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Abstract

A large collection of element-wise planar densities for compounds obtained from

Materials Project is calculated using brute force computational geometry methods.

We demonstrate that the element-wise max lattice plane densities can be useful as

machine learning features. The methods described here are implemented in an open-

source Mathematica package hosted at https://github.com/sgbaird/LatticePlane.

1. Introduction

Atomic arrangement within planes and by extension, planar density (the number of

atoms per unit area on a plane), is relevant to applications such as elasticity (Rabiei

et al., 2020), oxidation (Ahn et al., 2011), surface-energy (Wang, 2020), thermoelectrics

(Snyder & Toberer, 2008), nanoscale materials patterning (Liu et al., 2016), and mag-

netism (Williams, 1937), all of which can exhibit anisotropy with respect to crystal-

lographic direction: e.g. bulk modulus (Fine et al., 1984; Holec et al., 2012; Yu &

Liu, 2019).
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Traditionally, planar density calculations have been performed on an individual

basis and manually (Fan, 2016). With the availability of consistent representation

of arbitrary crystals in the form of crystallographic information files (CIFs) (Hall

et al., 1991), extensive databases that contain collections of CIFs such as Materials

Project (Jain et al., 2013) or Open Quantum Materials Database (Saal et al., 2013),

and advanced 3D computational geometry libraries in software such as Mathemat-

ica (Wolfram, 2021), MATLAB (MATLAB, 2021), and Python (Vollprecht, 2021),

automated computation of planar densities of arbitrary crystals for arbitrary lattice

planes is possible. Indeed, in this work, we present such a workflow using Mathemat-

ica’s excellent built-in computational geometry functions in conjunction with MaXrd

(Ramsnes et al., 2019) which facilitates both importing CIF files and dealing with crys-

tal symmetry domain knowledge. This package is implemented on the full collection

of Materials Project compounds as obtained via the Materials API (Ong et al., 2015).

This represents the largest collection of planar densities to our knowledge with lattice

planes up to a min and max Miller index of -3 and 3, respectively.

While a neat analytical formula to describe lattice plane densities in arbitrary crystal

structures may exist, our method is a brute force approach which relies on numerical

geometrical computations. Additionally, this provides flexibility in treatment of the

lattice sites (Section 2.3) which otherwise might require extensive tailoring or entirely

new analytical formulas to describe. Indeed, a relevant analytical approach has been

published (Fan, 2016); however, the correctness of this method has been questioned

(Liu et al., 2020) without further rebuttal as of July 2021. Additionally, our database

has the benefit of containing both summed and element-wise atomic planar densities

(i.e. planar densities of each of the respective periodic elements).

We describe the methods for calculating lattice plane density (Section 2) and demon-

strate that this database can be used to supply features to machine learning models
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to predict material properties via a case study of bulk modulus (Section 3).

2. Planar Density Methods

We describe our approach for calculating atomic planar densities for an arbitrary

Miller plane in Section 2.1. When computing planar densities for multiple Miller

planes and to enhance computational efficiency, we consider only the unique Miller

planes with respect to crystallographic symmetry. We then cast these into the degen-

erate (full) representation as a post-processing step (Section 2.2). These methods

have been incorporated into a Mathematica package called LatticePlane hosted at

https://github.com/sgbaird/LatticePlane. A description of various model parameters

is given in Section 2.3. Bulk downloading of Materials Project CIF files and target

property data is handled via the Materials API (Ong et al., 2015).

2.1. Calculation of Lattice Plane Density

Calculating the planar density for a Miller plane takes on a brute force approach

using numerical computation and involves the following steps separated into Setup,

Intersections, and Post-Processing categories:

1. Setup

(a) Import CIF file via MaXrd

(b) Create the unit cell using basis vectors and if applicable, expand into a

supercell

(c) Convert the HKL indices into an infinite plane region

2. Intersections

(a) Compute intersection between the infinite plane and the unit cell as a

polygon region

IUCr macros version 2.1.10: 2016/01/28



4

(b) Compute area of the polygon

(c) Filter out atoms further than a specified distance threshold from the poly-

gon

(d) Represent the subset of atoms element-wise within the unit cell as ball

regions (or probability densities)

(e) Compute intersection between each ball and the polygon (or integrate each

probability density within the polygon)

3. Post-Processing

(a) If treating the atoms as lattice sites/nodes, divide intersected area of each

ball by its hemispherical radius

(b) Sum intersected areas element-wise and divide by polygon area

2.2. Unique Miller Plane Indices

Each crystallographic point group exhibits different types of crystallographic sym-

metry. For computational efficiency, only the unique Miller planes for a particular

point group are computed. These are then cast into the degenerate (full) represen-

tation spanning all integer combinations of the possible Miller indices using rules

obtained via MaXrd. The number of unique Miller planes for several points groups and

varying constraints on the max Miller index are given in Table 2. For example, com-

puting all combinations of Miller indices up to a max of 3 for the m3m point group

involves the computation of 19 unique Miller planes, whereas the triclinic case (no

symmetry) involves computation of all 342 combinations. An example of the unique

and full planes (truncated) for the m3m point group is shown in Figure 1a and b,

respectively.
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2.3. Mathematica Package Model Parameters

One of the benefits of using a brute force numerical approach to compute planar

densities is that the model parameters can be freely tuned for a chosen application.

