced, or single 
polymer, composite material that can be used for structural weight minimization of vehicles. In order 
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to compare its potential environmental impacts to that of other light-weight materials, it is not enough 
to make the comparison based on cradle-to-gate data, see Fig.1 (Poulikidou et al., 2015). 

Figure 1. Life cycle comparison of light-weight materials in vehicle design. Based on Poulikidou et al 
(2015)

Another aspect that should be included in this case is the weight of the alternative material as included 
in a component in the vehicle, since this will influence the amount of fuel needed during vehicle 
operation. Finally, end-of-life processes will differ depending on possibilities for recycling, which is 
expected to be better for single-polymer composites compared to conventional composite materials. 
This example illustrates the importance of scenarios for the use and waste management stages when 
a full material LCA is performed (Arvidsson et al, 2018). The example also illustrates that comparisons 
are often made between new and already established alternatives. This can be challenging because 
the established materials have had time to optimise production processes and lots of data are 
available, whereas for emerging technologies and new materials there may only be limited data 
available. The example also illustrates that there can be different types of emissions and resources 
used for different materials. For a comprehensive assessment it is therefore important that all relevant 
impact categories are included.

  
Advances in Science and Technology to Meet Challenges
In early stages of materials development, possibilities to influence life cycle impacts through design 
are still large. On the other hand, only laboratory or pilot scale data may be available, which typically 
are not representative for the environmental impacts from a full-scale implementation. Methods for 
upscaling data may therefore be useful, including process simulation tools, stoichiometric 
relationships, scaling factors, molecular structure models, and use of proxy data (Picciono et al, 2016; 
Tsoy et al, 2020). The use of such methods is however still rare and there is a need for further 
developing and evaluating such methods. It is also known that costs and environmental performance 
of the production of products and materials typically decrease when the market becomes more 
mature. Learning curves that describe the performance as a function of cumulative production can 
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therefore be a useful tool for estimating environmental impacts of emerging technologies (Van der 
Giesen et al, 2020). Data for background processes, such as energy and transportation systems, are 
necessary for LCAs and they will change with time. Future scenarios for these processes are therefore 
important when evaluating emerging technologies. An example of integrating such future background 
scenarios in LCA is presented in Joyce and Björklund (2020); showing how the widely used LCA 
database Ecoinvent can be adjusted in a systematic manner to accommodate future scenarios. A 
special aspect of environmental assessments of new materials is that future applications of the new 
materials may be largely unknown. This will make it difficult to define the functional unit and also to 
estimate data for the use phase of the life cycle. Currently used life cycle impact assessment methods 
can need further development to be relevant for new materials. It is however also possible to use Life 
Cycle Thinking approaches to do preliminary assessments in early stages. These can provide actionable 
environmental information in the research process and in doing so it can help steer technology 
development towards overall improved environmental performance (Joyce and Björklund, 2019). 
Such methods can include semi-quantitative “red-flag” assessments, highlighting areas of concern, to 
guide further research as well as streamlined assessments, possibly using upscaling methods as soon 
as quantitative data becomes available. 

Concluding Remarks
The threat of climate change and other environmental challenges requires a transformation 
(Hauschild et al, 2020). New materials and emerging technologies are needed but they must be 
evaluated from a sustainability perspective. Life Cycle Assessments can be used for comparing 
alternatives, identifying advantages and disadvantages with different alternatives and therefore guide 
the further development. It can however normally not conclusively show that one material is 
environmentally preferably to another (Finnveden, 2000). This is because there are usually 
assumptions and value choices that are necessary which can be challenged. Even if an LCA can show 
that one material is in some ways preferable, the question whether it is good enough has not been 
answered. In order to do that an assessment against absolute sustainability criteria has to be done 
(Hauschild et al 2020).  
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Section 28 – Critical materials recycling
Gavin D. J. Harper1,2,3,4, Allan Walton1,2,3,4, Paul A. Anderson1,2,3,4

1. Birmingham Centre for Strategic Elements & Critical Materials, University of Birmingham, 
Birmingham, UK. 
2. The UKRI Interdisciplinary Circular Economy Centre for Technology Metals (Met4Tech), UK. 
3. The EPSRC Critical Elements and Materials Network (CREAM), UK. 
4. The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK

Status
Recycling can be considered as both solving a waste-management problem, whilst creating new 
resource opportunities [1]. There are many positive benefits to recycling. Recycling has potential to 
aid in reducing greenhouse gas emissions, avoid accumulation of waste in the environment, decrease 
dependence on limited resources, and recover economic value from wastes [2]. An idealised scenario 
would be a closed-loop circular economy, however, there are physical limitations and practical 
obstacles to this. With many materials, recycling results in a downgrading of materials properties. 
Contamination and processes negatively impact intrinsic properties of the material. [2]

Before recycling processes, waste must be sorted and segregated. A wide variety of sorting and 
segregation technologies for pre-treatment of waste prior to recycling exist [3]. Some of these 
processes rely on the direct sorting of the physical properties of materials e.g., screening, froth 
flotation, air separation, jigging, cyclonic separation, electrostatic separation, magnetic and magnetic 
density separation, triboelectric separation and eddy current separation [3], whilst others are smart 
relying on machine intelligence and automation in combination with sensors for indirect sorting – e.g. 
optical based, spectral based, NIR, MIR, VIS, X-ray etc. [3]. Different combinations of processes are 
able to deal with varying degrees of materials diversity [3] in input waste streams. In some cases, 
recycling efficiency is affected by fundamental physical processes, like the thermodynamics of 
separation [4]. A significant factor constraining the efficiencies of processes, and the quality of the 
product of recycling, is the degree to which waste can be pre-sorted. For low value products, this can 
be costly, and time, labour and energy intensive [2]. 