Relevant LatticePlane model parameters are given in Table 1.

Atoms/sites can be treated as nodes, hard spheres, or probability distributions.

While the code package implements hard sphere and probability distribution models,

node density can effectively be obtained by treating the atoms as hard spheres, only

considering atoms whose centers are within a tight (e.g. numerical) tolerance of the

lattice plane of interest, and normalizing the intersection area by the area of the hard

sphere for each atom. Node density values remain unchanged for larger supercells; how-

ever, planar densities of finite-radius hard sphere and probability distribution models

when sub-hemisphere slices of atoms are considered (i.e. atoms whose centers do not

lie exactly on the Miller plane) converge with increasing supercell size. Examples of

intersections within a 3 × 3 × 3 supercell are shown in Figure 2.

In terms of other model parameters, atom radius factor scales the covalent radius of

the atoms and defaults to a value of 1. Additionally, increasing the max Miller index

increases the computational cost (Section 2.2).

3. Potential for Machine Learning

Addition of element-wise max lattice plane density as machine learning features improved

the machine learning results relative to training only on elemental presence (Figure 5).

The R2 fit improved from 0.600 ± 0.031 to 0.673 ± 0.029. Mathematica’s built-in

Predict function was used. Predictions of bulk modulus using only elemental pres-

ence are summarized in Figure 6 to facilitate comparison with the machine learning

model which incorporated element-wise max lattice plane densities.

While the machine learning was performed with respect to a bulk property, the
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dataset may be better suited to target properties which are planar in nature. An

example of such an application is the Open Catalyst Project (Chanussot et al., 2021).

4. Conclusion

We created a computational workflow which calculates element-wise atomic planar

densities using crystallographic information files (CIFs) as inputs and applied this to

a large database of compounds. We tested the usefulness of this dataset for machine

learning applications and found that in a simple test case, the addition of max element-

wise atomic planar density as a feature improves the predictive accuracy relative to

learning on elemental presence only using the target property of bulk modulus.

5. Future Work

While we chose to focus on node density, incorporation of pymatgen (Ong et al., 2013)

charge decoration (Composition module) can help with smartly choosing radii for

elements based on their covalent, ionic, and metallic radii for the hard sphere and

probability density models and may offer better quality information for data science

models. We hope to see this dataset used in crystallographic orientation dependent

applications such as the Open Catalyst Project in pursuit of surrogate models for

computationally complex physics-based simulations.
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Table 1. Model parameters used in the Mathematica package LatticePlane and a list of

corresponding properties.
Model Parameters Properties Defaults
Method Discrete (Hard Sphere or PDF) Hard Sphere
Atom radius factor Positive, continuous 1 (Method=Hard Sphere)
Supercell size Positive integer 1 × 1 × 1
Max HKL index Positive integer 3
Plane distance threshold Positive, continuous 0.01 Angstroms

Table 2. Number of unique Miller planes for 7 crystallographic point groups of varying levels

of symmetry.
# of Unique Miller Planes

Point Group (Crystal System) Max HKL = 1 Max HKL = 2 Max HKL = 3
m-3m (Cubic) 3 9 19
6/mmm (Hexagonal) 5 17 39
32 (Trigonal) 8 34 90
4/mmm (Tetragonal) 5 17 39
222 (Orthorhombic) 8 34 90
m (Monoclinic) 17 74 195
1 (Triclinic) 26 124 342
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Fig. 1. (a) Nineteen unique and (b) 324 degenerate lattice planes for an Al Fm3m
crystal structure. Atomic sites are plotted as red points. Shading of planes is for
visual demonstration only. Axes are in units of Angstroms.

Fig. 2. Example of 3 × 3 × 3 supercell intersections for Fm3m in (a) (111) and (b)
(200) Miller planes.
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Fig. 3. (a) Crystal plot of Fm3m Al (b) unique Miller plane densities (c) degen-
erate Miller plane densities with positive-valued Miller planes (white wireframe
box) removed for visualization purposes. An atom-to-plane distance threshold of
0.1 Angstroms and a max Miller index of 3 were used.
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Fig. 4. (a) Crystal plot of Pnma Fe3C (b) unique Miller plane densities of Fe (c)
degenerate Miller plane densities for Fe (d) unique Miller plane densities for C
(e) degenerate Miller plane densities for C. For the degenerate (full) plots (c, e),
positive-valued Miller planes were removed for visualization purposes. The removed
data is bounded by a white wireframe box. An atom-to-plane distance cutoff of 0.1
Angstroms and a max Miller index of 3 were used.
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Fig. 5. Machine learning results using element-wise max lattice plane densities as
numerical features and elements within the compound as nominal features. Com-
pounds with less than 6 elements were zero-padded.
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Fig. 6. Machine learning predictions of bulk modulus using only elemental presence
as nominal data. Compounds with less than 6 elements were zero-padded.

Synopsis

A large database of CIF files is used in conjunction with computational geometry software to
calculate element-wise planar densities up to a max HKL index of 3.
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