In other cases, it is the implementation of technologies – whether at the product stage, in terms of 
product design and a lack of design for recycling, or the state of the art of recycling technologies as 
they stand. Recycling is often seen as an end-of-pipe solution [5], whereas in the future, it may make 
more sense to design products with the end-of-life in mind, with easy recycling considered from the 
start [5]. Additionally, there are other factors such as social behaviour [4], which constrain the 
effectiveness of recycling processes.
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Current and Future Challenges

Figure 1: A hierarchy of Waste Management, with an expanded hierarchy of recycling options. Image taken from 
[6], adapted from an original diagram in [1]

In waste management, final options are often conceived as a hierarchy, (shown in Figure 1). Recycling 
is preferred to energy recovery, and this in turn is preferred over disposal, however, reuse is 
considered more optimal than recycling, and prevention of waste overrides all. However, within 
recycling, it should be considered that there are a range of different technologies, some of which are 
preferable to others.

Current research challenges for recycling, are manifold – how to increase the recovery rates of current 
recycling processes, new techniques to recycle materials that cannot currently be recycled, developing 
better processes for sorting and segregation of feedstocks [1], more selective processes to deal with 
mixed feedstocks [2] and cleaner, low-energy processes for recycling [2]. Composite products and 
materials present special challenges, where materials are intimately mixed together [2]. In some 
cases, clean separation of materials can result in significant cost-savings [5] compared to using 
material which has been mixed-together through pre-treatment by shredding [5].
Automation is seen as a significant tool in enabling smarter recycling processes [5].

In the case of metals, the end-of-life recovery rate for the most common “base metals” (iron, copper, 
zinc, etc.) is very high, above 50% in the main [4] although, there are many technology metals for 
whom recycling rates are very low. Technology metals are used, often in small amounts for specific 
technology applications – the colour emitting elements of LEDs and displays, high-strength magnets, 
the materials in battery storage applications, the active materials in electronic devices and thin-film 
solar panels etc. For these speciality technology critical metals (TCMs), recovery of the materials for 
recycling is both economically and technologically challenging and so their recycling rate is often low 
[4]. Precious metals like gold and platinum group metals are used in many high-technology 
applications, and because of their high value and ease of separation, there are established processes 
for recovering them [4], [6].
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Some recycling issues that can be solved at the product design stage [5]. Technology products are 
becoming more complicated over time and employing a wider range of materials [6] – making 
recycling difficult. This is shown in Figure 2. 

Figure 2: Elements employed in technologies as complexity progresses over time. 
Redrawn from [6]

Advances in Science and Technology to Meet Challenges
The complexity of high technology products, and intimate mixture of many different materials in close 
proximity means that current approaches to liberating materials are not well suited to the efficient 
recycling of these more complex products – and successful recovery of critical materials. One area of 
concern in high tech products, is the use of adhesives and binders as a joining method. This frustrates 
recycling and disassembly. Development of ‘reversible adhesives’ [11] or even substituting adhesives 
with other joining methods could significantly enable disassembly and recovery of active materials [5]. 
Designing complex technology products for disassembly will facilitate a greater shift towards a circular 
economy [5].

An example of a material that is used in high-tech products but is difficult to recycle is ‘rare earth 
magnets’ [8]. When shredded, in typical WEEE shredders, the magnet material sticks to recycling 
equipment, causing premature failure, and the material oxidises – losing its unique value in the 
process. More sophisticated post-processing techniques exist for recovering the magnetic material –
however, as an example of the challenges that remain, extracting the magnets from products 
efficiently is an example of the sort of research gap that exists [9].

With growing demand for technology-critical metals around the world, nations are alert to the 
opportunity that could come from valorising the secondary material contained in end-of-life products 
[6] however, scientific and technological challenges remain to unlock that value.

The digital industrialisation and use of robotic technologies for sorting and separation also has a 
significant role to play in recycling [1],[9]. Data can aid advanced recycling processes significantly [9]. 
Data driven recycling can aid in the disassembly and materials segregation of complex technology 
products [9]. This is important as in the case of municipal solid waste, it reduces the burden on the 
final user for sorting and segregation [3] and reduces the need for compliance with good waste 
management behaviours. Regulation is encouraging the use of data to track critical materials through 
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the supply chain and through all stages of the circular economy. The new EU Battery regulations 
mandate the use of "digital passports" for batteries, and such an approach could be transferable to 
other critical materials and technology product [12]. Furthermore, some technologies may be 
impossible to recycle efficiently economically, without significant automation [1]. Automation also has 
a role to play in reducing menial and sometimes dangerous labour in the recycling process [1],[9] and 
improving the system efficiency of recycling processes [9].

Concluding Remarks
Closed-loop ‘total recycling’ is argued to be impossible due to the second law of thermodynamics [10]. 
There will always be a trade-off between effort and energy expended in order to recover materials 
from a diffuse state in end-of-life products. Whilst energy-intensive, if it can be sourced from clean 
renewables, materials can be conserved in a sustainable way that is compatible with environmental 
goals [10]. 

Considering the end-of-life at the genesis of new products, will reduce the significant environmental 
burden of end-of-life products and aid in not only recycling, but also – preferably - remanufacture and 
reuse; conserving energy, value and resources.

It should be noted that many recycling challenges are not all scientific or technical in nature – many 
of the problems around collection rates are societal in nature. Development of appropriate legislation 
to incentivise both recycling and the optimisation of products for end-of-life treatment will also help 
facilitate this shift [5]. 
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